
CLARINET: WAN-Aware Optimization for Analytics Queries

Raajay Viswanathan◦ Ganesh Ananthanarayanan† Aditya Akella◦
◦University of Wisconsin-Madison †Microsoft

Abstract
Recent work has made the case for geo-distributed
analytics, where data collected and stored at multiple
datacenters and edge sites world-wide is analyzed in situ
to drive operational and management decisions. A key
issue in such systems is ensuring low response times
for analytics queries issued against geo-distributed data.
A central determinant of response time is the query
execution plan (QEP). Current query optimizers do not
consider the network when deriving QEPs, which is a key
drawback as the geo-distributed sites are connected via
WAN links with heterogeneous and modest bandwidths,
unlike intra-datacenter networks. We propose CLARINET,
a novel WAN-aware query optimizer. Deriving a
WAN-aware QEP requires working jointly with the
execution layer of analytics frameworks that places
tasks to sites and performs scheduling. We design
efficient heuristic solutions in CLARINET to make such
a joint decision on the QEP. Our experiments with
a real prototype deployed across EC2 datacenters,
and large-scale simulations using production workloads
show that CLARINET improves query response times by
≥ 50% compared to state-of-the-art WAN-aware task
placement and scheduling.

1 Introduction
Large organizations, such as Microsoft, Facebook, and
Google each operate many 10s-100s of datacenters
(DCs) and edge clusters worldwide [1, 5, 6, 13] where
crucial services (e.g., chat/voice, social networking, and
cloud-based storage) are hosted to provide low-latency
access to (nearby) users. These sites routinely gather
service data (e.g., end-user session logs) as well as
server monitoring logs. Analyzing this geo-distributed
data is important toward driving key operations and
management tasks. Example analyses include querying
server logs to maintain system health dashboards,
querying session logs to aid server selection for video
applications [15], and correlating network/server logs to

detect attacks.
Recent work has shown that centrally aggregating

and analyzing this data using frameworks such as
Spark [48] can be slow, i.e., it cannot support the
timeliness requirements of the applications above [24],
and can cause wasteful use of the expensive wide-area
network (WAN) bandwidth [35, 43, 36]. In contrast,
executing the analytics queries geo-distributedly on the
data stored in-place at the sites—an approach called
geo-distributed analytics (GDA)—can result in faster
query completions [35, 43].

GDA entails bringing WAN-awareness to data
analytics frameworks. Prior work on GDA has shown
how to make query execution (specifically, data and
task placement) WAN-aware [43, 35, 36]. This paper
makes a strong case for pushing WAN-awareness up the
data analytics stack, into query optimization. While it
can substantially lower GDA query completion times, it
requires radical new approaches to query optimization,
and rethinking the division of functionalities between
query optimization and execution.

The query optimizer (QO) takes users’ input
query/script and determines an optimal query execution
plan (QEP) from among many equivalent QEPs that
differ in, e.g., their ordering of joins in the query.
QOs in modern analytics frameworks [2, 7], largely
use database technology developed over 30+ years of
research. These QOs consider many factors (e.g.,
buffer cache and distribution of column values) but
largely ignore the network because they were designed
for a single-server setup. Some parallel databases
considered the network, but they model the cost of any
over-the-network access via a single parameter. This
is less problematic within a DC where the network
is high-bandwidth and homogeneous. Geo-distributed
clusters, on the other hand, are connected by WAN
links whose bandwidths are heterogeneous and limited
(§2.1), varying by over 20×, because of differences in
provisioning of WAN links as well as usage by different

(non-analytics) applications.
Given this heterogeneity, existing network-agnostic

QOs can produce query plans that are far from optimal
(§2.2). For example, QOs decide the ordering of
multi-way joins purely based on the size of the
intermediate outputs. However, this can lead to heavy
data transfer over thin WAN links, thereby inflating
completion times. Likewise, today’s QOs optimize one
query at a time; as such, when multiple queries are issued
simultaneously, their individual QEPs can contend for
the same WAN links. Thus, we need a new approach
for WAN-aware multi-query optimization.

Arguably, because QOs are upper-most in analytics
stacks, them being network-agnostic fundamentally
limits the benefits from downstream advances in task
placement/scheduling [21, 43, 35, 36]. However, as
data analytics queries are DAGs of interconnected
tasks, WAN-aware query planning itself has to be
performed in concert with placement and scheduling
of the queries’ tasks and intermediate network transfers
(§2.2), in contrast with most existing systems where
these are conducted in isolation. This is because
task placement impacts which WAN links are exercised
by a given QEP, and scheduling impacts when they
are exercised, both of which determine if the QEP is
WAN-optimal. Unfortunately, formulating an optimal
solution for such multi-query network-aware joint query
planning, placement, and scheduling is computationally
intractable.

We develop a novel heuristic for the above problem.
First, we show how to compute the WAN-optimal QEP
for a single query, which includes task placement and
scheduling (§4). For tractability, our solution relies
on reserving WAN links for scheduled (but yet to
execute) tasks/transfers; however, we show that such link
reservations lead to faster query completions in practice.

Given a batch of n queries, we order them based on
their individually optimal QEPs’ expected completion
time; the QEP for the ith query is chosen considering
the WAN impact of the preceding i − 1 queries. This
mimics shortest-job first (SJF) order while allowing for
cross-query optimization (§5.1). However, it results
in bandwidth fragmentation (due to task dependencies),
thereby hurting completion times. To overcome this,
our final heuristic considers groups of k ≤ n queries
from the above order and explores how to compact
their schedules tightly in time, while obeying inter-task
ordering (§5.2). The result is a cross-query schedule
that veers from SJF but is closer to work-conserving,
and offers low average completion times for GDA
queries. We also extend the heuristic to accommodate
fair treatment of queries, minimizing WAN bandwidth
costs, and online query arrivals (§5.3).

We have built our solution into CLARINET, a

Master	 Worker	Scheduler	 Namenode	

Site-1	 Site-2	

Site-3	 Site-4	

WAN	

Hetero-	
geneous	
Tunnel	
bundles	

Figure 1: Architecture of GDA Systems

WAN-aware QO for Hive [3]. Instead of introducing
WAN-awareness inside existing QOs [2, 7], CLARINET is
architecturally outside of them. We modify existing QOs
to simply output all the functionally equivalent QEPs
for a query, and CLARINET picks the best WAN-aware
QEP per query, as well as task placement and scheduling
which it provides as hints to the query execution layer.
Our design allows any analytics system to take advantage
of CLARINET with minimal changes.

We deploy a CLARINET prototype across 10 regions
on Amazon EC2, and evaluate it using realistic TPC-DS
queries. We also conduct large scale trace-driven
simulations using production workloads based on two
large online service providers. Our evaluation shows
that, compared to the baseline that uses network-agnostic
QO and task placement, CLARINET can improve the
average query performance by 60-80% percent in
different settings. We find that CLARINET’s joint
query planning and task placement/scheduling doubles
the benefits compared to state-of-the-art WAN-aware
placement/scheduling.

2 Background and Motivation
In this section, we first discuss the architectural details
of GDA, focusing on WAN constraints. We then analyze
how queries are handled in existing GDA systems.

2.1 Geo-Distributed Analytics
GDA Architecture: In GDA, there is a central master at
one of the DCs/edge sites where queries—written, e.g.,
in SparkSQL [7], HiveQL [3], or Pig Latin [33]—are
submitted. For every query, the QO at the master
constructs an optimized query execution plan (QEP),
essentially, a DAG of many interdependent tasks. A
centralized scheduler places tasks in a QEP at nodes
across different sites based on resource availability and
schedules them based on task dependencies. 1

1 Typically, the task scheduler, the namenode of the distributed file
system, and the master all run at the same site to reduce inter-process
communication latencies between them. However, it is possible to
distribute them across different processing sites.

0 0.5 1
0

10

20

Inter-site logical links

N
or

m
al

iz
ed

B
W

(a) Amazon EC2

0 0.5 1
0

10

20

Inter-site logical links

N
or

m
al

iz
ed

B
W

(b) MICROSOFT

Figure 2: Distribution of bandwidth between data processing
sites for Amazon EC2 and a large OSP. The bandwidths
reported are normalized with respect to the minimum observed.
For Amazon EC2, the bandwidth between a pair of sites
is obtained through active measurements using iperf. The
minimum bandwidth obtained over 10-minute interval is taken
as the guaranteed bandwidth. For MICROSOFT, we use the
topology and traffic information from applications to compute
the guaranteed bandwidth.

WAN Constraints: The sites are inter-connected
by a WAN which we assume is optimized using
MPLS-based [45] or software-defined traffic
engineering [23, 20, 26]. In either case, end-to-end
tunnels are established by the WAN manager for
forwarding analytics traffic between all site-pairs. The
WAN manager updates tunnel capacities in response to
background traffic shifts. The running time of queries
is typically lower than the interval between WAN
configuration changes (∼ 10 - 15 minutes [20, 23]);
thus, we assume that the bandwidth between site-pairs
remains constant for the duration of queries’ execution.
Thus, we can abstract the WAN as a logical full mesh
with fixed bandwidth links (fig. 1).

