
Abstract* 
 
The Facilitator Room is a conference room that is 

outfitted with sensors and actuators in order to observe 
and influence human behavior in conversational settings.  
This work describes our efforts thus far in developing 
robust sensing mechanisms in the visual and auditory 
domains and designing statistical models to analyze and 
predict behavior.  We review the “Influence Model,” our 
primary analysis tool, which we developed for this 
purpose in [1].  The “Influence Model” models a group 
of interacting agents as a group of simple Markov chains 
that are each influencing each other’s state transitions.  
We demonstrate the capabilities of this model on both 
synthetic data and real interaction data from the 
Facilitator Room.  We describe our approaches for doing 
prediction with this model and close with a discussion of 
how we plan to influence interactions with the room’s 
actuators. 
 

1 Introduction 
One of the most interesting aspects of human 

interactions is the “influence” that individuals and 
subgroups can have on each other.  Certain people always 
seem to dominate the conversation, others seem 
particularly capable of getting people to agree with them, 
and some will rarely speak but cause a significant shift in 
focus when they do.  Undoubtedly, some of this has to do 
with what words the participants say.  However, it seems 
that how they say these words, in terms of speaking style 
and body language, can play a significant effect. 
Sociologists have long studied this manner of effect [2] 
and have shown some interesting properties.  For 
instance, an interesting study in the Tipping Point [3] 
showed how a good salesman succeeded in his art by 
getting his audience to synchronize their body language 
with his – in particular, nodding their heads when he did.   
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We are interested in studying this type of effect in a 
quantitative way.  In particular, we want to determine 
how much influence each participant has on the others.  
We cast this influence in terms of predictability – how 
useful is person B’s state in determining person A’s next 
state?  We do this using the  “Influence Model,” described 
in Section 3.  The advantages to being able to better 
predict individuals’ states in such a way are many.  The 
simplest application would be to use this information to 
determine who will speak next and steer a “smart camera” 
system for recording the meeting.  Our long-term goal, 
though, is to use this information to affect the participants 
during their interaction.  For example, we could try to use 
the actuators to make the quiet individual(s) speak up 
more and have the dominating speaker(s) quiet down, or 
vice versa.  We can use the techniques for estimating 
influence between people to also estimate the influence 
between an actuator and people.  With a reliable means of 
predicting the effects of the actuator, we can then design 
control loops for driving/limiting certain kinds of 
behavior. 

In this paper, we first describe the Facilitator Room, an 
experimental setup with sensors and actuators we have 
constructed for studying these effects.  We also describe 
our work in developing robust visual and auditory 
features to characterize the behaviors of the individuals in 
the room.  In Section 3, we review the “Influence Model,” 
a Dynamic Bayes Net (DBN) model we developed in [1] 
for analyzing human interactions.  We show the results of 
applying this model on synthetic and real data to estimate 
the influences between individuals.  We then describe our 
preliminary work on doing prediction with our model, 
along with our proposed methods to improve these early 
techniques.  Finally, we close with a discussion of our 
findings thus far and our future plans.    

2 The Facilitator Room 
In the interests of studying the interactions between 

humans and the influences of various experimental 
variables, we have developed an experimental setup we 
call the "Facilitator Room."  This room is a 15-foot by 15-
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foot space with three couches and a table.  The room is 
instrumented with five pan-tilt-zoom cameras and an 
array of microphones:  

 

Figure 1 Sensor placement in the Facilitator Room.  
The red circles are microphones; the blue semicircles 
are cameras. 

The center camera has a wide-angle lens and can see 
all the participants at once (see Figure 2).   The corner 
cameras are each pointed at one of the couches (see 
Figure 3). 

2 .1  Fea tures  

 From these sensors, we estimate a variety of features 
to characterize the behavior of the participants.  While 
ideally we would have detailed tracking information and 
speech recognition, these are difficult to obtain in a robust 
way for data sessions that need to go for hours at a time 
without human intervention. Robustness is key here, 
sometimes at the cost of detail or precision.  

Figure 2: Per-region motion energy in the Facilitator 
Room  

 
 

2 .1 .1  V i sua l  Fea tures  
The primary visual feature we are using is per-region 

motion energy.  The regions are marked out by hand from 
pilot data – each of the six seating positions are 
“instrumented” with active regions. There is no danger of 
losing correspondence since the participants stay in the 
same seats for the duration of the experiments. Though an 
extremely simple feature, motion energy gives us a 
concise summary of the level of body language in a given 
participant.  
 

