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Abstract

We describe tools that use measurements from video
for the extraction of facial modeling and animation pa-
rameters, head tracking, and real-time interactive facial
animation. These tools share common goals but rely on
varying details of physical and geometric modeling and in
their input measurement system.

Accurate facial modeling involves fine details of geom-
etry and muscle coarticulation. By coupling pixel-by-pixel
measurements of surface motion to a physically-based face
model and a muscle control model, we have been able to
obtain detailed spatio-temporal records of both the dis-
placement of each point on the facial surface and the mus-
cle control required to produce the observed facial motion.
We will discuss the importance of this visually extracted
representation intermsor realistic facial motion synthesis.

A similar method that uses an ellipsoidal model of the
head coupled with detailed estimates of visual motion al-
lows accurate tracking of head motionin 3-D.

Additionally, by coupling sparse, fast visual measure-
mentswith our physically-based model viaaninterpolation
process, we have produced a real-timeinteractivefacial an-
imation/mimicking system.

Keywords. Facial Modeling, Facial Animation, Interac-
tive Animation, Expressions and Gestures, Computer Vi-
sion.

1 Introduction

The communicative power of theface makesfacial mod-
eling and animation one of the most important topics in
computer graphics. Originally, researchers focused onsim-
ply being able to accurately model facial motion [20, 27,
39, 22]. Asthe tools for facial modeling have improved,
other researchers have begun to develop methods for pro-
ducing extended facial animation sequences [17, 26, 41,
33]. The principle difficulty in both facial modeling and
animationisthe sheer complexity of human facial and head
movement.

In facial modeling this complexity can be partialy ad-
dressed by the use of sophisticated physical models of skin
and muscle[33, 40, 26, 15]. However, thereisvery littlede-
tailed information on the spatial and temporal patterning of
human facial muscles. Thislack of information about mus-
cle coactivation has forced computer graphics researchers
to either fall back on qualitative models such as FACS (Fa-
cial Action Coding System, designed by psychologists[6]

to describe and evaluate facial movements), or invent their
own coactivation models [39, 29]. Consequently, today’s
best facial modeling employs very sophisticated geometric
and physical models, but only primitive models of muscle
control.

Lack of a good control model is also the limiting fac-
tor in production of extended facial animations. The best
animations are still produced by artists who carefully craft
key-frames [17, 8, 21], a time-consuming and laborious
process. Even though the key-frame process does not re-
quirean explicit control model, itislikely that such amodel
would help by providing the artist with the right animation
“control knobs.”

The difficulty of facial animation has sparked the in-
terest of the research community in performance-driven
animation: driving a computer animation by simply ani-
mating your own face (or an actor’s face). The VACTOR
system [12], for instance, uses a physical system for mea-
suring movement of the face. A system using infra-red
cameras to track markers on a persons face has been report-
edly used for several animationsin movies. Williams[41]
and Litwinowitcz [16] placed marks on peoples faces, so
that they could track the 3-D displacement of the facial
surface from video. Terzopoulos and Waters [34] used
“snakes’ [14, 32] to track makeup-highlighted facial fea-
tures, and then used the displacements of these features to
passively deform (i.e., there was no interaction between the
model and the measurements and the measurements just
drive the model) a physically-based face model. Lee, Ter-
zopoulos and Waters [15] have recently shown that the can
generate very detailed 3-D facial models for animation.
Saulnier et al. [30] suggest a template-based method for
tracking and animation. Such methods have the limitations
of requiring initial training or initialization, are limited in
the range of face and head mationsthey can track, and are
insensitive to very fine motions.

We feel that these automatic methods are an exciting
direction in animation. However, current systems have
severa limitations. One limitationistheir intrusiveness, as
they require makeup, special cameras, or a physical probe.
Another limitation is their relatively sparse spatial sam-
pling, limiting the amount of detail that can be observed.
A third limitation is that they model the face as a passive
object, rather than as an actively controlled 3-D body.

