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      AUTOMATED  REASONING
      FOR  BIOLOGY  AND  MEDICINE   

Eric J. Horvitz
Stanford University

During the last decade, computer scientists have made significant progress in developing

techniques for storing and retrieving information, and for solving difficult inferential

problems with computer-based reasoners. The growth in the power of computer

processors, and the parallel decline of the cost of computer memory, has catalyzed the

development of innovative software for problem solving.  In particular, there have been

promising advances in computational methods for acquiring, representing, and

manipulating biological and medical information.  I will present key concepts of

automated reasoning investigated in the computer-science subdiscipline called artificial

intelligence (AI).   I will frame my discussion in terms of the genesis and maturation of

AI and related subdisciplines that were spawned shortly after the development of

electronic computers, and will review key themes that have dominated research over the

last three decades.

IN PURSUIT OF A CRISP DEFINITION

What is artificial intelligence? It is often difficult to construct a definition of a discipline

that is satisfying to all of its practitioners.   AI research encompasses a spectrum of

related topics.  Broadly, AI is the computer-based exploration of methods for solving

challenging tasks that have traditionally depended on people for solution.   Such tasks

include complex logical inference, diagnosis, visual recognition, comprehension of

natural language, game playing, explanation, and planning.
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I have highlighted "computer-based" to stress the centrality in AI of the use of computers

to experiment with implementations of abstract theories of reasoning.  Experiments with

computational models play an important role in distinguishing AI research from other

inquiries into reasoning and problem solving, including philosophy and theoretical

psychology.  The sculpting of complex computational models gives AI researchers an

experimental basis for testing theories of problem solving and for comparing alternative

solution strategies.   Implementing real systems also provides researchers with

opportunities to explore unanticipated or counterintuitive behaviors of complex models.

Several AI endeavors have led to the development of distinct approaches for performing

well-defined tasks such as medical diagnosis or species identification from observations.

These methods are sometimes referred to as "AI techniques," especially when they are

available as software packages for use by nonspecialists.   Such AI reasoning techniques

provide a means of representing knowledge and a set of inference procedures for

manipulating or drawing conclusions from that knowledge.

FORMAL VERSUS DESCRIPTIVE AI RESEARCH

There are different methodological approaches to AI research.   Two large, coexisting

phyla of investigators in the AI world are the formal and heuristic groups.  The scientific

methodology of the formalists is analogous to that of early aerodynamics scientists

attempting to construct theoretical foundations for building a flying machine.   In

contrast, researchers in the heuristic group are like early airmen, enthusiastically

attempting to take to the air, sometimes with flimsy assemblies of wood and fabric

engineered to reflect intuitions drawn from their observations of birds in flight.

The formalists study systems based on logic or other persuasive sets of axioms, such as

probability theory.   Such axiomatic systems define consistent theories of reasoning.

Formalists are committed to the view that reasoning systems based on axiomatic

principles can explain and generate intelligent behaviors, much as the set of astronomical

laws developed by Newton, Tycho, and Kepler provides a satisfactory explanation of the

complex motions of heavenly bodies.
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Investigators in the heuristic group reject the requirement for using reasoning techniques

that follow from a set of mathematical principles, often noting that "scaling up" the

formal methods to problems of realistic size can lead to computationally intractable

problems (Simon 1969; Szolovits 1982; Buchanan and Shortliffe 1984).   These scientists

have also argued that the parsimonious axiom-based methods lack the richness or

expressiveness needed for intelligent behavior (Gorry 1973; Davis 1982).

Instead of relying on mathematical principles, investigators in the heuristic group apply

intuitively attractive methods they hope can provide a more direct and tractable approach.

These intuitive, and often ill-characterized, procedures are referred to as heuristic

methods.  They are based typically on observations and introspection about the ways in

which people seem to solve problems.   Heuristic approaches that explicitly attempt to

model human problem solving are called descriptive in that they attempt to describe how

people solve problems.  Descriptive theories of problem solving are analogous to the

epicycle machines used to describe the motions of the planets before modern astronomy

offered satisfying theoretical explanations for observations.

Although there have been debate and tension between people in the formal and heuristic

groups, both approaches have advantages and disadvantages.   Formal models can help in

developing a clear understanding of reasoning methods.  A successful formal theory for

solving a class of problems can be useful for creating computational methods that are

easy to modify and to extend for application in diverse areas.   Heuristic approaches are

especially useful where no computationally tractable formal method is available for

solving a problem.   Indeed, heuristic models and solutions are often a precursory step in

the development of new theories.  Investigators in the heuristic group have also suggested

that the heuristic approaches are more natural, and thus make it easier to acquire

knowledge from experts for use in computer-based reasoning systems, and to explain the

conclusions of machine reasoning to people.

THE GENESIS OF AI

Several factors coincided to create the research environment that spawned a set of

information-oriented disciplines in the mid-1940s.   Key forces that created and shaped

the new disciplines were the pressure for solving complex tactical problems during World
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War II, the development of electronic computers, and the development of the conceptual

framework of subjective expected utility.

