
ReGroup: Interactive Machine Learning
for On-Demand Group Creation in Social Networks

Saleema Amershi, James Fogarty, Daniel S. Weld

Computer Science & Engineering
DUB Group

University of Washington
{samershi, jfogarty, weld} @ cs.washington.edu

ABSTRACT

We present ReGroup, a novel end-user interactive machine
learning system for helping people create custom,
on-demand groups in online social networks. As a person
adds members to a group, ReGroup iteratively learns a
probabilistic model of group membership specific to that
group. ReGroup then uses its currently learned model to
suggest additional members and group characteristics for
filtering. Our evaluation shows that ReGroup is effective
for helping people create large and varied groups, whereas
traditional methods (searching by name or selecting from an
alphabetical list) are better suited for small groups whose
members can be easily recalled by name. By facilitating
on-demand group creation, ReGroup can enable in-context
sharing and potentially encourage better online privacy
practices. In addition, applying interactive machine learning
to social network group creation introduces several
challenges for designing effective end-user interaction with
machine learning. We identify these challenges and discuss
how we address them in ReGroup.

Author Keywords

Interactive machine learning, social network group creation,
access control lists, example and feature-based interaction.

ACM Classification Keywords

H.5.2 [Information interfaces and presentation (e.g., HCI)]:
User Interfaces.

General Terms

Algorithms, Design, Human Factors.

INTRODUCTION

Social networking sites present a conflict between our
desire to share our personal lives online and our concerns
about personal privacy [13, 33,37]. Well-known examples
of privacy blunders include oversharing embarrassing
photos with potential employers [19], accidently posting
intimate conversations [30], and being fired for publicly

criticizing a boss [4]. Major sites have therefore begun
advocating customizable friend groups as the latest tool for
helping us control with whom we share [27,31].

The currently-advocated approach to custom group creation
is to pre-categorize friends in advance of sharing decisions.
For example, Google+ requires friends be manually
organized into “Circles” before content can be shared with
them [31]. Katango [17] and Facebook’s “Smart Lists” [27]
attempt to aid group curation by automatically generating
potential groups based on a person’s social graph or
common features (e.g., inferred closeness, current city).
These automatically generated groups can then be manually
edited for correctness or to capture other preferences.

Pre-defined groups may suffice for filtering update streams
and news feeds, but usable security recommendations argue
that privacy controls for sharing content should operate in
context of that content [20,29,40,43]. This is because prior
research has shown that willingness to share varies widely
based on both content recipients and the content itself [26].
For example, a person’s definition of a “close friend” may
change when sharing a personal photograph versus inviting
people to a party. Furthermore, Jones and O’Neill [16]
recently showed that groups created for generic purposes
only partially overlap with in-context sharing decisions.
Ill-conceived groupings can therefore lead to information
leakage, over-restriction, or additional work to revise
pre-defined groups in-context.

We present ReGroup (Rapid and Explicit Grouping), a
novel system that uses end-user interactive machine
learning to help people create custom, on-demand groups in
Facebook. As ReGroup (Figure 1) observes a person’s
normal interaction of adding members to a group, it learns a
probabilistic model of group membership in order to
suggest both additional members and group characteristics
for filtering a friend list. ReGroup differs from prior group
member suggestion systems (e.g., Gmail’s “Don’t forget
Bob!” [11] and FeedMe [3]) in its ability to continually
update its membership model based on interactive user
feedback. As a result, ReGroup can tailor its suggestions to
the group a person is currently trying to create (instead of
being limited to making suggestions based on a predefined
and static notion of similarity or interest). Facilitating
on-demand creation of contextualized groups may help
encourage better privacy practices in social networks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI’12, May 5–10, 2012, Austin, Texas, USA.
Copyright 2012 ACM 978-1-4503-1015-4/12/05...$10.00.

This paper makes the following contributions:

• A new approach to social access control – using end-user
interactive machine learning to help people create custom

groups on-demand in the context of sharing decisions.

• A discussion of several new challenges for the design of
effective end-user interaction with machine learning

systems, as exposed in our application to social networks.

• Novel example and feature-based interaction techniques

for addressing the above design challenges in ReGroup.

• An evaluation of ReGroup compared to traditional
methods of on-demand group creation. Our quantitative
and qualitative analyses indicate that different techniques
are effective for different types of groups and therefore
integrating all techniques in online social networks can

support a wider range of desired groups.

REGROUP

ReGroup uses end-user interactive machine learning to help
people create custom groups on-demand. In this section, we
first use an example to illustrate how a person can create a
group with ReGroup. We then discuss the challenges
inherent to interactive machine learning for group creation
and how we address them in our design of ReGroup.

Example Usage Scenario

Ada wants to advertise a confidential research talk to
relevant friends at the University of Washington, so she
decides to use ReGroup to create a private group for the ad.
To start, she thinks of a friend she knows will be interested
in the talk, searches for them by name (via a search box, left
in Figure 1) and adds them to her group (Selected display,
top in Figure 1). ReGroup learns from this example and
then tries to help Ada find other friends to include. It

Figure 1. ReGroup uses end-user interactive machine learning to help people create custom, on-demand groups. As a person

selects group members (in the Selected display), ReGroup suggests additional members (in the Suggestions display) and suggests

group characteristics as filters for narrowing down a friend list (see five suggested filters at the top of the Filters display).

re-organizes her friend list to sort relevant friends to the top
of the Suggestions display (right in Figure 1). Ada now sees
several additional friends she wants to include. She adds
them to her group all at once by drag-selecting and then
clicking the Add Selected button (right in Figure 1). With
these additional examples, ReGroup learns more about the
group being created and again re-organizes Ada’s friends to
help her find more group members.

