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ABSTRACT

Data-intensive computing (DISC) frameworks scale by par-
titioning a job across a set of fault-tolerant tasks, then diffus-
ing those tasks across large clusters. Multi-tenanted clusters
must accommodate service-level objectives (SLO) in their
resource model, often expressed as a maximum latency for
allocating the desired set of resources to every job. When
jobs are partitioned into tasks statically, a cluster cannot
meet its SLOs while maintaining both high utilization and
efficiency. Ideally, we want to give resources to jobs when
they are free but would expect to reclaim them instanta-
neously when new jobs arrive, without losing work. DISC
frameworks do not support such elasticity because inter-
rupting running tasks incurs high overheads. Amoeba en-
ables lightweight elasticity in DISC frameworks by identify-
ing points at which running tasks of over-provisioned jobs
can be safely exited, committing their outputs, and spawn-
ing new tasks for the remaining work. Effectively, tasks of
DISC jobs are now sized dynamically in response to global
resource scarcity or abundance. Simulation and deployment
of our prototype shows that Amoeba speeds up jobs by 32%
without compromising utilization or efficiency.
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1. INTRODUCTION
Data-intensive computation (DISC) frameworks [3, 13, 22]

partition jobs into multiple parallel tasks. Tasks are assigned
a fixed amount of work and are the finest unit of granularity
for execution. Each task is assigned to a compute slot in the
cluster by a resource manager. These clusters are shared by
multiple entities in an organization to achieve economies of
scale, and the resource manager is responsible for allocation
of compute slots among jobs such that SLOs are met, includ-
ing a stringent and small latency for allocating the desired
set of slots to every job.

The static granularity of tasks is insufficient for a resource
manager to enforce SLOs while maintaining both high uti-
lization and efficiency across the cluster. Ideally, a resource
manager may grant slots to a job while the cluster is idle,
but would expect the job to relinquish slots when a new job
arrives without waiting for its running tasks to complete.
We say a job is elastic if it can instantaneously relinquish
slots without losing work. Elastic jobs help clusters more
readily meet its SLOs. Elasticity can be achieved if DISC
frameworks either migrate state of active tasks, or suspend
tasks and resume them later when slots become available.
Unfortunately, DISC frameworks support neither operation
due to high and unpredictable overheads (e.g., network load
of migration and complex maintenance of suspended tasks’
state).

In the absence of elasticity, frameworks balance utiliza-
tion and efficiency using the following techniques: (1) Cap
the number of slots utilized by each job based on others’
SLOs, possibly leaving some idle slots fallow. Consequently,
some tasks are queued even though slots are idle. This policy
is employed in Yahoo!’s clusters with the achievable cluster
utilization in practice being ∼ 70%. (2) Utilize the entire
cluster, but enforce SLOs by killing tasks in jobs that are
above their guaranteed share. Killed tasks are re-executed
leading to wastage of work. Published numbers from Bing’s
Dryad cluster show that 21% of the tasks are killed [16].
These two approaches exhibit a hard trade-off between uti-
lization and efficiency: with the former, the Yahoo! cluster



achieves 70% utilization with a 100% efficiency, while with
the latter, the Bing cluster achieves 100% utilization with
79% efficiency. In either case, the lack of elasticity wastes
operational cluster resources.

Given this dilemma, when a cloud operator allocates re-
sources to a DISC job, the decision (and pricing) assumes
that the cost of reclaiming that resource for another, more
desirable allocation is high. Either the operator builds some
fraction of the excess capacity into the pricing or the re-
sources used by killed tasks cannot be billed to the users,
inflating the cost of operating the cluster. In contrast, an
elastic job can fill excess capacity without creating unbil-
lable waste when that capacity is reclaimed. Also, cloud
operators can offer discounts in pricing of spot instances [1]
to those users whose jobs are guaranteed to be elastic. DISC
frameworks could take advantage of such incentives if they
were elastic, and do so without attempting to predict task
runtimes.

