
Why let resources idle? Aggressive Cloning of Jobs with Dolly

Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, Ion Stoica

University of California, Berkeley

{ganesha,alig,shenker,istoica}@cs.berkeley.edu

Abstract

Despite prior research on outlier mitigation, our anal-

ysis of jobs from the Facebook cluster shows that out-

liers still occur, especially in small jobs. Small jobs

are particularly sensitive to long-running outlier tasks

because of their interactive nature. Outlier mitigation

strategies rely on comparing different tasks of the same

job and launching speculative copies for the slower tasks.

However, small jobs execute all their tasks simultane-

ously, thereby not providing sufficient time to observe

and compare tasks. Building on the observation that clus-

ters are underutilized, we take speculation to its logical

extreme—run full clones of jobs to mitigate the effect

of outliers. The heavy-tail distribution of job sizes im-

plies that we can impact most jobs without using much

resources. Trace-driven simulations show that average

completion time of all the small jobs improves by 47%
using cloning, at the cost of just 3% extra resources.

1 Introduction

Cloud computing has become a significant technologi-

cal breakthrough. An increasing number of organizations

use datacenters to run a mixed variety of computations,

ranging from long-running batch jobs to interactive short

queries that operators launch on the fly.

The importance of these datacenter computations has

led to much effort being spent on optimizing their perfor-

mance. The prevalence of outlier tasks was early identi-

fied as a common source of performance problem [1].

Initial research suggested the use of speculative execu-

tion to mitigate such outliers. These methods were later

improved by LATE [2] and Mantri [3], which provide

more intelligent outlier mitigation based on speculative

execution of tasks. Similar techniques have also been

used to deal with outliers in other settings [4, 5].

Despite this research on outlier mitigation, our anal-

yses of traces from a 3,500 node Facebook cluster, that

applies the LATE technique, shows that outliers are still

common, especially in small jobs. The small jobs, on av-

erage, have outlier tasks that are 12 times slower than that

job’s median task, which significantly delays completion

of jobs. Our simulations show that the outlier numbers

for Mantri are similar for small jobs.

Small jobs are particularly sensitive to outliers because

they execute in a single wave of simultaneously running

tasks. Therefore even a single task being an outlier slows

down the entire job. The single-waved property also

limits the efficacy of traditional outlier mitigation strate-

gies that rely on comparing different tasks of the same

job. Any meaningful comparison requires waiting to ob-

tain statistically significant samples of task performance,

which single-waved small jobs cannot afford.

In this work, we focus on improving the completion

time of these small jobs, which are often interactive

queries, where the response time is important to the hu-

man operator awaiting its response. The idea we explore

in this paper is to take speculative execution to its logical

extreme and run full clones of jobs to reduce job comple-

tion times. Two trends make this approach viable.

First, most jobs are small and consume few resources.

Our analysis shows that job sizes have a power-law

distribution, with the absolute majority of the jobs be-

ing small, while the absolute majority of the cluster re-

sources are spent on a small number of large jobs. Thus,

the aggregate resources consumed by small jobs is mod-

erate. Running clones of small jobs has the potential to

impact most jobs, without using much resources.

Second, most clusters are highly underutilized. Sev-

eral of the clusters that we analyzed have a very low av-

erage utilization. In particular, CPU and memory utiliza-

tion in these clusters has a median less than 20%. In fact,

cluster utilization exceeds the 50% mark only 8% of the

time. There is thus room for running extra clones of jobs.

A key question is whether running job clones will

negatively impact energy efficiency. Despite research

on powering down machines for energy efficiency, we

note that most clusters today do not shut off machines

to save energy. Thus, machines are on most of the

1



0

20

40

60

80

100

25% 50% 75% 90% 99%

Slot Memory CPU

Percentile of Time

U
ti
liz
a
ti
o
n
 (
%
)

Figure 1: Distribution of cluster utilization values.

time, and the majority of the energy cost is already in-

curred as the underlying hardware has limited power-

proportionality [6]. Further, the energy costs of operating

datacenters is largely proportional to the peak-utilization

and not just the actual utilization [7]. Our position is,

therefore, to use these idling resources for useful work.