On the other hand, little of work has been done on au-
tomatic extraction of head orientation from video. Extrac-
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Figure 1. Using the FACS mesh to determinethe continuum
mechanics parameters of the skin using FEM.

tion of head orientation is extremely important for human-
machine interaction and for synthesisof avirtual actor with
realistic head and facial motions. Azarbeyagjani and Pent-
land [1] present a recursive estimation method based on
tracking of small facial featureslike the corners of the eyes
or mouth. However itsuse of featuretracking limiteditsap-
plicability to sequences in which the same pointswere vis-
ible over the entireimage sequence. Black and Yacoaob [3]
have developed a method that uses a eight parameter 2-D
model for head tracking. Beinginherently 2-D, thismethod
does not alow estimation of 3-D parameters.

Our Approaches

In this paper we attempt to improve on these previous
systems by removing the need for surface markings, al-
lowing more detailed geometric measurement, and by for-
mulating the problem in an active control framework for
detailed analysis of facial motion. We will also describe
two additional tools; one for tracking of heads from video
and a another as a real-time extension for interactive facial
animation. Thiswill extend our detail ed extraction of facial
actions method by using coarse measurements from video
to guide the graphics process. These tools share common
goals but rely on varying details of physical and geomet-
ric modeling and in their input measurement system. We
discuss them briefly here:

Facial Modédling and Analysis:.  Modeling facial motion
requires detailed measurement across the entire facial sur-
face. Consequently, our facial modeling tool uses pixel-by-
pixel measurements of surface motion (optical flow [13])
asinput measurements. These dense motion measurements
are then coupled to a physically-based face model and to a
muscle control model. The outputs of this modeling pro-
cess are detailed records of both the displacement of each
point on thefacial surface, and the muscle control required
to produce the observed facial motion. The recovered and
muscle control patterns can be used to animate other models
or composed to make new combination expressions.

The advantage of thisapproach over apriori facial mod-
eling is that we can observe the complex muscle coartic-
ulation patterns that are characteristic of real human ex-
pressions. For instance, it has been observed that a major
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Figure2: Block diagram of the control-theoretic approach.
Showingthe estimation and correctionloop (a), the dynam-
icsloop (b), and the feedback loop (c) (from [11]).

difference between real smiles and forced or fake smilesis
motion near the corner of the eye [5]. We have been able
to observe and quantify the relative timing and amplitude
of this near-eye motion using our system.

Interactive Animation: Idealy, we would like to use
the above method for interactive animation. However,
the above method extracts fine-grained information and
is hence far from “interactive-time” We also describe a
system for interactive facial animation that builds on our
detailed extraction of facial patterns. Facial animation typi-
cally involves sequencing arelatively small set of predeter-
mined facial expressions(e.g., lip smiling, pursing, stretch-
ing, and eye, eyelid, and eyebrow movement) rather than
determining the motion of each facial point independently.
That is, there are often relatively few independent geomet-
ric parameters each of which may have a large amount of
temporal variation.

Consequently, we can use fairly ssmple visual measure-
ments to establish the geometric parameters, but we would
like to do this very quickly — in real timeif at all possi-
ble. In our real-time system the visual measurements are
normalized correlation between the face and a small set
of pre-trained 2-D templates. This type of measurement
has the advantage of both being very robust and fast; we
use commercial image processing hardware (from Cognex,
Inc.) so that the image measurement process can occur at
frame rate. These measurements are then coupled with our
physically-based model’s parameters via an interpolation
process, resulting in a real-time (passive, i.e., the observa
tions drive the model) facial animation system.

Head Trackingand Orientation: Sincehead orientation
plays a mgjor role in both analysis and synthesis of facial
movements, we a so introduce amethod for robust tracking
of head movements in extended video sequences. This
method is based on regularization of optical flow using
a 3-D head model for robust and accurate tracking in 3-
D using only a single camera. This model-based method
does not require the same features on the face to be visible
over the entire length of the sequence and is stable over
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Figure 3. Initialization on a face image using methods
described by Pentland et al. [19, 24], using a canonical
mode! of aface.

