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Abstract

The growth of Internet commerce has stimulated
the use of collaborative filtering (CF) algorithms
as recommender systems. Such systems leverage
knowledge about the known preferences of mul-
tiple users to recommend items of interest to
other users. CF methods have been harnessed to
make recommendations about such items as web
pages, movies, books, and toys. Researchers
have proposed and evaluated many approaches
for generating recommendations. We describe
and evaluate a new method called personality
diagnosis (PD). Given a user’s preferences for
some items, we compute the probability that he
or she is of the same “personality type” as other
users, and, in turn, the probability that he or she
will like new items. PD retains some of the ad-
vantages of traditional similarity-weighting CF
approaches in that all data is brought to bear on
each prediction and new data can be added eas-
ily and incrementally. Additionally, PD has a
meaningful probabilistic interpretation, which
may be leveraged to justify, explain, and aug-
ment results. We show empirically that PD pro-
vides better predictions than all four of the algo-
rithms tested by Breese et al. [1998] on the
EachMovie database of movie ratings. The
probabilistic framework naturally supports a va-
riety of descriptive measurements—in particular,
we consider the applicability of a value of in-
formation (VOI) computation.

EricHorvitz

Microsoft Research
One Microsoft Way
Redmond, WA 98052-6399
horvitz@microsoft.com

1 Introduction

The goal of collaborative filtering (CF) is to predict the
preferences of one user, referred to as the active user,
based on the preferences of a group of users. For exam-
ple, given the active user’s ratings for several movies and
a database of other users ratings, the system predicts
how the active user would rate unseen movies. The key
idea is that the active user will prefer those items that
like-minded people prefer, or even that dissimilar people
don't prefer. The effectiveness of any CF algorithm is
ultimately predicated on the underlying assumption that
human preferences are correlated—if they were not, then
informed prediction would not be possible. There does
not seem to be a single, obvious way to predict prefer-
ences, nor to evaluate effectiveness, and many different
algorithms and evaluation criteria have been proposed
and tested. Most comparisons to date have been empiri-
cal or qualitative in nature [Billsus and Pazzani, 1998;
Breese et al., 1998; Konstan and Herlocker, 1997; Res-
nick and Varian, 1997; Resnick et al., 1994; Shardanand
and Maes, 1995], though some worst-case performance
bounds have been derived [Freund et al., 1998; Naka-
mura and Abe, 1998] and some general principles have
been advocated [Freund et al., 1998]. Initial methods
were statistical, though several researchers have recently
cast CF as a machine learning problem [Basu et al.,
1998; Billsus and Pazzani, 1998; Freund et al., 1998;
Nakamura and Abe 1998].

Breese et al. [1998] identify two major classes of pre-
diction algorithms. Memory-based algorithms maintain a
database of all users' known preferences for all items,
and, for each prediction, perform some computation
across the entire database. On the other hand, model-
based algorithms first compile the users’ preferences into
a descriptive model of users, items, and/or ratings; rec-



ommendations are then generated by appealing to the
model. Memory-based methods are simpler, seem to
work reasonably well in practice, and new data can be
added easily and incrementally. However, this approach
can become computationally expensive, in terms of both
time and space complexity, as the size of the database
grows. Additionally, these methods generally cannot
provide explanations of predictions or further insights
into the data. For model-based algorithms, the model
itself may offer added value beyond its predictive capa-
bilities by highlighting certain correlations in the data,
offering an intuitive rationale for recommendations, or
simply making assumptions more explicit. Memory re-
quirements for the model are generally less than for
storing the full database. Predictions can be calculated
quickly once the model is generated, though the time
complexity to compile the data into a model may be pro-
hibitive, and adding one new data point may require a
full recompilation.

In this paper, we propose and evaluate a CF method
called personality diagnosis (PD) that can be seen as a
hybrid between memory- and model-based approaches.
All data is maintained throughout the process, new data
can be added incrementally, and predictions have a
meaningful probabilistic semantics. Each user’s reported
preferences are interpreted as a manifestation of their
underlying “personality type.” It is assumed that users
report ratings for an item with Gaussian error. Given the
active user's known ratings of items, we compute the
probability that he or she has the same personality type
as every other user, and then compute the probability that
he or she will like some new item. The full details of the
algorithm are given in Section 3.

PD retains some of the advantages of both memory-
and model-based algorithms, namely simplicity, extensi-
bility, normative grounding, and explanatory power. In
Section 4, we show that PD empirically outperforms all
four of the algorithms evaluated by Breese et. al. [1998]
on a movie ratings data set, according to average abso-
lute deviation. For large amounts of data, a straightfor-
ward application of PD suffers from the same time and
space complexity concerns as memory-based methods. In
Section 5, we describe how the probabilistic formalism
naturally supports an expected value of information
(VOI) computation. An interactive recommender could
use VOI to favorably order queries for ratings, thereby
mollifying what could otherwise be a tedious and frus-
trating process. VOI could also serve as a guide for
pruning entries from the database with minimal loss of
accuracy.