Our job cloning strategy, called Dolly,1 uses a proba-

bilistic model to dynamically account for the probability

of occurrence of an outlier in individual machines. Based

on this model, it launches several clones of tasks to reach

a target probability of outlier-free executions. Dolly is

configured to never increase the utilization of the clus-

ter beyond a prescribed threshold, and will immediately

abort clones in case utilization crosses that threshold.

Our evaluation shows that Dolly, when used for

cloning only small jobs (the smallest 82% of jobs), im-

proves their completion time by 47% and 39%, compared

to LATE and Mantri, respectively, at the cost of increas-

ing utilization by merely 3%. This improves the overall

average completion time of all jobs by 40% and 33% in

the two cases. A more aggressive use of Dolly would be

to use it for cloning all jobs. This improves the over-

all average completion time by 44% at the expense of

increasing utilization of the cluster by a factor of 2.2×,

well within reach of today’s underutilized clusters.

2 Making the Case for Cloning

Our work rests on two complementary characteristics of

data-intensive clusters—low utilization of resources and

occurrence of outliers in small jobs. We elaborate on this

using traces from Facebook’s Hadoop [8] cluster. These

traces represent 375K jobs over a month’s duration.

2.1 Low Utilization

We analyze utilization across slots, CPU and memory. A

slot, allotted to tasks, typically refers to a pre-assigned

number of compute cores and memory. Slot utilization is

the fraction of time the slots in the cluster were running

tasks. CPU utilization is the fraction of time the cores

in the cluster were utilized for computation. Memory

utilization measures the memory occupancy by tasks.

1Dolly was the first mammal (sheep) to be cloned.

N
u
m
b
e
r 
o
f 
J
o
b
s
 

105

104

103

102

10

1

106

Number of Tasks

1 10 102 103 104 105

(a) Number of tasks

N
u
m
b
e
r 
o
f 
J
o
b
s
 

Cluster Cycles

106

105

104

103

102

10

1
1 10 102 103 104 105 106

(b) Cluster cycles

Figure 2: Power-law distribution of jobs in the number of

tasks and cluster cycles consumed. Power-law exponents

are 1.9 and 1.7 when fitted with least squares regression.

Figures 1 lists the distribution of utilizations. Clearly,

resources remain idle. The median slot, CPU and mem-

ory utilizations is only 21%, 19% and 17%, respectively.

In other words nearly four-fifths of the cluster remains

idle for half the time. In fact, utilizations exceed 50% for

only 8% of the time. Such trends of low utilization are

consistent with prior observations (e.g., [9, 10]).

This raises the question of why are these clusters so

heavily over-provisioned. The answer is peak utilization.

The peak utilization of the Facebook cluster exceeds

99%. Clusters are provisioned for their peak utilizations,

even if that occurs for only a small period, to provide

consistent SLA guarantees on job performance. Unfor-

tunately, this leaves the cluster idling at other times.

Workload shaping can spread the load on the cluster

and lower peak utilization (as in [11]). However, imple-

menting it in practice, especially when there are user-

driven jobs, is complicated. Regardless, efforts at reduc-

ing the peak-to-average ratio is beyond the scope of this

paper. We believe that cluster utilizations will continue

to be low and systems should appropriately make use of

the available idling resources for their benefit.

2.2 Outliers in Jobs

Before quantifying outlier tasks in jobs, we first describe

the mix of jobs that run in these clusters.

A common property of workloads in clusters is their

heavy-tail distribution—many small jobs dominate by

count and a few large jobs consume most of the re-

sources [12].2 Small jobs are interactive computations

submitted by users, who then wait for their completion

and hence are sensitive to delays in completion times. In

the Facebook cluster, 82% of jobs have less than 10 tasks

in them. However, these jobs consume only 6% of the

aggregate resources of the cluster. Indeed, as Figure 2

shows, the number of tasks in jobs, and cluster cycles

consumed by jobs, follow a power-law distribution.