(8) Mesh

(b) Muscles

Figure 4: (@) Face image with a FEM mesh placed accu-
rately over it and (b) Face image with muscles (black lines),
and nodes (dots).

extended sequences, including those with large and rapid
head motions. Additionally, this method allows tracking
of all the six degrees of freedom of the rigid motion of the
head, dealing gracefully with the motion singularities that
most templ ate-based methods fail to handle.

Due to space considerations we will not go into the
details of the visual measurement techniques or the the
physics-based modeling of the face. Referenced work pro-
vide adequate technical details.

2 Facial Action Parameters Extraction

For detailed estimation of facial action parameters, we
need to develop a detailed physics-based model of a face.
We use a polygonal model of a face to generate a finite
element mesh (Figure 1). The interpolation and strain-

r_/z_:
4 - A
I aetn KN AN

Figure 5: Expressions from video sequences for various
people in our database. These expressions are captured
at 30 frames per second at NTSC resolution (and cropped
appropriately. We have by now developed a video database
of over 30 peaple under different lighting conditions and
backgrounds. We are also incorporating head movements
into our database.
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Figure6: Motionfieldsfor few of the observed expressions.

displacement matrices are determined for the given geom-
etry by using the triangular polygons as two dimensional
isoparametric shell elements. Using these interpolation
and strain-displacement matrices, the mass, stiffness and
damping matrix for each element were computed and then
assembled into a matrix for the whole mesh [9].

Material properties of real human skin were used in
this computation. These material properties were obtained
from Pieper’sFacial Surgery Simulator [26] and from other
studies on mechanical properties of human bodies (eg.,
[37]). Physically-based skin model muscles were attached
to this using the method of Waters and Terzopoulos [39,
33] and using muscle data from Pieper [26]. This provides
an anatomical muscle model of the face that deforms on
actuation of muscles. We believe that thisis an extremely
detailed model for facial animation. However, this model
isunable to represent wrinkles as Viaud et al. [35] models.

Our facial modeling system functions by using optical
motion measurements to drive the physical face model.
However, such measurements are usually noisy, and such
noise can produce a chaotic physical response. Conse-
guently an estimation and control framework needs to be
incorporated into the system to obtain stable and well-
proportioned results[11].

To begin analysisof afacial motion, the geometric mesh
needs to be initialized and accurately fit to the face in the



NEUTRAL RAISE EYEBROW

SMILE

@ (b) FACS-BASED

(c) VIDEO-BASED

(d) FACS-BASED (e) VIDEO-BASED

Figure 7: Neutral Face (shaded/wireframe). Columns (b) and (d) animations produced by FACS model and Columns (c)
and (e) visual measurements for raise eyebrow and smile expressions.

image. For this we need to locate a face and the facial
features in the image. To automate this process we are
using the View-based and Modular Eigenspace methods of
Pentland and Moghaddam [18, 25].

Using this method we can automatically extract the po-
sitions of the eyes, nose and lips in an image as shown in
Figure 3 (a). These feature positions are used to warp the
face image to match the canonical face mesh (Figure 3 (b)
and (¢)). Thisalowsusto extract the additional “ canonical
feature points’ on the image that correspond to the fixed
(nonrigid) nodes on our face mesh (Figure 3 (d)).

After theinitial registering of the model to the image as
shown in Figure 4, Pixel-by-pixel motion estimates (“ opti-
cal flow”) are computed using methods of Simoncelli [31]
and Wang [38]. The model on the face image tracks the
motion of the head and the face correctly as long as there
is not an excessive amount of head movement during an
expression. Motion vectors for some of these expressions
are shown in Figure 6. This motion is projected onto the
mesh and produces deformation of the skin. The control-
feedback loop (see Figure 2) estimates the muscle control
needed to produce the observed tempora and spatial pat-
terning. Mathematical details of the model and estimation
framework are described in[9].