As ReGroup learns about the group Ada is creating, it also
presents relevant group characteristics she can use as filters.
For example, given the currently selected friends, ReGroup
believes Ada might want to include other people that live in
Washington, that have several mutual friends with her, or
that work at the University of Washington (top of Filters
display in Figure 1). Although not everybody Ada wants to
include works at the University of Washington (e.g., some
are students), she agrees that they all likely live in
Washington. She clicks the “Washington” filter, causing
ReGroup to remove friends who do not live in Washington.
This helps Ada by reducing the number of people she must
consider when finding friends to include in her group.

Ada continues interacting with ReGroup this way, explicitly
adding group members and filtering when necessary, until
she has included everyone to whom she wants to advertise.

Identifying Features

ReGroup’s ability to suggest group members is powered by
its interactive machine learning component. Machine
learning works by discovering patterns in examples. A
system is therefore strongly influenced by the quality of
information contained in the representations of those
examples (i.e., the features). We based our features on
related work on social networks (e.g., [11]). We also
conducted an online survey of Facebook and Google+ users
to identify common groups we could support. We
distributed the survey to our own Facebook and Google+
contacts, obtaining 69 responses (21 Facebook and 48
Google+) describing 244 customized groups (32 Facebook
and 212 Google+). Facebook and Google+ advocate
creating groups in advance, so the groups identified in our
survey may not correspond to groups people would create
on-demand (i.e., the composition of permanent groups may
differ from groups created in context). Nevertheless, these
gave a starting point from which to distill potential features.

Table 1 presents the 18 features currently used by ReGroup,
each with an example group the feature might help support.
In this research, we endeavored to support common groups
as part of demonstrating the potential for interactive
machine learning in social access control. Our features are
therefore not intended to be exhaustive.

Suggesting People while Preserving End-User Control

ReGroup’s group member suggestions are realized by a
Naïve Bayes classifier [5]. Each friend is represented by a

set of � feature-value pairs (Table 1). The probability of

each friend being a member of the group � is then
computed via the following Bayesian formulation:

���|��, �	, … , ��� = � ����, �	, … , ��|������
� ����, �	, … , ��|������′�����,��

where ����, �	, … , ��|�� is the likelihood of a friend with

feature values ��, �	, … , �� being a member of �, ���� is

the prior probability of any friend belonging to �, and the
denominator is the probability of seeing the set of feature
values in the data and serves as a normalizing constant.

The Naïve Bayes assumption considers each feature to be
conditionally independent given the class, reducing the
likelihood computation to:

����, �	, … , ��|�� = �����|��
�

���

where the probability of a group member having a

particular feature value, ����|��,�can be estimated by a
frequency count of the number of current group members
having that feature value over the total number of current
group members. We also use Laplace smoothing to improve
performance in the presence of limited training data.
Although the independence assumption is often violated in
real-world data, Naïve Bayes has been shown to work well
in many practical applications [5]. Naïve Bayes also
gracefully handles missing data and allows for a
straightforward interpretation of features, both important
aspects of ReGroup as will be discussed below.

ReGroup’s classifier is re-trained every time a person adds
friends to a group. ReGroup then reorders a person’s
remaining friends according to who is most likely to also
belong to the group as computed by the updated classifier.

Feature Description/Examples

Gender, Age Range “Sorority friends”, “People my age”

Family Member “People I’m related to”

Home City, State and

Country
“Friends from my hometown”

Current City, State,

Country
“Anyone I know who lives nearby”

High School, College,

Graduate School

“Anyone from my department at
school”

Workplace “CoWorkers”

Amount of

Correspondence

Number of Inbox, Outbox and Wall
messages sent and received.
“People I socialize with regularly”

Recency of

Correspondence

Time since latest correspondence.
“Friends I currently interact with”

Friendship Duration
Time since first correspondence [11].
“Friends I’ve known over 10 years”

Number of Mutual

Friends
“My group of closest friends”

Amount Seen Together

Number of photos/events a person
and friend are both tagged in.
“People I see on a regular bases”

Table 1. The 18 features currently used by

ReGroup’s interactive machine learning component.

To preserve end-user control during interaction with the
classifier, we made the design decision that people must
explicitly approve every group member, as opposed to
having ReGroup automatically add suggested friends.

Indirectly Training an Effective Classifier

Effective training of machine learning systems requires
both positive and negative examples. Therefore, a system
focused on training an effective classifier will be designed
to solicit explicit positive and negative examples (e.g., [1]).
In our case, however, a person’s primary goal is to create a

group. That is, the classifier is a disposable side effect and a
person is not concerned about its generalization.

To mitigate the effects of people primarily providing
positive examples, we designed ReGroup to obtain implicit
negative examples during interaction. When a person
selects a group member from an ordered list of friends,
ReGroup increases the probability that the skipped friends
(i.e., friends preceding the selection in the ordered list) are
not intended for the group. This is achieved by assigning
the preceding friends implicit negative labels in ReGroup’s
group membership computations. However, as this heuristic
is not always correct (e.g., a person’s gaze may be drawn to
a friend further down in the list without having viewed or
decided upon the preceding friends), an implicit negative
example contributes only a partial frequency count, α, in

ReGroup’s computation of ���|��. ReGroup also still
includes implicitly labeled friends in its list of suggestions.
We found that setting α=0.2*n, where n is the number of
times a friend is skipped, worked well in practice.

Unlearnable Groups

While experimenting with early versions of ReGroup, we
observed that skipped friends would sometimes continue
bubbling back up in the ordered list during group creation.
Further examination revealed that this occurred when (1) a
friend had all the characteristics of the group, as modeled
by the classifier, but (2) was skipped for some reason not
captured by the system (e.g., a person planning a surprise
party would obviously not invite the guest of honor).
Implicit negative examples are not powerful enough to
prevent repeated suggestion of such friends because of their
high similarity to the many positive examples. This
problem occurs in all machine learning systems when the
hypothesis language is insufficiently expressive to model
the true concept. However, it can be particularly frustrating
in an interactive system like ReGroup, as a person can
quickly grow tired of repeatedly skipping the same friend.

