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ABSTRACT

Streams of images from large numbers of surveillance web-
cams are available via the web. The continuous monitoring
of activities at different locations provides a great opportu-
nity for research on the use of vision systems for detecting
actors, objects, and events, and for understanding patterns
of activity and anomaly in real-world settings. In this work
we show how images available on the web from surveillance
webcams can be used as sensors in urban scenarios for mon-
itoring and interpreting states of interest such as traffic in-
tensity. We highlight the power of the cyclical aspect of
the lives of people and of cities. We extract from long-term
streams of images typical patterns of behavior and anoma-
lous events and situations, based on considerations of day of
the week and time of day. The analysis of typia and atypia
required a robust method for background subtraction. For
this purpose, we present a method based on sparse coding
which outperforms state-of-the-art works on complex and
crowded scenes.

Categories and Subject Descriptors

1.4 [Image Processing and Computer Vision]: Mis-
cellaneous; 1.2.10 [Vision and Scene Understanding]:
[Video Analysis]

Keywords

video surveillance; long-term pattern analysis; background
subtraction; unsupervised feature learning; auto-encoders;
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1. INTRODUCTION

Webcams provide sets of eyes on the world, continuously
collecting data on scenes ranging from natural phenomena
to human activities. Numerous streams of webcam data
are publicly available, providing opportunities for studies of
patterns of events over extended periods of time. Analysis
of events over time on a view of a region of a city could
provide useful data for guiding the decongestion of traffic,
supporting urban planning, and understanding human be-
havior. However, with the exception of a few works [1, 4, 14],
little effort has been focused on harnessing such imagery. Di-
rections of research in this realm include the identification of
typical patterns of behavior over a day or month, and based
on such regular patterns, identifying anomalous events and
situations.

In this work, we analyze a full month of data acquired
for a complex urban scene - a specific view on Fifth Avenue
in New York City. We show how meaningful patterns of
activities can be extracted from the streams of images. Pre-
vious studies on long-term visual surveillance have focused
on the analysis of the video sequence considering the entire
frame as a whole [1, 4, 14]. In contrast, we aim at perform-
ing separation of the foreground (FG) from the background
(BG), in order to (i) eliminate the high data redundancy
present in the BG and (ii) better focus on the behavior of
the foreground elements of interest, which in our scenario
correspond to cars and pedestrians.

Our proposal employs the most promising method re-
ported in the literature [3, 5] and build on this approach to
achieve better performance. We found that the ability of the
best reported method does not reliably identify foreground
in the real-world urban imagery at the focus of our study.
We believe that our dataset is particularly difficult w.r.t. the
task of FG detection because of the following challenges: (i)
high complexity of the scenario, i.e. high variability of the
BG, which is subject to strong appearance changes because
of light and weather variation; (ii) crowdedness of the scene,
with many targets (i.e. cars and pedestrians) present es-
pecially during rush hours; (iii) low frame-rate acquisition,
which makes the problem of sudden illumination changes
more crucial; (iv) low signal-to-noise (S/N) ratio at night;
(v) high incidence of light reflections, especially at night and
during rain, which causes FG false detection; (vi) presence of



i ey P
2011-12-10, Sat, 14 2011-12- 3:59 2011-12-10, Sat, 13:24

Figure 1: NYC-5th dataset:

jpeg artifacts in streamed webcam imagery. Sample frames
illustrating some of these issues are shown in Fig.1.

In order to increase the reliability of the foreground ex-
traction, we introduce a new method which builds upon [32]
but significantly improves the performance by relying on
more informative (sparse) features beyond rgb information.
Additionally, we show that a simple and efficient measure
based on FG detection is strongly correlated with high level
information, thus revealing very interesting insights about
typical patterns of a city life, as well as anomalies.

