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Abstract. We describe representation, inference strategies, and control procedures em-
ployed in an automated conversation system named the Bayesian Receptionist. The
prototype is focused on the domain of dialog about goals typically handled by reception-
ists at the front desks of buildings on the Microsoft corporate campus. The system
employs a set of Bayesian user models to interpret the goals of speakers given evidence
gleaned from a natural language parse of their utterances. Beyond linguistic features, the
domain models take into consideration contextual evidence, including visual findings. We
discuss key principles of conversational actions under uncertainty and the overall archi-
tecture of the system, highlighting the use of a hierarchy of Bayesian models at different
levels of detail, the use of value of information to control question asking, and application
of expected utility to control progression and backtracking in conversation.

1 Introduction

Conversations are initiated to express needs or to acquire, share, or critique information. Ongoing
inference about intentions is critical in conversation (Allen and Perrault, 1980). We explore the
role of inference and decision making under uncertainty in conversational dialog. People engaged
in conversation appear to make inferences under uncertainty about the relevance of multiple
sources of information, including nonlinguistic contextual cues such as visual findings. They also
make ongoing decisions about the formulation of discriminating questions and about the most
appropriate level of detail at which to exchange information. We describe in this paper methods
for modeling and automating conversation that leverage inference, decision making, and informa-
tion gathering under uncertainty. We present a computational architecture that focuses on issues of
representation, uncertain inference, and dialog control procedures for navigating among different
levels of detail in conversation. We highlight basic principles in the context of an implementation
of an automated conversation prototype developed at Microsoft Research named the Bayesian
Receptionist.

The Bayesian Receptionist prototype represents a melding of several key components. Baye-
sian inference is employed at distinct levels of an abstraction hierarchy to infer a user’s goals.
Value of information procedures are employed within levels to gather additional information, and
decision-theoretic strategies using threshold analyses guide the progression and backtracking in
conversation based on expected utility. The system considers words and phrases as well as higher-
level linguistic distinctions obtained via a natural language parse of a user’s utterances. The un-
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certain reasoning machinery drives a social user interface built with the MS Agent package. The
interface provides speech recognition, speech synthesis, and animations that provide an anthropo-
morphic presence.

2 The Receptionist Domain

The Bayesian Receptionist project centers on conversation about goals typically handled by
receptionists at the front desks of buildings on the Microsoft corporate campus. Receptionists
serve a vital role in facilitating daily activities at each building at Microsoft. When people interact
with the receptionist, they engage in a joint activity (Clark, 1996; Jennings and Mamdani, 1992;
Levinson, 1992).  A joint activity is a task-oriented, social event with constraints on participants,
setting, and most of all, reasonable or allowable contributions. Participants in a joint activity as-
sume that they share some common set of beliefs about the activity, including assumed roles and
responsibilities with other participants and the degree to which participants are attending to and
understanding the content of utterances (Paek and Horvitz, 1999)

We conducted an observational study of the receptionist domain by videotaping nine hours of
participants interacting with three receptionists. Through reviewing videotapes and engaging re-
ceptionists in discussions, we identified a key set of user goals, as well as key pieces of linguistic
and visual information relevant to the problem of diagnosing a user’s needs. Discussion with the
receptionists revealed 32 mutually exclusive and exhaustive goals that make up the joint activity.
The videotapes and interviews also revealed critical variables and states considered by reception-
ists. For example, we found that receptionists reason about the type of person (e.g., a person
visiting the campus to interview for a position). We identified 12 types of people and assessed
links between person type and variables capturing appearance and patterns of behavior, as well as
the different prior probability distribution over goals for people in different classes. Visual infor-
mation employed by receptionists in making inferences about goals include:

•  Appearance: the attire and type of identification badge that may be visible.

•  Behavior: whether the user looks hurried or glances outside during the interaction.

•  Spatial configuration: the mode of arrival and the trajectory of locomotion in the proxim-
ity of the receptionist.

•  Props: whether the user carries some type of equipment, or was in a group of people.