Under the pressures of war, blueprints for general electronic computing systems were

implemented and rapidly refined.  The need to solve critical warfighting problems and the

availability of computers stimulated research on operations analysis.   Operations

analysis focused on the design of complex systems, processes, and deployments, through

optimization and control.   Briefly, the solutions to operations-analysis optimization

problems are optimal values for variables that define the behavior of a system.   These

optimal values maximize some measure of benefit or minimize some measure of cost,

such as dollars, time, distance, or lives.

Operations analysis matured into the modern discipline of operations research (OR).

Following World War II, OR methods were used to analyze a a broad spectrum of

civilian problems, such as determining an ideal schedule for maintenance of a fleet of

airplanes, purchasing an optimal number of ambulances for a county, or minimizing the

number of oil tankers to meet a fixed schedule (Dantzig and Fulkerson, 1954).

Investigators in the OR community developed a set of numerically intensive methods,

often referred to as "OR techniques," for modeling and solving optimization and

scheduling problems (Dantzig 1963).  These OR techniques included linear

programming, nonlinear programming, integer programming, dynamic programming,

queuing theory, and control theory.

In 1947, von Neumann and Morgenstern developed an axiomatic framework called utility

theory, founded on the preexisting axioms of probability theory.   Briefly, utility theory

provides a formal definition of preference and of rational decisions under uncertainty, that

is, decisions taken in light of uncertain knowledge about a situation (von Neumann and

Morgenstern 1947; Raiffa and Schlaifer 1961).  The axioms of utility theory define a

measure of preference called utility.  Utility theory dictates that people should make

decisions that have optimal average, or expected, utility.

Under uncertainty, we do not know exactly how an action will affect the world.   The

fundamental procedure in determining a course of action that has optimal expected utility

is to consider the probabilities of alternate outcomes associated with a possible action.
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The expected value of each action is computed by summing the value attributed to each

possible outcome multiplied by the probability of that outcome.

Expected value, teamed with the concept of personal or subjective probability, provide

decision analysts with a powerful framework for maximizing expected utility.   Many

people that have been trained in classical statistics are not familiar with the interpretation

of probability as a subjective measure of belief.  That is, the most widespread

interpretation of probability is that of a measurable frequency of events determined from

repeated experiments.  For example, probability is viewed typically as the number of

times a coin (fair or biased) lands on one side, given some large number of coin flips.

This view has been called the frequentist interpretation.

A different perspective on probabilities, known as the subjectivist, or Bayesian,

interpretation, is that a probability is a measure of a person’s degree of belief in an event,

given the information available (Savage 1972; Hacking 1975).   According to this

conception, probabilities refer to a state of knowledge held by an individual, rather than to

the properties of a sequence of events.  Subjective probabilities abide by the same set of

axioms as do classical probabilities or frequencies.  The subjectivist approach is a

generalization of the more popular notion of a probability as a long-run frequency of a

"repeatable" event.   The use of subjective probability in calculations of the expected

value of actions is called subjective expected utility (SEU).  SEU allows personal

opinions and hard data to be integrated in a theoretically sound manner.

The development of SEU contributed to the maturation of OR, and to modern economics

and psychology.  In addition, it provided the basis for the emergence, in the early 1950s,

of management science and decision analysis, disciplines that are conceptually and

academically related to OR. Decision analysts study techniques for determining ideal

personal decisions under uncertainty (Raiffa and Schlaifer 1961; Howard 1966; Howard

1968; Keeney and Raiffa 1976).  Investigators in management science develop and test

mathematical models of production and organizational decision making.
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THE 1950s: EARLY DAYS OF THE DISCIPLINE

In the early 1950s, AI research evolved separately from OR, and from the related

disciplines of management science and decision analysis.  Rather than relying on

numerical analyses, early AI investigators turned their attention to the automated

processing of abstract symbols (Simon 1972).  Herbert Simon, one of the founding

fathers of AI, has described how the concept of manipulating sophisticated symbols with

computers was stimulated by work with computer systems developed for performing

complex numerical analyses (Simon 1987).   In the early electronic computers, simple

mathematical functions such as ADD and MULTIPLY were encoded in the form of binary

numbers.  That is, these mathematical concepts were represented in the same way as the

numbers they operated on.  If simple mathematical notions could be manipulated by

computers, perhaps, by analogy, more sophisticated and abstract concepts could be

processed.

AI research was born with a great enthusiasm for the possibilities of harnessing

computer-based manipulation of abstract symbols to perform "intelligent" reasoning

tasks.  Early on, the field became dominated by studies of computational inference using

principles of logic.  AI researchers sought to encode knowledge about problem solving in

the form of explicit, or declarative, representations of objects and relationships in the

world, in constrast to the traditional procedural approach as typified by OR solution

methodologies (Barr and Feigenbaum 1982; Cohen and Feigenbaum 1982).

AI researchers also dismissed numerical methods as relatively unimportant to decisions

made by agents with the abilty to manipulate abstract symbols.  In particular, methods for

optimizing the expected value of action under uncertainty seemed inadequate for

explaining cognition and intelligent problem solving.  Early investigators noted that

people successfully address challenges in the world without using numerical optimization

procedures.  In particular, number-intensive decision-analysis and OR procedures seemed

to require inappropriate detail and analytic complexity.