2The terms “small” and “large” can equivalently refer to the input

size, cluster cycles, or the number of tasks of a job. Cluster cycles of a

job is defined as the sum of the duration of its tasks.

2



1

3

5

7

9

11

13

1-10 11-50 51-150 150-500 > 500

Bin (#Tasks)

(M
e
d
ia
n
 :
 M

in
im
u
m
) 

P
ro
g
re
ss
-r
a
te

Figure 3: Ratio of median to minimum progress rates for

tasks of a job. Small jobs are more impacted by outliers.

Outlier tasks significantly hamper jobs in the Face-

book cluster even though the LATE mitigation strat-

egy [2] is in operation. LATE speculatively executes

tasks that are estimated to finish last. We measure the

magnitude of outliers by comparing progress rates of

tasks within a job. The progress rate of a task is defined

as its input size divided by its duration. A measure of

how significantly a job is affected by outliers is given by

the ratio of median to minimum progress rates among its

tasks.3 A high value indicates the presence of outliers.

Figure 3 shows the variation of this ratio across jobs of

different sizes. Small jobs have this ratio to be over 12.

Outliers particularly hurt small jobs. Small jobs run all

their tasks simultaneously in one wave. Therefore, a de-

lay in completion of even a single task holds up the entire

job’s completion. This is unlike jobs that run over mul-

tiple waves of tasks. For such multi-waved jobs, impact

of outliers can be better absorbed across the waves.

Before explaining the idea of cloning, we would like

to point out the lack of any correlation between outliers

and either high utilization or a choice of machines. Let

the median to maximum ratio of progress rates in a time

window be the median of the ratios across all the jobs

that were active in that window. The Pearson correlation

coefficient between the ratios and utilization is −0.12,

implying little correlation. In fact the median utilization

of the cluster when the median to maximum ratio is ≥ 3
is 22.7%, close to the overall median utilization. Also,

outliers are not caused by a small set of persistently prob-

lematic machines. This is not surprising as the Facebook

cluster already blacklists machines with faulty disks and

other hardware troubles using periodic diagnostics

2.3 Cloning: Idea and Potential

The observations in §2.1 and §2.2—low utilization and

prevalence of outliers, especially in but not limited to

small jobs—points to an opportunity to aggressively uti-

lize the idle resources to clone jobs thereby probabilisti-

cally mitigating the effect of outliers.

3We use only successfully completed tasks for our analysis and dis-

card those tasks that failed or were preempted (e.g., as in [13, 14]).

The traditional approach for mitigating outliers is

speculation [1, 2, 3]. Speculative copies are spawned for

those tasks that are deemed to be slower. It then becomes

a race between the speculative and original copies. With-

out getting in to the details of the algorithms that trig-

ger the speculative copies, we point out that these algo-

rithms decide on which tasks to speculate based on ob-

served performance of other tasks of the same job. The

time taken to generate statistically significant observa-

tions limits agility of the speculation algorithm. Further,

outlier tasks are not necessarily slow during their entire

duration. It is often the case that they become slow when

they are well into their processing. Spawning a specula-

tive copy at that point might be late. This is evidenced

by the outliers affecting jobs in the Facebook cluster in

spite of the LATE speculation strategy [2] being used.

In this paper, we argue for speculation of jobs just as

they are launched. We call such speculative copies that

are not dependent on any performance observations as

clones. If there are idle resources, clones are created.

The result is chosen from the clone that finishes first.

The idea of cloning rests on the following two obser-

vations. First, an outlier does not occur due to any inher-

ent computational property but due to systemic eccentric-

ities. Therefore it is less likely to occur if another copy is

spawned elsewhere. Second, the probability of an outlier

decreases exponentially with the number of clones.

Potential Improvement: If all outliers are hypotheti-

cally ironed out, the average completion time of jobs im-

proves by 46% and small jobs (≤ 10 tasks) improve by

49%. Encouraged by this potential, we try a strawman

scheme—clone all small jobs (≤ 10 tasks) by simply

running multiple instances of the whole job. The num-

ber of clones is sufficient to limit the chances of an out-

lier in the job to 5% (we defer the exact details to §3.1).