2 Background and Notation

Subsection 2.1 discusses previous research on collabora-
tive filtering and recommender systems. Subsection 2.2
describes a general mathematical formulation of the CF
problem and introduces any necessary notation.

2.1 Collaborative Filtering Approaches

A variety of collaborative filters or recommender sys-
tems have been designed and deployed. The Tapestry
system relied on each user to identify like-minded users
manually [Goldberg et al., 1992].
GroupLens [Resnick et al., 1994] and Ringo [Shardan-
and and Maes, 1995], developed independently, were the
first CF algorithms to automate prediction. Both are ex-
amples of a more general class called memory-based
approaches, where for each prediction, some measure is
calculated over the entire database of users ratings.
Typically, a similarity score between the active user and
every other user is calculated. Predictions are generated
by weighting each user’s ratings proportionally to his or
her similarity to the active user. A variety of similarity
metrics are possible. Resnick et al. [1994] employ the
Pearson correlation coefficient. Shardanand and Maes
[1995] test a few metrics, including correlation and mean
squared difference. Breese et al. [1998] propose the use
of vector similarity, based on the vector cosine measure
often employed in information retrieval. All of the mem-
ory-based algorithms cited predict the active user’s rat-
ing as a similarity-weighted sum of the others users’ rat-
ings, though other combination methods, such as a
weighted product, are equally plausible. Basu et al.
[1998] explore the use of additional sources of informa-
tion (for example, the age or sex of users or the genre of
movies) to aid prediction.

Breese et al. [1998] identify a second general class of
CF algorithms called model-based algorithms. In this
approach, an underlying model of user preferences is
first constructed, from which predictions are inferred.
The authors describe and evaluate two probabilistic
models, which they term the Bayesian clustering and
Bayesian network models. In the first model, like-
minded users are clustered together into classes. Given
his or her class membership, a user’s ratings are assumed
to be independent (i.e., the model structure is that of a
naive Bayesian network). The number of classes and the
parameters of the model are learned from the data. The
second model also employs a Bayesian network, but of a
different form. Variables in the network are titles and
their values are the allowable ratings. Both the structure
of the network, which encodes the dependencies between
titles, and the conditional probabilities are learned from
the data. See [Breese et al., 1998] for the full description
of these two models. Ungar and Foster [1998] also sug-
gest clustering as a natural preprocessing step for CF.
Both users and titles are classified into groups; for each
category of users, the probability that they like each
category of titles is estimated. The authors compare the
results of several statistical techniques for clustering and
model estimation, using both synthetic and real data.

CF technology is in current use in several Internet
commerce  applications. For example, firefly
(http://www.firefly.com), originaly a recom-
mender much like GroupLens and Ringo, now offers
more general personalized services based on individual



and community preferences. Alexa
(http://www.alexa.com) is a web browser plug-in
that recommends related links based in part on other
people’'s web surfing habits. Online retailer
Amazon.com employs CF methods to recommend
books to its customers.

2.2 Formal Framework and Notation

A CF algorithm recommends items or titles to the ac-
tive user based on the ratings of n users. Denote the set
of all mtitles as T and the rating of user i for title j as
ri(j). The function ri: T — Ru{L} maps titles to real
numbers or to L, the symbol for “no rating.” Denote the
vector of all of user i’s ratings for al titles as r;(T), and
the vector of all of the active user’s ratings as r,(T). De-
fine NR c T to be the subset of titles that the active user
has not rated, and thus for which we would like to pro-
vide predictions. That is, title j is in the set NR if and
only if ra(j) = L.

In general terms, a collaborative filter is a function f
that takes as input all ratings for all users, and outputs
the predicted ratings for the active user:

ra(NR) = f(ry(T), ra(T), ..., ra(T)) D

where the r;(T)’ s include the ratings of the active user.

3 Collaborative Filtering by Personal-
ity Diagnosis

Traditional memory-based CF algorithms (e.g., similar-
ity-weighted summations like GroupLens and Ringo)
work reasonably well in practice, especially when the
active user has rated a significant number of titles
[Breese et al. 1998]. These algorithms are designed for,
and evaluated on, predictive accuracy. Little else can be
gleaned from their results, and the outcome of compara-
tive experiments can depend to an unquantifiable extent
on the chosen data set and/or evaluation criteria. In an
effort to explore more semantically meaningful ap-
proaches, we propose a simple model of how people rate
titles, and describe an associated personality diagnosis
(PD) algorithm to generate predictions. One benefit of
this approach is that the modeling assumptions are made
explicit and are thus amenable to scrutiny, modification,
and even empirical validation.