Amoeba is a system that enables lightweight elasticity
in DISC frameworks. It leverages the property that it is
possible to judiciously split the original work assigned to
tasks without altering the result of the overall computation.
Amoeba identifies such safe points to split a task, which also
obviates carrying over of state across the splitting. Using
this low-overhead splitting, Amoeba resolves contentions for

slots by safely exiting a running task, committing its output

and spawning a new task for its remaining work. Amoeba

achieves this by keeping a memento for task progress via
periodic updates. With such elastic resource consumption
by jobs, the resource manager can over-allocate slots to jobs
without missing its SLOs or wasting computation. The same
mechanisms used in Amoeba for scaling down the slots as-
signed to a job can also scale up: as slots become available
(say, due to the cheap “pay-as-you-go” spot instances [1]),
a running task can be safely terminated and multiple new
tasks can be spawned for the remaining work.

As tasks express more constraints and preferences for their
runtime environment, the utility of Amoeba’s elasticity in-
creases. These constraints are vital for both performance
(e.g., memory locality [14]) and also functionality (e.g., ma-
chines with GPUs). Reports from Google show that more
than half the tasks in their clusters are constrained [12], in
turn leading to the satisfaction of constraints of tasks be-
ing included in SLOs. Elasticity will be crucial to meeting
SLOs in such a setting without compromising efficiency or
utilization.

Trace-driven simulations show that Yahoo!’s Hadoop clus-
ter can use Amoeba’s elasticity to improve the average com-
pletion time of its jobs by 26% without facing an utilization
limit. In Facebook’s Hadoop cluster, Amoeba’s elasticity
can improve average job completion times by 32%, mea-
sured against a baseline where tasks are killed to meet SLOs.
Based on these encouraging results, we are currently imple-
menting Amoeba inside the Hadoop framework. Measure-
ments of our current prototype show that Amoeba imposes
minimal overheads (≤ 3%) and speeds up jobs by 33%.

2. WHY IS ELASTICITY HARD?
We considered many strawman solutions for achieving

elasticity in DISC frameworks. However, intrinsic difficulties
in applying them preclude their use.

2.1 Controlling Task Sizes
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Figure 1: Seek overheads. Duration of a job with in-
termediate data of 16TB, as the data per reduce task
increases.

One approach to achieve job elasticity is simply to make
all task durations small and/or uniform. If task durations
are small, they vacate slots quickly and SLOs can be met us-
ing frequently freed slots. If task durations are uniform, then
SLOs can be revised to reflect that constraint; moreover, the
uniform wait time for all tasks satisfies some resource man-
agers’ constraints on fairness. One may claim that such an
approach achieves both high utilization by keeping slots oc-
cupied, and also high efficiency by never forcibly reclaiming
slots from tasks.

2.1.1 Small Task Durations

Small task durations can be achieved by assigning a small
amount of input data per task. Unfortunately, small I/O-
bound tasks impose intrinsic overheads, often aggravated in
proportion to the number of tasks.
Disk Seeks: One such overhead is the number of disk
seeks in reading the input data.1 It is common for tasks
of DISC applications to read from multiple input sources
(machines), e.g., reduce and join operations. Many such
simultaneous tasks reading small amounts of data can ex-
acerbate the effect of disk seeks on several hosts where its
inputs are present. Therefore, taking care that a task reads
large and contiguous chunks from every input source results
in its total input size becoming large.

To understand this effect, consider how a reduce task ob-
tains its input in a MapReduce computation: every map
task may produce input for any reduce task. For large jobs
composed of thousands of map tasks, reading even a small
amount of data from each map output rapidly inflates a re-
duce task’s input size. The only way to keep the input size
of tasks small is by paying in disk seeks. Note that large
jobs account for an absolute majority of cluster utilization
(and tasks) [14], so this dilemma cannot be side-stepped by
resorting to a probabilistic argument that rounds them out
of consideration.

We confirm the reality of this problem using a simple ex-
periment. We run a sample Hadoop job with 16TB of in-
termediate data between the map and reduce phases. As
the input per reduce task decreases from 4GB to 100MB,
the job’s duration increases by nearly 4× (Figure 1). Large
tasks are necessary to offset disk seek overheads, but they
are unsatisfactory for meeting SLOs.
Per-task Overheads: Notwithstanding disk seeks, small
tasks inflate per-task overheads. Every task incurs over-
heads of scheduling (at the scheduler and on the machine

1SSDs, despite improvement in both price and perfor-
mance, are unlikely to replace disks as the primary storage
medium [5, 15].



they run on) and startup. The centralized scheduler stores
state per task for management and monitoring purposes.
This includes slots allocated to jobs and performance mon-
itors for outlier mitigation [17, 24]. Recent studies have
shown that these per-task overheads outweigh the benefits
due to small tasks [27]. Finally, Zhou et al. show that com-
mon techniques to make reduce tasks small increases the size
of intermediate data transfers [18].