Early investigators pointed out that,  in contrast to the crisply defined problems amenable

to OR or decision-analytic techniques, almost all real-world problems faced by people in

daily life are intrinsically ill-defined.  Thus, rather than pursue an optimal solution to
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well-defined numerical problems, many AI researchers have worked to develop

techniques for finding suboptimal yet satisfactory behaviors and decisions, known as

satisficing solutions (Simon 1969).  Many AI investigators believed that, beyond being

inappropriate, attempting to apply numerical techniques to real-world problem solving

would require extraordinary amounts of computation (Feigenbaum 1964).

In fundamental work in the mid-1950s, Newell and Simon built systems that could

perform logical reasoning.  The first logical theorem-proving programs were created to

derive simple mathematical proofs.  However, the primary goal of the investigators was

to identify general principles of intelligent problem solving.  Newell and Simon

constructed a program called the Logic Theorist, and later built a descendant system

called the General Problem Solver (GPS) (Newell 1958; Newell and Simon 1963).  GPS

employed a computer representation of logical axioms.  The system derived new logical

relationships by repeatedly applying one of several rules of logical implication, or

operators, to the axioms, or to other logical statements stored in the system.  The system

could generate long chains of inference by applying logical operators to statements stored

initially or generated later by the system.

GPS’s structure and capabilities highlighted several important concepts. The system set a

precedent for separating inference machinery and capabilities from domain knowledge.

That is, domain-specific knowledge was stored in a separable, or modular, knowledge

base.  Research on GPS also pioneered the use of means-ends analysis to guide the

selection of operators.

Means-ends analysis is an approach for repeated selection of operators that transform the

current version, or state, of the solution to a new subproblem that is closer to a final

solution, or goal. (Nilsson 1980).  Operators are selected and applied until a solution is

reached.  With GPS, the goal was to prove a logical theorem from a set of initial axioms

and logical statements.  As an analogy, a sequence of operators for traveling to Stanford

University from M.I.T. is "walk to Technology Square," "automobile to Logan airport,"

"plane to San Francisco," "walk to taxi," "taxi to Stanford." In this example, subproblems

are different positions in space that are progressively closer to a goal.  In logical theorem

proving, as in actual real-world problems, there are typically many possible choices, or

sequences of operators, that might be applied to any stage of a solution. Thus, we need
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reasoning techniques that can identify the best next operator.  In the work on logical

reasoning, operators were selected by heuristics that considered the relative ability of

operators to minimize the conceptual distance between the current state and a goal or a

necessary subgoal.

In l959, the term artificial intelligence, as the name of a discipline charged with the study

of computer-based problem solving, was first used at a Dartmouth conference by John

McCarthy, a computer scientist and mathematician interested in the philosophical

foundations of computational models of intelligence.  The name stuck, and the conference

participants formed the core of an evolving field, distinct from other areas of computer

science, dedicated to furthering our understanding of intelligence as the processing of

symbols.

THE 1960s: MATURATION OF LOGICAL REASONING METHODS

In the late 1950s and early 1960s, investigation of techniques for reasoning with logical

methods continued to mature.  Theorem proving was applied to solve mathematical

problems beyond logic.  For example, Gelernter built a system for performing

geometrical proofs (Gelernter 1959).  Search evolved as a central notion in intelligent

problem solving.  Systems must often rely on the generation and evaluation of large sets

of alternatives to solve logical reasoning problems.  In GPS, for example, there are many

different ways to generate subgoals and goals from an initial problem statement and set of

axioms.

To visualize the large search trees that a reasoning system must contend with in solving

an inference problem, consider each subgoal to be a point in a conceptual space that

separates an initial state from a final answer or goal.  We can represent the fact that one

subgoal can be transformed to another subgoal with an operator by drawing an arc

between the parent and descendant subgoals.  Problem solving can be viewed as

choosing a path through a large branching tree created by the following procedure, or

algorithm: (1) Generate a set of subproblems by first applying all valid operators to an

initial problem, and (2) perform the same subproblem "expansion" on each subproblem

recursively, until we reach goal states or cannot apply any more operators.   The subgoals

in such a search tree define the search space for a theorem-proving problem.
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Consider, as another application, the classic search problem, called the traveling

salesperson problem (TSP) (Dantzig et al. 1954; Christofides 1979; Lawler et al. 1985).

The TSP requires us to identify the shortest path connecting a set of cities each of which

the salesperson must visit once before returning to a home base.   In generating the search

tree for the TSP, we apply a MOVE operator to generate all possible trips from the current

location to another city.  We apply the MOVE operator again to each new location, making

sure each time that we move only to unvisited cities.  The process continues for each path

through the tree of cities until we have visited all cities and returned to the starting

position.  Alternative orderings of cities compose a set of tours. Search algorithms for

TSP identify different partial sequences of subgoals on the path to complete tours.   The

shortest circuit, or tour, is the optimal answer to a TSP problem instance.

Finding the optimal solution to a TSP problem is difficult;  TSP and a variety of other

difficult problems constitute a family of problems called NP-complete, in a taxonomy of

problem complexity developed by theoretical computer scientists to classify the

fundamental difficulty of problems (Garey and Johnson 1979; Papadimitriou and Steiglitz

1982; Aho et al. 1983).   With high likelihood, the time required to solve NP-complete

problems exactly grows exponentially with the size of the problem (for example, the

number of cities).  That is, the amount of time required to solve these problems grows

geometrically with linear increases in problem size.  A great number of problems that are

of interest both to AI researchers and biologists are in the NP-complete class.  For

example, many taxonomists are probably familiar with the NP-complete Steiner Graph

Reduction problem, used to build plausible taxonomic trees from data.   Because NP-

complete problems are difficult to solve exactly, numerous algorithms have been

developed to generate approximate solutions with far less effort than the work required

for a naive search of all possibilities (Papadimitriou and Steiglitz 1982).