However, available bandwidth between pairs of sites
can differ significantly because of differences in physical
topology and traffic matrix of non-analytics applications.
Figure 2 highlights this variation between pairs of the
10 Amazon EC2 regions, and for the DCs operated
by MICROSOFT. The ratio of the highest to lowest
bandwidth is > 20. Also, the bandwidth is 1-2 orders
of magnitude less than intra-DC bandwidth (e.g., the
maximum inter-site bandwidth is 450Mbps between EC2
regions, where as intra-site bandwidth is 10Gbps). Thus,
WAN bandwidth is highly constraining and a significant
bottleneck for GDA, in contrast with intra-DC analytics.

2.2 Illustrative Examples for Drawbacks of
Current GDA Query Processing

Given a query, its relational operators (e.g., SELECT,
GROUPBY, JOIN, TABLESCAN, etc.) are transformed
to individual "map" or "reduce" stages in the QEPs
compiled by the QO. For example, SELECT and
TABLESCAN are transformed to a map stage, whereas
JOIN or GROUPBY are transformed to a reduce stage. If
the input tables for these operators are partitioned and/or
spread out across different sites, then the execution

Notation Size
|σA(∗)|, |σX(∗)|, |σY |Z(∗)| 200 GB, 160GB, 25 GB
|σA|X(WS) ./ σA|X(SS)| 12 GB
|σA|X(SS) ./ σA|X(CS)| 10 GB
|σA|X(WS) ./ σA|X(CS)| 16 GB

Table 1: Selectivity and join cardinality estimates

of downstream reduce stages (for JOIN or GROUPBY)
will involve flow of data across the constrained WAN,
limiting overall query performance.

In what follows, we argue that because existing
QOs do not account for such WAN constraints, their
chosen QEP for a query may be sub-optimal. Because
multiple queries can contend simultaneously for limited
WAN bandwidth, QOs for GDA must account for
two additional issues: (a) consider task placement and
network transfer scheduling when determining a QEP’s
quality, and (b) plan for multiple queries at once.

Modern QOs employ a combination of heuristic
techniques as well as cost based optimization (CBO)
to determine the best execution plan for each query.
Heuristic optimization leverages widely accepted
techniques — e.g., predicate push down and partition
pruning — for reducing query execution times.

CBO explores the space of all possible QEPs — e.g.,
those generated by considering alternate join ordering
of tables — and chooses the one with the least cost.
The cost of a QEP is based on a cost model, which
captures the cost of accessing a single byte of data over
a resource, and cardinality estimates of intermediate data
based on individual and cross-table statistics, histograms
of column values, etc. CBOs also account for a
variety of factors, including availability of buffer cache
and indexes. State-of-the-art technologies for accurate
cardinality estimation and cost modeling have been
developed over 30+ years of research. However, most
have focused on single server systems which ignore the
network as a factor in determining query performance [2,
10, 17]. Even parallel databases model the network
as a “single pipe” which essentially assumes the entire
network is homogeneous [34, 14, 25, 12, 32, 41, 38, 46,
49, 47, 28]. Such simple models are clearly insufficient
to account for heterogeneous WAN bandwidths. Yet, this
is clearly important in GDA (as shown in §2.1).

Importance of network-aware query optimization:
Consider a three-way join, QA: σA(WS) ./ σA(SS) ./
σA(CS) shown in fig. 3(a), that compares overall sales
for a set of items (starting with ‘A’) across three
different tables; the tables are spread across different
sites inter-connected by a WAN (fig. 4). QA can be
executed through three different QEPs (figs. 3(b)–3(d));
one each from three different join orders. Table 1 lists
the sizes of different intermediate outputs.

SELECT
SS.item as item,
SUM(SS.sales),
SUM(WS.sales),
SUM(CS.sales)

FROM store_sales SS,
web_sales WS,
cat_sales CS

WHERE SS.item == CS.item
AND SS.item == WS.item

GROUP BY item
HAVING item STARTSWITH ’A’

(a) A sample SQL Query

TABLE		
SCAN	
[WS]	

SELECT	
item	==	A	

Hash	JOIN	

TABLE		
SCAN	
[SS]		

TABLE		
SCAN	
[CS]		

Broadcast	JOIN		

SELECT	
item	==	A	

SELECT	
item	==	A	200	G	 200	G	

200	G	10	G	

(b) QEP-1

TABLE		
SCAN	
[CS]	

SELECT	
item	==	A	

Hash	JOIN	

TABLE		
SCAN	
[SS]		

TABLE		
SCAN	
[WS]		

Broadcast	JOIN		

SELECT	
item	==	A	

SELECT	
item	==	A	200	G	 200	G	

200	G	12	G	

(c) QEP-2

TABLE		
SCAN	
[SS]	

SELECT	
item	==	A	

Hash	JOIN	

TABLE		
SCAN	
[WS]		

TABLE		
SCAN	
[CS]		

Broadcast	JOIN		

SELECT	
item	==	A	

SELECT	
item	==	A	200	G	 200	G	

200	G	16	G	

(d) QEP-3

Figure 3: An example SQL query and its different query execution plans. Each QEP corresponds to a different join order. Note
how the selectivity predicate is pushed down to minimize the records processed during the joins.

SS	
DC2	

WS	
DC1	 CS	

DC3	

80	Gbps	

100	Gbps	

40	Gbps	

Figure 4: Three sites that are interconnected by bidirectional
WAN links. Each site contains a unique table.

A network agnostic QO, or one that models the entire
network by a single parameter, will pick QEP-1 since it
has the least output cardinality after the first join. QEP-1
will take 20.5s: the first join, (σA(SS) ./ σA(CS)),
will be implemented as a hash join since it involves
large tables; by placing reducers uniformly across sites
DC2 & DC3 the join involves 100GB of data transfer
in either direction. Over a 40Gbps link, this transfer
takes 20s. The second join will be implemented as
a broadcast join since one of the tables is small. It
involves transferring, 10GB of data spread across sites
DC2 & DC3 to DC1. The bottleneck is the transfer on the
80Gbps link which takes 0.5s.

Contrast this with QEP-3 that joins tables WS and
CS first. Even though it has the highest cardinality for
intermediate data, it might be advantageous because sites
DC1 & DC3 have high bandwidth between them. By
placing tasks uniformly between sites DC1 & DC3, the
first join would take only 8s (100GB over 100Gbps link).
The second join takes 1.6s (8GB over 40Gbps link).
QEP-3 completes in 9.6s, or ≈53% faster.

Importance of considering placement in QEP
selection: For each QEP, the exact pattern of traffic
between the data processing sites is dependent not
only on the nature of data flow between stages (e.g,
scatter-gather, one-to-one) but also on the placement of
tasks in each stage. Thus, placement must be taken into
account in assessing QEP quality. Placement matters
due to contention from currently running GDA queries.

Consider a scenario where an already running query
is using the logical links, DC1 → DC3 & DC2 → DC1.
Without control over task placement, a network-aware
optimizer would choose QEP-1 for QA to avoid links
already being utilized. Thus, its running time would
be 20.5s. However, by choosing QEP-3 and placing all

reduce tasks for the first join at DC1, we can completely
avoid DC1 → DC3 & DC2 → DC1 and finish in 17.6s.2

Importance of considering scheduling in QEP
selection: Similar to placement, the impact of
scheduling of network transfers should also be accounted
for in assessing a QEP. Consider a query QX that is
similar to QA in structure, but operates on a different
slice of data, say, items starting with ‘X’. Say QX arrives
soon after two simple two-way joins, QY : σZ(WS) ./
σZ(CS) and QZ : σZ(WS) ./ σZ(SS), start to
execute. The selectivity information for input datasets
of the queries is shown in Table 1. Being two-way
joins, QY and QZ have no choice of QEPs; they utilize
the WAN bandwidth between DC1 and DC3 & DC1 and
DC2, respectively. The joins take 5s each.

Without control over scheduling, QEP-1 is the best
choice for executing QX (since it avoids the links used by
QY and QZ). Its completion time is 16.5s.3 However, if
we can control scheduling of queries, we can still choose
QEP-3 for QX and delay its network transfers by 5s. The
completion time is lowered to 13s.4

Multi-query optimization: QOs in modern stacks, e.g.,
Hive and SparkSQL, optimize each query individually.
Resource contention among concurrent queries is
potentially left to be resolved at the execution layer
through scheduling and task placements. However,
under scenarios where contention cannot be resolved,
jointly determining the QEP for all queries provides
better opportunities to avoid resource contention thereby
resulting in lower query completion times. Classic
multi-query database QOs [40] leverage efficient reuse
of common sub-expressions across queries [39], shared
scans [44] and sharing of buffer caches [19], but they do
not model the network similar to single-query QOs.

2 WS ./ CS takes 16s to transfer 200GB over 100Gbps, and the next
join takes 1.6s to send 16GB over 80Gbps link.
3 The first join of QEP-1 utilizes the bandwidth between DC2 and DC3
and takes 16s. The bottleneck for the second join–which starts after QZ
completes—is the 80Gbps link and transferring 5Gb over it takes 0.5s.
4 The first join of QEP-3 takes 6.4s (80GB between DC1 and DC3).
The second join takes 1.6s to transfer 8GB from DC3 to DC2. With a
delay of 5s (waiting for two-way join to finish) completion time is 13s.