2. RELATED WORK

Some of the key challenges associated with the analysis of
data extracted from video over extended periods include re-
quirements for storage and long processing times. To reduce
storage and make processing more efficient, studies of long-
term video surveillance typically rely on video collected at
low frame rates [4, 14]. However, low frame rates can make
it difficult to reconstruct motion tracks for analyzing behav-
ioral patterns. Another way to deal with the scale is to only
collect data streams that are essentially static, i.e. the back-
ground appearance varies in time due to light, weather or
seasonal changes but almost no foreground elements can be
observed [14].

While there exists prior research on detecting anomalies
in urban scenarios [4], the previous works focus on video
analysis at frame level (e.g. extracting a pyramid of fea-
ture histograms). Further, there are hardly any approaches
that attempt to distinguish the foreground elements from
the background and to analyze their behavior separately.
One of the exception is Abrams et al. [1] recorded a data
set (LOST) with high frame rate from 17 cameras for over
one year, in order to explore the changes in daily tracks.
They record the same half hour each day, limiting the long-
term analysis to a short interval in each day, and show that
histograms of track density have a high-level interpretation
w.r.t. natural human behavior. We show that this anal-
ysis can be done in a more efficient and at a higher time
granularity way by exploiting the FG signal.

One of the core component of our work is a background
subtraction module. In visual surveillance with static cam-
eras, a BG subtraction method based on BG modeling is
typically adopted. We considered the set of techniques de-
scribed in recent surveys [3, 5] to select the most promising
approach for our goals. The most widely used method was
proposed by Stauffer and Grimson [24]. Among variations
of this approach, [32] appears to be the most robust to the
dynamics we face with the analysis of long-term streams,
including dynamic background, darkening, and noise during
night time. However, these techniques were not very suc-
cessful on our long-term sequences (see Fig.4, 5 and supple-
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representative frames of a complex and crowded scene, challenging for a fore-
ground detection task based on background modeling.

mentary material'). The results were fairly poor especially
for the case of sudden light changes, a problem which is
accentuated by the low frame acquisition rate. Also these
approaches performed poorly during night because of low
signal-to-noise ratio and presence of light reflections.

Our hypothesis in this work is that BG subtraction meth-
ods relying only on pixel-based analyses are not powerful
enough, and leveraging more informative features (e.g. based
on local structure) may be valuable. The use of local fea-
tures like HOG [10] or texture has been proposed [13, 19, 27].
To our knowledge, no work has yet explored the potential of
using sparse features extracted at patch-level for the back-
ground subtraction task. We show the effectiveness of using
features learned via auto-encoders [17]. Such methods for
learning features from data in an unsupervised manner have
been applied successfully in a variety of fields (NLP, audio,
computer vision, etc.), Most of the research in computer
vision on using learned versus hand-designed features has
focused on classification tasks like object recognition [2, 23,
29], image classification, [18, 22] or facial expression recog-
nition [21], where the unsupervised phase of feature learning
is combined with a supervised training phase of a classifier.

In summary, we have observed that prior methods for
background subtraction are not adequate to our problem
scenario because: (i) our dataset has a very low frame rate
precluding the use of temporal information as is done in
[31], (ii) many of the FG detection methods rely on the as-
sumption that the FG information is sparse [6, 7, 8, 9, 11,
30]. The latter assumption is not valid in our case where we
routinely encounter crowded scenes (see Fig.1).

3. OUR METHOD

Our method employs two main steps: (i) FG detection
based on BG modeling and, (ii) analysis of behavioral pat-
terns, based on the extracted FG information (Sec.3.3). In
order to improve the performance at step (i), we propose a
new BG subtraction method where the BG model is built
on a sparse representation via a feature dictionary that is
learned from the input data (Sec.3.2). We provide a general
overview on Sparse Coding and Auto-Encoders in Sec.3.1.