Intelligent Versus Brute-Force Search

Without forethought, we might attempt simply to generate all possible sequences of

operators until we find an answer to a search problem.  Such brute-force searches require

a great amount of computation.  However, there are many ways to navigate through a

large tree.  AI investigators have developed search techniques for guiding search more
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intelligently. Frequently, these procedures can be used to solve a problem more quickly

than the worst-case situation described by NP-complete brute-force methodologies.

The design of intelligent search procedures often hinges on the identification or

development of an evaluation function that is used to assign a score to each intermediate

state along the path to an answer (Nilsson 1980).  Some search techniques rely on logical

analyses of the dominance of one or more states to identify irrelevant paths through a

tree. Such dominance information comes from the use of deterministic evaluation

functions for identifying the value of a subgoal.  For example, in one approach, called

branch-and-bound, paths through a search tree are pruned from consideration if subgoals

generated by those paths will be less valuable than the best approach discovered so far.

Often, branch-and-bound is not applicable because we do not have a deterministic

measure of value for each subgoal.  Instead, for many problems, researchers have relied

on heuristic estimates of the value of the "goodness" of an answer.  For example, the GPS

means-ends analysis depends on the use of a heuristic evaluation function to control the

selection of a best operator at each step of an analysis.

Sometimes we can evaluate the behavior of a heuristic search method in terms of an

optimal analysis or answer.  For example, for some search techniques, investigators have

developed formal proofs that show how we can characterize the error in an approximate

answer in terms of an exact answer (for example, the shortest tour possible through a set

of cities), or characterize the amount of computation required by an approximate analysis

as some fraction of the work required by an exact solution.

Search research spans several types of problem solving beyond theorem proving and tour

identification.  An active area of search research is called game playing.  Several research

teams have studied computer-based reasoning for competing in games such as checkers

and chess (Samuel 1959; Samuel 1967; Good 1977; Barr and Feigenbaum 1982; Berliner

1980).  In the case of chess, a search space is generated by applying the rules for moving

chess pieces from an initial legal position.  AI investigators have designed chess

programs that assess the promise of the legal moves that can be made from a current

board position by evaluating paths of moves in large trees of successive moves that are

made possible by each candidate move.  The large trees of moves are generated by
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considering a volley of moves and countermoves to some depth of player interaction, or

"lookahead."

Production Systems for Capturing Expertise

In the late 1960s, many AI investigators continued to study the application of logical

techniques similar to the methods employed by Simon and Newell in GPS.  However,

instead of remaining within the confines of logical theorem proving, investigators began

to examine the manipulation of symbols and knowledge in specialty areas, with the goal

of building computer systems to assist people with decision making in scientific and

professional endeavors.  Work began on the construction of knowledge bases that could

be used to bring expertise to decision makers in such professions as chemistry and

medicine.

Systems based on the use of sets of logical rules of the form IF A THEN B, and on the use

of logical-chaining techniques for deriving conclusions from the rules, came to be called

"production systems," and later "rule-based systems" (Davis et al. 1977).  One of the

earliest knowledge-intensive production systems was a program for performing difficult

symbolic mathematical inference for engineering applications.  In this work,

mathematicians constructed knowledge bases of mathematical identities that were used

for the symbolic integration and differentiation of equations. This work led to one of the

most widely used AI programs in the world today, called MACSYMA.  MACSYMA is used

by scientists and engineers for performing complex symbolic integration.

Another early application of production systems to real-world problems was the Dendral

project at Stanford (Lindsay et al. 1980).  For this project, expert rules describing

chemical structure and decomposition were used to reason about mass-spectroscopy data.

At the core of the DENDRAL system was a large knowledge base composed of rules that

described how molecules, and portions of molecules (as subgoals), might decompose in a

mass spectrometer.  Experts in organic chemistry collaborated with computer scientists to

build DENDRAL’s knowledge base and to evaluate the functioning of the system.

Planning Research
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The late 1960s and early 1970s saw a marked growth of interest in an area of research

called planning.  To this day, planning research continues to be a hotbed of AI research.

In contrast to the study of production systems to automate expert reasoning and decision

making within the confines of a specialty area, planning research has dwelled on

commonsense reasoning, that is, reasoning whose goals are routinely achieved by people

in the course of daily life.  Investigators interested in planning have developed logical-

reasoning systems similar to the older theorem-proving systems.   However, instead of

storing abstract logical operators and statements in the system’s knowledge base, the

investigators encoded operators and logical rules that capture basic physical and

mechanical properties of a domain, such as the information that two objects cannot be in

the same place at the same time.  The rules also represent the preconditions and effects of

actions. Also in contrast to theorem proving, planning problems require investigators to

consider the effects of actions on the world.