Limitations of Existing Representations

The goal of this work is to develop a tool for more
accurately modeling facial motion. The current state-of-
the-art for facial description (either FACS itself or muscle-
control versions of FACS) have two major weaknesses:

e Theaction unitsare purely local spatial patterns. Real
facial maotion is rarely completely localized; Ekman
himself has described some of these action unitsas an
“unnatural” type of facial movement.

¢ Thereisnotime component of the description, or only
a heuristic one. From EMG studies it is known that
most facial actions occur in three distinct phases: ap-
plication, release and relaxation. In contrast, current
systems typically use simple linear ramps to approxi-
mate the actuation profile.

Other limitations of FACS include the inability to de-
scribe fine eye and lip motions, and the inability to de-
scribe the coarticulation effects found most commonly in
speech [7, 22]. Although the muscle-based models used in
computer graphics have alleviated some of these problems
[33], they are till too simple to accurately describe real
facial mation.

Consequently, we have focused our efforts on charac-
terizing the functional form of the actuation profile, and
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Figure 8:

FACS/CANDIDE deformation vs. Observed deformation for the (a) Raising Eyebrow and (b) Happiness

expressions. Surface plots (top) show deformation over time for FACS action (a8) AU 2 and (b)AU 12, and (bottom) for an

actual video sequence of raising eyebrow and happiness.

on determining a basis set of “action units’ that better de-
scribes the spatial properties of real facial motion. We will
illustrate our results using the smile and eyebrow raising
EXPressions.

Facial Motion M easurements

Thefirst step in modeling facial motion from video data
is to acquire image sequences of subjects making expres-
sions. For this purpose we arranged a video taping of over
30 subjects making expressions. All of the results that are
described here are based on this video data. Some of the
frames of these sequences are shown in Figure 5.

After digitizing the acquired video sequences Figure 5,
optical flow were computed for the actions of raising eye-
brow, lowering eyebrow, lip tightening and smile, frown,
surprise, anger, disgust and a series of other expressions.

These dense motion measurements were then fed into
the control feedback loop shown in Figure 2, and muscle
activationsproduced. Thisstep, when coupled withthemo-
tion estimation method, results in analysis of expressions
at therate of 60 seconds/frame on an SGI Onyx Reality En-
gine workstation, using only one processor. Now we will
briefly discuss the validity of our analysis and modeling.

Resulting models of facial motion

Thefirst column of Figure 7 shows the model in neutral
(relaxed) state. The second shows the expressions as gen-
erated by using a standard FACS implementation and then
using our representation extracted from video for the raise
eyebrow expressions. Thelast column showsthe generated

expressions of smile using FACS and our representation.
For our standard FACS implementation, we are using the
CANDIDE model, which is a computer graphics model for
implementing FACS motions[29].

To illustrate that the resulting parameters for facial ex-
pressions are more spatially detailed than FACS, compar-
isons of the expressions of raising eyebrow and smile pro-
duced by standard FACS-like muscle activations and our
visually extracted muscle activationsare shownin Figure9.
Asexpected, thetwo modelsare very similar inthe primary
FACS activation region. For the case of eyebrow raising,
both models are similar in the area directly above the eye-
brow. For the smiling example both models are similar in
the areaimmediately adjacent to the mouth.

In both cases, however, the visua measurement model
had significant additional deformations in distant areas of
the face. In the case of eyebrow raising, the visual model
has additional deformations high in the forehead, immedi-
ately above the eye, and in the lower cheek. In the case of
smiling, there are additional deformations beneath and be-
tween the eyes, onthefar cheek to either side of the mouth,
and onthetemples. These differences are exploredinmore
detail in the following sections.