Consider a case where QA and QX arrive concurrently.
A network-aware query optimizer will choose the same
QEP for both the queries resulting in contention for
bandwidth on links between DC1 & DC3. The scheduler,
to optimize for average completion time, will execute the
shortest query first (QX in this case); the average running
time will then be 12s. However, by choosing QEP-2
and QEP-3 for queries QX and QA respectively, we can
completely avoid link contention and keep the average
completion time at 9.4s (9.2 for QX and 9.6s for QA).

3 CLARINET’s Design
Accomplishing multi-query network-aware plan
selection and task placement/scheduling requires
an analytics framework where a single entity is
simultaneously responsible for both QEP selection and
scheduling. Current big-data analytics stacks, however
are highly modular with individual components being
developed and operated independently. Realizing joint
optimization in such a setting would require radical
changes.

Mul$-site	cluster	deployment	

Execu$on	Framework	

Clarinet	

One	QEP	per	query	with	loca$on	
and	schedule	hints	

Hive	QL	Query	

Hive	-	QO	

SQL	Query	

Spark	-	QO	

Mul$ple	candidate	QEPs	per	query	

WAN	
Manager	

Site	
Resource	
Manager	

Figure 5: CLARINET’s late-binding design

CLARINET’s design (Figure 5) addresses this challenge
via late-binding. In CLARINET, the QOs are modified
to provide a set of functionally equivalent QEPs
(QEP-Set)5 to an intermediate shim layer. The shim
layer (CLARINET) collects the QEP-Sets from multiple
queries/QOs and computes a single, optimal QEP per
query as well as location and scheduling hints, that it
forwards to the execution framework.

Each node (operator) in a QEP, forwarded from QOs
to CLARINET, is annotated with its output cardinality
and parallelism as estimated by the QO. The cardinality
represents the total amount of data transferred from the
current operator to its successor operator. As this is data
that will potentially be sent over the WAN, cardinality
directly affects QEP selection. The operator parallelism
decides the number of tasks to be spawned for each

5 A dynamic programming based QO will generate exponentially
many query plans for each query. We limit the size of the QEP-Set
by placing a bound (5 seconds) on time spent in exploring multiple
query plans.

operator; the location and scheduling hints suggested by
CLARINET correspond to location (at data center level)
and start time for each task.

The late binding approach offers several advantages.
First, given the complexity of QOs, modifying their
internal cost model to account for the WAN is quite
challenging. Also, QOs with widely different objectives
(Calcite [2] vs Catalyst [10]) have to be modified
individually. E.g., SparkSQL’s QO [2] should factor
availability of in-memory caches of RDDs [48] against
WAN costs. By design, CLARINET requires no changes
to a QO’s internal cost model. Any QO that can provide
multiple QEPs based on its current cost model can
be made WAN-aware through CLARINET. Second, by
introducing an intermediate layer, CLARINET alleviates
(i) the analytics application (e.g., Hive) from making
scheduling decisions and joint query optimization,
(ii) the execution layer from making any network
specific scheduling/placement decisions. This minimizes
code changes to both the application and execution
frameworks. Third, WAN awareness does not come
at the cost of the existing query optimizations. An
application can avoid the WAN from interfering with
plan selection by exposing only its QO’s chosen best
QEP.

Problem statement, and assumptions: Given a set
‘n’ queries, CLARINET receives QEP-Sets, QSj , j ∈
[1, ..., n] from the QOs corresponding to each query.
Among the exponentially many combinations, the
objective is to select exactly one QEP from each QSj

along with task locations and schedules, such that the
average query run time is minimized. Here, task
locations determine the site at which tasks are executed,
whereas the schedule determines the start times of each
task.

For analytical tractability, we require that the tasks
are scheduled such that network transfers on logical
links between sites do not temporally overlap with
one another. This allows us to accurately determine
the duration of network transfers and reduce the QEP
selection problem to a well studied job-shop scheduling
problem. Such time multiplexing (or non-overlap)
also has the advantage that resource sharing can be
enforced through scheduling; (weighted) bandwidth
sharing on the other hand requires additional per transfer
rate-control on top of the rate control already enforced
by the WAN manager. Crucially, the non-overlapped
assumption does not affect the quality of the solution.
This is because, as we prove below, any optimal schedule
has an equivalent optimal non-overlapped schedule.

Theorem: A schedule, S, of interdependent transfers
over multiple network resources, where each transfer
is allocated an arbitrary time-varying share of available

network bandwidth on a single resource, can be
converted into an equivalent interruptible schedule, N ,
such that no two transfers in N share a resource at any
given point in time, and the completion time of a transfer
in N is not greater than its completion time in S.

Proof sketch: For a network transfer, f , on a resource,
let s(f) and e(f) be the start and end times based on
schedule, S. For each resource, the start and end times
of all its transfers can be viewed as its release time
and deadline respectively. Converting S to N , can be
achieved by determining the earliest deadline first (EDF)
schedule of flows for each resource independently. Given
s(f) and e(f), an EDF schedule is feasible since S is a
complete schedule. For a detailed proof, refer [42].

We simplify further and focus on obtaining
non-interruptible transfer schedules, because,
implementing interruptible transfers requires significant
changes to query execution. However, such schedules
do not permit perfect “packing” of transfers across links.
The resulting fragmentation of link capacity delays
scheduling of network transfers, and inflates completion
times. Essentially, CLARINET incorporates a clever
approach—which we develop gradually in the next two
sections—that systematically combats such resource
fragmentation and optimizes average query completion
times.

In sum, our simplifying assumptions do not impact
CLARINET’s effectiveness. However, even with these
assumptions, computing the best cross-query QEPs
along with task placements and schedules is NP-hard. In
fact, the problem is hard even for a single query [30, 31].

Our approach is as follows: we start with an effective
heuristic for the best single-query QEP, that decouples
placement and scheduling (§4). We then use this to
gradually develop our multi-query heuristic (§5).

4 Single Query WAN-Awareness
At a high level, WAN-aware QEP selection for a single
query proceeds as follows: for every QEP in the query’s
QEP-Set, we determine the placement and schedule of
tasks such that its running time is minimized. The QEP
with the shortest running time is then selected. Because
of inherent hardness of joint placement and scheduling
of DAGs [30, 31], CLARINET’s approach is to decouple
them, as described next.

4.1 Assigning Locations to Tasks in a QEP
Given a QEP, for tasks with no dependencies (e.g., map
tasks) we use the common approach of “site-locality”,
i.e., their locations are the same as the location of their
input data. The placement of intermediate (reduce)
tasks is decided based on the amount and location of
intermediate data generated by their parents, along with
the bandwidths at the sites.

Site-1	 Site-2	 WAN	Shuffle	 DC	Shuffle	

Sca$er-gather	
flow	

M1	

M2	

R2	

(a)

M1	

M2	

R2	

(b)

M1
1	

M2
1	

R21	

R22	

(c)

Figure 6: (a) shows a simple MR job with 3 tasks in each
stage. (b) shows the same job with placement information
(color-coded) for all the tasks. (c) shows the corresponding
augmented DAG with tasks in the same stage and location
coalesced to one. M∗∗ and R∗∗ are sub-stages in the augmented
DAG. Shuffle tasks representing network transfer between
tasks at different locations are shown explicitly.

We decide the task placements for a QEP iteratively
for each of its stages in topological order. Since
the query plan specifies a partial ordering between
dependent stages, stages with no order among them
can be simultaneously scheduled. To ensure that the
placement decision for these stages takes into account
other stages’ decisions, we reserve a block of time on
logical links for network transfers (consistent with our
non-overlapped assumption).

Formulation: The optimal task placement for a stage
is obtained by solving a linear program which takes as
input the following: (i) the distribution of output data
(D`) from the predecessor stages across sites (`), (ii) the
inter-site WAN bandwidths (B`2

`1
), and (iii) the length of

time (τ `2`1) for which stages (which do not have ordering
with respect to current stage) have reserved inter-site
links.6 The best distribution of tasks (r`) across sites is
obtained by solving the following problem:

min
r

∑
`1,`2

D`1r`2
B`2

`1

+ τ `2`1 (1a)

such that r`2 ≥ 0 (1b)∑
`2

r`2 = 1 (1c)

Once the locations of the reducers are fixed, we use the
resulting traffic pattern to update the durations for which
resources are blocked for later stages. E.g., between `1
and `2 we increment the duration, τ `2`1 , by D`1

r`2
b
`2
`1

.

4.2 Scheduling tasks in a QEP
In contrast to scheduling within a DC, scheduling a
QEP in a geo-distributed setting involves scheduling
both the compute phase of a task and the transfer

6 `, `1, `2 are indices over the set of data processing sites

of input data from remote sites. To explicitly model
these network transfers, we augment the DAG of tasks
representing the QEP to include vertices (called shuffle
tasks) corresponding to network transfers; fig. 6 shows
an example. We assume that the compute phase of a
task can only start after all its inputs are available at the
site. Further, since tasks of a stage that are executed at
the same site exercise the same network resource, we
coalesce them into a sub-stage. This reduces the number
of entities that need to be scheduled and the overall
scheduling complexity.