Planning research has demonstrated that the simplest goal-oriented behaviors involve

complex chains of reasoning about goals and subgoals.  In an early planning project,

called STRIPS, investigators tackled tasks in a Lilliputian world of blocks on a surface

(Fikes and Nilsson 1971).  In this world, which came to be known as Blocksworld, the

goals were simple tasks such as changing one configuration of stacked blocks to another.

The STRIPS reasoner demonstrated the complexity of using computers to perform tasks

that appear quite natural and simple to people.  For example, at first blush, it might

appear relatively straightforward for a computer to stack a block, say Block B, on Block

C, starting from an initial state of affairs in which Block D is on Block C and Block B is

beneath Block A.   Such tasks exposed problems such as costly interactions that occur in

making moves to attain subgoals.  That is, a careless or shortsighted action, seemingly on

the way to a goal, might make it difficult or impossible to reach that goal.

Vision Research

During the 1960s and 1970s, great strides were made in the development of algorithms

for identifying shapes and objects in a visual field.  Like planning research, automated

vision research highlighted the difference between tasks that are easy for people and tasks

that are easy for computers.  It quickly became clear that computer programs have great
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difficulty recognizing patterns and objects that people recognize with ease (Winston

1975).

Researchers studying computer-based vision sought early on to extract features through

"global processing," the homogeneous application of simple mathematical

transformations to an entire scene.  Such processing was applied to generate information

about classes of features, including the presence of edges, and the shading and textures of

surfaces (Marr 1975; Ullman 1979).  The earliest vision-identification techniques were

supplemented by increasingly sophisticated methods for the segmentation of an image

into its chief components (Marr and Hildreth 1980; Marr 1982).   Search-based methods

were developed for building objects out of sets of segmented features.  In one set of

approaches, a search is applied to identify a feasible labeling of edges in a scene as

different possible boundaries of an object, and to build up sets of edges into three-

dimensional objects.  In some of this work, identification procedures draw on a database

of objects for information about what might be present in a visual field.

A trend in vision research from the 1960s to the present has been to use progressively

richer models of objects in the world to reduce the computational complexity of visual

identification (Binford et al.  1989).  Toward the late 1960s, techniques were developed

for modeling three-dimensional objects.  In one such approach, structures are identified

by mapping a set of cylindroid structures to a visual scene.  In many current vision

projects, relatively detailed three-dimensional models are used to choose among alternate

interpretations of a scene.  For example, three-dimensional anatomical models have been

used to assist in the automated interpretation of medical ultrasound and radiographic

images (Brinkley 1985).

THE 1970s: KNOWLEDGE REPRESENTATION AND EXPERT SYSTEMS

Many areas of reasoning, including the inferential principles and techniques developed in

the 1950s and 1960s, received continuing and intensive attention in the 1970s.   The

1970s were marked by growing interest in the representation of knowledge, and by a

surge of enthusiasm for the development of production systems to assist professionals

and scientists.  Other areas matured in the 1970s, including the study of methods for

parsing and understanding natural language, for controlling the focus of attention of
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computer-based reasoning systems, and for learning from experience.  I will discuss work

on representations of knowledge and the use of these representations in expert systems.

Knowledge Representation and Problem-Solving Efficiency

A key theme of AI research in the 1970s was the importance of identifying expressive

and efficient representations of knowledge.  Early in the decade, investigators studied and

discussed the best ways to codify knowledge for computational inference (Amarel 1968;

Cohen 1977; Korf 1980).  In an interesting piece of research, Saul Amarel, of the AI

group at Rutgers, investigated the sensitivity of the complexity of solving a problem to

details of the representation of that problem (Amarel 1968).  He used examples from a

classic computer-science problem called the "Towers of Hanoi." To solve this problem, a

sequence of moves must be generated to transfer a set of discs of different sizes

(resembling a Buddhist temple) from one pole to another, given a set of rules about legal

moves.  Amarel showed how changing the initial formulation of the Towers of Hanoi

problem to a new representation could increase the efficiency of computational problem

solving.

The studies of Amarel and others on the efficiency of representation came at a time of

growing interest in reasoning systems that could perform inference on very large

knowledge bases.  There was a proliferation of alternative representations of knowledge

in reasoning systems.

Expert Systems

Projects such as MACSYMA and DENDRAL were developed to explore how computer-

based reasoning might assist people with difficult inference problems.  However, it was

not until the early 1970s that the phrase "expert systems" was first used to refer to

computer programs that could draw conclusions by performing logical inference on a

large knowledge base of information acquired from experts (Buchanan 1982).  The

expression was made popular in the medical domain.

In the 1970s, a great amount of work in AI was performed on automated medical

diagnosis.  A large community of investigators with a primary interest in AI in medicine
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(AIM) coalesced as a bona fide subdiscipline of AI.  Many AIM researchers endeavored

to build systems to assist with diagnosis, given information about a patient’s symptoms.

Expert-systems studies included the MYCIN project at Stanford University, the Present

Illness Program (PIP) at the Massachusetts Institute of Technology  (Pauker et al.  1976),

CASNET at Rutgers University, and INTERNIST-1 at the University of Pittsburgh (which

continues today as the Quick Medical Reference (QMR) project at the University of

Pittsburgh).

Attempts to build expert systems for medical reasoning highlighted the inadequacy of

straightforward applications of logic for reasoning about large and complex domains.