Spatial patterning: Thetop row of Figure 8 shows AU 2
(“raising eyebrows”) and AU 12 from the FACS model and
a linear actuation profile for the corresponding geometric
control points. Thisisthe type of spatial-temporal pattern-
ing commonly used in today’s computer graphics anima-
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Figure 9: Vision-based expression overlayed on top of a FACS expression of (a) Raising Eyebrow, and (b) Smile, and the
differences between the two facial motions. Red shows excessive motion on the surface as modeled my visually extracted
parameters. It can be seen that modeling by visual measurement produces a more detailed pattern of motion.

tions. Below this is shown the observed motion of these
control points for the expressions of raising eyebrows (la-
beled by Ekman as AU 2) and smile (labeled by Ekman as
mostly AU12). As can be seen, the observed pattern of
deformationisvery different than that assumed in the stan-
dard computer graphicsimplementation of FACS. Thereis
a wide distribution of motion through all the the control

points, and the temporal patterning of the deformation is
far fromlinear. By using these observed patternsof motion,
rather than the simple actuations typically assumed, more
realistic computer animations can be produced.

Temporal Patterning: Figure 10 shows plots of facial
muscle actuations for the smile and eyebrow raising ex-
pressions. In this figure the 36 muscles were combined
into seven local groups for purposes of illustration. As
can be seen, even the simplest expressions require multiple
muscle actuations.

Of particular interest is the temporal patterning of the
muscle actuations. We have fit exponential curves to the
activation and rel ease portionsof the muscle actuation pro-
file to suggest the type of rise and decay seen in EMG
studies of muscles. From this data we suggest that the re-
laxation phase of muscle actuation is mostly dueto passive
stretching of the muscles by residua stress in the skin.

Note that Figure 10(b) also shows a second, delayed
actuation of muscle group 7 about 3 frames after the peak of
musclegroup 1. Thisexampleillustratesthat coarticulation
effects can be observed by our system, and that they occur
even in quite smple expressions.

3 Interactive Facial Animation

Because face models have alarge number of degrees of
freedom, facial modeling requires dense, detailed geomet-
ric measurements in both space and time. Currently such
dense measurement is both computationally expensive and
noisy; consequently it ismore suitableto undertake off-line
analysis of discrete facial movements rather than real-time
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Figure 10: Actuations over time of the seven main muscle
groups for the expressions of (a) raising brow, and (b) smile.
These plots shows actuations over time for the seven muscle
groups and the expected profile of application, release and
relax phases of muscle activation.

analysis of extended facial action. Facial animation, in con-
trast, typically involves temporally sequencing between a
fixed set of predefined facial actions. For instance, an
animation sequence might consist of the lip movements as-
sociated with speech plus a few eye motions plus eyeblinks
and eyebrow raises.

Because the full range of facial motion is typically not
present in any particular animation sequence, the number
of degrees of freedom required for the animation is limited.
One can think of the animation as having a fixed, relatively
small set of “control knobs,” one for each type of motion,
and then producing the animation by moving these control
knobs appropriately. As described in the previous section,
the muscle parameters associated with these control knobs
are determined by the off-line modeling of each individual
type of facial action.

The major question, of course, is when and how much
to move each control knob (face control parameter). In our
system the setting of each muscle control parameter is de-



Figure 11: 2-D Full-Face templates of neutral, smile and
surprise expressions used for tracking facial expressions.
See Figure 13 and Figure 14(a).
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Figure 12: 2-D Eye-brows [Raised], Left and Right Eyes
[Open, Closed, Looking Left, and Right], and Mouth tem-
plates [Open, Closed and Smiling] used for tracking facial
expressions. These images are showing the exact resolu-
tion as used by the hardware. Blur your vision to see it the
real details. See Figure 14(b).

termined using sparse, real-time geometric measurements
from video sequences.

One way to obtain these measurements would be to
locate landmarks on the face, and then adjust the control
parameters appropriately. The difficulty with this approach
is first that landmarks are difficult to locate reliably and
precisely, and second that there are no good landmarks on
the cheek, forehead, or eyeball.