Even this simple strategy improves the average comple-

tion time of small jobs by 35% (∼ 70% of ideal).

2.4 Energy Efficiency

The idea of using idle resources aggressively is counter

to proposals that make clusters energy-efficient [15, 16].

Such proposals advocate powering down machines dur-

ing idle periods. However, to the best of our knowledge,

most clusters have not adopted these proposals. There

are many reasons behind this lack of adoption.

Recent research reports that the operating energy ex-

pense of a datacenter is largely influenced by the peak

consumption, even if that is only for a short period.

In fact, for modern datacenters, the cost of peak con-

sumption constitutes as high as 40% of the total ex-

pense. Therefore, the energy-proportional proposals ad-

dress only the remaining part of the operational expense.

This has proved insufficient for cluster operators.

An engineering consideration, but important noneth-

3



T1 T2 T3 T1 T2 T3

W

T1 T1 T2 T2 T3 T3

Job Output

W W W

Job Output

Job-level 

Cloning

Task-level 

Cloning

Figure 4: Illustration of job-level and task-level cloning for

a job with 3 tasks with and 2 clones. The rhombus with

“W” picks the winner between the clones, i.e., the earliest.

less, behind the lack of adoption of power-cycling of

machines is the resulting unpredictability of the applica-

tion software as well as the hardware. Application soft-

ware, that run continuously on machines, produce unpre-

dictable behavior when frequently restarted. Hence the

preference to keep machines on continuously. Commod-

ity hardware degrades in reliability when continuously

power-cycled. Conversations with datacenter operators

confirm these concerns as the reason behind their unen-

thusiastic response to power-cycling in clusters.

Finally, powering off machines results in lower return

on the hardware investment. Clusters typically procure

new hardware every few years. With such recurring cap-

ital costs, it is arguably beneficial for them to explore

ways to utilize their sunk costs instead of powering them

down, the direction that we are pursuing with Dolly.

3 Design Issues in Dolly

We now discuss about the design details of Dolly.

3.1 Cloning Granularity

The first question that arises is the granularity of cloning.

As broached in §2.3, one option is to clone at the gran-

ularity of jobs. For every job submitted to the cluster,

multiple clones are spawned. Results are returned from

the earliest clone of the job. Such job-level cloning is

appealing due to its simplicity. The alternative to this

is task-level cloning. Every task is cloned and a win-

ner is picked between the clones of every task. The out-

put of that task is passed to tasks downstream in the job.

Therefore, unlike job-level cloning, task-level cloning re-

quires intricate changes to the execution of the job. Fig-

ure 4 illustrates the difference between the two cloning

techniques: job-level cloning is successful only if all the

tasks of a clone do not become outliers.

For the same number of clones, task-level cloning pro-

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9

10 Tasks

20 Tasks

50 Tasks

Number of clonesP
ro
b
a
b
ili
ty
 o
f 
O
u
tl
ie
r 
in
 t
h
e
 J
o
b

(a) Job-level Cloning

0

0.1

0.2

0.3

0.4

1 3 5 7 9

10 Tasks

20 Tasks

50 Tasks

Number of clonesP
ro
b
a
b
ili
ty
 o
f 
O
u
tl
ie
r 
in
 t
h
e
 J
o
b

(b) Task-level Cloning

Figure 5: Probability of a job having an outlier for varying

number of clones. We use sample job sizes of 10, 20 and 50
tasks. Task-level cloning requires fewer replicas.

vides better guarantees for eliminating outliers compared

to job-level cloning. Let p be the probability of a task be-

coming an outlier. For a job with n tasks and c clones,

the probability that it has an outlier is (1− (1− p)
n
)
c

with job-level cloning, and 1− (1− pc)
n

with task-level

cloning. Figure 5 compares how these probabilities de-

crease as we increase the number of clones. Task-level

cloning gains more per clone and the probability of the

job having an outlier drops off considerably faster. In

fact, for 96% of jobs in the cluster, task-level cloning re-

sults in ≤ 5% chance of outliers with just three replicas.