 

Figure 3: Per-region blob tracking 

Another feature we are currently experimenting with is 
per-region blob tracking.  This uses simple flesh tracking 
[4] on a region of the image marked out by each hand.  
The result is a much more detailed description of each 
person’s body language.  While there is bound to be some 
overlap in the regions, we can combine this information 
with the motion energy to see who is doing the moving.  
Our preliminary tests show that we can get fairly reliable 
tracking in most situations. 

2 .1 .2  Audi tory  Fea tures  
Before we can make use of the auditory features, we 

need to know who is speaking – otherwise we do not 
know which participant to assign the features to.  We are 
approaching this problem in several ways: phase-based 
source localization, energy from localized microphones 
near each speakers, and a method in which we treat the 
speaker location as a classification problem using 
microphone energies and phase estimates as features. 
Initial experiments with Hidden Markov Models resulted 
in ~80% of the speech frames being correctly assigned to 
one of 6 speakers. 

Along with knowing the location of the sound, we 
wish to know when speech is actually present.  For this 
we use the speech detection algorithm developed in [5].  
This method gives us two levels of information – it marks 
out the voiced segments (i.e., vowels), as shown in Figure 

 



4, and also the utterances, which are groupings of the 
vowels based on their separation.  
 

Figure 4: Results of the speech detection algorithm 
marking out voiced segments 

We use the speech detection along with the speech 
location to decide how to assign auditory features to 
people – in this way we avoid assigning “false features” 
to the participants.  The speech detection information is 
also used to compute an estimate of speaking rate.  We do 
this by looking at the number of voiced segments per 
second.  While this is a noisy estimate of rate, it does not 
require detailed phonemic information as most syllable-
rate algorithms do.  

 Finally, we are also estimating the pitch and pitch 
variance for each second of speech.  We have not used 
this in our experiments to date, but are planning to in the 
very near future. 

2 .2  Actua tor s  

The room is also outfitted with a number of actuators 
meant to influence the behavior of the participants.  
Currently we have speakers mounted behind each seat 
intended to mask sounds with white noise, whisper items 
to individuals, and so on.  We have also installed lights 

focused on each seat whose colors and intensities are 
under computer control.  These are meant to change 
overall room lighting conditions and also to spotlight 
individuals to affect others' response to them. (see Figure 
5). 

 
There are five projectors in the room: three on the 

walls, one going to a main screen, and one on the table. 
These are intended to show relevant information at 
appropriate times in the hopes of changing the 
conversation pattern. 

In the experiments in this paper, we have only begun 
to use the potential of this room – at this point we are not 
using the actuators.  However, we cannot study the effects 
of actuators until we have modeled the baseline 
interactions among individuals, and thus in this study we 
focus on the latter. 

3 The Influence Model 
In his PhD dissertation, Asavathiratham [6] introduced 

the "Influence Model," a generative model for describing 
the connections between many Markov chains with a 
simple parameterization in terms of the “influence” each 
chain has on other chains.  His work showed how 
complex phenomena involving interactions between large 
numbers of agents could be simulated through this 
simplified model.  This is very relevant to our scenario; 
thus in our previous work [1] we extended his model by 
adding observations and developing a algorithm for 
learning the parameters from data.  We briefly review the 
highlights of that development here. 

The graphical model for the influence model is 
identical to that of the generalized N-chain coupled HMM 
(see Figure 6), but there is one very important 
simplification.  Instead of keeping the entire 
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In other words, we form the distribution for a given 
chain’s next state by taking a convex combination of the 
pairwise conditional probabilities.  As a result, we only 
have N QxQ tables and N α  parameters per chain, 
resulting in a total of NQ2 + N2 transition parameters.  
These are far fewer parameters than any of the above 
models.  The real question, of course, is whether we have 
retained enough modeling power to determine the 
interactions between the participants. 

Asavathiratham refers to the α 's as "influences," 
because they are constant factors that tell us how much 
the state transitions of a given chain depend on a given 
neighbor.  It is important to realize the ramifications of 
these factors being constant:  intuitively, it means that 
how much we are influenced by a neighbor is constant, 
but how we are influenced by it depends on its state.  
Another way to look at this is that we are only modeling 
the first-order effects of our neighbors' influences on us: if 
Joe yelling causes us to be quiet with certainty and Mark's 
yelling causes us to yell back with certainty and our α ’s 
for both are equal, the combination of both yelling will 
result in a distribution of our next action that has its 
probability mass equally distributed over yelling and not 
yelling. This is what we are giving up in terms of 

Figure 5: Computer-
controlled lighting 

 



modeling power while the fully-connected coupled HMM 
would allow us to explicitly model the effect of the joint 
event of Joe and Mark yelling together, the influence 
model does not (note, however, that the set of pairwise 
coupled HMMs would also not be able to model this joint 
effect).   