2.1.2 Uniform Task Durations

As small tasks are inefficient, perhaps one may make all
tasks uniform in size. Such uniform sizing ensures that even
if slots are not vacated quickly, every task waits the same
amount of time for a slot to be vacated, hence making it
fair. As before, adjusting input sizes is an intuitive way to
equalize task durations. Since we do not know about the jobs
beforehand, we check if the relation between task durations
and their input sizes is uniform across all Hadoop jobs in
Facebook’s production cluster.

We define the progress rate of a task to be its input size
divided by its duration. Let the progress rate of a job be
the median rate across all its tasks. Now we calculate the
coefficient-of-variation

(

stdev

mean

)

of progress rates across all
the jobs. A low value implies that task durations are easy
to predict given input sizes. Unfortunately, the coefficient-
of-variation of progress rates is 2.02 and 2.35 across all map
and reduce phases, respectively, indicating large difference
in execution rates.

While investigating techniques to predict progress rates
is beyond the scope of this paper, we do emphasize that it
is challenging in the presence of single-waved jobs [14] and
skewed computations [17, 30]. In light of the observations
in §2.1.1 and §2.1.2, we conclude that merely depending on
right sizing of tasks will not ensure high utilization, effi-
ciency, and SLO compliance.

2.2 OS Checkpoint Mechanisms
An alternate approach to achieving elasticity is through

traditional checkpointing mechanisms available in operat-
ing systems like suspending execution of running processes
(tasks) and storing their state for resumption at a later time.
However, to relinquish slots to other tasks, it is not sufficient
to store the state of the suspended task, which often have
heap sizes of multiple GBs, in memory. Doing so makes
the task’s memory unavailable for other tasks. The state of
the suspended task needs to be paged to disk. Practition-
ers have well documented that the performance of machines
along with their shared services (e.g., DFS slave processes)
are heavily degraded in the presence of such paging of mul-
tiple GBs of data, eventually triggering frequent machine
reboots [21, 9].

Further, to make use of slots available on other machines,
the state of the suspended task needs to be transferred across
the network. Such a transfer is both complicated as well as
resource-intensive. The cost of transferring the full image of
a task may trigger multiple GBs of additional network traf-
fic, significantly slowing down network flows of other jobs.
For these reasons, DISC frameworks do not support suspen-
sion and transfer of task execution state of running tasks.

3. Amoeba FOR ELASTICITY
Amoeba’s enables a job to dynamically adapt its resource

utilization based on the available cluster resources, with-

out wasting computation. Our approach is to use a check-
point/restart mechanism to dynamically change the number
of slots assigned to a job. That is, (1) assign available slots
to jobs , and (2) when there is contention, reclaim slots from
jobs by checkpointing their work.

Enabling such a checkpoint/restart mechanism requires
addressing two challenges. First, tasks must be checkpointed
only at those points where it is possible to complete their
remaining work without carrying state from the current ex-
ecution. Otherwise, the overhead of transferring arbitrarily
complex state (§2.2) will be significant and unpredictable.
Second, identifying such points even for tasks whose input
is consumed from different machines, necessitates a global
view. We address these challenges in §3.1 and §3.2, and then
describe their incorporation within DISC frameworks (§3.3
and §3.4).

3.1 Safe Points of Interference
Amoeba terminates a task’s execution at safe points and

then creates a new task to complete its remaining work. A
safe point for a task is any point in the task from where
the remaining work can be executed without requiring any
context from the current execution.

Tasks in DISC frameworks perform computations on non-
overlapping subsets of their input. The subsets are processed
independently in sequence. A subset is either a single record
or a set of records, and data in the subset share a key. The
MapReduce programming model [13] prohibits storing state
across keys. Therefore, a natural safe point for many DISC
operators is key boundaries, i.e., when all the processing for
a key is complete.