Despite low utilization (§2.1) in clusters, task-level

cloning’s resource efficiency is desirable. It reduces con-

tention among clones for network links, disk bandwidth

and memory locality [12, 17] (see §4). Job-level cloning,

on the other hand, is simpler to implement and transpar-

ent to the internal details of the frameworks, albeit at the

expense of efficiency. A complete comparison of the two

cloning techniques is part of future work.

3.2 Probability of Outlier

Estimating the probability of occurrence of an outlier is

crucial for Dolly because it dictates the number of clones

to spawn. An inflated value wastes unnecessary clones

on a job denying resources to other jobs while an under-

estimation does not effectively mitigate outliers.

We observe that the cluster-wide probability of a task

being an outlier is roughly constant over time. Further,

there are no select set of machines that consistently cause

outliers. Nonetheless, we observe considerable varia-

tions in the probability per machine over time.

The probability of occurrence of an outlier on a ma-

chine (pm) is defined as the ratio of the number of out-

liers on that machine to the total number of tasks that it

executed. We define an outlier as a task whose progress

rate is less than 2× the median progress rate of tasks in

its job.4 We calculate the coefficient-of-variation
(

stdev
mean

)

4We are actively considering more sophisticated definitions to cate-

gorize outliers including clustering techniques.

4



procedure CLONE TASK-LEVEL(Job with n tasks, p)

co = log
(

1− ǫ(1/t)
)

/ log p

M: 〈(name, pm)〉 ⊲ Machines sorted by descending pm
for Task t do

pt ← po ⊲ Outlier probability of original copy

i← 0 ⊲ Index for machine list

while pt×M[i].pm > pco and (U + 1) < τ do

Clone t on M[i].name

pt ← pt×M[i].pm
i← i+ 1
U ← U + 1

Pseudocode 1: Task-level cloning for a job with n tasks

on a cluster with overall probability of outlier as p.

of pm across machines in every hourly window. The me-

dian of these coefficients over the entire duration of the

Facebook trace is 2.12, indicating a high variation in pm
between machines. Coupled with the observations that

the cluster-wide probability is constant across time and

no set of machines are persistently problematic, this in-

dicates the need to periodically learn the probability of

occurrence of an outlier on each machine.

Learning based on an average of recent and histori-

cal values yields encouraging accuracy. We define the

probability at the end of time-window t to be pm,t+1 =
(pm,t + pm[t])/2 where pm[t] is the probability during

the tth time-window. This predicts with an accuracy of

56%. Using improved learning models is underway.

3.3 Cloning Algorithm

Cloning is conditional on the cluster’s current utilization.

Cloning happens if the expected utilization after spawn-

ing clones is less than a ceiling of τ , a value that can be

set based on operational considerations. Current slot uti-

lization (U ) is measured as the number of running tasks.

Given this setting, the three parameters of interest for

cloning jobs are the cluster-wide probability of an out-

lier (p), probability of outliers per machine (pm), and the

acceptable probability of a job having an outlier (ǫ).

We first describe job-level cloning. We use the cluster-

wide probability of an outlier, p. For a job with n tasks,

the number of clones required, c, can be derived to be

at least log ǫ

log(1−(1−p)n) . The number of clones actually

spawned is limited by the available slots within the uti-

lization threshold: min
(

c,
⌊

τ−U+c·n
n

⌋)

.

Task-level cloning, on the other hand, considers the

outlier probabilities per machine. It first calculates an in-

dicative number of clones (co) using the cluster-wide out-

lier probability p. For cloning individual tasks, it looks

at the set of machines in the cluster in descending order

of their outlier probabilities. It picks the smallest set of

machines (i.e., number of clones) whose combined prob-

ability of eliminating an outlier is greater than when all

0

10

20

30

40

50

1-10 11-50 50-150 150-500 >500

Job-level Cloning

Task-level Cloning

Bin (#Tasks)

R
e
d
u
ct
io
n
 (
%
) 
in
 A
v
g
. 