We addressed this with an explicit penalty term, �, in our
group membership estimation as follows:

���|�� = ���|�� ∗ ��

where � is the number of times a friend was skipped. Our

preliminary experiments showed that setting �=0.9
achieved the desired effect (i.e., it reduced the likelihood of
a skipped friend continuing to be highly ranked when
ReGroup could not learn the true concept).

Integrating Knowledge about Group Members
via Decision-Theoretic Filter Suggestions

Most end-user interactive machine learning systems focus
only on interaction with examples (e.g., [8, 10]). However,
people often have knowledge about the shared properties of
groups. We hypothesized that enabling interaction with
those features might accelerate the group creation process.
We chose to realize end-user interaction with features in
ReGroup using faceted search [15], a popular method for
helping people find items in collections (e.g., [46]). With
faceted search, people find items by filtering a collection
based on feature values. ReGroup provides two ways for
people to filter friends by feature values:

• Via a suggested list of five top feature value filters
(top of Filters display, left in Figure 1).

• Via a static, hierarchical list of all feature value filters
(bottom of Filters display, left in Figure 1).

Previous methods for ordering filters have used metrics like
hit count [15] or query keyword similarity [46]. However,
none of these are appropriate for our domain. We therefore
formulate the problem decision-theoretically. Intuitively,
we want ReGroup to suggest filters that will reduce effort
required during group creation. A suggested filter must

therefore represent the intended group well (i.e.,�����|���
must be high). However, this alone does not guarantee that
a filter will prune unwanted friends. We therefore combine

this with the expected utility of a filter as follows:

����� = ����|��� ∗ ������ !"��# "��$���
Here, we use information gain to approximate the potential
time savings of activating a filter [25]. We use this
formulation in choosing the top five filters to suggest, as
well as in ordering feature values within the static list.

Missing Data

Missing data, which can lead to unpredictable behavior in
machine learning systems, is rampant in the domain of
online social networks. People choose not to supply
information, have strict privacy settings, or are inconsistent
with their online activity. The Naïve Bayes classifier
gracefully handles missing data by ignoring features with
missing values when computing group membership
probabilities. However, missing data can still adversely
impact the usefulness of filters by leading to incorrectly
filtered friends (e.g., when filtering on “Seattle”, a friend
who lives in Seattle might be filtered because they have not
supplied this to Facebook) or incorrectly preserved friends
(e.g., when filtering on “Seattle”, retaining a friend who
lives in Austin but has not supplied this to Facebook).

ReGroup attempts to estimate missing values by creating
additional feature classifiers for predicting missing values
conditioned on all other available features. Then, when
applying a filter, ReGroup only eliminates friends who are
guaranteed to be ineligible (i.e., have provided some value
other than the filter value). For friends with missing data,
ReGroup indicates its uncertainty by displaying a question

mark under their name (see Figure 1). If a person hovers
over a question mark, ReGroup displays a tooltip showing
its guess for that friend’s corresponding feature value.
ReGroup thus avoids incorrectly eliminating friends while
reducing irritation by explicitly displaying its guesses.

Implementation Details

ReGroup is implemented using Facebook’s Application
Platform [7] and a Firefox Greasemonkey script [12].
ReGroup uses Facebook’s Application Platform to access a
person’s relevant information (see Table 1), while the
Greasmonkey script allows ReGroup to run within a
person’s own Facebook account. ReGroup is not publicly
available (i.e., only our study participants could access the
Facebook Application and use the Greasemonkey script
installed on the study computer). ReGroup accessed a
participant’s Facebook information only after they provided
explicit and informed consent and only for enabling its
interface, staying within Facebook’s Terms of Service.

EVALUATION

We conducted an evaluation to explore the tradeoffs
between end-user interactive machine learning for
on-demand custom group creation and Facebook’s current
approach of allowing manual selection from an alphabetical
list or searching by name [39]. We also wanted to compare
a design including our feature-based interaction with a more
typical design using only example-based interaction.

Interface Conditions

We evaluated the following interfaces:

• Alphabet. A person can search by name or scroll through
an alphabetical list to find friends. This is equivalent to

Facebook’s current on-demand group creation process.

• Example-Only. Each time a person adds a friend to the
group, the list of friends is reordered based on ReGroup’s
current estimation of group membership probability.

People can also still search for friends by name.

• Example-Attribute. The full ReGroup design, enhancing
the Example-Only with our decision-theoretic technique
for feature-based interaction.

Design and Procedure

We ran a within-subjects study, counterbalancing order of
interface conditions using a Latin square design. At the
beginning of the study, we told participants they would be
testing new tools for helping people create custom groups
in Facebook. We also explained the tools would work in
their own Facebook accounts and that they would be testing
the tools by creating groups of their own friends.
Participants were then informed about what data would be
accessed and how it would be used. We continued only
after they provided written consent and granted our
Facebook Application permissions to access their data.

Next, prior to seeing any interface, participants were asked
to think of six groups they could create during the study.
We chose this approach to ensure groups were meaningful,

as assigned groups may not correspond to distinctions a
person would make among their friends. When thinking of
groups, participants were instructed to imagine they were
about to post a new comment or share a new photo and only
wanted to share it with a select group of friends. We also
provided them with a list of ten example groups based on
frequent responses to our online survey (e.g., “home town
friends”, “close friends”) to help them decide. Resulting
groups ranged from typical (e.g., “Family”, “CoWorkers”)
to more unique and nuanced (e.g., “Older Faculty
Members”, “People I Care About”). We also asked
participants to estimate group size (“small”, “medium” or
“large”). The experimenter then sorted groups by estimated
size and assigned them to conditions in order (thus roughly
balancing groups across conditions by size).