Logical-reasoning systems assign values of complete truth or complete falsity to possible

states of the world and to the effects of actions.  However, physicians are rarely certain

about the state of a patient’s physiology or about the effects of alternate therapies.

As work on expert systems in medicine progressed, investigators found that the

deterministic nature of these systems did not allow experts to express uncertain

relationships.  A theme of 1970s work on representation was the modification of logical

techniques, developed for automating logical theorem proving, to handle the more

general situation of uncertainty.  In one aspect of this work, investigators extended the

logic-based production systems of the late 1960s with heuristic techniques for capturing

uncertainty.

Popular representations of knowledge for systems that considered large quantities of

expert knowledge about uncertain relationships included production rules (Davis et al.

1977), semantic nets, causal networks (Weiss et al. 1978), frames  (Minsky 1974;

Lindberg et al. 1980), and several mixtures of these representations.  I will briefly

describe these knowledge representations in the context of several medical expert systems

developed in the 1970s.

MYCIN.  MYCIN is a production system that was developed at Stanford to study the

representation of medical knowledge (Shortliffe 1976; Buchanan and Shortliffe 1984).

MYCIN reasons about the diagnosis and treatment of bacterial infections.  The system uses

a set of logical rules.  Logical inference in the system is designed to follow a specific

search strategy called backward chaining.  With backward chaining, a system chains
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together a set of rules that creates an inference path, or chain, from causative agents to

observed symptoms.   Forward chaining refers to chaining from observations in the

world to possible causes.

MYCIN investigators explored the extension of logical reasoning to address uncertainty by

developing a heuristic calculus, called the certainty-factor model (Shortliffe and

Buchanan 1975).  With this approach, measures of the certainty or "strength" of a rule,

called certainty factors, were assessed from experts.  For example, consider the following

rule from MYCIN:

If the infection is a primary bacteremia, and the site of the culture is one of the

sterile sites, and the suspected port of entry of the organism is the gastrointestinal

tract, then there is suggestive evidence (certainty factor = 0.7) that the identity of

the organism is Bacteroides.

MYCIN contains a knowledge base including hundreds of such rules.  When rules are

chained together logically, a certainty factor for the logical result is computed with a

certainty-factor combination scheme.  This numerical calculus propagates uncertainty to

logical conclusions by considering the certainty factors associated with the rules that

comprise an inference chain.

CASNET.  Investigators at Rutgers studied the use of semantic networks with a system

for the diagnosis of of glaucoma, called CASNET (Weiss et al.  1978).  Semantic networks

are graphs that consist of a set of directed arcs between concepts.  In CASNET, the directed

arcs describe relationships at three levels: observations, pathophysiological states, and

diseases.  Arcs called associational links are used to connect observations to

pathophysiological states; arcs called classification links connect pathophysiological

states to disease categories.  Observations reported to CASNET activate a subset of

pathophysiologic states; these, in turn, activate disease categories.  The CASNET team

experimented with the use of probabilistic information that describes the strength of

association among interdependent concepts.

Present Illness Program.  The Present Illness Program (PIP) for reasoning about renal

disease was constructed in the 1970s by a team at M.I.T. (Pauker et al.1976).  The system
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uses expert knowledge represented in the form of files of structured records, called

frames.  A separate frame was created for each disease considered by PIP.  Each frame

contains several classes of knowledge that experts have identified as being useful in

considering the presence of a disease, given a set of observations.  The classes of

knowledge include typical findings or symptoms associated with a disease, criteria for

making decisions, and relationships between the disease under consideration and the

symptoms and diseases described in other frames.

The structure, or architecture, of PIP is based on descriptive intuitions about human

cognition.  The heuristic machinery used in PIP to draw conclusions from the knowledge

stored in its frames includes a supervisory program, a working memory, and a long-term

memory.  In reaction to a set of symptoms observed in a patient, the PIP supervisory

program "activates" a set of diseases by introducing these diseases from long-term

memory to the active, working memory.  Diseases linked to the activated diseases via

relationships specified in the frames are added to the working memory.  Finally,

questions about symptoms of the activated diseases are asked to gather additional

information about the patient.  The process of refinement continues until a single disease,

or a small set of diseases, remains in active memory.

INTERNIST-1.  The INTERNIST-1 project was initiated at the University of Pittsburgh, in

the 1970s, to construct a system for assisting physicians with diagnosis in the broad

domain of internal medicine (Miller et al. 1982; Pople 1982).  The INTERNIST-1 reasoning

system relies on a numerical scoring approach for assigning belief to alternate disease

hypotheses, given a patient’s symptoms.   It uses several classes of numbers obtained

from experts.  For example, one set of numbers is used to represent the degree of belief in

the presence of different individual diseases, given a symptom.  Another class of numbers

characterize how often, for each disease, a symptom appears.  INTERNIST-1 applies

heuristic scoring rules to combine the numbers associated with different symptoms into

comprehensive measures of belief in alternative disease entities.  These quantities are

used to generate a list of diseases, each with a heuristic measure of likelihood.  Such a list

of diseases ordered by likelihood, or differential diagnosis, is analyzed to select questions

about the best next tests to perform to narrow the list of possible diseases.
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INTERNIST-1 uses an iterative reasoning cycle called hypothetico-deductive  reasoning.