C
o
m
p
le
ti
o
n
 T
im
e

(a) Baseline: LATE

0

10

20

30

40

1-10 11-50 50-150 150-500 >500

Job-level Cloning

Task-level Cloning

R
e
d
u
c
ti
o
n
 (
%
) 
in
 A
v
g
. 

C
o
m
p
le
ti
o
n
 T
im
e

Bin (#Tasks)

(b) Baseline: Mantri

Figure 6: Reduction in average completion time using Dolly

compared to the LATE and Mantri speculation strategies.

the machines had a probability of p and the task ran co
clones. Pseudocode 1 describes the algorithm in detail.

Finally, cloning of jobs should be transparent to fair-

ness guarantees. An incoming job which is entitled to

get its fair share, could request the slot of a running

task. Dolly prioritizes the incoming job’s task over all the

copies of the running task but one; only the original copy

is given equal priority as the incoming task. Therefore,

an incoming task can immediately claim its fair share by

killing clones in progress. Such killing of clones can also

be used during emergency to bring down utilization.

Evaluation: We evaluate Dolly’s performance using a

trace-driven simulator replaying Hadoop logs from the

Facebook cluster. We used an ǫ of 0.05 and τ of 70%.

Facebook’s cluster deploys LATE and so that is our base-

line. Overall average completion time of jobs reduce by

44% and 31% with task-level and job-level cloning, re-

spectively. Figure 6a breaks down the improvement by

job sizes. Note that this difference is despite job-level

cloning consuming 5.8× more resources. While the dif-

ference between the two cloning strategies is significant

for small jobs (≤ 10 tasks), task-level cloning’s resource

efficiency assumes greater importance for larger jobs.

We also compare Dolly to Mantri’s [3] outlier miti-

gation techniques. Mantri speculates tasks based on a

comparison between the estimated remaining time for a

running task and the expected duration of a speculative

copy, calculated using samples from completed tasks of

the job. Figure 6b shows the benefits of cloning when the

baseline is Mantri. Average completion time improves

5



by 35% and 26% for the two cloning strategies.

It is noteworthy that if only the small jobs were cloned

the overall average completion time still reduces by 40%
and 33% compared to LATE and Mantri, at the cost of

increasing utilization by merely 3.3% (i.e., from 21% to

24.3%). This is due to the power-law distribution of job

sizes (Figure 2), a major reason behind Dolly’s efficacy.

Dolly’s gains are limited for large jobs where LATE

and Mantri’s thoughtful speculation is already effective.

We envision Dolly’s proactive cloning to co-exist with

such reactive outlier mitigation techniques.

4 Future Directions

As we move forward with the development of Dolly, ad-

dressing I/O contention among clones will be important.

Input Data: Clones are less likely to contend on disk

bandwidth because input data is typically replicated three

times by file systems, and small jobs require fewer

clones. However, clones will contend for memory band-

width and memory local slots when inputs are cached in

memory [12, 17], which usually is not replicated. Repli-

cating files in memory can be challenging because mem-

ory capacity is already three orders of magnitude lower

than disks. Our analysis of Facebook traces shows that

92% of the smallest active jobs can fit their data in mem-

ory because of the power-law distribution [18]. Since the

desired number of clones is low for small jobs, we can

replicate the cached inputs of only the small jobs at the

expense of evicting some input blocks of large jobs.

Intermediate Data: Cloning poses challenges when it

comes to handling the intermediate data transferred be-

tween the map and reduce phases. Cloned reduce tasks

need to read their data from the map tasks that produced

the data. Because of the all-to-all traffic pattern of shuf-

fles, a reduce task often needs to fetch data from every

map task’s output. Thus, frameworks does not attempt to

provide locality for reduce tasks. Further, intermediate

data is not replicated to avoid resource and time over-

heads. This means that Dolly should take care such that,

(i) cloned reduce tasks do not overwhelm the machine

they are fetching the map output from, and (ii) the ex-

tra data necessary to feed the clones does not congest the

network. A thorough analysis of dealing with these prob-

lems is our immediate future plan, but we next explain

the problem of contention for intermediate map outputs.