Our model posits that user i’s personality type can be
described as a vector of “true’ ratings r"“(T) for all
seen titles. These encode his or her underlying, internal
preferences for titles. We assume that all users report
ratings for titles they’ve seen with Gaussian noise. That
is, user i’'s actual rating for title j is assumed to be drawn
from an independent normal distribution with mean
ri"(j). Specifically,

Pr(r,(j) = Xr™e(j) = y)oc € V27" (o)

where ¢ is a free parameter. Thus the same user may re-
port different ratings on different occasions, perhaps de-
pending on the context of any other titles rated in the
same session, or on his or her mood, or on other external
factors. All factors are summarized here as Gaussian
noise. Given the user’s personality type, his or her rat-
ings are assumed independent. (If y = L in Equation 2,
then we assign a uniform distribution over ratings.)

We further assume that the distribution of personality
types or ratings vectors in the database is representative
of the distribution of personalities in the target popula-
tion of users. That is, the prior probability Pr(r,""¢(T)=v)
that the active user rates items according to a vector v is
given by the frequency that other users rate according to
v. Instead of explicitly counting occurrences, we simply
define r,""(T) to be a random variable that can take on
one of n values—r(T), ry(T), ...rn(T) —each with prob-
ability 1/n.

Prr(T)=r(T))= 3

Sk

From Equations (2) and (3), and given the active user’s
ratings, we can compute the probability that the active
user is of the same personality type as any other user, by
applying Bayes' rule.

Pr(r(T) = 1 (T () = X, (M) = X, Joc
Pr(r, (D = % r" () =1, (D) -
Pr(r, (m) = x,|r=(m) = r,(m))- Pr(re(T)=r,(T))
(4

Once we compute this quantity for each user i, we can
compute a probability distribution for the active user’s
rating of an unseen titlej.

Pr(r, (i) = X[ (D) = X,..., 1, (M) = X,))=
> P, () = x =) =)
Pr{i(r) = ()

@) =% T (M) = X))

(5)

where j € NR. The algorithm has time and space com-
plexity O(n-m), as do the memory-based methods de-
scribed in Section 2.1. The model is depicted as a naive
Bayesian network in Figure 1. It has the same structure
as aclassical diagnostic model, and indeed the analogy is
apt. We observe ratings (“symptoms’) and compute the
probability that each personality type (“disease”) is the



cause using Equation 4. We then can compute the prob-
ability of rating values for an unseen title j using Equa-
tion 5. We return the most probable rating as our pre-
diction.

Figure 1. Naive Bayesian network semantics for the PD
model. Actual ratings are independent and normally distrib-
uted given the underlying “true” personality type.

An alternative but equivalent interpretation of this
model is as follows. The active user is assumed to be
“generated” by choosing one of the other users uniformly
at random and adding Gaussian noise to his or her rat-
ings. Given the active user’s known ratings, we infer the
probability that he or she is actually one of the other us-
ers, and then compute the probabilities for ratings of
other items. PD can also be thought of as a “clustering”
method [Breese et al., 1998; Ungar and Foster, 1998]
with exactly one user per cluster. The general approach
of casting CF as a classification problem has been advo-
cated and examined previously [Basu et al., 1998; Bill-
sus and Pazzani, 1998; Freund et al., 1998; Nakamura
and Abe 1998]. Note that in the PD model, the only free
parameter is .

4 Empirical Results

We have evaluated the PD algorithm on a subset
of the EachMovie database, available from the Digital
Equipment Research Center.' This data contains many
thousands of users' ratings for various movies, elicited
on a scale from 0 to 5. We used the same subset of the
data as Breese et al. [1998], consisting of 1623 titles,
5000 users in the training set and 4119 users in the test
set. On average, each user rated about 46 movie titles.
To carry out testing, we withhold some of the ratings of
users in the test set and attempt to predict them using the
PD algorithm. Again following the methodology of
Breese et al. [1998], we employ four different protocols.

Yyww .research. digital.com/SRC/EachMovie

Under the first protocol, called all but one, we withhold
for prediction only one rating for each user in the test
set; all other ratings are used as input for the PD algo-
rithm. In the other three protocols, given ten, given five,
and given two, we retain the given number of ratings for
each user for input to the algorithm, and try to predict the
rest. Each protocol admits less information than the pre-
vious, and we should expect a corresponding decrease in
accuracy. If a user does rate enough movies to satisfy a
particular protocol, then he or she is dropped from that
experiment. We set ¢ to 2.5, though results did not seem
to be particularly sensitive to this parameter.