We explain this in the context of some common DISC op-
erators. Map operators take an input list of records and out-
put an intermediate key-value set of records. Because every
sublist is also an admissible partitioning of the job’s input
data, a map task can be split after every record. By way
of illustration, map tasks are typically composed on block
boundaries without consulting the contents of the input a

priori. Commonly, a map task will initialize its reader with
a file path, offset, and length, deferring record alignment to
the underlying format at runtime. Running the same job
on an identical file written with a different block size will
have the same output, but each map will process a differ-
ent sequence of records. By maintaining a memento that
records comparable information about the underlying state
of the reader, one can create a checkpoint as if the original
partitioning of the input data ended after the last processed
record.

Similarly, reduce operators are invoked on a group of
records in the intermediate set, all of which share the same
key (e.g., group-by).2 Join operators, again, work on a given
key across multiple sets of intermediate data. Hence, these
DISC tasks can be split and suspended when they cross key
boundaries. Whenever the task execution is resumed, pro-
cessing begins at the next key.

Based on this observation, we construct the following
lightweight, two-step checkpoint/restart mechanism. First,
the execution of a task is terminated at a key boundary. Its
output is saved and the next key which should be processed
is recorded as the task’s checkpoint. Second, a new task is
created and it starts execution from the next key identified

2In practice, input of reduce tasks are ordered by key (either
hash or sort order).



in the checkpoint. The new task is spawned whenever a slot
that meets the relevant constraints (e.g., locality) becomes
available.

To limit overheads, we do not preserve task state across
a checkpoint/restart. This is consistent with the MapRe-
duce programming model that does not span state across
key boundaries. Existing as well as new frameworks being
developed [26] also conform to this model. However, we are
currently in the process of extending Amoeba’s design to
those computational models that preserve some state across
keys.

3.2 Global View of Intermediate Data
Tracking safe points, i.e., key boundaries in name, is non-

trivial. As mentioned in §3.1, many DISC tasks (e.g., re-
duce and join) read their input from multiple sources si-
multaneously, where each may contain records in its target
key-space. To checkpoint a task, one needs to restore the
reader’s state globally across all its input sources.

One could leave all records at their origin and restore
the reader by remembering its position in all sources. Re-
grettably, the overhead involved increases in proportion to
the number of input sources (map tasks) if restored at the
reader; it also increases in proportion to the number of con-
sumers (reduce tasks) if all readers’ positions are saved at
each input segment’s origin.

Instead, we collect outputs from map tasks into a shim
layer that generates an index. Reduce tasks access the inter-
mediate data through an API that re-synchronizes the task
using the last-processed key. Our shim layer also performs
aggregation that improves the efficiency of the transfer into
the reduce, ameliorating some of the effects of skew in map
output (discussed in §3.4).

3.3 System Description
We now describe the design of our system that realizes

the ideas in §3.1 and §3.2. Figure 2 shows the system ar-
chitecture. DISC frameworks, conceptually, consist of two
components: a cluster-wide resource manager and an ap-

plication manager per job [8, 11]. The resource manager
handles allocation of slots to jobs based on priorities. The
application manager petitions the resource manager for slots
and schedules tasks for execution.

When a task begins execution, it first obtains its work as-
signment from the application manager. These correspond
to steps (1) to (4) in Figure 2. As task execution progresses,
the task periodically reports its progress to the application
manager. Map tasks send progress reports periodically af-
ter processing a specified number of records. Reduce/join
tasks send progress reports at the boundary between keys
(using the global view as described in §3.2), and it includes
information about the next key that will be processed by
the task. The application manager records this information
as part of the task’s checkpoint. The task’s execution is
complete either when its assigned work is processed com-
pletely or when the application manager requests the task
to terminate execution in response to a progress report.

Termination of a task happens in the presence of con-
tention, when resource assignments do not conform to clus-
ter scheduling invariants. Slots are taken from the appli-
cation manager that is using the most slots over the target
allocation. The resource manager tolerates some deviation
from its target allocations, to avoid frequent checkpointing

Application 
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1. Request 
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Figure 2: System architecture for implementing Amoeba’s
elasticity in multi-tenanted clusters. The centralized re-
source manager notifies the individual application man-
agers to relinquish compute slots based on cluster de-
mands.

and to allow for natural vacancies to replace resources, in
proportion to target shares of jobs.