We formulate the scheduling as a binary integer linear
program that takes as input the following: (i) the
coalesced DAG augmented with shuffle tasks, henceforth
called augmented-DAG, which captures dependencies
among tasks, and (ii) the duration of compute and shuffle
tasks. The duration of a compute task is same as the
expected running time of the task in a intra-DC setting.
The duration of shuffle between sites is estimated as the
ratio of data transferred to the WAN bandwidth between
the sites. The objective is to determine the optimal start
times for all the tasks in the augmented-DAG such that
the overall execution time of the QEP is minimized.

Formulation: Let ci be the augmented-DAG of the i-th
QEP in the QEP-Set for the query. Let V i represent the
set of vertices in ci and ≤i represent the partial order
between them. The start times of the vertices (s(.))
should obey the partial order ≤i. Thus, for each pair
of ordered vertices, (u, v) ∈≤i, belonging to ci,

s(v) ≥ s(u) + d(u) (2)

where, d(.) represents the duration of vertices.
We incorporate non-overlapping of flows on network

links in our scheduling problem by imposing:

s(v) ≥ s(u) + d(u)−N(1− zuv) (3a)

s(u) ≥ s(v) + d(v)−N(zuv) (3b)

where u and v are shuffle tasks that contend for the same
network link, and zuv indicates v is executed after u;
N is large constant. When zuv = 1, then Equation 3a
ensures that the start time of vertex v is greater than
the completion time of vertex u; Equation 3b remains
void, since it is satisfied trivially. When zuv = 0, the
conditions invert. Equations (3a) and (3b) are enforced
for all links.

The completion time (Φi) of the i-th QEP, is given by:

Φi := max
u∈V i

s(u) + d(u) (4)

where, u is any vertex in ci. We solve the program for
all the QEPs in the QEP-Set. The one with the smallest
duration is chosen to be executed.

Handling currently running queries: We “reserve”
network links for tasks already placed and scheduled.

Therefore, while computing the best schedule for a QEP,
we have to factor in currently running queries that block
resources. We add constraints to the above formulation
in order to accommodate these currently running queries.

Let B(r) be a set of time intervals for which existing
queries block resource r. Let low(b) and high(b)
represent the lower and upper bound of an interval b ∈
B(r). For every vertex u using a network link, we
include these two constraints:

s(u) ≥ high(b)−N(1− xub) (5a)

low(b) ≥ s(u) + d(u)−N(xub) (5b)

where xub is a binary indicator denoting that u is
scheduled after the interval b. Like eqs. (3a) and (3b),
these constraints kick in alternatively ensuring the
transfers do not overlap with intervals that are reserved.

5 Multiple Contending Queries
In this section, we build upon the solution in §4 to solve
the problem statement outlined in §3 for a workload of
‘n’ (>1) queries that arrive simultaneously and compete
with each other for the inter-site WAN links.

In §5.1, we first provide a strawman algorithm
that emulates shortest-job first (SJF), and iteratively
determines the QEP, placement, and schedule for each of
the ‘n’ queries. Unfortunately, the strawman algorithm
results in a schedule with link resources being fallow
close to 22% of the time (ref. Figure 12(a)) due to
resource fragmentation. In §5.2, we present a novel
heuristic that builds on the strawman and minimizes
resource fragmentation; it combats fragmentation by
carefully packing flows from k (≤ n) queries at a time
from the schedule determined by the strawman. We
discuss several enhancements in §5.3.

5.1 Strawman Iterative QEP Selection
Our strawman heuristic is based on shortest-job first
(SJF) scheduling. We pick this because it is a well
understood scheduling discipline that is typically used
to minimize average completion times. Our strawman
functions iteratively. In every iteration, we pick the
QEP and determine the schedule for exactly one query
as follows. For each QEP belonging to the QEP-Set
of unscheduled queries, we calculate its duration,
placement, and schedule of tasks (using techniques in
§4). We then pick the QEP (and thus the query) with
shortest duration among all the QEPs considered; we do
not consider this query for future iterations. At the end
of each iteration, we reserve resources required by the
QEP chosen. By doing so, we ensure that the running
time for the query is not affected by queries considered in
future iterations. Further, it ensures that choice of QEPs
in future iterations account for the current query’s WAN
impact, thereby enabling cross-query planning.

A1	
A2	

B1	R1	
R2	

15	 20	 50	Time	

(a) SJF schedule

A1	
A2	

B1	R1	

R2	
5	 15	 40	Time	

(b) Better Schedule

Figure 7: Example highlighting fragmentation of resources
with SJF heuristic. Tasks A1 and A2 belong to Job A; A2 is
dependent on A1. Job B has only one task, B1. A1 and B1
use resource R1, A2 uses resource R2. In the SJF schedule,
resource R2 remains idle until t = 20s.

5.2 Final Heuristic to Combat Resource
Fragmentation

The above iterative heuristic is not ideal because it
can cause links to remain fallow sometimes, even if
there are other flows which could use those links. See
Figure 7; as shown, fragmentation arises because jobs
need multiple resources (multiple links in this case)
and because of dependencies across tasks. What this
shows is that vanilla SJF is not ideal for minimizing
average completion times in our setting. If not
controlled, underutilization of link resource can delay
query completions arbitrarily.

We address this by modifying the above SJF strawman
to use a knob (k) that reduces resource fragmentation.
The knob allows us to deviate away from the iteratively
computed schedule towards a schedule with low
fragmentation of resources in a controlled manner.
We start with the solution obtained from the iterative
algorithm described in §5.1. The solution determines
the following: (i) O, a total ordering over the queries,
based on their time of completion, and (ii) the mapping
of inter-site flows to network resources (obtained from
the choice of QEP and task placement). With this
information, our final heuristic creates a constrained
schedule as follows:

We maintain a dynamic set,D, consisting of k-shortest
queries (based on ordering O), for which at least one
task is not yet scheduled. Whenever a flow belonging
to a query in D is available (i.e., at the time when all its
predecessors have completed), and the resource it needs
is free, we immediately schedule the flow on the resource
rather than wait for its start time based on the iterative
schedule. If multiple flows meet the criteria, we break
ties in favor of short duration flows. When all tasks for a
query are scheduled, it is dropped from the dynamic set
and a new query is added.

When k = 1, only flows belonging to the shortest
query can be moved ahead; thus the resulting schedule
will be close to the strawman’s. When k equals the total
number of concurrent queries N , the resulting schedule
will have no fallow links (note that the query completion
times and the ordering of flows on a resource will be
different from that computed using our iterative SJF
algorithm). But, it may not offer good performance.

This happens because, at high values of k, the initial
stages (mappers) of the k QEPs are scheduled first, as
they are available immediately. Thus, resources are
indiscriminately blocked for later stages for all k QEPs,
resulting in an increase in average completion times. We
evaluate this effect in §7, and show the optimal average
completion time benefits of an ideal “sweet-spot value”
of k.

Note that in this heuristic, only the schedule is altered;
task the placement and the QEP remains the same.

5.3 Enhancements

Fairness: Our heuristic can lead to long queries’
start times being pushed significantly to favor shorter
running queries. This is not acceptable if the long
queries are initiated by different applications that require
performance guarantees. To mitigate this bias, we
adopt an approach similar to [22]. Essentially we want
to ensure that the running time of a query, Qj , is
bounded by dj = n × durj , where n is the number of
simultaneously running queries, durj is the standalone
run time of the query without contention, and dj denotes
the calculated deadline for each query.

Then, we adapt the heuristic in §5.2 as follows. We
sort queries in descending order based on a “proximity
score”; this score determines how close a query is to its
deadline and is obtained as:

Proximityj(t) = 1− dj − t
dj

(6)

where t is the time at which the dynamic set (§5.2) is
updated (upon completion of a query). We pick the
top εM queries in this sorted order and call them H.
Here, ε (0 < ε ≤ 1) is a fairness control knob and
M is the number of queries with at least one task not
yet scheduled. The dynamic set D (from §5.2) is then
obtained by picking the shortest-k queries from H. If
k > |H|, then D = H. By doing so, we block the tasks
of queries that are far from their deadline from being
scheduled and prefer those closer to their deadline.

When ε = 1, H contains all the remaining queries
and the heuristic is identical to the one in §5.2. When
ε → 0, D contains only queries with highest proximity
to fair-share deadlines; thus, offering maximum fairness.

WAN utilization: By favoring QEPs and task
placement that result in smaller completion times,
CLARINET implicitly reduces the WAN usage. However,
unlike recent work [43], CLARINET cannot provide
explicit guarantees on WAN usage. To explicitly control
WAN usage, we filter from the QEP-Set of all queries
those QEPs whose best (in terms of WAN use) task
placement results in inter-site WAN usage exceeding a
threshold, β. With a limited set of QEPs per query, we

then apply techniques in §5.1 and §5.2 for scheduling the
transfers.

Online arrivals: We assumed so far that the set
of n queries arrive simultaneously. We now extend
the heuristic in §5.2 to support online query arrivals.
Upon arrival of a new query, we recompute the QEP
choice, task placement, and schedule for the current
query together with all previous queries for which none
of the tasks have started executing. Doing so might
alter the QEP and schedule for prior, as yet unexecuted
queries based on new information. Changing the QEP
for already executing queries would incur wastage of
resources; CLARINET does not alter the QEP for those
queries.

