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Abstract
The growth of Internet commerce has stimulated the use of
collaborative filtering (CF) algorithms as recommender
systems. Such systems leverage knowledge about the
behavior of multiple users to recommend items of interest to
individual users. CF methods have been harnessed to make
recommendations about such items as web pages, movies,
books, and toys. Researchers have proposed several
variations of the technology. We take the perspective of CF
as a methodology for combining preferences. The
preferences predicted for the end user is some function of all
of the known preferences for everyone in a database. Social
Choice theorists, concerned with the properties of voting
methods, have been investigating preference aggregation for
decades. At the heart of this body of work is Arrow’s result
demonstrating the impossibility of combining preferences in
a way that satisfies several desirable and innocuous-looking
properties. We show that researchers working on CF
algorithms often make similar assumptions. We elucidate
these assumptions and extend results from Social Choice
theory to CF methods. We show that only very restrictive
CF functions are consistent with desirable aggregation
properties. Finally, we discuss practical implications of
these results.

Introduction

The goal of collaborative filtering (CF) is to predict the
preferences of one user, referred to as the active user, based
on the preferences of a group of users. For example, given
the active user’s ratings for several movies and a database
of other users’ ratings, the system predicts how the active
user would rate unseen movies. The key idea is that the
active user will prefer those items that like-minded people
prefer, or even that dissimilar people don’t prefer. The
effectiveness of any CF algorithm is ultimately predicated
on the underlying assumption that human preferences are
correlated—if they were not, then informed prediction
would be impossible. There does not seem to be a single,
obvious way to predict preferences, nor to evaluate
effectiveness, and many different algorithms and evaluation
criteria have been proposed and tested. Most comparisons
to date have been empirical or qualitative in nature [Billsus

and Pazzani, 1998; Breese et al., 1998; Konstan and
Herlocker, 1997; Resnick and Varian, 1997; Resnick et al.,
1994; Shardanand and Maes, 1995], though some worst-
case performance bounds have been derived [Freund et al.,
1998; Nakamura and Abe, 1998] and some general
principles have been advocated [Freund et al., 1998]. Initial
methods were statistical, though several researchers have
recently cast CF as a machine learning problem [Billsus
and Pazzani, 1998; Freund et al., 1998; Nakamura and Abe
1998].

We take instead an axiomatic approach, informed by
results from Social Choice theory. First, we identify several
properties that a CF algorithm might ideally posses, and
describe how existing CF implementations obey subsets of
these conditions. We show that, under the full set of
conditions, only one prediction strategy is possible: The
ratings of the active user are derived solely from the ratings
of only one other user. This is called the nearest neighbor
approach [Freund et al., 1998]. The analysis mirrors
Arrow’s celebrated Impossibility Theorem, which shows
that the only voting mechanism that obeys a similar set of
properties is a dictatorship [Arrow, 1967; Arrow, 1963].
Under slightly weaker demands, we show that the only
possible form for the prediction function is a weighted
average of the users’ ratings. We also provide a second,
separate axiomatization that again admits only the weighted
average. The weighted average method is used in practice
in many CF applications [Breese et al., 1998; Resnick et
al., 1994; Shardanand and Maes, 1995]. One contribution
of this paper is to provide a formal justification for it.
Stated another way, we identify a set of properties, one of
which must be violated by any non-weighted-average CF
method. On a broader level, this paper proposes a new
connection between theoretical results in Social Choice
theory and in CF, providing a new perspective on the task.
This angle of attack could lead to other fruitful links
between the two areas of study, including a category of CF
algorithms based on voting mechanisms. The next section
covers background on CF and Social Choice theory. The
remaining sections present, in turn, the three
axiomatizations, and discuss the practical implications of
our analysis.



Background

In this section, we briefly survey previous research in
collaborative filtering, describe our formal CF framework,
and present relevant background material on utility theory
and Social Choice theory.