The experimenter then demonstrated ReGroup (using the
full Example-Attribute interface) with the experimenter’s
own Facebook account. Participants were told they would
use three variations of the ReGroup interface. Before each
condition, the participant practiced with the corresponding
interface by creating a simple gender-based group. After the
practice, participants used the interface condition to create
two of their groups (they were not told which groups they
would create until they were about to create them). To
avoid exhausting participants, we limited each group to a
maximum of 4 minutes (we did not inform participants of
this limit, but simply asked them to stop if they reached it).

All interface actions were time-stamped and logged. All
participant information and logged data was stored
anonymously, using unique identifiers, on a secure server
accessible only by the researchers. After each group,
participants completed a short questionnaire containing
5-point Likert scales (1=strongly disagree, 5=strongly agree)
about the group they just created (e.g., “I was happy with
the group I just created”). At the end of the study,
participants filled out a final questionnaire to comment on
their overall experience and compare the interfaces
(e.g., “Rank the versions to indicate which was your
favorite”). The study lasted 1 hour and participants were
given a $20 Amazon gift certificate for their participation.

Participants and Data

Twelve people (four female, ranging in age from 18-34)
were recruited via a call for participation sent to several
university mailing lists. As a result, all of our participants
were technically savvy, but ranged from undergraduates to
staff members from a variety of disciplines (e.g., Computer
Science, Psychology, Design). We required participants to
have an active Facebook account in use for at least one year
and to have at least 100 friends. This was to help ensure
enough activity was available to enable ReGroup’s
suggestions. As expected, participants varied in their
composition and number of friends (mean=385.4, min=136,
max=781) and their Facebook activity (ranging from
every day to a few times per month). On average, our
participants also had 36.3% missing data with respect to
ReGroup’s features.

RESULTS

We performed all of our log and Likert scale data analyses
using a nonparametric repeated measures analysis of
variance, after aligning the data according to the aligned

rank transform [44] to preserve interaction effects due to
having participants create two groups per condition. We
also performed post-hoc pairwise comparisons when a
significant effect was observed. To analyze our final
ranking questions, we used a randomization test of
goodness-of-fit [23] which is more robust against smaller
sample sizes than a standard Chi-Square test. For each test,
we ran 10,000 Monte Carlo simulations. Tables 2 and 3
show the per-condition means and standard deviations for
all metrics used in our log and Likert scale data analyses,
respectively. Table 3 also shows the number of participants
choosing each condition for each of our ranking questions.
We discuss all of our quantitative analyses in the context of
our qualitative observations and feedback from participants.

We analyze our study data in terms of the overall time
taken and final group sizes, the speed and effort of selecting
group members, and interface element usage. Note that we
cannot evaluate group accuracy because no adequate
ground truth is available or obtainable. Asking participants
to re-create Facebook or Google+ groups could bias their
notion of those groups. Alternatively, asking participants to
verify group completeness would require exhaustive
labeling (recognized as error-prone [38] and analogous to
list scrolling in the Alphabet condition).

Final Times and Group Sizes

Overall, participants created 72 groups with a total of 2077
friends. Examining the Final Time taken to create groups,
our analysis shows a significant effect of interface condition
(F2,55=6.95, p≈.002). Post-hoc pairwise analyses reveal that
participants using the Alphabet interface took significantly
less time to create groups than when using both the
Example-Only (F1,55=5.93, p≈.018) and Example-Attribute

(F1,55=13.4, p≈.0006) interfaces. There was no difference in
Final Time between Example-Only and Example-Attribute

conditions. One explanation for participants taking less time
in the Alphabet condition is that both the reordering
conditions (Example-Only and Example-Attribute) required
additional time to update the display when reordering or
filtering. Another contributing factor could be that
participants in the Alphabet condition often attempted to
recall friends by name to avoid scrolling through their
entire list of friends (e.g., “I was surprised how useless

alphabetical ordering is, but keyword search was very

useful”). This may have resulted in people forgetting to
include some friends and stopping early. Interestingly,
participants who resorted to scrolling through the full list
often felt like they missed people (e.g., “umm, I guess

that’s it”, “there’s probably more, but oh well”). One
participant also explicitly commented “It’s too easy to

forget about people when it’s ordered alphabetically.”

Difficulty recalling friends in the Alphabet interface could
have resulted in the shorter Final Times in that condition.
However, one would then also expect to see larger Final

Group Sizes in the reordering conditions because of their
ability to surface relevant people, favoring recognition over
recall (e.g., “Reordering makes it much faster than

alphabetical because it reminds you of people without

having to do an exhaustive search” and “Reordering helps

me quickly pick friends in the first rows. Filters keep me

from frequent scrolling”). However, our analysis showed
no significant difference in Final Group Size across
conditions. Further analysis showed the presence of a
ceiling effect in all conditions, suggesting that participants
were often cut short of the time they needed to complete
their groups, which could account for the lack of difference
in Final Group Size. This effect was also more pronounced
in the reordering conditions (16.7%, 33.3% and 45.8% of
interactions were cut short in the Alphabet, Example-Only,
and Example-Attribute conditions, respectively).