3.1 Learning Local Features Dictionary with
Auto-Encoders
Sparse Coding. In sparse signal modeling, input sig-
nals are represented as a (often linear) combination of a few
coefficients selecting atoms in some over-complete bases or
dictionary D = {®;}. Formally,

M
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Here z € RV a = {a;} ¢ RM, D = {®;} € RV*M | gener-
ally M > N, and e is the approximation error. Note that
when a is sparse, most of the bins of a € R are zero. For-
mally, we can write this sparsity condition as ||a;|lo = K,
K < M. In other words, while z is mapped to a higher
dimensional space (i.e. from RY to R™ with M > N),
generally the dimension of its sparse representation is lower
than the initial space dimension (i.e. K < N < M).

It has been shown that mapping the data into a signifi-
cantly higher dimensional space with an over-complete basis
dictionary can lead to superior performance in many ap-
plications [18, 26]. In this work, we investigate the effect
of using sparse coding for background modeling. Relative
to prefixed dictionaries such as wavelets, learned dictionar-
ies bring the advantage of better adapting to the images,
thereby enhancing the sparsity [28]. We learn our basis dic-
tionary D = {®;} € RV*M through sparse Auto-Encoders.
We briefly review auto-encoders below. For more detailed
explanation we refer readers to [17].

Auto-Encoders. Auto-encoders (AE) are unsupervised
models that learn a compressed representation for a set of
data. Specifically, auto-encoders learn a function A(-) that
maps an input vector z € RY to a feature vector a = h(z) €
RM | together with a function g(-), that maps h(zx) back to
@ = g(h(z)) € RY, where  is the reconstruction of the input
vector z. In the AE notation, N and M are respectively the
number of visible and hidden units.

The functions h(-) and g(-), named respectively encoder
and decoder function, are computed in a way that minimizes
the reconstruction error between the two vectors x and Z.
The Encoder function h(-) is defined as: a = hwp(xz) =
s(Wix +b) = s(z), where s is the activation function. In
this case we chose s to be the sigmoid function s(z) = #
Estimating h(-) corresponds to the estimation of the param-
eters W € RM*N  which is the weight matriz, and b € RM
which is the bias vector. The Decoder function g(-) is de-
fined as: gw,c(2) = s(Waz+c). Given a set of p input vectors
:C(i)ﬂ: =1,...,p, the weight matrices W1 and W5 are adapted
using backpropagation to minimize the reconstruction error.
The cost function to be minimized is therefore:

p
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where (V) is dependent implicitly on {W, b} and || -||2 is the
Euclidean distance. This step can be performed via batch
gradient descent or more sophisticated algorithms like con-
jugate gradient or L-BFGS to speed up the performance [17].
A penalty term is also added in the optimization function to
force the learned features to have desirable properties. There
are many sophisticated versions of auto-encoders; differences
arise essentially in the specifics of the assigned penalty term.
In our case, we use sparse auto-encoders, which force the av-
erage hidden unit activation to be sparse [12]. This is done
by designing a penalty term, which enforces the activation
of a hidden unit p; = % P laj(x™)], j = 1,--,M to
be close to a desired value, p; = p, where p is the sparsity
parameter. The overall cost function is now:

M
Jsparse(W,b) = J(W,0) + 8 KL(p||5;) (3)

Jj=1

where the weight parameter  controls the relative impor-
tance of the sparsity penalty term, and KL is the Kullback
Leibler distance.

A weight decay term on W is also added, whose impor-
tance is regulated by the parameter A, in order to penalize
the magnitude of the weight and prevent overfitting. The
parameters used in this framework are therefore: (i) the
number of hidden units M; (ii) the sparsity parameter p;
(iii) the weight of the sparsity penalty term f; (iv) the weight
decay parameter \.

Learning Feature Dictionary for Sparse Represen-
tation of Local Patches. In the context of generic image
understanding, instead of the whole image sparse coding
is applied to local parts or descriptors [26]. In these ap-
proaches, the input signal x usually corresponds to a small
image patch of VN x /N pixels which is stacked as a vec-
tor z € RY. Similarly our approach first randomly samples
a set of p patches {z;} from a sufficiently representative
training sequence of images. Auto-encoders with parame-
ters § = [W,b] are then learnt using these samples. The
feature dictionary discovered thus captures the most basic
and typical visual patterns presented in the training images
set.