With this approach, a few salient observations are input to the system and a measure of

likelihood is assigned to each possible disease.  Based on this list of hypotheses, new

questions and tests are recommended.  After new information is input to the system, the

system performs the entire cycle again, rescoring all of the remaining diseases and

recommending new questions based on the revised disease list.  Answers to the new

questions are considered in conjunction with the initial salient features to generate a

revised set of hypotheses, with revised associated likelihoods.  This cycling process

continues until only one disease remains or until the cost of gathering additional

information outweighs the benefits of further refinement.

INTERNIST-1 continues to this day as the Quick Medical Reference (QMR) project at the

University of Pittsburgh (Miller et al. 1986).  Its knowledge base has continued to grow

since the inception of the Internist-1 project in 1973.  Today, QMR is one of the largest

expert systems in the world.

The evolution of  INTERNIST-1 to QMR illustrates how, for some applications, the power

of commonly available computer hardware has grown more quickly than the

sophistication, and concomitant thirst for memory and computation of our software.

INTERNIST-1 was implemented on a large mainframe computer at Stanford, accessed by

Pittsburgh researchers via a computer network.  Today, QMR operates comfortably on

inexpensive MS-DOS--based personal computers.

THE 1980s: MATURATION OF REASONING UNDER UNCERTAINTY

In the l980s, several rule-based expert-system architectures and representations matured

to the point of commercialization.  Several companies were founded with the goal of

providing "expert-system shells:" software packages that could be used by investigators

in specialty areas, outside of AI and computer science, to build their own expert systems.

However, although the popularity and use of rule-based systems grew throughout the

1980s, there was a concurrent growth of interest in alternatives, especially in sound

methods for addressing uncertainty.
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Some AI investigators began to reexamine concepts and reasoning methodologies

developed in decision analysis and operations research in order to develop more accurate

reasoning methods.  These investigators began to borrow ideas that would allow them to

define the concept of a theoretically correct answer to a problem, or best action to take,

given uncertainties about actions and outcomes.  In particular, interest began to grow in

the use of SEU to tackle difficult AI reasoning problems (Horvitz et al. 1988).  In some of

this work, probability and utility were applied at the metalevel to address decisions about

the best ways to build a reasoning system, or to control reasoning to optimally solve a

problem, given limited computational resources (Horvitz 1988; Russell and Wefald

1989).

I will focus on the development, in the 1980s, of SEU-related methods for using

probability and utility to represent knowledge and reason under uncertainty; these

techniques are particularly relevant to the subject of this volume.

Sufficiency of Heuristics for Reasoning Under Uncertainty

Throughout the 1980s, increasing attention was given to the integration of probabilistic

and decision-theoretic reasoning methods with AI approaches.  Some of this interest was

stimulated by attempts to apply computer-based reasoning methods to progressively more

difficult decision-making tasks.   The importance of uncertainty, and of developing

formal reasoning techniques, was underscored by the complexity and the high stakes of

application areas such as medicine and aerospace.

Research had never halted on the use of probability and utility in the realm of expert

systems and AI.  In fact, several groups, working to the side of mainstream AI, had

continued to explore the use of simplified forms of probabilistic and decision-theoretic

reasoning for medical diagnosis (Ledley and Lusted 1959; Warner 1961; Gorry and

Barnett 1968; Gorry 1973, Gorry et al. 1973).   Typically, assumptions were imposed on

these systems to make the representation and reasoning with uncertain information

tractable.   For example, most researchers investigating the use of probability and utility

in the 1960s and 1970s assumed conditional independence among observations, and

assumed that there was an exhaustive set of mutually exclusive diseases.  By assuming

conditional-independence, the researchers considered the probability of each observation
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to be unaffected by the presence or absence of other observations.  Although the early

probabilistic systems performed well in small subdomains, AI investigators showed little

interest in them, beyond pointing out their limitations.

Most AI investigators understood that probability and decision theories served as

axiomatic bases for ideal reasoning and decision making under uncertainty; however,

they were not impressed by the simple probabilistic systems for several reasons.   Many

were convinced that it is difficult to obtain probabilistic information and to reason

efficiently with probability and utility.  Also, AI investigators studying heuristic

techniques for reasoning under uncertainty in expert systems justified the need for

heuristic techniques by focusing on the invalidity of the independence assumptions made

by the probabilists to render their systems tractable (Buchanan and Shortliffe 1984).  The

researchers suggested that attempts to relax such assumptions would lead to

unmanageable combinatorial increases in the computation time and in the numbers of

probabilities required by the systems.

Interest in probabilistic inference in the middle to late 1980s was invigorated in part by

theoretical work that demonstrated clear parallels between the shortcomings of several

heuristic calculi and the simplified probabilistic inference.  Several investigators

demonstrated that the heuristic methods did not provide a means for escaping from the

invalidity of the independence assumptions made in the simple probabilistic systems.  In

fact, for some of the heuristic methods, the assumptions were shown to be even more

restrictive and, moreover, dangerous because they were implicit. For example, the MYCIN

certainty-factor model and the INTERNIST-1 scoring scheme were shown to be roughly

equivalent to the use of simplified and constrained probabilistic reasoning (Heckerman

1986; Horvitz et al. 1988).