To release a slot, an application manager responds to a
task’s progress report with a termination request. In re-
sponse, the task commits its output and terminates execu-
tion (as in §3.1). The slot is now available to the resource
manager for reallocation. In addition, the application man-
ager enqueues a new task for executing the remaining work
and petitions the resource manager for another slot alloca-
tion. These correspond to steps (a)—(d) in Figure 2 and
happens between steps (1) and (2). Subsequently, when the
resource manager grants it a slot, the application manager
schedules the new task.

A decision for the application manager is picking which

among the running tasks to checkpoint. This has ramifica-
tions on performance because checkpointing a task too often
magnifies scheduling overheads. Cluster schedulers typically
wait for machines to report free compute slots before assign-
ing them an unscheduled task. To avoid overwhelming the
scheduler, machines space their reports in time [4]. While
the lag in scheduling tasks is not significant for long-running
tasks, they can dominatinate small tasks’ runtime (§2.1.1).
In the current implementation, Amoeba prefers to check-
point the longest-running tasks. A detailed analysis of this
aspect along with its performance impact is underway.

The same mechanisms described above can be used to re-
partition the work assigned to running tasks when there is
idle or under-serviced capacity in the cluster. This is akin
to work-stealing in which the number of slots assigned to a
job is grown dynamically.

3.4 Implementation Status
We have developed a prototype that allows check-

point/restart for reduce tasks.3 Our implementation is
based on the design outlined in Figure 2. For obtaining
a global view of intermediate data, we use Sailfish, a
Hadoop-based MapReduce framework that we have devel-
oped recently [28]. In Sailfish, output of map tasks
are aggregated and augmented with an index on the keys.
The application manager uses this index to determine ev-
ery task’s work assignment (i.e., range of keys to process)

3The software developed for Amoeba has been open-
sourced [7].



in a data-dependent manner. Reduce tasks use the index
to efficiently retrieve only their portion of input from the
aggregated data (i.e., retrieve data by key).

We support checkpoint/restart of reduce task using the
following two modifications. First, we modify the reduce
task to send periodic progress reports to the application
manager (step (b) in Figure 2). In the current implemen-
tation, the progress reports are sent at key boundaries but
no frequent than 10 seconds apart. Second, we modified
the per-job application manager to (1) store the memento
for task progress, (2) force tasks to terminate execution by
checkpointing (step (c) in Figure 2), and (3) enqueueing new
tasks for the remaining work (step (d) in Figure 2). In addi-
tion, we also modified the resource manager to force per-job
application managers to relinquish slots when there is con-
tention (step (a) in Figure 2). When the new task starts, its
execution is like any other reduce task: it starts with steps
(3) and (4) in Figure 2 and then retrieves its input from the
aggregated data.

4. EVALUATION
We present the benefits of Amoeba using a trace-driven

simulator. In addition, we also report results from a prelim-
inary deployment of our prototype.

4.1 Trace-driven Simulation
We use a trace-driven simulator to replay one week of

Hadoop trace logs corresponding to Hadoop MapReduce
jobs from the Yahoo! and Facebook clusters. The base-
line for the Yahoo! and Facebook traces corresponds to the
policies of sacrificing utilization and efficiency—killing tasks
and limiting utilization to 70%— respectively. The overall
improvement in average completion time in the two traces
are 26% and 32%. Figure 3 shows the improvement across
jobs of different sizes.

In the Yahoo! workload, small jobs benefit more from
Amoeba’s elasticity. This is because they are more affected
by queuing delays, which can constitute a significant frac-
tion of their execution time. Queuing delays are amortized
for large jobs and that explains their lower gains due to
elasticity. However, large jobs account for most tasks in
the cluster [14] and hence a correspondingly high number of
killed tasks as well. Therefore they benefit the most in the
Facebook workload (by 58%). Tasks of small jobs are rarely
killed, so their gains are modest.

An interesting experiment is to evaluate the gains when
the tasks of only the large jobs (> 1500s) are checkpointed.
The rationale behind this is similar to the overheads for
checkpointing small tasks (§3.3). Tasks of large jobs are
likely to be long-running and hence checkpointing them min-
imizes overheads. Little is lost by not checkpointing tasks
of small jobs because, by virtue of the heavy-tailed distri-
bution of job sizes, they account for only a small fraction of
the tasks in the cluster [14].