3.2 Background Subtraction

We build upon [32] for background modeling. In our
work besides the rgb values, we propose to include more dis-
criminative auto-encoder features in the background model.
For each pixel (i,j) we consider the sparse representation
a € RM, obtained by mapping the patch centered at (i,j)
via the Encoder function h(-) (previously learned, as ex-
plained in Section 3.1). Note that general sparse methods
for background subtraction consider the image as a whole [6,
8, 9, 11] and no attempt has been made to date to build a
sparse vocabulary of local patches. The background model
for each pixel is then built as in [32], modeling the pixel
features distribution as a Mixture of K Gaussians:

K
1 —1
pi(z) = Zﬁkefé(wﬂ%) Sy (@—py) (4)
k=1

where ¥ € RP*P and D = 34+ M. For computational ef-
ficiency, an assumption of dimensionality independence is
made. In this way, the full covariance matrix simplifies to a
diagonal matrix: diag(3) = [o1,...,0D]. A second assump-
tion that the variance is the same in each direction (i.e.
o1=02=...=0p) simplifies ¥ as follows: 3 = 02[, where
I € RP*P is the identity matrix. This simplifies formula 4
as follows:

_ (z—pp) (x—pp)

K
pi(z) = Z TRe 207,
k=1

While these assumptions have proven to be effective for a
mixture of Gaussians based on rgb features, a priori, we
cannot expect that methods based on them will work with
different types of features. We will see in Section 4 that
these assumptions also hold in our case. The parameters
involved in this framework of adaptive mixture model for
BG subtraction are the learning rate a and the threshold
Ty, that decides if a point data is well described by the BG
model or not [32].



3.3 Extracting Typical and Anomalous Patterns
of Behavior

Previous works [15, 16, 20] showed that statistical analyses
based on simple low-level cues, e.g. optical flow, can reveal
high-level recurrent patterns of behaviors. However, these
analyses are performed on short-term periods, e.g. several
hours of video. Thus, the recurrent behaviors extracted cor-
respond to such examples as different traffic flows regulated
by traffic lights. In this work, we wish to extract significant
patterns correlated to human behaviors which are exhibited
via long-term analyses; we show how such analyses can be
done via a simple measure such as the percentage of fore-
ground pixels, here denoted by 7. The intuition here is that
the high-level information 7 can be interpreted as an inten-
sity measure of activities happening in a region of interest.
For example, when few vehicles are circulating, e.g. in the
early morning, 7 will be low, while during rush hours the
measured 7 will be higher. An anomalous behavior can be
determined by considering the agreement on 7 of observa-
tions taken at a specific day of the week and at a specific
time of the day. In details, given N observations 7;, with
i =1,...,N, we define the anomaly score as the variance-
scaled distance from 7; to p,:

_ |mi—
5= ©)
Intuitively, given N observations taken e.g. on Monday 9am,
the anomaly score for p; will be higher, w.r.t. Sa,---,Sn,
if its agreement on pu, is lower, w.r.t. agreement given by
p2, - pn, and so on. Experimental results are in line with
our assumptions and they will be discussed in Section4.

4. EXPERIMENTAL RESULTS

In this section, we present the dataset and the results
obtained with our method.

4.1 Dataset

Our dataset consists of imagery collected from a view of
Fifth Avenue of New York City (NYC-5th). The stream
was collected from a webcam that is part of the EarthCam
Network®. The data was collected over nearly four weeks,
from December 1% to 25", 2011, at a rate of 2 frames per
minute. Frame size is 480 x 640 pixels. The collected ~72K
frames require a 12Gb storage occupancy. Acquiring the
same temporal period at a rate of 1 fps would have required
225 Gb storage. Note that the dataset was acquired with
+5 hours shift w.r.t. local time. Thus the imagery data
available from 0:00am to 11:59pm per each day corresponds,
to the local NYC time, per the time lapse between 7:00pm
and 6:59pm. We are going to present the daily patterns of
behavior within the latter time interval. In order to evaluate
the accuracy of FG detection, on which we rely for further
analysis, a sequence of frames has been annotated with the
ground-truth FG mask. In particular, two frames per hour,
on Dec.6"", have been annotated (i-e. we picked frames at
times 00:00, 00:30, 01:00, and so on). We selected this day
as it contains a large variety of light and weather changes.
Data and ground truth are available online on the author’s
website®. Our hope is that this dataset can contribute as a