Ideally, we would like to assign an exclusive copy of

map output to every reduce clone. However, when some

of the map clones are outliers, there are fewer copies of

the map outputs. This presents us with a tricky situation

in assigning intermediate map outputs to reduce clones.

Care has to taken to balance the risk of waiting for a map

clone to complete against the overhead of letting reduce

clones contend for the available copies of map outputs.

Finally, we plan to perform a full-fledged implemen-

tation of Dolly inside data-intensive frameworks (e.g.,

Hadoop), and deployment to evaluate its benefits.

Acknowledgments

We thank Facebook for access to Hadoop job traces from

their production cluster. For feedback on improving the

draft, we thank Arka Bhattacharya, Mosharaf Chowd-

hury, Aurojit Panda, and David Zats. This research was

supported by the sponsors of the AMP Lab at Berkeley:

SAP, Amazon Web Services, Cloudera, Huawei, IBM,

Intel, Microsoft, NEC, NetApp and VMWare, and by

DARPA (contract #FA8650-11-C-7136).

References

[1] J. Dean and S. Ghemawat. Mapreduce: Simplified data process-

ing on large clusters. In USENIX OSDI, 2004.

[2] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, I. Stoica.

Improving MapReduce Performance in Heterogeneous Environ-

ments. In USENIX OSDI, 2008.

[3] G. Ananthanarayanan, S. Kandula, A. Greenberg, I. Stoica,

E. Harris, and B. Saha. Reining in the Outliers in Map-Reduce

Clusters using Mantri. In USENIX OSDI, 2010.

[4] C. Wilson, H. Ballani, T. Karagiannis, A. Rowstron. Better Never

than Late: Meeting Deadlines in Datacenter Networks. In SIG-

COMM, 2011.

[5] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M.

Tolton, T. Vassilakis. Dremel: Interactive Analysis of Web-Scale

Datasets. In VLDB, 2010.

[6] D. Meisner, C. M. Sadler, L. A. Barroso, W-D Weber, and T F.

Wenisch. Power management of online data-intensive services.

In ISCA, 2011.

[7] S. Govindan, A. Sivasubramaniam, B. Urgaonkar. Benets and

Limitations of Tapping into Stored Energy For Datacenters. In

ISCA, 2011.

[8] Hadoop. http://hadoop.apache.org.

[9] L. A. Barroso. Warehouse-scale computing: Entering the teenage

decade. In ISCA, 2011.

[10] Y. Chen, S. Alspaugh, D. Borthakur, R. Katz. Energy Efficiency

for Large-Scale MapReduce Workloads with Significant Interac-

tive Analysis. In ACM EuroSys, 2012.

[11] L. Ganesh, J. Liu, S. Nath, G. Reeves, F. Zhao. Unleash stranded

power in data centers with rackpacker. In WEED, 2009.

[12] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S.

Kandula, S. Shenker, I. Stoica. PACMan: Coordinated Memory

Caching for Parallel Jobs. In USENIX NSDI, 2012.

[13] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and

A. Goldberg. Quincy: Fair Scheduling for Distributed Computing

Clusters. In ACM SOSP, 2009.

[14] G. Ananthanarayanan, S. Agarwal, S. Kandula, A. Greenberg,

I. Stoica, D. Harlan, E. Harris. Scarlett: Coping with Skewed

Popularity Content in MapReduce Clusters. In EuroSys, 2011.

[15] A. Krioukov, P. Mohan, S. Alspaugh, L. Keys, D. E. Culler and

R. H. Katz. NapSAC: The design and implementation of a power

proportional web cluster. In ACM GreenNets, 2010.

[16] Y. Chen, L. Keys, R. Katz. Towards Energy Efficient Hadoop. In

Hadoop Summit, 2009.

[17] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. Mc-

Cauley, M.J. Franklin, S. Shenker, and I. Stoica. Resilient Dis-

tributed Datasets: A Fault-Tolerant Abstraction for In-Memory

Cluster Computing. In USENIX NSDI, 2012.

[18] G. Ananthanarayanan, A. Ghodsi, S. Shenker, I. Stoica. Disk

Locality Considered Irrelevant. In USENIX HotOS, 2011.

6