An alternative method is to teach the system how the
person’s face looks for a variety of control parameter set-
tings, and then measure how similar the person’s current
appearance is to each of these known settings. From these
similarity measurements we can interpolate the correct con-
trol parameter settings. In our experience this method of
determining control parameters is much more robust and
efficient than measuring landmark positions.

Our similarity metric is simply the correlation of a pre-
viously stored intensity view with the new data. We take

views corresponding to each trained expression for which
we have obtained detailed force and timing information
using the method outlined in the previous section. By
constraining the space of expressions to be recognized, we
can match/recognize existing expressions rather then derive
new force controls for the input video, and dramatically im-
prove the speed of the system.

When the input image matches one of the trained exam-
ples, the corresponding previously stored motor controls are
actuated in the facial model. If there is no match between
the image and the existing expressions, an interpolated mo-
tor actuation is generated based on a weighted combination
of expressions. The mapping from vision scores to motor
controls is performed using piecewise linear interpolation
implemented using a Radial Basis Function (RBF) net-
work [28]. (We have also implemented a Gaussian RBF
and obtained equivalent results.) This specific implemen-
tation with details on learning and interpolation techniques
and the appearance-based method for both faces and hands
is explored in much detail in [10, 4].

The RBF training process associates the set of view
scores with the facial state, e.g., the motor control param-
eters for the corresponding expression. If we train views
using the entire face as a template, the appearance of the
entire face helps determine the facial state. This provides
for increased accuracy, but the generated control parame-
ters are restricted to lie in the convex hull of the examples.
View templates that correspond to parts of the face are
often more robust and accurate than full-face templates, es-
pecially when several expressions are trained. This allows
local changes in the face, if any, to have local effect in the
interpolation.

Figure 11 shows the eye, brow, and mouth templates
used in one of the examples in the videotape. The normal-
ized correlation calculation is carried out by commercial
image processing hardware from Cognex, Inc. The nor-
malized correlation matching process allows the user to
move freely side-to-side and up-and-down, and minimizes
the effects of illumination changes. The matching is also
insensitive to small changes in viewing distance (3-15%)
and small head rotations (£10°).

For each incoming frame of video, all of these 2-D tem-
plates are matched against the image, and the peak nor-
malized correlation score recorded. Note that the matching
process can be made more efficient by limiting the search
area to near where we last saw the eye, mouth, etc.

Experiments. Figure 13 illustrates an example of real-
time face animation using this system. Across the top,
labeled (a), are five video images of a user making an
expression. Each frame of video is then matched against
all of the templates shown in Figure 11, and normalized
correlation scores are measured. A plot of the normalized
correlation score for each template is shown in (b). These
scores are then converted to state estimates and fed into
the muscle control loop, to produce the muscle control
parameters shown in (c). Five images from the resulting
animation sequence are shown in (d). Figure 14 shows
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Figure 13: (a) Face images used as input, (b) normalized correlation scores for each 2-D template, (c) resulting muscle
control parameters, (d) images from the resulting facial animation.

the live system. We have run similar experiments with
local templates of the face and with a larger number of
expressions.

4 Head Tracking and Orientation

One of the major constraints of the above described
system is its inability to deal with large motions of the
head. Tracking head positions and orientation is extremely
important for both understanding facial movements and
generating realistic facial and head motions. Consequently,
we developed a system that can accurately track the head
under virtually all conditions, including large head mations
and low frame rates, independent of the same points on the
head being visible over the entire length of the sequence.