This simplification seems reasonable for the domain of 
human interactions and potentially for many other 
domains.  Furthermore, it gives us a small set of 
interpretable parameters, the α  values, which summarize 
the interactions between the chains.  By estimating these 
parameters, we can gain an understanding of how much 
the chains influence each other. 

 

3 .1  Lea rn ing  fo r  the  In f luence  M o de l  

Despite the parameterization, performing inference on 
the Influence Model is still intractable using exact 
methods.  We are currently investigating a number of 
approximate inference mechanisms to combat this 
problem.  For our current work, we have decided to 
simplify the estimation problem by allowing the states i

tS  
to be observed for each chain. We obtained our state 
sequences by fitting an HMM to each chain’s 
observations and performing a Viterbi decoding (we will 
discuss the potential issues with this approach later). The 
chain transition tables were then easily estimated (by 
frequency counts) directly from these state sequences. 
Since our goal is to estimate the inter-chain influences 
(via the ijα ’s) this “clamping” of the observation and 
chain transition parameters helps combat the over fitting 
problems of the full model.  

We can now easily optimize for the α  values using 
gradient descent. Let us first examine how the likelihood 
function simplifies for the observed Influence Model: 
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Converting this expression to log likelihood and 

keeping only the terms relevant to chain i, we have: 
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This per chain likelihood is concave in ijα  (see [1] for 

details. Now taking the derivative w.r.t. ijα : 
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Notice that the gradient and the per chain likelihood 
expression above are inexpensive to compute, ( )O TN . 
This along with the facts that the per chain likelihood is 
concave and the space of feasible ijα ’s is convex means 
that this optimization problem is a textbook case for 
constrained gradient ascent with full 1-D search (see p.29 
of [7]).  Furthermore, in all examples in this paper, 20 
iterations were sufficient to ensure convergence, which 
amounted to less than 10 seconds of CPU time. 

4 Evaluating the Influence Model 
In this section, we describe the performance of our 

model on a synthetic dataset and also on data collected 
from real human interactions in a conversational setting. 
We believe that the Influence Model can outperform 
Generalized Coupled HMMs and be a useful tool for 
modeling interactions for the following reasons: first, the 
influence parameter specifically models the strength of 
the influence that one chain’s dynamics has on the other. 
As mentioned earlier, this influence strength could be a 
very informative measure for human interactions.  Next, 
the Influence Model has exponentially fewer parameters 
than the Generalized Coupled HMM, and therefore the 
model can be learned with far less training data. 

To evaluate the effectiveness of our learning algorithm 
we first show results on synthetic data. The data was 
generated by an Influence Model with three chains in lock 
step: a leader chain, which was evolving randomly (i.e., 
flat transition tables), and two followers who meticulously 
followed the leader (i.e., an influence of 1 by chain 2 and 
a self-influence of 0).  This can be thought of as an 
idealized version of the situation where audience 
members are “synchronized” with the speaker, nodding 
their heads as he does, etc. We sampled this model to 
obtain a training sequence which was then used to train 
another randomly initialized Influence Model.  As 
described above, the 1( | )i j

t tP S S −  distributions were 
estimated by counting and the ijα ’s by gradient ascent.  
Note how this model learns the “following” behavior – 

Figure 6: Figure 6: Graphs for (a) a generalized
coupled HMM, (b) an Influence Model with hidden
states, (c) an Influence Model with observed states. 



chains 1 and 3 follow chain 2 perfectly. The alpha matrix 
captures the strength of chain 2’s dynamics on chains 1 
and 3 very well. The learned alpha matrix is  

0.0020 0.9964 0.0017

0.2329 0.4529 0.3143

0.0020 0.9969 0.0011

 
 
 
  

 

where the rows represent who is influenced and the 
columns represent the influencer.  We also trained a 
Generalized Coupled HMM on this data with the EM 
algorithm, using the Junction Tree Algorithm for 
inference. Again we sampled from the lock step model 
and trained a randomly initialized model.   In this case, 
the learned model performed reasonably well, but was 
unable to learn the “following” behavior perfectly due to 
the larger number of parameters it had to estimate 
( 1

1 1( | ,..., )i N
t t tP S S S− −  vs. 1( | )i j

t tP S S − ). 
In order to measure the effect of training data size on 

the quality of the model, we test how well the learned 
model predicts the next state of the follower chains given 
the current state of all the chains for different size training 
set.  Table 1 shows the prediction results for both the 
Influence Model and the Generalized Coupled HMM 
(GCHMM). Clearly, the Influence Model requires a lot 
less training data to model the dynamics accurately.  
 