6 Implementation
We build CLARINET as a stand-alone module that can
interface with Hive [3] at the application level and Tez [4]
at the execution framework level. We modified Hive and
Tez to interface with CLARINET as follows:

Modifications to Hive/Calcite: Hive internally uses the
Apache Calcite [2] library as a CBO. Calcite offers two
types of QOs: (i) HepPlanner, which is a greedy CBO,
and (ii) VolcanoPlanner, a dynamic programming-based
CBO [16], which enumerates all possible QEPs for
a query. By default, Hive uses the HepPlanner, but
since it does not explore all possible QEPs, we modify
Hive to interface with VolcanoPlanner. We further
modify VolcanoPlanner to return the operator trees
(OPT) representing multiple join orders along with the
estimated cardinality (in bytes) for each operator, for
each input query. All the OPTs are then compiled to
corresponding QEPs by applying heuristic physical layer
optimizations like partition pruning, field trimming, etc.
The QEPs together constitute the QEP-Set for the query.
We find that a typical TPC-DS [8] query has tens of QEPs
in its QEP-Set. Each QEP is also annotated with the
estimate of intermediate data for each stage; this is used
by CLARINET to estimate network transfer times.

Modifications to Tez: CLARINET interfaces with Tez
by providing hints regarding placement locations and
start times for individual tasks. We modify Tez’s DAG
scheduler to schedule tasks based on these inputs. If a
task becomes available before its scheduled start time,
we hold it back and schedule it for execution later; a task
is never held back beyond its scheduled start time.

Scheduling non-overlapped transfers: CLARINET

employs a schedule that requires non-overlap of flows
between two sites. Consider the simple MapReduce job
similar to one in fig. 6(a). If tasks from two map stages
(say,M1

1 andM1
2) are executed at the same location, then

the transfer of their intermediate data to any downstream
task (say, R1

1) happens in an overlapped fashion; i.e.,

M1
1	

M2
1	

Overlap	
Flows	

R11	

(a)

M1
1	

M2
1	

R11	

F11	

G1
1	

Indep	
-endent	
flows	

(b)

Figure 8: Modification of QEPs forwarded to execution
framework by adding relay stages (F and G). Relay stages
ensure network transfers fully utilize bandwidth and can be
scheduled in a non-overlapped fashion. Here, map tasks M1

1

and M1
2 are executed in the same site, whereas reducer task,

R1
1 is executed in a different site. Relay tasks, F 1

1 and G1
1 are

co-located with R1
1.

when R1
1 starts executing, it reads data written by both

M1
1 and M1

2 simultaneously. To enforce non-overlapped
transfers by controlling task schedule, we introduce relay
stages in the QEP (stages F and G in fig. 8(b)). The task
in a relay stage does not process data; it reads remote
data and writes it locally. Its parallelism and locations
are identical to the corresponding reducer stage. By
specifying start times of tasks (F 1

1 and G1
1 in fig. 8(b))

in the relay stage, CLARINET explicitly determines start
times of inter-stage shuffles and can ensure they happen
in a non-overlapped fashion.

7 Evaluation
We experimentally evaluate CLARINET in realistic
settings and against state-of-the-art GDA techniques. We
evaluate CLARINET first in a real GDA deployment over
10 Amazon EC2 DCs. We use the standard TPC-DS [8]
workload for benchmarking. For evaluating CLARINET at
a large scale, we also use traces from analytics queries
executed on two OSPs’ production clusters. We simulate
a GDA setup spread across tens of DCs and executing
1000’s of queries. By default, we run CLARINET without
the fairness enhancement.

The de-facto way in which queries are executed in
a Hive-atop-Tez deployment is used as the baseline
for comparison. Specifically, query selection and task
placement are both network agnostic; here the QEP
is selected by Hive’s default QO and the reducers are
placed uniformly across sites where input data is present.
Since we are interested in reducing average completion
time, we use our shortest query first heuristic (SJF; §5.1)
to schedule the tasks belonging to multiple queries. We
call the baseline HIVE+.7

Prior work [35] has shown that centrally aggregating
raw data to one DC is wasteful. However, they only
7 The ‘+’ in HIVE+ indicates that the SJF heuristic is used for multiple
queries. In a normal deployment,concurrent queries will arbitrarily
share WAN bandwidth thereby delaying completion time for all.

0 5 10 15 20 25

−150

−100

−50

0

Query

Im
pr

ov
em

en
t[
%
]

Figure 9: Percentage reduction in running time of
HIVESINGLEDC w.r.t. HIVE+ for TPC-DS queries (sorted by
increasing gains). The negative gains indicate running times
of queries with HIVESINGLEDC is greater than HIVE+.

consider the case where raw input data is centrally
aggregated; it is possible to reduce the amount of data
sent over the WAN by suitably processing/filtering raw
input data. For completeness, we evaluate our baseline
(HIVE+) against an alternative that centrally aggregates
data after pre-processing; we call this alternative,
HIVESINGLEDC. In our implementation, HIVESINGLEDC

uses the default QEP chosen by Hive’s QO; the map tasks
which process (filter) the raw input data are co-located
with the data and all reduce tasks are placed in the DC
with maximum intermediate data after map stages.

We also study HIVE-IR+ in simulation. HIVE-IR+ uses
the QEP chosen by Hive but decisions on placement
and scheduling are made using algorithms described
in §4 and §5. The IR in HIVE-IR+ stands for
Iridium [35], a state-of-the-art scheme for WAN-aware
data/task placement. CLARINET’s task placement is
similar to Iridium’s [35]. However, we use the “+”
suffix since Iridium only does network-aware data/task
placement, whereas HIVE-IR+ also does network-aware
transfer scheduling. Comparing CLARINET and HIVE-IR+
highlights the importance of doing QEP selection
along with WAN-aware task placement and transfer
scheduling. We measure the improvements of CLARINET

and HIVE-IR+ in terms of percentage reduction in average
query run time compared to HIVE+.

7.1 Testbed Deployment Results
Deployment Setup and Workload: We spin up 5 server
instances each with 40 vCPUs (2.4 GHz Intel Xeon
Processors) and 160GB RAM in all 10 EC2 regions.
We deploy HDFS+YARN across all the instances; a
single server in one of the regions functions as the
HDFS namenode and the YARN resource manager.
The connectivity between different sites is through
the public Internet; naturally available bandwidth (see
fig. 2) acts as the constrained resource. To avoid disk
read/write bottlenecks, we store all the intermediate
data in memory; this also aligns with recent trends
toward in-memory analytics [48, 27]. We use TPC-DS
queries on datasets at different scales (10, 50, 100,
500) for our evaluation. Our workload is generated by

randomly choosing the queries and the scale of data.
The input tables are randomly spread across the different
geographical regions, similar to prior studies [35, 43].
Comparison with single DC execution model:
Figure 9 compares running times of individual TPC-DS
queries using HIVESINGLEDC and HIVE+. For only
2 of the 24 different queries that we evaluated,
HIVESINGLEDC has a smaller running time than HIVE+;
further, HIVESINGLEDC can be up to four times slower
(0.25×) than HIVE+.

Upon closer investigation, we find that for the queries
where HIVESINGLEDC is faster, the distribution of the
largest input table was skewed; 70% of the input data was
in one DC. Thus, for such cases, HIVESINGLEDC requires
only 30% of the mapper outputs and none of the reducer
outputs to be transferred across the WAN.

Overall, the distributed execution model effectively
utilizes the total WAN bandwidth when the input data is
spread across multiple DCs. However, when the input
data is skewed, placing all the reducers in one DC is
advantageous. Thus, in all further experiments, we also
consider a task placement strategy where all the tasks are
placed in the DC with the largest input data in addition to
the placement approaches discussed in §4.1. CLARINET’s
design and the iterative heuristic described in §5.1 easily
accommodate multiple task placement strategies for each
QEP.
Clarinet performance: Figure 10(a), shows the run
time reduction of CLARINET compared to HIVE+ for
TPC-DS queries when run individually. We can see
that network-aware QEP selection, task placement, and
scheduling results in at least a 20% reduction (or 1.25x
speedup) in query run time; the gains can be as high
as 80% (5x) for some of the queries. For 75% of the
queries, CLARINET chooses an alternate QEP than the one
chosen by default in Hive (not shown). This highlights
the importance of network-aware QEP selection even for
single queries.

Figure 10(b) shows the gains when multiple TPC-DS
queries of different scales are run simultaneously; we
report results over 30 randomly chosen batches of
TPC-DS queries with 8 and 12 queries in a batch. More
than 40% (1.66x) gains are observed in all the batches.
On average, we see a ≈60% reduction or 2.5x speedup,
higher than the single query case (45% on average).

By placing the reducers randomly across
different geographical regions, HIVE+ transfers 75%
(Figure 10(c)) of the total intermediate data between
EC2 DCs. Since, the inter-region bandwidth is limited,
this leads to longer running times. CLARINET on the
other hand, transfers only half of the intermediate data
between DCs.

Figure 10(d) shows the distribution of bandwidth
and intermediate data across the inter-site links for a

CLARINET CLARINET- 8 queries CLARINET- 12 queries HIVE+ Bandwidth

0 10 20
0

20

40

60

80

100

TPC-DS query

Im
pr

ov
em

en
t[
%
]

(a) Percentage reduction in running
times of CLARINET w.r.t. HIVE+
for 29 individual TPC-DS queries.
The queries are sorted based on the
observed gains.