*http://www.earthcam.com/usa/newyork /fifthave/
?7cam=nycbth_str
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Figure 2: Examples of (a) Gabor Filters and (b)
features learned with Auto-Encoders.

reference benchmark for long-term activity analysis, as well
as for background subtraction (BS) methods evaluation on
complex and crowded sequences. Available benchmarks for
BS evaluation, generally consist of short sequences, with a
few annotated frames [25], or consist of artificially generated
sequences [5].

4.2 Learning a Vocabulary for Sparse Patch
Representation

As a first step, we train the auto-encoders in order to gen-
erate the features that allow a sparse representation of the
video data. We set the dimension of the patch to \/N = 8.
This value is a good compromise as it allows us to learn suf-
ficiently discriminative features; larger patches would have
a higher probability of including foreground. Figure 2(a)
shows the set of features learned by randomly sampling in
space and time p = 20000 patches from a 1-day-long se-
quence (i.e. Dec.6'™) and using the following setting: M =
128, p = 0.003, 8 = 3, and A = 0.0001. Training the auto-
encoders with these settings on an Intel(R) Core(TM) i5
CPU, 2.67GHz requires about 20 minutes.

Figure 2(a) can help with understanding the meaning of
the weight matrix W and the hidden representation a. Each
column of the weight matrix W € RV*M ig reshaped to
form a VN x VN patch. The M = 128 filters obtained
are displayed. When a patch z is mapped via h(-) to a
a = {a;} € RM sparse representation, the non-zero co-
efficients of a identify the features that better represent
the signal z. It is well known that features learned via
auto-encoders at one layer resemble Gabor-like filters. How-
ever, it is also known that learning features from data often
achieves a sparser representation as the learned dictionary
better fits the data [28]. For example, looking at Fig.2(a)
w.r.t. Fig.2(b), we can see that filters with a certain diag-
onal orientation (from top left to bottom right) are nearly
absent because the scene perspective is one where a majority
of edges are oriented on the other diagonal direction. Ad-
ditionally, beyond regularly oriented edge gradients, some
data-specific shapes can be learned. Learning w.r.t. using
hand-designed features may be a promising approach in the
context of visual surveillance and in crowded scenarios like
the one we considered, in which: i) both BG and FG sig-
nal present a high data redundancy, where the background
is constant and similar elements tend to appear repetitively
in space and time, and ii) the variability of features data is
limited to the small world variability defined by the scene
observed through the camera.

4.3 Foreground Detection

The performance evaluation of the different methods for
FG detection is reported in Fig.3 and Tab.1. The perfor-
mance is measured in term of precision and recall which
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quantify, respectively, the number of pixels correctly iden-
tified as FG, divided by the number of pixels classified
as FG (p) and by the number of pixels defined as FG
in the ground truth (r). The F-measure is defined as:
F = (14 5%) i s with § = 1. Fig.3(a) shows
the performance of the three methods at varying parame-
ters Ty and « (in details, at varying T, %%, T2¢ € [3.5,4.5],
T79" ¢ € [7.0,8.0], and a € [0.01,0.10]).

Also, the average error on the FG percentage estimation,
€r, has been measured. It was observed that the best es-
timate of 7 is obtained with the highest balance between
precision and recall (this optimal results area is highlighted
in red in Fig.3(a)). Among all possible (T}, «) values com-
binations, the one allowing the best performance for each
method is shown in Tab.1.