Breese et al. [1998] propose two evaluation criteria to
measure accuracy: rank scoring and average absolute
deviation. We consider here only the latter. Let r,"®(j)
be our predicted rating for title j, and let num_p be the
total number of predictions made for all users in the test
set. Then the average absolute deviation is simply
Unum_p ZJr""™() - ra(j)|.

The results are summarized in Table 1. Scores for al
algorithms except PD are transcribed directly from
Breese et al. [1998]. We did not replicate their experi-
ments, though we used the same data. Due to randomiza-
tion, we almost certainly did not withhold exactly the
same titles for prediction. PD performed statistically sig-
nificantly better than each of the other four agorithms
under all four protocols. In fact, PD under the given-ten
protocol outperformed correlation under the all-but-one
protocol, which was the previous best score. Note that,
among the other four algorithms, none was a strict win-
ner.

Algorithm | All Butl | Given Given Given
10 5 2
PD 0.951 0.981 1.015 1.034
Correl. 0.994 1.069 1.139 1.257
V. Sim. 2.136 2.235 2177 2.113
B. Clust. 1.103 1.138 1.144 1.127
B. Net. 1.066 1.139 1.154 1.143

Table 1. Average absolute deviation scores for PD and for
the four algorithms tested in Breese et al. [1998]. Correla
tion and vector similarity are memory-based algorithms;
Bayesian clustering and Bayesian network are model-based.
PD performed best under al conditions.

5 Harnessing Value of Information in
Recommender Systems

Formulating collaborative filtering as the diagnosis of
personality under uncertainty provides opportunities for
leveraging information- and decision-theoretic methods
to provide functionalities beyond the core prediction
service. We have been exploring the use of the expected
value of information (VOI) in conjunction with CF. VOI
computation identifies, via a cost—benefit analysis, the
most valuable new information to acquire in the context



of a current probability distribution over states of interest
[Howard, 1968]. In the current context, a VOI analysis
can be used to drive a hypothetico-deductive cycle [Hor-
vitz et al., 1988] that identifies at each step the most
valuable ratings information to seek next from a user, so
as to maximize the quality of recommendations.

Recommender systems in real-world applications have
been designed to acquire information by explicitly asking
users to rate a set of titles or by implicitly watching the
browsing or purchasing behavior of users. Employing a
VOI analysis makes feasible an optional service that
could be used in an initial phase of information gathering
or in an ongoing manner as an adjutant to implicit obser-
vation of a user's interests. VOI-based queries can
minimize the number of explicit ratings asked of users
while maximizing the accuracy of the personality diagno-
sis. The use of general formulations of expected val ue of
information as well as simpler information-theoretic ap-
proximations to VOI hold opportunity for endowing re-
commender systems with intelligence about evidence
gathering. Information-theoretic approximations employ
measures of the expected change in the information con-
tent with observation, such as relative entropy [Bassat,
1978]. Such methods have been used with success in
several Bayesian diagnostic systems [Heckerman et al.,
1992].

Building a VOI service requires the added specification
of utility functions that captures the cost of querying a
user for his or her ratings. A reasonable class of utility
models includes functions that cast cost as a monotonic
function of the number of items that a user has been
asked to evaluate. Such models reflect the increasing
frustration that users may have with each additional rat-
ing task. In an explicit service guided by such a cost
function, users are queried about titles in decreasing VOI
order, until the expected cost of additional requests out-
weigh the expected benefit of improved accuracy.

Beyond the use of VOI to guide the gathering of pref-
erence information, we are pursuing the offline use of
VOI to compress the amount of data required to produce
good recommendations. We can compute the average
information gain of titles and/or users in the data set and
eliminate those of low value accordingly. Such an ap-
proach can provide the means for both alleviating mem-
ory requirements and improving the running time of re-
commender systems with as little impact on accuracy as
possible.

6 Conclusion

We have described a new algorithm for collaborative
filtering (CF) called personality diagnosis (PD), which
can be thought of as a hybrid between existing memory-
and model-based algorithms. Like memory-based meth-
ods, PD is fairly straightforward, maintains all data, and
does not require a compilation step to incorporate new

data. Most memory-based algorithms operate as a “black
box”: efficacy is evaluated by examining only the accu-
racy of the output. Since results do not have a meaning-
ful interpretation, the reason for success or failure is of-
ten hard to explain, and the search for improvements
becomes largely a trial-and-error process. The PD algo-
rithm is based on a simple and reasonable probabilistic
model of how people rate titles. Like other model-based
approaches, its assumptions are explicit, and its results
have a meaningful probabilistic interpretation. According
to absolute deviation, PD makes better predictions than
four other algorithms—two memory-based and two
model-based—under four conditions of varying informa-
tion about the active user. We also discussed how value
of information might be used in the context of an inter-
active CF algorithm or a data compression scheme.
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