0 10 20 30
0

20

40

60

80

100

Query batches

Im
pr

ov
em

en
t[
%
]

(b) Percentage reduction in average
completion times of CLARINET
w.r.t. HIVE+ when batches of 8 / 12
randomly chosen TPC-DS queries
of different scales are executed
simultaneously. The batches are
sorted based on the observed gains.

HIVE+
CLARINET

0

20

40

60

80

100
75

56

In
te

rD
C

tr
af

fic
[%

]

(c) Comparison of HIVE+ and
CLARINET w.r.t. intermediate
data sent over the WAN as
a percentage of the total
intermediate data. The values are
measured over a single run with
12 simultaneous queries.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Inter-DC links

C
D

F

(d) Comparison of bandwidth
and intermediate data distribution
across a subset of pairwise logical
links between the DCs for a single
batch of 12 queries. We ignore
all links that are unused by both
CLARINET and HIVE+.

Figure 10: Results from a real CLARINET deployment across Amazon EC2 datacenters.

single run with 12 simultaneously running queries. The
difference between intermediate data and bandwidth
distribution is greater for HIVE+ when compared to
CLARINET. For example, HIVE+ transfers 45% of
its intermediate data over logical links that account
for only 20% of the bandwidth. In comparison,
CLARINET transfers only 20% of its load on 20% of the
bandwidth. By considering multiple candidate QEPs
for each query and by controlling task placement and
scheduling, CLARINET is able to match intermediate data
to available bandwidth across different links. Since
HIVE+ does not have alternate choices of QEP and task
placement/schedule, it tends to put more load on some
links and no load on others.

Multi-query optimization: To quantify the need for
multi-query optimization in the geo-distributed setting,
we measure how the QEPs chosen for queries when run
in a joint manner differ from the QEPs chosen when
run individually. For 60% of the queries when run
with 8 or 12 queries concurrently, the QEP of choice
in CLARINET differs from the one chosen when the
queries are run individually. As an illustrative example
of CLARINET’s cross-query behavior, consider TPC-DS
query 7; it involves a five-way join of a fact table with
4 other dimension tables one of which is fairly large.
Thus, when run by itself, CLARINET never joins the fact
table with a large dimension table (even though they are
located in DCs within a continent) to avoid costly WAN
transfer. However, in 5 out of 6 batches when Query
7 runs simultaneously with other queries that load links
behind the preferred dimension table, CLARINET forces
Query 7 to join large tables upfront.

Resource Fragmentation: For a single run with
12 simultaneously running queries, we compute the
duration for which inter-DC links remain idle. A
resource is idle if a task is available to run, but is

not scheduled for execution. For CLARINET, the links
are fallow only for 3% of the time, which is minimal.
Our larger scale simulation results confirm reduction in
resource fragmentation imposed by our approach.

Optimization overhead: We also measured the time
CLARINET spends in optimizing the query plan. After
parallelizing the evaluation of each candidate query for
every iteration, we see that CLARINET spends less than 1s
(on an average) per iteration. For optimizing 12 queries
in 30 different batches, CLARINET takes a maximum of
15s; the median optimization time is 8s for a batch
of 12 queries. Relative to query execution times (tens
of minutes), the optimization overhead of CLARINET is
acceptable in practice.

7.2 Simulation Results

Trace driven Simulator: For large-scale experiments,
with 50 sites and thousands of queries, we evaluate
CLARINET through a trace-driven simulation based on
production traces obtained from analytics clusters of
two large OSPs, FACEBOOK and MICROSOFT. These
traces contain information on query arrival times, input
data/intermediate data size for each query, data locations,
QEP structure etc., for 350K and 600K jobs respectively.
Please refer to [37, 18] for more details about the
workloads.

Unfortunately, we do not have logs from the query
optimizer that generated the QEP, and hence do not
have information regarding alternate QEPs. To overcome
this, we use QEPs generated from TPC-DS queries
superimposed with information on input table size and
intermediate data size from the traces. Thus, every
job in the trace is replaced by a randomly chosen
TPC-DS query. The TPC-DS input tables acquire the
distribution and location characteristics of input data for
the corresponding job in the trace. Thus, our workload

CLARINET HIVE-IR+ FACEBOOK MICROSOFT

FACEBOOK

MICROSOFT
0

20

40

60

80

100

59 63

31 25

Im
pr

ov
em

en
t[
%
]

(a) Percentage reduction in
average running times of
CLARINET and HIVE-IR+ w.r.t
HIVE+.

0 20 40 60 80 100
0

20

40

60

80

100

Improvement [%]

C
D

F
[%

]
(b) CDF of the per-query gains of
CLARINET using FACEBOOK and
MICROSOFT traces.

Figure 11: Overall gains of CLARINET and HIVE-IR+ w.r.t
HIVE+ as measured in the simulator using FACEBOOK and
MICROSOFT production traces

has similar load and data distributions as the production
traces but using query plan options from the TPC-DS
benchmark.

Queries arrive in batches of a few hundred; results for
other batch sizes are similar. We impose a logical full
mesh topology with the bandwidth between each pair of
sites chosen randomly from [100Mb/s− 5Gbps].

Figure 11(a) shows the reduction in average running
time for CLARINET and HIVE-IR+ when compared to
HIVE+ for both the production traces. Compared to the
HIVE+ base line, CLARINET improves the average query
completion time by 60%, or a 2.5× speedup.

CLARINET offers 28 and 38 percentage points
improvement over HIVE-IR+ for FACEBOOK and
MICROSOFT traces, respectively. This translates,
respectively, to 1.75× and 2× speedup relative to
HIVE-IR+. These additional gains come from choosing
better QEPs.

For a network topology with higher bandwidths
and low variation (drawn from [10Gbps − 50Gbps]),
CLARINET has 47% and 52% reduction in run time for
FACEBOOK and MICROSOFT traces, respectively, relative
to HIVE+. Higher bandwidth implies overall smaller
running times even for a WAN-agnostic system like
HIVE+. Even under such a scenario CLARINET offers a
2× improvement.

Figure 11(b) plots the distribution of CLARINET’s gains
w.r.t HIVE+. Note that CLARINET does not increase the
running time for any query. However, the distribution has
a heavy tail; some queries have moderate improvement
but others have substantial improvement. The variation
is especially prominent in MICROSOFT traces, where
approximately 38% of the queries have less than 20%
(1.25x) improvement and 20% of the queries have
greater than 70% improvement (or 3x speedup). In
§7.4, we present an in-depth analysis of performance
improvement for different classes of queries.

FACEBOOK MICROSOFT

0 20 40 60
0

20

40

60

80

Shortest queries, k

Im
pr

ov
em

en
t[
%
]

(a) Variation of performance with
k, for shortest-k heuristic

0 20 40 60
0

10

20

30

Shortest queries, k

Ti
m

e
(%

)w
he

n
lin

ks
ar

e
id

le

(b) Reduction in resource
fragmentation with increasing k

Figure 12: Performance of our overall heuristic as a function
of k.

FACEBOOK MICROSOFT

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

ε
Im

pr
ov

em
en

t[
%
]

(a) Percentage reduction in
average query run times relative
to HIVE+

0 0.2 0.4 0.6 0.8 1
0

20

40

ε

Jo
bs

w
ith

du
ra

tio
ns

>
fa

ir
de

ad
lin

e
[%

]

(b) Percentage of jobs that do not
meet their fair deadline

Figure 13: Variation of performance and fairness metric with
respect to ε

7.3 CLARINET’s heuristics and design
decisions

Next, we explore the effectiveness of key CLARINET

design decisions in simulation.

Effectiveness in Combating Resource Fragmentation:
Recall from §5.2 that our approach to combat resource
fragmentation is to allow network transfers from top-k
shortest queries to be scheduled if resources are fallow.
Figure 12(a) plots the variation of overall runtime
reduction for different values of k. For k = 1, CLARINET

does vanilla SJF scheduling. As we increase k, the
gain increases, peaks at k = 57 for both the FACEBOOK

and MICROSOFT traces, and then decreases. The vanilla
shortest job is considerably worse than choosing the
best value of k. Figure 12(b), shows the fraction of
time (in percentage) inter-site links remain fallow as k
varies. We see severe underutilization of resources at
k = 1, explaining the poor performance of SJF. At peak
(k = 57), we see that the links are not utilized only 5%
of the time. Any further increase in k results in decreased
link fallow time; however, higher values of k lead to
cases where the initial stages (mappers) of k QEPs get
scheduled first, as they are available immediately. As
a result, resources are blocked for later stages for all k
QEPs, resulting in an increase in average run times.

% Queries % Improvement

<0.5 0.5-1 1-2 >2
0

20

40

60

80

100

22
38

25
15

33

66 60

82

COV

[%
]

(a) Performance across queries binned by total
amount of intermediate data

<0.5 0.5-1 1-2 >2
0

20

40

60

80

100

10 9

37 44
28 35

59
75

COV

[%
]

(b) Performance across queries binned by total
input size of tables

<0.5 0.5-1 1-2 >2
0

20

40

60

80

100

35

14 18
33

48 50 55
71

COV

[%
]

(c) Performance across queries binned by
bandwidth skew

Figure 14: Isolating gains observed across queries

C: CLARINET CO: CLARINET-O
FACEBOOK MICROSOFT

C CO C CO
25%ile 27 13 9 8
Mean 59 30 63 34
75%ile 68 36 67 40
90%ile 72 47 78 48

Table 2: CLARINET vs. a variation allowing overlap of
network transfers. HIVE+ is used as the baseline.