Training Data 

Size 
Influence Model 

Chain # 
1              3 

GCHMM 
 Chain # 
1            3 

10 100% 99.5% 67% 50.5% 

20 99.5% 100% 66% 90.5% 

50 100% 100% 100% 100% 

100 100% 100% 100% 100% 

Table 1 Prediction Results for the follower chain in the 
synthetic dataset 

After verifying the performance of our algorithm on 
synthetic data, we tested our models on data of natural 
human interactions in the facilitator room.  We recorded 
two hours of data of five participants playing an 
interactive debating game. The game, Opinions, comes 
with stack of cards that has different controversial debate 
topics. We recorded ten games (debate sessions) for our 
experiment. In order to ensure that we saw a debate 
session between all possible pairs of players, we listed all 
pairs and chose pairs from the list without replacement. 
The first participant in the list entry rolled a die to pick a 
side (proponent or opponent). Each debater spoke for one 
minute after which the stage was open for discussion 
between all participants. No restrictions were imposed on 
the participants’ interaction style during the game. The 

features calculated automatically from the data were per 
person motion energy (30 Hz), speech energy (30 Hz), 
and voicing state (60 Hz). Also, the speaker turns (i.e., 
who was speaking when) were hand labeled for all the 
games.   

In the first experiment, we used the hand-labeled 
speaker turns only. Each player had two states – speaking 
and silent. When multiple players were speaking at the 
same time, all of them were considered to be in the 
speaking state. The full set of features for the game was 
the binary state vector for all of the players, which was 

afterwards non-uniformly resampled in order to remove 
consecutively repeating states.  Therefore, if all the 
players were in the same state for t timesteps, those t 
identical observations were effectively replaced with one 
time step.  This effectively broke up the data such that 
there would be one feature vector per conversational turn.  
If the features were not resampled in this way, the self-
transitions would overwhelm the effects of any inter-
person  influences. 

We estimated the influence matrix α  for the 
entire dataset (all ten games) and also for each game 
separately.  Tammy and Anne were observed to be the 
dominating speakers in all of the datasets, and this 
appears in the learned graphs as the strong connections 
Tammy and Anne have to the other participants.  This is 
true both in games in which they were debaters (Figure 8) 
and also the overall graph for the entire data session 
(Figure 7). 
 
  

Figure 7: Influence Graph for full game showing strong
links for the dominating speakers Tammy and Anne. 



 
  The one-step prediction accuracy for the natural 
interaction data is shown in Table 2.  Although this result 
looks promising it is somewhat misleading – since the 
self-transition probabilities for both speaking and non-
speaking states were much higher than the probability of 
transition out of the states, the model always predicted 
that it should stay in the same state. 

Chain Prediction Accuracy 
Tammy 74% 

Bob 80% 
Anne 83% 
Sam 76% 
John 89% 

Table 2 One-step prediction accuracy 

For the second experiment using the natural interaction 
data, we learned the Influence Model using the motion 
energy, speech energy and voicing feature for each 
person. Viterbi decoding of the individual HMMs 
obtained the “observed” state labels for the model that 
was used to learn the α ��������	
��α matrix obtained this 
way was very diagonal, i.e. had very strong self-influence 
(~1) and very weak influence from other chains (~0).   
 We believe this is more than anything a result of how 
we chose our state space.  By individually clustering the 
states of each chain using HMMs, we were ignoring the 
couplings between the chains, and thus ended up with 
states that were not helpful in predicting the other chains.   
We can test this hypothesis by looking at mutual 
information between a given chain’s state and the 
previous state of all the other chains.  This quantity 
measures the predictability of a given variable from 
another. For our experiment, we expect this would be 
quite low.  We plan to counteract this problem by 
incorporating this metric into our clustering, using the 
methods described in [8]. 
 

5 Conclusion 
While the Facilitator Room is still a long way from 

facilitating human interactions, we are already beginning 
to see some interesting results on the path to behavior 
analysis.  We feel the influence model is interesting in 
itself – it is a powerful parameterization that can quickly 
learn meaningful parameters.  Once we can learn a good 
state space, it should be a powerful tool for analyzing 
human interactions.   

The next steps open to us now are many – our first 
goal is to continue working with the Influence Model on 
the feature data, attempting the new state-clustering 
mechanisms we described above.  In addition, we want to 
try to predict certain kinds of events – speaker changes, 
gaps in the conversation, interruptions, etc.  Finally, we 
want to start using our actuation mechanisms, estimating 
their influences, and putting together predictive 
controllers that can drive/avoid certain kinds of behavior.   
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Figure 8: Influence graphs for two debates: (a) John 
and Anne (b) Tammy and Anne 