4.2 Preliminary Deployment
We deploy our prototype (§3.4) on a 150-node cluster

at Yahoo!. Each machine has two quad-core Intel Xeon
E5420 processors, 16GB RAM, 1Gbps network interface,
four 750GB drives, and runs RHEL 5.6, and exposes six
compute slots. For evaluation, we use a production MapRe-
duce job which is used to build models for behavioral ad-
targeting, along with actual datasets used in production at
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Figure 3: Improvement in completion times with Amoeba

for the Yahoo! and Facebook Hadoop workloads. Ap-
plying Amoeba only to tasks of large jobs (> 1500s) well-
approximates the strategy where we checkpoint any task.
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Figure 4: Elasticity with Amoeba. The long-running job
checkpoints its running tasks and nearly instantly gives
up its slots whenever the periodic-job is submitted.

Yahoo!. The job involves a join operation over two multi-
TB datasets in which the job output is proportional to the
input (i.e., about 10TB of data).

We first quantify the overheads involved in check-
point/restart. In these experiments, the application man-
ager initially assigns 4GB of data per reduce task (based
on Figure 1). After N minutes of execution, the application
manager forces the task to checkpoint and terminate. A new
task is spawned for the remaining work and the same check-
point/terminate mechanism is recursively used until all the
data is processed. Results with N = 3, 5, 10 and 15 minutes
show that the overhead of checkpoint/restart on job com-
pletion time is 3% to 10% compared to the case where there
is no interruption.

We next use Amoeba’s lightweight elasticity to resolve con-
tentions between jobs. In this experiment, we have one long-
running job. Periodically, a new job is submitted to the clus-
ter. The periodic job is entitled to 80% of the slots in the
cluster. As Figure 4 shows, as soon as the periodic job en-
ters, the long-running job checkpoints its running tasks gives
up its slots, and the slots are shared in the right proportion.
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Figure 5: Job wastes no work when it yields slots. The
fraction of work completed monotonically increases, al-
beit at a reduced slope as a new job arrives.

When the periodic job leaves the cluster, the long-running
job expands to fill the cluster.

We highlight Amoeba’s efficiency by contrasting it with
an implementation that kills tasks of the long-running job
when the periodic job arrives. Figure 5a shows the mono-
tonic increase in progress rate of the long-running job with
Amoeba. There is no wasted computation when the job is
forced to give up slots, though progress slows as the job
gets fewer slots. In contrast, if tasks of the long-running
job are killed to accommodate another’s SLO, progress not
only slows, but it is also lost, as evidenced by the dips in
Figure 5b. Consequently, the job takes longer to complete
when its tasks are killed, as expected. The completion time
increases by 33%, and is close to the gains observed in the
simulations.

5. APPLICATIONS OF ELASTICITY
While the focus thus far was on applying elasticity to

bridge the trade-off between efficiency and utilization, we
intend to explore its applicability in other scenarios.
1. Fragmentation: Clusters are moving towards a model
that does not statically define the resources (processor,
memory etc.) associated with slots allotted to tasks. This
provides flexibility in accommodating the diverse require-
ments of tasks [8, 10]. A likely scenario in such settings is
fragmentation of resources, i.e., when the aggregate avail-
able memory in the cluster is large but no single machine
(or very few machines) contains sufficient memory to sched-
ule a task. When tasks have variable memory requirements,
the resource manager would keep track of available mem-
ory in every machine and allocate every task to a machine
that meets its memory requirement. Analogous to blocks
in disks, this leads to memory in the cluster also getting
fragmented.

We estimate the likelihood of memory fragmentation by
simulating the Facebook trace, which contains memory re-
quirements of tasks, on a cluster of 1,000 machines. For 51%
of the time, more than 90% of the machines have less than
4GB of free memory; this is calculated by subtracting the
memory being used by tasks from the available memory ca-
pacity of the machines. In fact, 37% of time, over 90% of
the machines do not have even 2GB of free memory.