Collaborative Filtering Approaches
A variety of collaborative filters or recommender systems
have been designed and deployed. The Tapestry system
relied on each user to identify like-minded users manually
[Goldberg et al., 1992].
GroupLens [Resnick et al., 1994] and Ringo [Shardanand
and Maes, 1995], developed independently, were the first
CF algorithms to automate prediction. Both are examples
of a more general class we call similarity-based
approaches. We define this class loosely as including those
methods that first compute a matrix of pairwise similarity
measures between users (or between titles). A variety of
similarity metrics are possible. Resnick et al. [1994]
employ the Pearson correlation coefficient for this purpose.
Shardanand and Maes [1995] test a few measures,
including correlation and mean squared difference. Breese
et al. [1998] propose a metric called vector similarity,
based on the vector cosine measure. All of the similarity-
based algorithms cited predict the active user’s rating as a
weighted sum of the others users’ ratings, where weights
are similarity scores. Yet there is no a priori reason why
the weighted average should be the aggregation function of
choice. Below, we provide two possible axiomatic
justifications.

Breese et al. [1998] identify a second general class of CF
algorithms called model-based algorithms. In this approach,
an underlying model of user preferences (for example, a
Bayesian network model) is first constructed, from which
predictions are inferred.

CF technology is in current use in several Internet
commerce applications. For example, firefly
(http://www.firefly.com), originally a recommender much
like GroupLens and Ringo, offers more general
personalized services based on individual and community
preferences. Alexa (http://www.alexa.com) is a web
browser plug-in that recommends related links based in part
on other people’s web surfing habits.

Formal Description of Task
A CF algorithm recommends items or titles to the active
user based on the ratings of n others. Denote the set of all
titles as T and the rating of user i for title j as ri(j). The
function ri: T → ℜ∪{⊥} maps titles to real numbers or to
⊥, the symbol for “no rating.” Denote the vector of all of
user i’s ratings for all titles as ri(T), and the vector of all of
the active user’s ratings as ra(T). Define NR ⊂ T to be the
subset of titles that the active user has not rated, and thus
for which we would like to provide predictions. That is,
title j is in the set NR if and only if ra(j) = ⊥. Then the

subset of titles that the active user has rated is T-NR.
Define the vector ri(S) to be all of user i’s ratings for any
subset of titles S ⊆ T, and ra(S) analogously. Finally, denote
the matrix of all users’ ratings for all titles simply as r.

In general terms, a collaborative filter is a function f that
takes as input all ratings for all users, and outputs the
predicted ratings for the active user:

   ra(NR)  =  f(r1(T), r2(T), ... , rn(T))  =  f(r)  ,        (1)

where the ri(T)’s include the ratings of the active user.

Utility Theory and Social Choice
Theory
Social choice theorists are also interested in functions
similar to (1), though they are concerned with combining
preferences or utilities instead of ratings. Preferences refer
to ordinal rankings of outcomes. For example, Alice’s
preferences might hold that sunny days (sd) are better than
cloudy days (cd), and cloudy days are better than rainy days
(rd). Utilities, on the other hand, are numeric expressions.
Alice’s utilities u for the outcomes sd, cd, and rd might be
u(sd) = 10, u(cd) = 4, and u(rd) = 2, respectively. If Alice’s
utilities are such that u(sd) > u(cd), then Alice prefers sd to
cd. Axiomatizations by Savage [1954] and von Neumann
and Morgenstern [1953] provide persuasive postulates
which imply the existence of utilities, and show that
maximizing expected utility is the optimal way to make
choices. If two utility functions u and u′ are positive linear
transformations of one another, then they are considered
equivalent, since maximizing expected utility would lead to
the same choice in both cases.

Now consider the problem of combining many peoples’
preferences into a single expression of societal preference.
Arrow proved the startling result that this aggregation task
is simply impossible, if the combined preferences are to
satisfy a few compelling and rather innocuous-looking
properties  [Arrow, 1967; Arrow, 1963].1 This influential
result forms the core of a vast literature in Social Choice
theory. Sen [1986] provides an excellent survey of this
body of work. Researchers have since extended Arrow’s
theorem to the case of combining utilities. In general,
economists argue that the absolute magnitude of utilities
are not comparable between individuals, since utilities are
invariant under positive affine transformations. In this
context, Arrow’s theorem on preference aggregation
applies to the case of combining utilities as well [Fishburn,
1987; Sen, 1986].
                                                
1 Arrow won the Nobel Prize in part for this result, which is
ranked at http://www.northnet.org/clemens/
decor/mathhist.htm as one of seven milestones in
mathematical history this century.