Speed and Effort in Selecting Group Members

To compare the time between group member selections, we
had to account for the fact that participants could add
friends individually or in bulk (i.e., a multi-select action). In
the case of a multi-select, we assigned the time between the
action and the previous group member selection to the first
friend in the multi-selection and assigned a time of zero to
the rest of the friends. We did not see an effect of interface
condition on Mean Select Time. We did however see a
difference in SD Select Time (F2,55=7.78, p≈.001), with
post-hoc pairwise comparisons showing significant or
marginal differences in all cases: Alphabet was less than
Example-Only (F1,55=2.83, p≈.09) and Example-Attribute

 Alphabet
Example-

Only

Example-

Attribute

Final Time* 163.0/63.4s 196.9/56.8s 216.0/35.8s

Final Group Size 25.3/24.8 34.0/40.6 27.2/22.1

Mean Select Time 8.6/3.9s 13.9/16.3s 15.9/16.5s

SD Select Time* 9.4/6.5s 13.5/8.5s 19.7/15.1s

Mean Position* 171.8/87.2 58.1/78.9 38.5/48.8

SD Position* 101.7/56.1 41.1/33.3 40.5/41.1

Single Selections 18.0/27.0 8.5/6.2 7.9/5.1

Multi-Selections* 0.4/0.8 2.8/2.9 2.8/3.0

Search-Selections 4.3/4.7 2.1/2.7 2.0/2.1

Table 2. Mean/SDs of all metrics used in our log data

analyses. *’s indicate a significant effect was observed.

 Alphabet
Example-

Only

Example-

Attribute

Happiness 3.9/0.9 3.9/1.1 4.0/0.7

Easiness* 2.6/1.0 3.2/1.2 3.3/0.8

Quickness* 2.3/1.0 3.0/1.2 3.4/1.0

Favorite* 1 0 11

Best Helped* 3 1 8

Table 3. Likert mean/SDs (1=strongly disagree, 5=strongly

agree) and ranking (number of participants) responses.

Metrics with *’s indicate a significant effect was observed.

(F1,55=15.5, p≈.0002), and Example-Only was less than
Example-Attribute (F1,55=5.07, p≈.03).

Although we did not see an effect of condition on Mean

Select Time, the average Mean Select Time was smallest in
Alphabet (see Table 2). This is partially an artifact of the
time needed to update the display in the reordering
conditions. In Example-Attribute, a display update can also
occur as a result of a filtering action. As this confounds our
analysis of Select Time, we decided to measure the position
in the display of each group member immediately before
selection as a proxy for effort level. That is, if position is
low, a friend was closer to the top of the display and
therefore required less effort to locate. We saw a significant
effect of condition on Mean Position (F2,55=39.1, p≈.0001),
with post-hoc pairwise comparisons showing that the Mean

Position in Alphabet was significantly greater than in both
Example-Only (F1,55=47.8, p≈.0001) and Example-Attribute
(F1,55=67.7, p≈.0001). We also saw a significant difference
in consistency of position as measured by SD Position

(F2,55=19.6, p≈.0001), again with SD Position being
significantly greater in Alphabet compared to both
Example-Only (F1,55=2.81, p≈.0001) and Example-Attribute
(F1,55=31.8, p≈.0001). Lower positions indicate that people
had to scroll less to search for friends in the reordering
conditions because these conditions sorted potential group
members closer to the top of the display for easy
recognition and access. As expected, the Mean Position of
selected friends in the Alphabet condition was roughly half,
44.6%, of the average number of Facebook friends of our
participants and their SD Position was highly varied
because group members were often evenly distributed
throughout the entire alphabetical list.

Our questionnaire results provide additional evidence of
reduced effort in the reordering conditions. Analyses of our
Likert scale questions show an effect of condition on
perceived levels of Easiness (F2,55=4.33, p≈.018), with the
both the Example-Only and Example-Attribute interfaces
being perceived as easier to use than the Alphabet interface
(F1,55=5.74, p≈.02 and F1,55=7.18, p≈.01, respectively).
Similarly, we found a significant effect of condition on
perceived Quickness (F2,55=6.63, p≈.003) in creating
groups, again with Example-Only and Example-Attribute

interfaces being perceived as quicker than Alphabet

(F1,55=5.80, p≈.02 and F1,55=12.74, p≈.0008, respectively).
We saw no difference in terms of perceived Easiness or
Quickness between Example-Only and Example-Attribute.
Perceived Easiness and Quickness in the reordering
conditions is likely due to these interfaces automatically
surfacing relevant friends (e.g., “Sometimes it really looked

as if the system was reading my mind!”).

Behavioral Differences and Feature Usage

In all interfaces, participants could select friends to include
one at a time (Single Selections), several at a time
(Multi-Selections), or by searching for them by name
(Search-Selections). Our participants used all of these

features in each condition, however they searched for
friends by name and added friends one by one less often in
the reordering conditions compared to the Alphabet

condition. In addition, we found a significant effect of
condition on the number of Multi-Selections (F2,55=10.9,
p≈.0001) with the Example-Only and Example-Attribute

conditions both showing increased Multi-Selections

compared to the Alphabet condition (F1,55=17.4, p≈.0001
and F1,55=15.4, p≈.0002, respectively). Increased
Multi-Selections and fewer Single and Search-Selections in
the reordering conditions is likely due to these interfaces
making friends easier to add as a group by sorting relevant
friends to the top of the display and filtering out irrelevant
friends (in Example-Attribute).

Our logged data also showed that participants used the
suggested and static filters when they were available (in
Example-Attribute). Participants selected Suggested Filters
1.9 times on average (SD=1.3), selected Static Filters 0.9
times on average (SD=1.3), and Unselected Filters that they
had previously selected 2.3 times on average (SD=2.8). Our
observations showed that participants sometimes used the
filters in clever and unexpected ways, such as selecting
them temporarily to find a certain set of friends and then
unselecting them to find others. One participant commented
that the “Filters helped me guide the tool”. Other comments
indicate that the suggested filters served as an explanation
of how the system was working (e.g., “The filters helped

me understand what patterns the tool was discovering, and

thus helped understand the tool’s behavior”).