In general, it can be seen that using only ae features al-
lows a better performance than using only rgb, while the
highest accuracy is achieved by combining ae and rgb fea-
tures. Moreover, a higher robustness w.r.t. parameters vari-
ation is achieved with rgb-ae. We observe that our method
performs well w.r.t. sudden illumination changes even at a
low learning rate, e.g. a = 0.03, while the method based
on only rgb performs more poorly at that rate (best accu-
racy is obtained with a = 0.10). Using a high learning rate
makes the method less robust to detecting temporary sta-

Figure 3: Overall performance (recall vs. precision)

Dec 67 D| T, | ar precision | recall | F-Measure €r

MoG, rgb [32] 314.00.10 0.60 0.56 0.58 421 %
MoG, ae 128 | 4.0 | 0.10 0.62 0.58 0.60 2.89 %
MoG, rgb-ae 34128 | 7.0 | 0.03 0.66 0.66 0.66 2.49 %

Table 1: Best overall performance on FG detection.

Figure 4: Performance on foreground detection. (a) original frame (b) ground truth (c¢) [32] (d) our method.

tionary objects (e.g. cars stopped at red traffic light). A
visual comparison of the two methods performance and the
ground truth mask can be observed in Fig. 4. Figure 5 shows
the performance of our method w.r.t. different challenging
situations. A video sequence showing the performance of
our method during challenging conditions (e.g. rain, night)
is shown online®.

More experiments have been conducted to explore our
method performance at varying AE parameters, ¢.e. number

Performance on foreground detection

Figure 5:
w.r.t. different challenges: (a) sudden light changes,
(b) sudden image blurring (camera defocus), (c)
night lightening with rain, (d) stationary fore-
ground. (Left) original frame, (center) [32], (right)
our method.
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Figure 6: Patterns of behavior (average traffic intensity per time of the day) measured for the NYC-5th

dataset.
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Figure 7: Typical patterns of behavior obtained for each day of the week, with (left) [32], based on rgb and

(right) our method, based on rgb-ae features.

of hidden layer M and sparsity coefficient p. A higher perfor-
mance w.r.t using only rgb features has been obtained with
M = 32,64, 128, although with M = 128, a higher stability
has been observed w.r.t. the variation of a and 7. The best
performance is obtained with p € {0.02,0.04}, while a drop
in accuracy is observed with p > 0.5. We believe that this
finding is evidence of the beneficial effects of using sparse
representations. Experiments have been conducted also us-
ing HOG and Gabor Filters as local features. However, the
measured performance was not satisfactory. Additionally,
Gabor filters requires some set up efforts, in order to select
the most representative filters for the dataset (Fig.2(a)). We
conjecture that the gap in performance is based on the fol-
lowing reason: AE method generates an over-complete dic-
tionary, with bases having very similar but slightly shifted
structures (see Fig.2(b)). This results in a sparse represen-
tation where the signal is described in terms of indices of
active bins. Conversely, features like HOG or Gabor filters
map patches to a dense representations, where the signal
is characterized in terms of different intensities of bin val-
ues. We believe this is a key differentiation that leads to
more robust representation for AE methods w.r.t. thresh-
olding operation performed when discriminating BG from
FG in our framework. Additionally, we believe that HOG
features extracted at 8x8 patch level may not be able to cor-
rectly model the data variability. Our above hypothesis is in
line with recent findings on sparse coding [17]. These find-
ings suggest that while hand-designed features like SIFT or

HOG perform well on the tasks for which they were initially
designed, they often perform poorly on novel scenarios.

4.4 Extracting Typical and Anomalous Patterns
of Behavior

The average traffic intensity measured for the whole
dataset with our method is reported in Fig. 6. As the
traffic intensity variability between successive frames is
high, the values are smoothed in time with a median filter
of 120 frames length. The behavioral pattern of Tuesday
was found to be similar to the pattern of Wednesday and it
was omitted for space reasons. In some cases, e.g. Thursday
8" 4am, the graph is interrupted because of missing data.
In the next two sections, we discuss the results on typical
patterns and anomalous behaviors extracted.