Nearest Neighbor Collaborative
Filtering

We now describe four conditions on a CF function, argue
why they are desirable, and discuss how existing CF
implementations adhere to different subsets of them. We
then show that the only CF function that satisfies all four
properties is the nearest neighbor strategy, in which
recommendations to the active user are simply the
preferred titles of one single other user.

Property 1 (UNIV) Universal domain and minimal
functionality. The function f(r) is defined over all possible
inputs r. Moreover, if ri(j) ≠ ⊥ for all i ≠ a and for all
j ∈ NR, then ra(j) ≠ ⊥ for all j ∈ NR.

UNIV simply states that f must always returns some output
and, when all users rate all titles in NR, f must return
ratings. To our knowledge, all existing CF functions adhere
to this property.

Property 2 (UNAM) Unanimity. For all j,k ∈ NR, if
ri(j) > ri(k) for all i ≠ a, then ra(j) > ra(k).

UNAM is often called the weak Pareto property in the
Social Choice and Economics literatures. Under this
condition, if all users rate j strictly higher than k, then we
predict that the active user will prefer j over k.

This property seems natural: If everyone agrees that title
j is better than k, including those most similar to the active
user, then it hard to justify a reversed prediction.
Nevertheless, correlation methods can violate UNAM if,
for example, the active user is negatively correlated with all
other users. Other similarity-based techniques that use only
positive weights, including vector similarity and mean
squared difference, do satisfy this property.

Property 3 (IIA) Independence of Irrelevant Alternatives.
Consider two input ratings matrices, r and r′, such that
r(T-NR) = r′(T-NR). Furthermore, suppose that r(j) = r′(j)
and r(k) = r′(k) for some j,k ∈ NR. That is, r and r′ are
identical on all ratings of titles that the active user has seen,
and on two of the titles, j and k, that the active user has not
seen. Then ra(j) > ra(k) if and only if r′a(j) > r′a(k).

The intuition for IIA is as follows. The ratings r(T-NR) for
those titles that the active user has seen tell us how similar
the active user is to each of the other users, and we assume
that the ratings r(NR) do not bear upon this similarity
measure. This is the assumption made by most similarity-
based CF algorithms. Once a similarity score is calculated,
it makes sense that the predicted relative ranking between
two titles j and k should only depend on the ratings for j and
k. For example, if the active user has not rated the movie
“Waterworld,” then everyone else’s opinion of it should

have no bearing on whether the active user prefers “Ishtar”
to “The Apartment,” or vice versa.

IIA lends stability to the system. To see this, suppose
that NR = {j, k, l}, and f predicts the active user’s ratings
such that ra(j) > ra(k) > ra(l), or title j is most recommended.
Now suppose that a new title, m, is added to the database,
and that the active user has not rated it. If IIA holds, then
the relative ordering among j, k, and l will remain
unchanged, and the only task will be to position m
somewhere within that order. If, on the other hand, the
function does not adhere to IIA, then adding m to the
database might upset the previous relative ordering, causing
k, or even l, to become the overall most recommended title.
Such an effect of presumably irrelevant information seems
counterintuitive.

All of the similarity-based CF functions identified
here—GroupLens, Ringo, and vector similarity—obey IIA.

Property 4 (SI) Scale Invariance. Consider two input
ratings matrices, r and r′, such that, for all users i and titles
j, ri(j) = αi ⋅ r′i(j) + βi for any positive constants αi and any
constants βi. Then ra(j) > ra(k) if and only if r′a(j) > r′a(k),
for all titles j,k ∈ NR.

This property is motivated by the belief, widely accepted
by economists [Arrow, 1963; Sen, 1986], that one user’s
internal scale is not comparable to another user’s scale.
Suppose that the database contains ratings from 1 to 10.
One user might tend to use ratings in the high end of the
scale, while another tends to use the low end. Or, the data
might even have been gathered from different sources, each
of which elicited ratings on a different scale (e.g., one scale
is [-10,10], another is [1,100]). We would ideally like to
obtain the same results, regardless of how each user reports
his or her ratings, as long as his or her mapping from
internal utilities to ratings is a positive linear
transformation; that is, as long as his or her reported ratings
are themselves expressions of utility.