Fairness across queries: Recall from §5.3 that
CLARINET uses a knob ε to ensure fairness: ε → 0
tends to bias CLARINET’s core heuristic (§5.2) to schedule
from jobs that are nearing deadlines computed based
on their fair share (hence leading to greater fairness),
whereas ε → 1 favors performance at the expense of
jobs being delayed beyond their fair-share deadlines.
Performance improvements from CLARINET relative to
HIVE+ as a function of ε are shown in Figure 13(a).
We see that even when biasing toward fairness (ε →
0), CLARINET offers substantial improvements (20%)
relative to HIVE+. As we trade-off some amount of
fairness (higher ε), CLARINET’s benefits improve almost
linearly. Figure 13(b) shows the percentage of jobs that
did not meet the fair deadline as a function of ε. For low
values of ε(= 0.1), we see that almost 90% of jobs meet
their deadline and are not starved by jobs arriving in the
future.

Non-overlap: We compare CLARINET with a system,
CLARINET-O that disregards CLARINET’s schedule and
allows tasks to be scheduled as and when they are
available. Competing flows on a WAN link will now
share the bandwidth equally in space rather than sharing
them across time. The QEPs chosen and the placement
of tasks are identical in both the cases. Table 2 reports
the run time reduction with respect to HIVE+. We note
that even with an overlapped schedule, the gains of
CLARINET-O over HIVE+ are significant; average run
time reduces by 34% (1.5×). This is due to good QEP
selection and task placement. Further, CLARINET is
29 percentage points better than CLARINET-O by virtue
of combining QEP selection and task placement with
non-overlapped transfer scheduling. Overlap results in

lower allocation of bandwidth for all contending flows,
thereby increasing all queries’ completion times.

7.4 Profiling gains of queries (simulation)
To isolate characteristics of queries that contribute to
higher performance, we categorize them based on the
amount of skew in (i) the intermediate data generated
from different stages, (ii) the spread of input data across
sites, and (iii) the average outgoing bandwidth of sites
where input tables of a query are located. For each
characteristic, we split the queries into “bins” based
on the normalized standard deviation (COV). Figure 14
presents the performance gains for queries in each bin.

Queries with high skew (> 2) in the amount of
intermediate data perform 3× better than queries for
which the intermediate data is equally distributed. The
absolute improvement over HIVE+ is as high as 82%.
A similar trend is observed for queries categorized by
the skew in input data. For queries with low skew in
intermediate data/input data, all join orders (all possible
QEPs) will exercise all links in the topology. Thus,
choosing one over another will not offer substantial
improvement in performance.

We also observe performance gains improving (48
to 71%) with growing bandwidth skew, but the effect
is less pronounced. This is consistent with the high
gains observed in a homogeneous WAN substrate (§7.2).
CLARINET performance is not intrinsically tied to the
presence of high WAN skew.

8 Related Work
We discuss related work on query optimization in
§2.2. CLARINET adds to the rich literature on query
optimization in both (distributed) database systems [34,
14, 25, 12, 32, 41, 38, 46, 49] and big data analytics
stacks [2, 10]. In particular, it shows how to bring
WAN awareness into query optimization in a principled
fashion.

Other recent work have explored low-layer
optimizations to improve GDA query performance.
Iridium [35] develops WAN-aware input data and task
placement for two-stage MapReduce jobs. Geode [43]
develops input data movement and join algorithm

selection strategies to minimize WAN bandwidth usage.
Finally, Jetstream [36] proposes using adaptive filtering
and local aggregation of data to improve latency.
SWAG [21] coordinates compute task scheduling across
DCs.

Many of these apply to simple 1- or 2-stage
queries [35, 21, 43], whereas CLARINET considers
general DAGs. Some also require detailed modifications
to existing analytics frameworks [36], whereas
CLARINET’s design is such that it can be integrated
with ease. More importantly, CLARINET operates at
a higher layer than all prior systems, by optimizing
query plan generation. Thus, CLARINET has a more
fundamental impact on query performance. Also,
CLARINET is complementary to these prior systems (e.g.,
[21, 36]).

9 Discussion
Experimental results highlight CLARINET’s performance
achieved through WAN-aware QEP selection, combined
with operator placement and scheduling aspects of the
execution framework. While this motivates the need to
explore non-traditional query optimization approaches
for the geo-distributed settings, there are a few other
aspects to consider.

First, the efficacy of CLARINET depends on the
availability of known, non-fluctuating bandwidth
between DCs. Most software-defined WAN managers
provide this abstraction under normal operating
conditions. Further, our experiments on Amazon EC2
showed that minor fluctuations in available bandwidth do
not adversely affect CLARINET’s performance. However,
under catastrophic network failures, the bandwidth
availability between DCs can change drastically.
CLARINET does not have any mechanism to react under
such scenarios. Prior works [11, 29, 9] have presented
approaches to dynamically change query execution plans
under system changes and cardinality estimation errors.
Developing similar techniques to adapt CLARINET’s
execution plan under bandwidth changes is part of our
future work.

Second, CLARINET does not leverage performance
gains obtained from using techniques that minimize the
overall data transferred over the WAN. These include:
(i) using bloom-filters to implement joins as semi-joins,
and (ii) caching (intermediate) results data from prior
queries [43]. While reducing WAN traffic improves
query completion time in the geo-distributed setting,
the total data sent over the WAN (e.g., determined
by the number of common keys in a bloom-filter
semi-join implementation) can be large depending upon
the dataset. Under such cases, network-aware QEP
selection and scheduling of transfers can further reduce
aggregate run times even if WAN traffic reduction

methods are used.

10 Conclusion
In this paper, we consider the problem of running
analytics queries over data gathered and stored at
multiple sites inter-connected by heterogeneous WAN
links. We argue that, in order to optimize query
completion times, it is crucial for the query plan to
be made WAN-aware, for query planning to be done
jointly with selecting the placements and schedule for
the query’s tasks, and for multiple queries to be jointly
optimized. We design CLARINET, a novel WAN-aware
QO that incorporates a variety of novel heuristics for
these issues. We implement CLARINET such that it can be
easily integrated into existing data analytics frameworks
with minimal modifications. Our experiments using
an EC2 deployment and large scale simulations show
that CLARINET reduces query completion times by
2× compared to using state-of-the-art WAN-aware
placement and scheduling. We also show how our
scheme can ensure fair treatment of queries.

Acknowledgments
We thank the anonymous reviewers and our shepherd
Amol Deshpande for their insightful comments. Raajay
and Aditya are supported by the Wisconsin Institute
on Software-defined Datacenters of Madison and
grants from Google and National Science Foundation
(CNS-1302041, CNS-1330308, CNS-1345249).

References
[1] Amazon datacenter locations. https://aws.amazon.com/

about-aws/global-infrastructure/.

[2] Apache Calcite - a dynamic data management framework.
http://calcite.incubator.apache.org. Accessed
04-27-2015.

[3] Apache Hive. http://hive.apache.org.

[4] Apache Tez. http://tez.apache.org.

[5] Google datacenter locations. http://www.google.com/
about/datacenters/inside/locations/.

[6] Microsoft datacenters. http://www.microsoft.
com/en-us/server-cloud/cloud-os/
global-datacenters.aspx.

[7] Spark SQL. https://spark.apache.org/sql.

[8] TPC Benchmark DS (TPC-DS). http://www.tpc.org/
tpcds.

[9] AGARWAL, S., KANDULA, S., BRUNO, N., WU, M.-C.,
STOICA, I., AND ZHOU, J. Reoptimizing data parallel
computing. In NSDI (2012).

[10] ARMBRUST, M., XIN, R. S., LIAN, C., HUAI, Y., LIU, D.,
BRADLEY, J. K., MENG, X., KAFTAN, T., FRANKLIN, M. J.,
GHODSI, A., AND ZAHARIA, M. Spark SQL: Relational data
processing in Spark. In SIGMOD (2015).

[11] AVNUR, R., AND HELLERSTEIN, J. M. Eddies: Continuously
adaptive query processing. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data
(New York, NY, USA, 2000), SIGMOD ’00, ACM, pp. 261–272.

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/about-aws/global-infrastructure/
http://calcite.incubator.apache.org
http://hive.apache.org
http://tez.apache.org
http://www.google.com/about/datacenters/inside/locations/
http://www.google.com/about/datacenters/inside/locations/
http://www.microsoft.com/en-us/server-cloud/cloud-os/global-datacenters.aspx
http://www.microsoft.com/en-us/server-cloud/cloud-os/global-datacenters.aspx
http://www.microsoft.com/en-us/server-cloud/cloud-os/global-datacenters.aspx
https://spark.apache.org/sql
http://www.tpc.org/tpcds
http://www.tpc.org/tpcds

[12] BERNSTEIN, P. A., AND CHIU, D.-M. W. Using semi-joins to
solve relational queries. Journal of the ACM 28, 1 (1981), 25–40.