Discussion

Overall, our evaluation showed that different interfaces
worked well for different kinds of groups (e.g., “[My

favorite version] depended on the group I was creating”).
We observed, and participants reported, that the Alphabet
condition appeared to work well for small groups whose
members could be easily recalled by name (e.g., family
members with the same name, co-authors of a paper, and
members of a cross-country team). In contrast, the
reordering conditions worked better for larger and more
varied groups (e.g., childhood friends, local friends or
friends from particular regions of the world, college friends,
former and current colleagues, people in a particular field of
work, and friends with a professional relationship). One
participant noted that for “most of the small groups that I

wanted to create, I already knew the list in my head [so]

alphabetical was easiest. However, for larger groups,

reordering was most efficient.” A likely result of this is that
we found no significant difference in terms of overall
participant Happiness with their final groups created in
each condition.

Although a significant majority of our participants rated the
full ReGroup interface (i.e., Example-Attribute) as their
overall Favorite (χ2=18.5, p≈.0001) and felt that it Best

Helped them create groups (χ2=6.5, p≈.04), participants did
become frustrated when ReGroup was unable to model the

group well, as this essentially resulted in having to search
through an unordered list for group members (e.g.,
“Ordering is useful for some lists, annoying for others” and
“though I liked the filters, I think they didn’t work in some

cases”). As with all machine learning based systems, the
ability to model a concept is highly dependent upon the
quality of the underlying data (e.g., the expressiveness of
the features and the availability of data). Interestingly, some
participants could tell why ReGroup was not working well
in some cases (e.g., “Groups that all have something in

common that is tracked by Facebook (i.e., college) were

easier to create than a group of people who are seemingly

unrelated based on Facebook information.”).

RELATED WORK

Privacy continues to be a concern in online social networks
[13,33,37]. Traditional mechanisms for specifying social
access control lists have been too inexpressive (e.g.,
pre-defining lists of “Friends” or “Everyone” in Facebook)
or tedious and error-prone (e.g., manual selection from an
alphabetical list of friends [28,38]). This has motivated
research on alternative methods. For example, Toomim
et al. examine guard questions testing for shared knowledge
[41] and McCallum et al. examine automatically inferring
access control roles from email communication [24].

Recent interest has developed in automatic detection of
communities within social networks (e.g., [16,17,22,27]).
The assumption in such work is that detected communities
will overlap with a person’s eventual sharing needs.
SocialFlows [22] automatically creates hierarchical and
potentially overlapping groups based on email
communication. These groups can then be edited via direct
manipulation and exported to Facebook and Gmail.
Katango [27] and Facebook’s “Smart Lists” [17] feature
also follow this model by providing a set of automatically
generated friend groups which can then be manually edited
for correctness. Jones and O’Neill [16] recently evaluated
the feasibility of this approach by comparing manually
defined groups with automatically detected network
clusters. They found their automatically-detected clusters
only overlapped with manually-defined groups by 66.9% on
average, suggesting a need for considerable manual
refinement. After following up with their participants, they
further discovered that predefined groups only partially
correspond to in-context sharing decisions (77.8-90.8%
overlap with manually defined groups and only 33.8-76.1%
overlap with automatically generated groups). In contrast,
our focus on custom, on-demand group specification via
end-user interactive machine learning is better aligned with
usable security recommendations [20,29,40,43].

Prior work facilitating on-demand sharing or access control
in social networks includes Gilbert and Karahalios’s
research on modeling relationship or tie strength between
individuals based on network structure, communication,
and shared profile data [11]. Predicted tie strength could
potentially inform privacy levels for protected content. In

contrast to modeling relationships, Bernstein et al.’s
FeedMe system [3] models user interest using term-vector
profiles in order to recommend people with which to share
particular pieces of content. Our work differs from these in
that ReGroup iteratively learns a model based on end-user
provided examples and feedback. By iteratively updating
the underlying model, ReGroup can tailor its group member
recommendations to the specific group a person is currently
trying to create. More similar to our approach of defining
groups by example is Gmail’s “Don’t forget Bob!” feature,
which recommends additional email recipients based on a
few seed contacts and a social graph constructed from
previous email [34]. However, ReGroup provides more
control over its suggestions by continuing to iteratively
update its underlying model based on further examples.

Our work also contributes to recent research on designing
end-user interactive machine learning systems (e.g., [8,10]).
Most similar to our work is Fang and LeFevre’s interactive
machine learning-based privacy wizard for online social
networks [9]. Their wizard employs active learning to
construct a privacy classifier that maps item-friend pairs to
allow or deny actions. ReGroup differs in that we use
end-user interactive machine learning as a tool for helping
people select members of a group rather than for creating a
robust classifier. As a result, ReGroup’s design aims to
balance end-user flexibility and control with speed, as
opposed to an active learning approach that prioritizes
speed at the potential expense of user experience [2].
Furthermore, ReGroup preserves end-user desired control
of group membership [14] by requiring explicit approval of
group members instead of delegating control to a classifier.

Defining groups via member examples and interaction with
group characteristics is related to work on example and
feature-based feedback in interactive machine learning
systems [6,32,45]. Each of these explored the utility of
feature or example-and-feature-based feedback for creating
document classifiers. Wong et al. [45] allowed end-users to
explicitly define relevant features by highlighting words
used to update a classifier model. Other work [6,32] has
taken an active learning approach to soliciting end-user
labels of features and examples. Our approach differs in
that we do not solicit feature-level feedback for the purpose
of training a classifier. Rather, we enable feature interaction
for the purpose of helping people search for relevant
examples. Our approach uses a novel technique of
integrating human knowledge of features into the
interactive machine learning process through filtering on
group characteristics. This makes our work more similar to
work on faceted search and interaction [15].