Our approach is to interpret the optical flow field using

a three-dimensional model. We use an ellipsoidal model of
the head, which is a good approximate to the entire shape
and can be automatically initialized with reasonable accu-
racy. The technique we use for tracking this model may be
considered as motion regularization or flow regularization.
The unconstrained optical flow is first computed for the en-
tire sequence, and the rigid motion of the 3-D head model
that best accounts for the observed flow is interpreted as the
motion of the head. This is much in the style of Horowitz
and Pentland [23]. The model’s 3-D locationand rotationis
then modified by these parameters, and used as the starting
point for interpreting the next frame, and so on (see Basu,
Essa and Pentland [2] for further details). Our experiments
(shown below) demonstrate that this method can provide
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Figure 14: (a) Face with single template, (b) Face with multiple templates. (c) Complete system tracking eyes, mouth,

eyebrows., (d) tracking a smile and (e) a surprise expression.

very robust tracking over hundreds of image frames for a
very wide range of head motions.

Experiments. To demonstrate the tracking performance
of this system we have presented several example sequences
in the figures below. In Figure 15, several key frames from
a sequence captured at 30 FPS with a Sony HandyCam
are shown. The first row of images contains the original
images from the sequence, while the next row shows track-
ing using an ellipsoidal model. The ellipsoidal model is
superimposed on the image.

To demonstrate the accuracy of the system’s position and
orientation estimates, we have compared the resultsto a cal-
ibrated synthetic sequence. This sequence was generated
by animating a synthetic head (model courtesy of View-
point Data Labs Inc. [36]) using the SGI graphics libraries.
The motion parameters used to drive the model were in the
same format as those estimated by the system, and were
obtained from running the system on a separate image se-
guence (not shown). As a result, the exact rigid parameters

of the model were known at every frame. The results of this
experiment are shown in Figure 16 below. Again, several
key frames are shown from the original sequence, followed
by the tracking by the ellipsoidal model. Below these key
frames, a separate plot is shown for each rigid parameter.
The “model” line corresponds to the actual rigid parameters
of the animated head and the “ellipsoid” line corresponds
to the parameters estimated using our method.

As in the sequence shown in Figure 15, it is clear that
our tracking maintains good point to point correspondence
(i.e, , point on the model to point on the head) over the
whole sequence. We have also attempted tracking the same
sequences using a 2-D planar patch and found that estimated
orientations are far more accurate for the 3-D ellipsoidal
model than for the 2-D planar model. The ellipsoidal model
also produces slightly better estimates of the translation
parameters. It is the detailed orientation information that
this system extracts, though, that is its most significant
advantage over other schemes. This is due to the explicit
3-D nature of the model.



5 Conclusions and Future Work

The automatic analysis and synthesis of facial ex-
pressions is becoming increasingly important in human-
machine interaction. Consequently, we have developed
a mathematical formulation and implemented a computer
system capable of detailed analysis, tracking and synthe-
sis of facial expressions and head movements within an
active and dynamic (analysis-synthesis) framework. The
purpose of this system is first to analyze real facial motion
to obtain an improved computer model of facial and head
movements, and then to use the improved model to cre-
ate extended facial animation sequences by automatically
analyzing video of real humans.

This system analyzes facial expressions by observing ex-
pressive articulations of a subject’s face in video sequences.
For detailed facial modeling, the visual observation (sens-
ing) is achieved by using an optical flow method. For facial
animation, the visual observation is achieved by using nor-
malized correlation with 2-D templates. In both cases the
observed motion is coupled to a physical model describ-
ing the skin and muscle structure, and the muscle control
variables estimated.

We have also developed a head tracking system that can
extract head positions and orientations very robustly for a
large range of head motions.

Our experiments to date have demonstrated that we can
indeed extract FACS-like models that are more detailed than
existing models. We have also demonstrated the ability
to create extended animation sequences in real time by
analysis of video input, making use of the assumption that
the animation consists of a limited set of facial motions.

We are now processing data from a wider range of facial
expression with head motions in order to develop a model
that is adequate for “all” facial expressions, and work-
ing to make the real-time animation system more person-
independent. We are also improving on on our model to
robustly handle finer lip and eye motions and also to deal
with wrinkles and texture with much more detailed 3-D
models.
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