Going forward, the variance among tasks in their memory
requirements is expected to increase. Coupled with location
constraints, fragmentation will only worsen. Amoeba natu-
rally lends itself to “compacting” memory by checkpointing
and moving tasks around to create sufficient free memory
on individual machines.

2. Data Skew: Tasks in a reduce phase are prone to seeing
skews in their input sizes. This is often due to poor parti-
tioning of keys without consider the underlying distribution,
reported to be significant in Bing’s cluster [17].

Amoeba’s elasticity can automatically handle such skews.
Tasks can be assigned arbitrary amounts of work initially. If
they are deemed to take too long to execute (due to skew),
they can be checkpointed/restarted with the appropriately
smaller sizes. Consequently, the framework becomes com-
pletely self-tuning. A simple version of such tuning was il-
lustrated in §4.2.
3. Speculative Executions: Amoeba can improve the
efficiency of speculative executions. Speculative copies are
used to mitigate the effect of outlier tasks [17, 24]. The spec-
ulative copies are identical to the original task, and hence
duplicate the work done thus far by them. This duplication
can be avoided using Amoeba’s ability to checkpoint partial
output of tasks and launch a speculative copy only for the
remaining work of outlier tasks.

This leads to more effective outlier mitigation. First, it
increases the probability of the speculative copy beating the
original. In fact, schemes like Mantri [17] launch a specula-
tive copy only if it is probabilistically guaranteed to beat the
original. Second, the savings in resources by not duplicating
work leaves more room to speculate on other outliers.

The idea of using checkpoints to increase efficiency of spec-
ulative tasks was also mooted by Condie et al. [29] but not
designed or implemented.
4. Decentralized Scheduling: Increase in sizes of clusters
and reduction in the duration of tasks has led to substan-
tial interest in decentralized scheduling models. What this
means is that resources in the cluster will be allocated in-
dependently by multiple individual schedulers (as many as
one per job), without coordination. This naturally leads to
greater likelihood of contention among tasks. For instance,
a scheduler might allocate its CPU-intensive task to a ma-
chine which is already executing another CPU-intensive task
alloted by another scheduler. For both efficient resolution
among such contending tasks as well as to avoid overload-
ing machines, it is desirable to be able to checkpoint/restart
tasks.

6. RELATED WORK
Prior work has leveraged specific workload characteris-

tics to meet SLOs without losing efficiency or utilization.
Scarlett’s [16] data replication leverages their skewed popu-
larity to avoid locality-based contentions. Scheduling tech-
niques [25, 20] leverage small and uniform task durations
to trade short-term SLO violation for efficiency. However,
these workload characteristics are not universal. For ex-
ample, the Yahoo! cluster has more data popularity skew
than the Bing cluster, and the Bing cluster has longer and
less uniform task durations than the Facebook cluster. In
contrast, Amoeba’s solution is generic and independent of
workload characteristics.

Cluster schedulers [23, 19] meet locality constraints of
tasks using an optimization problem that includes the cost
of migrating tasks, approximated as the elapsed duration of
the tasks. Amoeba’s lightweight elasticity would help accu-
rately estimate this cost.

Finally, cluster providers like Amazon EC2 offer Elastic
MapReduce [2] that helps jobs provision resources statically



at startup. In contrast, Amoeba dynamically adapts the
resource usage of a job during its execution.

7. ONGOING WORK
We are extending our implementation of Amoeba to sup-

port checkpoint/restart for map tasks as well. To make
the demonstrated advantages of this prototype more widely
available, we will integrate with the new generation of
Hadoop infrastructure [8]. Specifically, we will decouple the
intermediate data collection from the reduce phase and in-
troduce collator tasks into MapReduce workflows [6]. Colla-
tor tasks will aggregate the map outputs and gather statis-
tics on intermediate data to effect the lightweight elasticity
of Amoeba. Depending on the depth of the integration, col-
lator tasks may themselves be elastic, though one could im-
plement a variant of Amoeba that treats them as an optional
optimization step.

Finally, we are also exploring the “scale-up” aspects of
Amoeba. That is, to avoid statically sizing tasks, dynami-
cally scale-up the number of tasks in a job based on resource
ability. For instance, when slots become available, safely ter-
minate a long-running task and then launch multiple tasks
for the remaining work.
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