In addition to visual features, we identified a set of initial utterances associated with different
goals. Analysis of real-world interactions with the receptionist showed considerable linguistic
variability. At times, people employed conventional phrasing such as “I’m here to see Rick
Rashid.” However, people frequently interacted with more telegraphic, abbreviated utterances
such as “Bathroom?” to communicate the goal, “I have to use the bathroom; where is it?” and
“18!” (while running toward the building exit) to relay the urgent need to order a shuttle heading
to Building 18. Others have noted such use of succinct utterances in combination with contextual
cues (Clark, 1996). We also found that people often used creative ad-hoc phrases, as in, “Beam
me to 25 please” to indicate a need for a campus shuttle to Building 25. We even observed
“contextual constructions” (Clark, 1983; Nunberg, 1979) as in “Do we do Sea-Tac airport?”

Considerable variability in dialog is possible since people take it for granted that participants in a
conversation will be able to infer what they mean from their shared beliefs.  We found that recep-



Figure 1. Schematized view of an overall model for guiding diagnosis of goals via Bayesian inference,
computation of value of information (VOI), and expected utility analysis (EU) for navigation between
levels of detail for progression and backtracking in conversation.

tionists are very apt at discerning what people need, relying on shared knowledge about the joint
activity and the likely goals of the participants to guide the dialog. Without such knowledge it
would be difficult, if not impossible, for people to communicate their goals with receptionists as
efficiently as they do.  Also, it became apparent that inferences about the goals of people seeking
assistance depend upon integrating rich patterns of evidence beyond the utterance. Visual infor-
mation, including the appearance, trajectory, and behavior of the participants, is often taken into
account.

3 Hierarchical Decomposition of Conversation about Goals
Our observations of interactions, coupled with attempts to model and automate dialog as decision
making under uncertainty, led us to focus on the use of a task abstraction hierarchy as an organ-
izing representation. The task abstraction hierarchy decomposes the problem of understanding a
user’s goals into diagnoses at successive levels of detail. Figure 1 displays the task abstraction
hierarchy used in the Bayesian Receptionist. Level 0 represents the task of discriminating the
high-level goal of the user given initial observations and an initial utterance. Level 0 goals in-
clude the need to arrange a shuttle to travel to another part of campus, to enter the building, to
pick something up, to drop something off, to get directions, to acquire an answer to an informa-
tional query, to acquire help with a special project, to pick up a public commuting pass, to send a
fax, and to hang posters or remove posters. In order to render the set of goals exhaustive, we in-
troduced a goal labeled other to refer to goals that are not explicitly considered in the high-level
goal variable. Level 1 represents the refinement of the high-level goals into more specific needs.
For example, the Level 1 refinements of the goal of needing a shuttle to travel to another part of
campus include the need to travel as a group or as a single person to a main campus location, to
the North Campus (MS Interactive Media Division), and to a non-Microsoft location. Level 2
considers the additional specification of types of shuttles for special cases, including the need for
a shuttle equipped for transporting handicapped people and for express shuttles to transport sen-
ior executives. Levels more detailed than the highest level include an additional state representing
the proposition that the current level is inappropriate.  Inference about the belief assigned to this
state is used to control backtracking in conversation.

We found several advantages to introducing a goal refinement hierarchy rather than attempting
to model the problem of goal understanding to a larger problem at a single level of detail. Decom-
position of a user’s goals into several levels of detail allows for guiding conversation on a natural
path of convergence toward shared understanding at progressively greater detail. Multiple levels
also allow for the establishment of common ground (Clark, 1996) about uncertainties at each level
and for conversation about comprehension of misunderstandings before progressing to the next le-



Figure 2. Bayesian networks for inference about primary high-level goals (left) and sample models for
the intentions of gaining access to the building and picking up materials stored at the front desk (right).

vel of detail. That is, users can be directed, as part of a natural dialog about their goals, to implic-
itly or explicitly confirm or disconfirm misunderstanding at one level,  reducing uncertainty to
some tolerable level before progressing to the next level. Our observations suggested that such
discussion about different levels of detail is common and often expected as part of natural human
—human conversation. From an engineering and computational perspective, decomposing the
goal understanding task into a set of nearly decomposable understanding subproblems leads to
more tractable, level-specific modeling and inference. However, the introduction of multiple sub-
problems also introduces the need for elegant control of inference, evidence gathering, and
decision making within and between the levels.