Secord et al. [35] explored example and facet-based
interaction for creating collections of music (i.e., playlists).
In their system, end-users could both view songs related to
given examples or enter textual queries (e.g., “lots of rock”)
that were then mapped to facet values (e.g., genre=rock)
and used as constraints on song recommendations. Their

rationale for free form, text-based facet interaction was that
songs have potentially hundreds of facets and traditional
static presentations of facets would be too cumbersome for
interaction. The social network domain can also have an
overabundance of facets, however our approach is to
highlight and rank facets highly relevant to the intended
group. This approach favors recognition of relevant facets
instead of relying upon recall, which can be particularly
useful when facets are vague or difficult to define.

Previous approaches to facet ranking for search result
exploration have based ranking on hit count [15], query
keywords [46], query logs and click through data [42], or
user models defined by explicit ratings of documents [18].
We base ranking on statistical regularities of the currently
selected group members. Most similar to our approach is Li
et al.’s Facetedpedia [21], which extracts and ranks facets
based on the top results of a keyword search. However,
their ranking is based on the navigation cost of reaching the
top results and therefore serves more as a sense-making tool
rather than a tool to search for additional items.

CONCLUSION AND FUTURE WORK

This paper presented ReGroup, a novel system that employs
end-user interactive machine learning to help people create
custom groups on-demand in online social networks. Our
evaluation showed that different group creation techniques
helped in creating different kinds of groups. For example,
the traditional search-by-name approach is efficient for
small, well-defined groups where members are easy to
recall by name. ReGroup’s support for recognition over
recall, embodied by both its group member and filter
suggestions, helps for larger and more varied groups.
Therefore, we advocate integrating ReGroup’s novel
techniques with traditional methods used in online social
networks to support a wider range of potential groups.

This paper also discussed the design challenges associated
with interactive machine learning in social access control
and detailed how we addressed these challenges in
ReGroup. One challenge was in addressing unlearnable
groups, typically the result of missing information.
Although we attempted to address this issue with our
technique for group member prediction, it still caused some
frustrations during our evaluation. Additional features
should improve ReGroup’s performance, but missing data
is inherent to social networks. Future work might therefore
aim to detect such cases and degrade gracefully. Another
design decision was to focus end-user attention on creating
groups, rather than on training a robust classifier. However,
creating a classifier as a by-product of group creation could
enable automatic group maintenance as relationships
change over time. In the future we hope to evaluate
ReGroup’s classifiers for group maintenance and to design
additional interaction techniques to support this task.

ACKNOWLEDGMENTS

We thank Michael Toomim for his thoughtful insights and
Jacob O. Wobbrock and Leah Findlater for their guidance

on our analyses. This work was supported in part by the
National Science Foundation under awards IIS-0812590,
IIS-1016713, and OAI-1028195, by Office of Naval
Research award N00014-06-1-0147, by the WRF / TJ Cable
Professorship, and by a Google Faculty Research Award.

REFERENCES

1. Amershi, S., Fogarty, J., Kapoor, A. and Tan, D.
Overview-Based Example Selection in Mixed-Initiative
Interactive Concept Learning. In Proc. UIST 2009,

ACM Press (2009), 247-256.

2. Baum, E.B. and Lang, K. Query Learning can work
Poorly when a Human Oracle is Used. In Proc. IJCNN

1992, IEEE Computer Society (1992), 609-614.

3. Bernstein, M., Marcus, A., Karger, D.R. and Miller, R.
C. Enhancing Directed Content Sharing on the Web. In
Proc. CHI 2010, ACM Press (2010), 971-980.

4. Chen, S. Can Facebook get you Fired? Playing it Safe in
the Social Media World. Nov. 10, 2010.
http://articles.cnn.com/2010-11-10/living/facebook.fired
.social.media.etiquette_1_social-media-worker-posts-wo

rkplace-complaints.

5. Domingos, P. and Pazzani, M. On the Optimality of the
Simple Bayesian Classifier under Zero-One Loss.

Machine Learning 29, (1997), 103-130.

6. Druck, G., Settles, B. and McCallum, A. Active learning

by labeling features. In Proc. EMNLP 2009, 81-90.

7. Facebook Application Platform.

http://developers.facebook.com/

8. Fails, J.A. and Olsen, Jr., D.R. Interactive Machine

Learning. In Proc. IUI 2003, ACM Press (2003), 39-45.

9. Fang, L. and LeFevre, K.. Privacy Wizards for Social
Networking Sites. In Proc. WWW 2010, ACM Press
(2010), 351-360.

10. Fogarty, J., Tan, D., Kapoor, A., and Winder, S.
CueFlik: Interactive Concept Learning in Image Search.

In Proc. CHI 2008, ACM Press (2008), 29-38.

11. Gilbert, E. and Karahalios, K. Predicting Tie Strength
with Social Media. In Proc. CHI 2009, ACM Press

(2009), 211–220.

12. Greasemonkey. http://www.greasespot.net/

13. Gross, R. and Acquisti, A. Information Revelation and
Privacy in Online Social Networks. In Proc. WPES

2005, ACM Press (2005), 71-80.

14. Halliday, J. Facebook Changes See the Social Network
Trying to be More Social. Sept. 21, 2011.
http://www.guardian.co.uk/technology/pda/2011/sep/21/

facebook-changes-social-network.

15. Hearst, M. Design Recommendations for Hierarchical
Faceted Search Interfaces. SIGIR Workshop on Faceted

Search 2006, ACM Press (2010).

16. Jones, S. and O'Neill, E. Feasibility of Structural Network
Clustering for Group-Based Privacy Control in Social

Networks. In Proc. SOUPS 2010, ACM Press (2010).

17. Kincaid, J. Kleiner-Backed Katango Organizes Your
Facebook Friends into Groups for You. July 11, 2011.
http://techcrunch.com/2011/07/11/kleiner-backed-
katango-automatically-organizes-your-facebook-friends-

into-groups-for-you.