Typical patterns of behavior. The average typical be-
haviors per day of the week, obtained with [32] and with
our method are shown respectively in Fig.7(a) and Fig.7(b).
As highlighted in Fig.7(b), peaks in patterns due to sudden
light changes, e.g. around 7am (sunrise) and 4:30pm (sun-
set), are reduced significantly. Per the findings highlighted
in Fig.7(b), we observe the following: (i) Daily traffic inten-
sity patterns are very similar to each other, i.e. the average
traffic intensity does not vary much, given a day of the week
and time of day. (ii) Two main daily behavioral patterns can
be observed, one for the working days (Mon-Fri) and one
for the weekend (Sat,Sun). For the second one, the morn-
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Figure 8: Answering queries like: How does a typical Saturday evening in New York look? It can be easily
observed that the lowest traffic density was recorded on Christmas Eve.
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Figure 9: Detecting anomalous behaviors: (a) Dec. 1°', Thu, 9:00pm, regular traffic flow is limited due to a
pedestrian demostration. (b) Dec. 25" Sun, 9:45am unusual lower traffic intensity due to being Dec. 25"
the day of Christmas. (c) Dec. 8", Thu, 9:30am, anomalous peak in traffic intensity.

ing rise in activity tends to start much later. (iii) At night,
we observe an incremental drop in traffic intensity, and the
average traffic intensity is sorted w.r.t. to the day of the
week, going from the lowest on Sunday night, to the highest
on Saturday night. Indeed, even in New York City, the city
that never sleeps, people seem to have more bedtime before
the beginning of new work weeks.

An example of a typical Saturday night at 9pm is shown
in Fig.8. For each Saturday in our NYC 5th Avenue
dataset, the median frame (i.e. the frame associated to
the median p value) within the time interval from 8:30 to
9:30pm is automatically extracted. We plot in Fig.8(left),
the traffic intensity measured for each of the 120 frames,
sorted from the lowest to the highest value. While Dec. 4",
11*" and 18" look very similar, on Christmas Eve (Dec.
25t"), a lower traffic intensity is observed.

Anomalous activities. Our method can be employed
for the automated detection of anomalous behavior w.r.t.
the typical patterns learned. Figure 9 depicts three main
anomalies detected with the method: (a) Thu, 9pm, unusual
low traffic intensity due to the occurrence of a pedestrian
demonstration on a Wednesday night and (b) Sun, 9:4/5am,
unusual low traffic intensity recorded on the day of Christ-
mas in the morning. (¢) Thu, 9:30am, unusual high traffic
intensity. Our intuition is that this traffic peak is due to a

traffic congestion during to rush hours. In general, it is not
always straightforward to identify the specific reason for an
atypical density, but such anomalous situations can frame
the search for potential explanation from the many events
that occur in cities and their influences on the region at the
focus of attention. In Fig.9(a) we can note that, while the
behaviors on Dec. 8, 15 and 22 around 9pm look surprisingly
similar among each others (see blue lines in the graph), the
behavior on Dec.1 (see red line) differs from them remark-
ably. The same can be observed for Fig.9(b) and (c).A short
video with the detected anomalies is shown in the supple-
mentary material online’.

S. CONCLUSIONS AND FUTURE WORK

We have shown how high-level patterns of behaviors can
be extracted from long-term video surveillance imagery, to
provide insights on the intensity of activities occurring in a
city. Additionally, we showed that sparse coding applied at a
patch- rather than frame-level can significantly increase the
performance of foreground detection in crowded and com-
plex urban scenarios, thus reducing the noise extracted from
the imagery data. Our work is motivated by the pursuit of
robust features for a stable background representation in
crowded and complex scenes, and the exploration of advan-
tages in using a sparse representation for visual surveillance.



Future directions include extending the work to a distributed
visual surveillance network, in order to find correspondences
among multiple cameras. Additionally, we are interested in
performing a comparison of patterns of behaviors among
cities or among different regions of the same city.
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