In real-time use, we employ the hierarchical decomposition to disambiguate goals by asking the
most informative questions or gathering the most valuable non-linguistic evidence to identify goals
at progressively more detailed levels. Given confirmation or strong belief in a speaker’s goal at the
current level, the system passes all of its evidence to the next more detailed level of analysis and
attempts to refine its beliefs about goals at that level, until reaching a conclusion about the
speaker’s ultimate goals. In Sections 4 through 8, we describe details on inference, information
gathering, and control policies for navigating among multiple levels of analysis.

4 Bayesian Models for Inferring a User’s Communication Goals
We worked to build models for inference and decision making under uncertainty about a user’s
goals at each level of the task hierarchy with Bayesian networks. Bayesian networks have been
useful in representing a variety of challenges centering on user modeling under uncertainty (Al-
brecht et al., 1997; Conati et al., 1997; Horvitz and Barry, 1995; Horvitz et al., 1998; Jameson,
1996). Bayesian-network models allow a system to fuse together the relevance of multiple classes
of information allowing for inference about the goals of a user from visual information and utter-
ances. Also, having access to probabilities at any step in a dialog allow us to guide question asking
based on the computation of value of information.

We constructed and assessed by hand Bayesian networks considering linguistic and non-linguistic
observations. The Bayesian networks were authored in the Microsoft Research MSBN modeling
and inference system. Models were built for different levels of the task hierarchy. The non-
linguistic observations in the models bring to bear contextual information, including important
visual features about the appearance, location, and trajectory of locomotion of people interacting
with the system.  Figure 2 displays the structure of Bayesian models for the Level 0 discrimination



Figure 3. Bayesian Receptionist screen displaying a query initiating a conversation and the probability
distribution over Level 0 goals inferred with a Bayesian model taking into consideration linguistic and
visual cues.

problem and for two of the Level 1 subproblems centering on the goals of picking something up
from the receptionist and gaining entry to the building.

In use, Bayesian networks at progressively more detailed levels of analysis are passed all of the
linguistic and non-linguistic information that has been observed by the system. Figure 3 shows an
initial screen of the Bayesian Receptionist considering the utterance, “I need a ride please.” In
addition to the linguistic information, the system considers the visual findings that the user ap-
peared hurried, carried a notebook, and approached the automated receptionist with a trajectory
characterized as “moving from inside the building to the back of the receptionist desk.” The prob-
ability distribution over goals at Level 0 inferred from the visual observations and linguistic clues
is displayed to the right of the screen.

5 Accessing Linguistic Evidence with Natural Language Processing
Introducing linguistic distinctions into the Bayesian models and making linguistic observations at
run time posed a challenge. The taped interactions with the receptionist showed that utterances
varied in syntax, length, and typicality. We first worked to identify evocative sets of words and
phrases spotted in utterances, referred to as metanyms (Heckerman and Horvitz, 1998). To ex-
tend the ability to handle the variation in feasible linguistic inputs to the Bayesian models, we
employed automated natural language processing (NLP) to also introduce higher-level linguistic
abstractions as observational variables in our Bayesian models. We submitted sample utterances
for different goals to a system named NLPwin (Heidorn, 1999), developed by the MS Research
Natural Language Processing group to identify syntactic, logical, and semantic cues that can be
useful for distinguishing between goals. After submitting myriad utterances of different length,
typicality, and syntactic structure to NLPwin, we selected a set of frequently occurring, discrimi-
natory cues as evidential variables in the Bayesian networks.