[13] CALDER, M., FAN, X., HU, Z., KATZ-BASSETT, E.,
HEIDEMANN, J., AND GOVINDAN, R. Mapping the expansion
of Google’s serving infrastructure. In IMC (2013).

[14] DEWITT, D. J., GHANDEHARIZADEH, S., SCHNEIDER, D.,
BRICKER, A., HSIAO, H.-I., RASMUSSEN, R., ET AL. The
Gamma database machine project. IEEE Transactions on
Knowledge and Data Engineering 2, 1 (1990), 44–62.

[15] GANJAM, A., SIDDIQUI, F., ZHAN, J., LIU, X., STOICA, I.,
JIANG, J., SEKAR, V., AND ZHANG, H. C3: Internet-scale
control plane for video quality optimization. In 12th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 15) (Oakland, CA, May 2015), USENIX Association,
pp. 131–144.

[16] GRAEFE, G. Volcano: An extensible and parallel query
evaluation system. IEEE Trans. on Knowl. and Data Eng. 6, 1
(Feb. 1994), 120–135.

[17] GRAEFE, G. The cascades framework for query optimization.
Data Engineering Bulletin 18 (1995).

[18] GRANDL, R., ANANTHANARAYANAN, G., KANDULA, S.,
RAO, S., AND AKELLA, A. Multi-resource packing for cluster
schedulers. In SIGCOMM (2014).

[19] GUPTA, A., SUDARSHAN, S., AND VISHWANATHAN, S. Query
scheduling in multi query optimization. In Database Engineering
and Applications, 2001 International Symposium on. (2001),
IEEE, pp. 11–19.

[20] HONG, C.-Y., KANDULA, S., MAHAJAN, R., ZHANG, M.,
GILL, V., NANDURI, M., AND WATTENHOFER, R. Achieving
high utilization with software-driven WAN. In SIGCOMM
(2013).

[21] HUNG, C.-C., GOLUBCHIK, L., AND YU, M. Scheduling jobs
across geo-distributed datacenters. In SoCC (2015).

[22] ISARD, M., PRABHAKARAN, V., CURREY, J., WIEDER, U.,
TALWAR, K., AND GOLDBERG, A. Quincy: Fair scheduling for
distributed computing clusters. In SOSP (2009).

[23] JAIN, S., KUMAR, A., MANDAL, S., ONG, J., POUTIEVSKI,
L., SINGH, A., VENKATA, S., WANDERER, J., ZHOU, J., ZHU,
M., ZOLLA, J., HÖLZLE, U., STUART, S., AND VAHDAT, A.
B4: Experience with a globally-deployed software defined WAN.
In SIGCOMM (2013).

[24] JIANG, J., DAS, R., ANANTHANARAYANAN, G., CHOU,
P., PADMANABHAN, V., SEKAR, V., DOMINIQUE, E.,
GOLISZEWSKI, M., KUKOLECA, D., VAFIN, R., AND ZHANG,
H. Via: Improving internet telephony call quality using predictive
relay selection. In SIGCOMM (2015).

[25] KITSUREGAWA, M., TANAKA, H., AND MOTO-OKA, T.
Application of hash to data base machine and its architecture.
New Generation Computing 1, 1 (1983), 63–74.

[26] KUMAR, A., JAIN, S., NAIK, U., RAGHURAMAN, A.,
KASINADHUNI, N., ZERMENO, E. C., GUNN, C. S., AI,
J., CARLIN, B., AMARANDEI-STAVILA, M., ROBIN, M.,
SIGANPORIA, A., STUART, S., AND VAHDAT, A. BwE:
Flexible, hierarchical bandwidth allocation for WAN distributed
computing. In SIGCOMM (2015).

[27] LI, H., GHODSI, A., ZAHARIA, M., SHENKER, S., AND
STOICA, I. Tachyon: Reliable, memory speed storage for cluster
computing frameworks. In Proceedings of the ACM Symposium
on Cloud Computing (New York, NY, USA, 2014), SOCC ’14,
ACM, pp. 6:1–6:15.

[28] MACKERT, L. F., AND LOHMAN, G. M. R* optimizer validation
and performance evaluation for distributed queries. In PVLDB
(1986).

[29] MARKL, V., RAMAN, V., SIMMEN, D., LOHMAN, G.,
PIRAHESH, H., AND CILIMDZIC, M. Robust query processing
through progressive optimization. In Proceedings of the 2004
ACM SIGMOD International Conference on Management of
Data (New York, NY, USA, 2004), SIGMOD ’04, ACM,
pp. 659–670.

[30] MASTROLILLI, M., AND SVENSSON, O. (acyclic) job shops are
hard to approximate. In FOCS (2008).

[31] MONALDO, M., AND OLA, S. Improved bounds for flow shop
scheduling. In ICALP (2009).

[32] MULLIN, J. K. Optimal semijoins for distributed database
systems. IEEE Transactions on Software Engineering 16, 5
(1990), 558–560.

[33] OLSTON, C., REED, B., SRIVASTAVA, U., KUMAR, R.,
AND TOMKINS, A. Pig latin: A not-so-foreign language for
data processing. In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data (New York,
NY, USA, 2008), SIGMOD ’08, ACM, pp. 1099–1110.

[34] POLYCHRONIOU, O., SEN, R., AND ROSS, K. A. Track join:
distributed joins with minimal network traffic. In SIGMOD
(2014).

[35] PU, Q., ANANTHANARAYANAN, G., BODIK, P., KANDULA,
S., AKELLA, A., BAHL, V., AND STOICA, I. Low latency
geo-distributed data analytics. In SIGCOMM (2015).

[36] RABKIN, A., ARYE, M., SEN, S., PAI, V. S., AND FREEDMAN,
M. J. Aggregation and degradation in JetStream: Streaming
analytics in the wide area. In NSDI (2014).

[37] REN, X., ANANTHANARAYANAN, G., WIERMAN, A., AND
YU, M. Hopper: Decentralized speculation-aware cluster
scheduling at scale. In Proceedings of the 2015 ACM Conference
on Special Interest Group on Data Communication (New York,
NY, USA, 2015), SIGCOMM ’15, ACM, pp. 379–392.

[38] RODIGER, W., MUHLBAUER, T., UNTERBRUNNER,
P., REISER, A., KEMPER, A., AND NEUMANN, T.
Locality-sensitive operators for parallel main-memory database
clusters. In ICDE (2014).

[39] ROY, P., SESHADRI, S., SUDARSHAN, S., AND BHOBE, S.
Efficient and extensible algorithms for multi query optimization.
In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data (New York, NY, USA,
2000), SIGMOD ’00, ACM, pp. 249–260.

[40] SELLIS, T. K. Multiple-query optimization. ACM Trans.
Database Syst. 13, 1 (Mar. 1988), 23–52.

[41] URHAN, T., AND FRANKLIN, M. J. XJoin: A
reactively-scheduled pipelined join operator. IEEE Data
Engineering Bulletin (2000), 27–33.

[42] VISWANATHAN, R., ANANTHANARAYANAN, G., AND
AKELLA, A. Clarinet: Wan-aware optimization for analytics
queries. Tech. Rep. TR1841, University of Wisconsin-Madison,
2016.

[43] VULIMIRI, A., CURINO, C., GODFREY, B., PADHYE, J., AND
VARGHESE, G. Global analytics in the face of bandwidth and
regulatory constraints. In NSDI (2015).

[44] WANG, X., OLSTON, C., SARMA, A. D., AND BURNS, R.
Coscan: Cooperative scan sharing in the cloud. In Proceedings
of the 2Nd ACM Symposium on Cloud Computing (2011), SOCC
’11.

[45] XIAO, X., HANNAN, A., BAILEY, B., AND NI, L. M. Traffic
engineering with mpls in the internet. Network, IEEE 14, 2
(2000), 28–33.

[46] XIN, R. S., ROSEN, J., ZAHARIA, M., FRANKLIN, M. J.,
SHENKER, S., AND STOICA, I. Shark: SQL and rich analytics
at scale. In SIGMOD (2013).

[47] XIONG, P., HACIGUMUS, H., AND NAUGHTON, J. F. A
software-defined networking based approach for performance
management of analytical queries on distributed data stores. In
SIGMOD (2014).

[48] ZAHARIA, M., CHOWDHURY, M., DAS, T., DAVE, A., MA, J.,
MCCAULEY, M., FRANKLIN, M., SHENKER, S., AND STOICA,
I. Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing. In NSDI (2012).

[49] ZAMANIAN, E., BINNIG, C., AND SALAMA, A. Locality-aware
partitioning in parallel database systems. In SIGMOD (2015).

	Introduction
	Background and Motivation
	Geo-Distributed Analytics
	Illustrative Examples for Drawbacks of Current GDA Query Processing

	Clarinet's Design
	Single Query WAN-Awareness
	Assigning Locations to Tasks in a QEP
	Scheduling tasks in a QEP

	Multiple Contending Queries
	Strawman Iterative QEP Selection
	Final Heuristic to Combat Resource Fragmentation
	Enhancements

	Implementation
	Evaluation
	Testbed Deployment Results
	Simulation Results
	Clarinet's heuristics and design decisions
	Profiling gains of queries (simulation)

	Related Work
	Discussion
	Conclusion