One way to impose SI is to normalize all of the users’
ratings to a common scale before applying f. Another way
to ensure SI is to constrain f to depend only on the relative
rank among titles (the ordinal preferences of users), and not
on the magnitude of ratings. Freund et al. [1998] strongly
advocate this approach.

One important property of [the collaborative
filtering] problem is that the most relevant
information to be combined represents relative
preferences rather than absolute ratings. In other
words, even if the ranking of [titles] is expressed by
assigning each [title] a numeric score, we would like
to ignore the absolute values of these scores and
concentrate only on their relative order.

By ignoring all but relative rank, Freund et al.’s algorithm
obeys SI. On the other hand, the similarity-based methods
violate it.



Different researchers favor one or the other of these four
properties; the following proposition shows that only one
very restrictive CF function obeys them all.

Proposition 1 (Nearest neighbor). Assuming that
|NR| > 2, then the only function f of the form (1) that
satisfies UNIV, UNAM, IIA, and SI is such that:

ra(j) > ra(k) if and only if  ri(j) > ri(k)  ,

for all titles j,k ∈ NR, and for one distinguished user i. The
choice of user i can depend on the ratings r(T-NR), but once
the “best” i is determined (for example using correlation or
vector similarity), his or her ratings for the titles in NR
must be fully adopted by the active user.

Proof (Sketch). First, rewrite equation (1) in the following,
equivalent, form:

  ra(NR) =  f(r(T-NR), r(NR)) (1)
 = g(r(NR))  ,

where the choice of function g is itself allowed to depend
on r(T-NR). Because f must be defined for all inputs
(UNIV), g must be defined for the case when all users,
except the active user, have recorded ratings for all titles in
NR. With the minimal functionality clause of UNIV, the
problem has been cast into the same terms as in the Social
Choice literature. It follows, from Sen’s [1986] or Robert’s
[1980] extension of Arrow’s theorem [1967; 1963], that g,
and therefore f, must be of the nearest neighbor form
specified.  

Weighted Average Collaborative
Filtering

We now examine a slight weakening of the set of properties
leading to Proposition 1. Under these new conditions, we
find that the only possible CF function is a weighted sum:
The active user’s predicted rating for each title is a
weighted average of the other users’ ratings for the same
title. Our argument is again based on results from Social
Choice theory; we largely follow Fishburn’s [1987]
explication of work originally due to Roberts [1980].

We replace the SI property with a weaker one:

Property 4∗ (TI) Translation Invariance. Consider two
input ratings matrices, r and r′, such that, for all users i and
titles j, ri(j) = α ⋅ r′i(j) + βi for any positive constant α, and
any constants βi. Then ra(j) > ra(k) if and only if
r′a(j) > r′a(k), for all titles j,k ∈ NR.

This condition requires that recommendations remain
unchanged when all ratings are multiplied by the same
constant, and/or when any of the individual ratings are
shifted by additive constants. The TI property, like SI, still
honors the belief that the absolute rating of one title by one

user is not comparable to the absolute rating of another
user. Unlike SI, it assumes that the magnitude of ratings
differences, ri(j) - ri(k) and rh(j) - rh(k), are comparable
between users i and h.

Though they violate SI, the similarity-based methods of
GroupLens, Ringo, and vector correlation obey TI.

Proposition 2 (Weighted average). Assuming that
|NR| > 2, then the only continuous function f of the form (1)
that satisfies UNIV, UNAM, IIA, and TI is such that:

ra(j) > ra(k) if and only if  ∑i wi ⋅ ri(j) > ∑i wi ⋅ ri(k)

for all titles j,k ∈ NR, where all of the wi are nonnegative,
and at least one is positive. The specific weights can
depend on the ratings r(T-NR).

Proof.  Follows from Roberts [1980].  •

Proposition 2 does not rule out the nearest neighbor policy,
as all but one of the wi could be zero.

The conditions for Proposition 2 are technically not
weaker than those for Proposition 1, as a continuity
assumption was added. Alternatively, we could substitute
the following stronger property for UNAM [Fishburn,
1987]:

Property 2* (SUNAM) Strong Unanimity. For all j,k ∈ NR,
if ri(j) ≥ ri(k) for all i ≠ a and rh(j) > rh(k) for some h ≠ a,
then ra(j) > ra(k).