The textbox at the center of Figure 3 shows the user submitting the utterance, “I need a ride
please.” The sentence is processed in five stages of analysis. In the first stage, the system seg-
ments the input utterance into individual tokens, analyzing words by their morphological
structure and looking them up in online dictionaries, including sources specifically tailored for
multi-word entries. In the second stage, known as the syntactic sketch, the system parses the ut-
terance into its syntactic components based on rules of grammar. In the third stage, known as the
syntactic portrait, the system resolves attachment ambiguities by using semantic relations culled
from a compiled analysis derived from online dictionary definitions. The result of the first three
stages is the parse tree shown in the top panel of Figure 4.  A fourth stage resolves anaphoric ref-
erences and constructs the logical form of the sentence, representing predicate-argument relations
in a semantic graph, by assigning sentence elements to functional roles, such as deep subjects in a
semantic graph, by assigning sentence elements to functional roles, such as deep subjects (Dsub)



Figure 4. Output of the natural language analysis of the query, “I need a ride please,” yielding syntactic,
logical, and semantic clues.

and deep indirect objects (Dind). The second panel of the output displays the logical form, con-
cluding that the deep object (Dobj) is the indefinite, count form of the argument “ride.” The final
stage of NLPwin attempts to determine the most appropriate sense for words in the utterance from
a list of senses, yielding semantic cues for the Bayesian models. These are listed in the third panel
of the NLP analysis. As an example, an inferred sense of the noun “ride” is “+TN”, short for
Transportation. Linguistic distinctions noted in the parse, including the identification of semantic
concepts of transportation and location are considered in the Level 1 Bayesian network.

6 Value of Information to Guide Observation and Dialog

A critical component of decision-theoretic diagnosis (Horvitz et al., 1988) is the identification of
the most valuable additional observations to collect to enhance the value of actions ultimately
taken in the world. Formalisms for identifying the most valuable information to collect under
uncertainty hold promise for guiding automated dialog (Jameson, 1995). We have employed value
of information (VOI) analysis to identify the best questions to ask and visual observations to make
in light of the inferred probabilities of different goals at distinct levels of the goal decomposition
hierarchy. VOI yields the expected utility of evaluating different pieces of previously unobserved
evidence, considering the informational value and the cost of making the observation under un-
certainty. To compute VOI, we consider, for each observation, the expected utility of the best
decision associated with each value that the observation may take on. The analysis sums the ex-
pected utility for each value of future observation, weighted by the probabilities of seeing the
different values, should that observation be made.

An exact computation of VOI requires the consideration of all possible sequences of observa-
tions. However, greedy VOI, focusing on computing the next best single piece of evidence to
observe, has been found to be a good approximation (Gorry and Barnett, 1968). Within the
framework of greedy VOI, a variety of approximations have been employed. Beyond an explicit
decision-theoretic computation, investigators have explored an information-theoretic version of
VOI based on the minimization of entropy (Gorry and Barnett, 1968; Heckerman et al., 1992), and
the use of the statistical properties of large samples to develop VOI approximations.

In the Bayesian Receptionist, we harness information-theoretic VOI analysis to control infor-
mation gathering to resolve the current uncertainty within levels of analysis. This approach is
related to prior work on the use of VOI at multiple levels of abstraction in decision-theoretic diag-
nostic systems (Horvitz et al., 1989). After each new observation is evaluated, the system updates
the probabilities of distinct goals within a level of the task hierarchy and recomputes the VOI. VOI
continues within a level until either the expected cost of evaluating observations exceeds the ex-



pected value of the observations, there are no additional observations to make, or a higher-level
decision-theoretic analysis progresses the system to the next level of detail. We now discuss the
control of progression between adjacent levels of the refinement hierarchy.