18. Koren, J., Zhang, Y. and Liu, X. Personalized
Interactive Faceted Search. In Proc. WWW 2008, ACM

Press (2008), 477-486.

19. Korkki, P. Is Your Online Identity Spoiling Your
Chances? Oct. 9, 2010.

http://www.nytimes.com/2010/10/10/jobs/10search.html

20. Lederer, S., Hong, J.I., Dey, A.K., and Landay, J.A.
Personal Privacy through Understanding and Action:
Five Pitfalls for Designers. Personal Ubiquitous

Computing 8, 6 (2004), 440-454.

21. Li, C., Yan, N., Roy, S.B., Lisham, L. and Das, G.
Facetedpedia: Dynamic Generation of Query-Dependent
Faceted Interfaces for Wikipedia. In Proc. WWW 2010,

ACM Press (2010), 651-660.

22. MacLean, D., Hangal, S., Teh, S.K., Lam, M.S. and
Heer, J. Groups Without Tears: Mining Social
Topologies from Email. In Proc. IUI 2011, ACM Press

(2011), 83-92.

23. Manly, B.F.J.Randomization, Bootstrap and Monte

Carlo Methods in Biology, 2
nd

 ed. Chapman & Hall,
NY, 1997.

24. McCallum, A., Wang, X. and Corrada-Emmanuel, A.
Topic and Role Discovery in Social Networks with
Experiments on Enron and Academic Email. Journal of

Artificial Intelligence Research 30, 1 (2007), 249–272.

25. Mitchell, T. Machine Learning. McGraw Hill, 1997.

26. Olson, J.S., Grudin, J. and Horvitz, E. A Study of
Preferences for Sharing and Privacy. Ext. Abstracts CHI

2005, ACM Press (2005), 1985-1988.

27. Ortutay, B. Facebook to Organize Friends in ‘Smart
Lists’. Sept. 13, 2011.
http://www.usatoday.com/tech/news/story/2011-09-

13/facebook-smart-lists/50389154/1.

28. Pachal, P. Google Circles: The Dumbest Thing About
Google+. June 29, 2011.
http://www.pcmag.com/article2/0,2817,2387808,00.asp.

29. Palen, L. and Dourish, P. Unpacking "Privacy" for a
Networked World. In Proc. CHI 2003, ACM Press

(2003), 129-136.

30. Parker, A. Congressman, Sharp Voice on Twitter, Finds
It Can Cut 2 Ways. May, 30. 2011.
http://www.nytimes.com/2011/05/31/nyregion/for-rep-

anthony-weiner-twitter-has-double-edge.html.

31. Pogue, D. Google+ Improves on Facebook. July 13, 2011.
http://www.nytimes.com/2011/07/14/technology/person

altech/google-gets-a-leg-up-on-facebook.html.

32. Raghavan, H. and Allan, J. An Interactive Algorithm for
Asking and Incorporating Feature Feedback into
Support Vector Machines. In Proc. SIGIR 2007, ACM

Press (2007), 79-86.

33. Rosenblum, D. What Anyone can Know: The Privacy
Risks of Social Networking Sites. IEEE Security &

Privacy 5, 3 (2007), 40-49.

34. Roth, M. Ben-David, A., Deutscher, D., Flysher, G.,
Horn, I., Leichtberg, A., Leiser, N., Matias, Y. and
Merom, R. Suggesting Friends using the Implicit Social

Graph. In Proc. KDD 2010, ACM Press (2010), 233-242.

35. Secord, A., Winnemoeller, H., Li, W. and Dontcheva,
M. Creating Collections with Automatic Suggestions
and Example-Based Refinement. In Proc. UIST 2010,
ACM Press (2010), 249-258.

36. Settles, B. Closing the Loop: Fast, Interactive
Semi-Supervised Annotation with Queries on Features

and Instances. In Proc. EMNLP 2011, (2011), 1467-1478.

37. Sheehan, K. Towards a Typology of Internet Users and
Online Privacy Concerns. The Information Society 18,

(2002), 21-23.

38. Siegler, M. Zuckerberg: “Guess What? Nobody Wants
to Make Lists.” Aug. 26, 2010.

http://techcrunch.com/2010/08/26/facebook-friend-lists/.

39. Slee, M. Friend Lists. Dec. 19, 2007.

http://www.facebook.com/blog.php?post=7831767130.

40. Smetters, D.K. and Good, N. How Users Use Access

Control. In Proc. SOUPS 2009, ACM Press (2009).

41. Toomim, M., Zhang, X., Fogarty, J. and Landay, J.
Access Control by Testing for Shared Knowledge. In

Proc. CHI 2008, ACM Press (2008), 193-196.

42. van Zwol, R., Sigurbjörnsson, B., Adapala, R., Pueyo,
L.G., Katiyar, A., Kurapati, K., Muralidharan, M.,
Muthu, S., Murdock, V., Ng, P., Ramani, A., Sahai, A.,
Sathish, S.T., Vasudev, H. and Vuyyuru. U. Faceted
Exploration of Image Search Results. In Proc. WWW

2010, ACM Press (2010), 961-970.

43. Whalen, T., Smetters, D., and Churchill, E.F. User
Experiences with Sharing and Access Control.

Ext Abstracts CHI 2006, ACM Press (2006).

44. Wobbrock, J.O., Findlater, L., Gergle, D. and Higgins,
J.J. The Aligned Rank Transform for Nonparametric
Factorial Analyses using only ANOVA Procedures. In

Proc. CHI 2011, ACM Press (2011), 143-146.

45. Wong, W. Oberst,I., Das,S., Moore, T., Stumpf, S.
McIntosh, K. and Burnett, M. End-User Feature
Labeling: A Locally-Weighted Regression Approach. In

Proc. IUI 2011, ACM Press (2011), 115-124.

46. Yelp.com. http://www.yelp.com