Weighted Average Collaborative
Filtering, … Again

Next, we derive the same conclusion as Proposition 2
working from a different axiomatization. This result is
adapted from Harsanyi [1955].

The derivation requires two assumptions.

Property 5 (RRU) Ratings are utilities. Each user’s rating
ri(T) are a positive linear transformation from his or her
utilities. That is, the ratings themselves are expressions of
utility.

We also assume that users obey the rationality postulates of
expected utility theory [Savage, 1954; von Neumann and
Morgenstern, 1953]. For example, if a user’s ratings for
three titles are such that ri(j) > ri(k) > ri(l), then there is
some probability p for which the user would be indifferent
between the following two situations: (1) getting title j with
probability p or title l with probability 1 - p, and (2) getting
title k for sure.

Property 2** (UnamE) Unanimity of Equality. For all
j,k ∈ NR, if ri(j) = ri(k) for all i ≠ a, then ra(j) = ra(k).



Proposition 3 (Weighted average, … again). The only
function f of the form (1) that satisfies both RRU and
UnamE is such that:

ra(j)  =   ∑i wi ⋅ ri(j)  ,

for all titles j ∈ NR.

Proof.  Follows from Harsanyi [1955].  •

Note that this proposition, unlike the previous, admits
negative weights.

Implications of the Analysis

We turn to a discussion of the implications of the
theoretical limitations highlighted in Propositions 1–3.
First, we believe that identifying the connection between
CF and Social Choice theory allows CF researchers to
leverage a great deal of previous work on preference and
utility aggregation. A Social Choice perspective on
combining default reasoning rules has yielded valuable
insights for that task [Doyle and Wellman, 1991], and
similar benefits may accrue for CF. Additionally, weighted
versions of any of the many proposed voting schemes
[Fishburn, 1973] are immediate candidates for new CF
algorithms.

Understanding what is theoretically impossible is an
important first step in algorithm design. We believe that the
results in this paper may help guide CF development in the
future. Though our derivations constrain the type of CF
function, they do not contain a recommendation as to how
exactly to choose the best neighbor, or how to choose the
optimal set of weights. Nonetheless, identifying the
functional forms themselves can be of value, by
constraining the search among algorithms to one of finding
the best instantiation of a particular form.

With regards to real-world applications, CF designers for
Internet commerce applications might typically be
interested more in the predictive performance of a CF
algorithm, rather than in the properties of preference
coalescence that it does or does not obey. Yet there is no
consensus on how best to measure effectiveness, as
evidenced by the proliferation of many proposed evaluation
scores. As a result, comparisons among the various
algorithms are blurred. Even if a standard, accepted
evaluation measure is somehow settled upon, empirical
performance can be measured only for a limited number of
special cases, whereas the theoretical results apply in all
circumstances.

Conclusion

We have illustrated a correspondence between
collaborative filtering (CF) and Social Choice theory. Both
frameworks center on the goal of combining the
preferences (expressed as ratings and utilities, respectively)

of a group into a single preference relation. Some of the
properties that Social Choice theorists have found to be
compelling are also arguably desirable in the context of CF.
In particular, universal domain (UNIV) is universally
accepted. Unanimity (UNAM) is compelling and common.
Most of the other properties have been advocated (at least
implicitly) elsewhere in the literature. Similarity-based
methods with only positive reinforcement obey UNAM,
including vector similarity and mean squared difference.
Most other similarity-based techniques obey independence
of irrelevant alternatives (IIA) and translation invariance
(TI). Freund et al. [1998] make the case for scale
invariance (SI).

We have identified constraints that a CF designer must
live with, if their algorithms are to satisfy sets of these
conditions. Along with UNIV and UNAM, IIA and SI
imply the nearest neighbor method, while IIA and TI imply
the weighted average. A second derivation shows that, if all
users’ ratings are utilities, and if unanimity of equality
holds, then, once again, only the weighted average is
available.

Finally, we discussed implications of this analysis,
highlighting the fundamental limitations of CF, and
identifying a bridge from results and discussion in Social
Choice theory to work in CF. This avenue of opportunity
includes the implementation of weighted versions of voting
mechanisms as potential new CF algorithms.
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