7 Progression to Additional Levels of Detail

Given strong belief in a goal at some level of detail, it is typically appropriate to move on to per-
form inference and question asking about goals at a more detailed level of analysis. Our intuitions
about the progression to additional levels of detail were developed by considering the ways people
in a conversation in the context of a joint activity speak in a natural manner about goals and sub-
goals (Cohen and Levesque, 1994). At any point in a conversation, a participant may assume a
goal or ask for direct confirmation about a goal or subgoal.  A correct explicit guess can raise the
efficiency of communication. However, a poor guess can be costly. Poor guesses, especially when
coming early in a conversation, may appear unnatural and can relay an impression that the listener
is rushing or is simply not considering obvious clues. Instead of communicating a guess, an agent
may simply decide to assume a goal based on the probabilities of alternate goals at a level and
progress to a more detailed level of discourse. Although correct action can lead to efficient con-
versation, erroneous decisions to progress are usually even more costly than explicit guessing as
users are not given the chance to converse about the decision. We can consider such costs and
benefits of alternate progression actions with a decision-theoretic analysis.

We developed and implemented methods for performing cost−benefit analysis to guide deci-
sions about progression to the next level of detail, or to return to a previously examined level,
based on inferred probabilities of goals within a level and the associated costs and benefits of
progressing. As highlighted in Figure 1, at every step of the analysis, we consider the expected
value of directly progressing or asking a question to confirm a goal, versus remaining at the cur-
rent level of analysis and continuing to gather information based on VOI. We assess the utilities of
different conversational outcomes and employ an approximate decision analysis to compute
threshold probabilities for progression, seeking confirmation, or backtracking to a previously
visited level. Details of the derivation of probability thresholds from a cost—benefit analysis are
described in (Horvitz, 1999). Beyond derivation via consideration of the utility of outcomes, such
threshold probabilities can be assessed directly.

The Bayesian Receptionist makes use of three thresholds, p* progress, p* guess, and p* back-
track. If the probability of the goal with the highest likelihood does not exceed p* guess or p*
progress, the system continues to perform VOI to gather additional information about the goals. If
VOI becomes non-positive or there are no other observations to make, the system issues a request
for additional information. Should the maximal likelihood goal at the current level exceed p*
progress, the system will assume the goal and move to the next level of detail. Should the maximal
likelihood exceed p* guess, but not exceed p* progress, the system will engage the user to confirm
or rule out the goal. Following a crisp disconfirmation of a goal, a probability of zero is assigned
to that goal and the probability distribution for the remaining feasible goals is renormalized. The
p* threshold for backtracking is used in making a decision to return to a higher level of detail. The
Bayesian models for goal disambiguation at levels more detailed than Level 0 include a return
hypothesis. Should the probability of all subgoals decrease and the likelihood of the return hy-
pothesis become greater than p* backtrack, the system returns to the previous level. In such



situations, the system apologizes for the misunderstanding and either continues VOI at the previ-
ous level or asks for more information if that VOI is non-positive.

Beyond the use of static utilities in the computation of the decision thresholds and VOI, we
employed context-sensitive utilities. Utilities used in the computation of the threshold probabilities
and VOI can be defined as functions of such observations as the user being hurried, or of observa-
tions about the conversational dialog itself such as the number of questions that have already been
asked of users. The Bayesian Receptionist makes use of a special class of probability-sensitive
costs for controlling VOI when deliberating about asking users questions at levels of detail that are
marked as atypical levels of analysis. An example of an atypical level of analysis is Level 2, asso-
ciated with the high-level goal of desiring a shuttle to travel somewhere on the Microsoft campus.
Level 2 seeks to discover whether a person will need a special kind of shuttle, including the need
for a vehicle that can transport handicapped people or a special shuttle for senior executives. Lev-
els marked as atypical include a special goal state that represents the proposition that the level is
irrelevant. Engaging users about subgoals at this level would appear unnatural in most cases. We
dynamically update the expected cost used in the VOI analysis by considering the probability that
an atypical level is relevant. The probability of relevance given evidence, p(R|E), is the comple-
ment of the probability assigned to the state irrelevent. As the probability of relevance increases,
the naturalness of being asked increases, making such a question less surprising, and, thus, less
costly to ask. We compute the expected cost of asking as the sum of the costs for the outcomes of
the level being relevant and irrelevant, weighted by the inferred probabilities as follows:

        Expected Cost =  p(R |E) Cost(Asking, Relevant) +  1-p(R |E) Cost(Asking, not Relevant)

where Cost(Asking, Relevant) is the cost of asking a question about an atypical situation when the
level is relevant and Cost(Asking, not Relevant) is the cost of asking when the level is irrelevant.
We use this expected cost in VOI for explicit question asking (versus those centering on the gath-
ering of visual clues) in atypical levels of detail.

8 A Sample Conversation

Before concluding, let us complete the conversation started with the Bayesian Receptionist in
Figure 3. As the dialog progresses, the system asks for additional information and notices the
evocative word “shuttle” in the user’s utterance. Given this observation, the probability that the
user’s goal is to travel somewhere by shuttle rises to 0.69. The belief in the leading hypothesis is
not high enough to reach p* guess or p* progress so VOI is called. The system continues to gather
evidence until the probability of the leading goal surpasses p* guess. At this point, the system
seeks direct confirmation, asking, “So you’d like a shuttle?” After confirmation, the system pro-
gresses to Level 1, focused on disambiguating the destination of the user and whether the user is
traveling alone or in a group. The linguistic observation, “north” is noticed and added to the analy-
sis and the probability distribution is updated. The greatest likelihood is now assigned to the goal
of traveling to the North Campus alone, followed by travel to the North Campus in a group. How-
ever, the probabilities do not exceed p* guess, so the system calls VOI. As portrayed in the upper
portion of Figure 5, the VOI analysis leads to a decision to seek assistance with evaluating visual
information about the presence of a group of people. The agent “observes” a group of people and
integrates this evidence to update the probability distribution displayed in the center of the upper
panel.   The probability of this goal exceeds p* guess, but does not exceed p* progression,  so  the



Figure 5. Upper sequence: Use of VOI to acquire visual information confirming the presence of a group,
followed by update of probabilities for Level 1 goals and a decision to confirm a goal explicitly.  Lower
sequence: Progression to next level, use of VOI to detect if user is a recognized executive, update of
probabilities of goals, and decision to forego interaction with the user about an atypical condition.

system seeks confirmation of the goal at this level of detail. Progression now occurs to Level 2 and
inference is called followed by VOI. This level is labeled as an atypical level of refinement. Given
the atypia of the level, the system computes the probability-dependent expected costs of asking the
user questions and uses these costs to modulate the cost-benefit analysis in the VOI computation.
Explicit questions about whether the user is an executive or is handicapped are suppressed, and the
system decides to simply examine the situation with vision. As captured by the lower panel in
Figure 5, visual information is acquired. The user is not recognized as an executive and inference
is called. The maximal likelihood subgoal is normal, referring to the irrelevance of the atypical
level of detail. The inferred probability of normal surpasses the p* threshold and the system con-
firms its understanding of the user’s goal at Level 1, completing the conversation.

9 Summary and Ongoing Work

We introduced an architecture for modeling dialog in joint-activity situations. Central to the ar-
chitecture is the use of a goal decomposition hierarchy employing Bayesian models at
increasingly detailed levels of analysis and the use of cost—benefit control procedures for navi-
gating between levels of the hierarchy. The run-time prototype relies on the integration of several
inferential components including natural language processing to provide a stream of linguistic
evidence, Bayesian inference to update beliefs about the set of goals at distinct levels of analysis,
value of information for asking the best questions or making the most informative observations,
and decision-theoretic control policies for determining when to progress to the next level of
analysis or to halt with an action. We described the operation of a prototype when populated with
models built through consideration of the real-world tasks faced by receptionists at Microsoft. In
our continuing work, we are pursuing the use of richer control strategies, learning of models from
collected data, and extending the analysis to consider the status of a user’s attention and of the
mutual understanding of the semantics of concepts being communicated in conversations.
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