AI scientists were also stimulated to reinvestigate the applicability of probabilistic

reasoning by the development of analyses of the epistemological inadequacy of rule-

based methodologies for capturing uncertain knowledge (Heckerman 1986; Pearl 1988).

One study showed that most classes of uncertain knowledge cannot be represented

efficiently in rule-based systems (Heckerman and Horvitz 1987).  Other discussions

demonstrated that probability theory uniquely satisfies a set of essential desirable

properties of uncertain belief (Cox 1946;  Tribus 1969; Horvitz et al. 1986).
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Belief Networks and Influence Diagrams

Beyond theoretical analyses, the most important stimulus to renewed work on probability

theory and SEU in AI was the development of efficient and expressive representations of

probabilistic knowledge called belief networks  (Pearl 1988; Howard 1989) and influence

diagrams.  Belief networks and influence diagrams allow people to express qualitative, in

addition to quantitative, knowledge about beliefs, preferences, and decisions.

Belief Networks.  A belief network is a graphical representation that allows a computer

scientist, working with an expert, to efficiently encode expert knowledge about

probabilistic dependencies among important distinctions in a domain.  More important,

belief networks allow an expert to specify independence in a domain.  After the

construction and assessment of a belief network, algorithms can be applied to the network

to assign probabilities to alternative hypotheses, given a set of observations.

                

CORONARY 
ARTERY 
DISEASE

CHEST 
PAIN

Figure 1.  A small belief network that expresses the dependence of chest pain on coronary artery disease.

In the language of computer science, a belief network is a directed acyclic graph (DAG)

that contains nodes representing propositions (for example, hypotheses and observations),

and arcs representing probabilistic dependencies among nodes.  Each node representing a

proposition is associated with an exhaustive set of mutually exclusive values that

represent alternative possible states or events.
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CORONARY 
ARTERY 
DISEASE

CHEST 
PAIN

• NONE 
 
• MINOR 
 
• MODERATE 
 
• SEVERE

• ABSENT 
 
• MINOR THROBBING 
 
• SEVERE BURNING 
 
• SEVERE KNIFELIKE

0 1Probability

Figure 2. The qualitative dependency structure that defines the top-level structure of a belief network is
captured by nodes and arcs.  However, additional information lies beneath the top-level structure.  For each
node, there is a mutually exclusive and exhaustive set of values.  Also, conditional probability distributions
are assessed for each value of  the predecessor node.  Here, the probability of alternative forms of chest
pain, given minor coronary artery disease, is depicted with a bar graph.

To construct a belief network, an expert defines nodes that represent important

distinctions about the world.  These distinctions include hypotheses, important states of

interest (for example, diseases in a patient or disorders in a jet engine) that may not be

confirmed directly, and observations that are useful for discriminating among the

alternate hypotheses.  The expert also provides information about the probabilistic

dependencies among nodes.

Figure 1 displays a simple belief network, showing a dependency between coronary

artery disease and chest pain.  A directed arc from the node CORONARY ARTERY DISEASE

to the node CHEST PAIN, means that an expert asserts that coronary artery disease affects

the probability distribution over the possible values of chest pain.  As indicated in Figure

2, beyond constructing the high-level dependency graph, an expert specifies the possible

values of each node.  For example, the expert might specify that coronary artery disease is

either NONE, MINOR, MODERATE, or SEVERE, and that chest pain on exertion may be

either ABSENT, MINOR THROBBING, SEVERE BURNING, or SEVERE KNIFELIKE.  An arc

between the two nodes means that the expert believes that the probabilities of having the

different kinds of chest pain depend on the severity of the artery disease.

As part of building a belief network, we would need to assess the conditional probability

that we would see the different types of chest pain when coronary artery disease was at
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each of its possible values.   Given the direction of the arrows, conditional probabilities in

this case have the form: "The probability of observation A, given the presence of hypothesis

H, is x." We say that the probability of A is conditioned on H.  As an example, for the

sample cardiac belief network, the direction of the arrow indicates that we need to assess

the probability that chest pain is knifelike given that coronary artery disease is minor." We

write this conditional probability statement as, p(CHEST PAIN = KNIFELIKE | CORONARY

ARTERY DISEASE = MINOR, ξ).  The portion of the probability statement that follows the

vertical line is called the conditioning clause.  The symbol ξ in the clause refers to the

general context, or background state of information that is not explicitly listed in the

conditioning clause.  Figure 2 uses a bar graph to denote the probability distribution over

chest pain, given minor coronary artery disease.  Figure 3 depicts the different probability

distribution over different values of chest pain, given a patient has severe coronary artery

disease.

        
0 1Probability

CORONARY 
ARTERY 
DISEASE

CHEST 
PAIN

• NONE 
 
• MINOR 
 
• MODERATE 
 
• SEVERE

• ABSENT 
 
• MINOR THROBBING 
 
• SEVERE BURNING 
 
• SEVERE KNIFELIKE

Figure 3. Separate distributions are stored for each value of the predecessor node. The probability
distribution over different forms of chest pain, given that a patient is afflicted with severe coronary artery
disease, is displayed with a bar graph.

Of course, belief networks can be more complicated.  Figure 4 displays how we can

represent multiple causal dependencies with a belief network.  In this case, an expert

diagnostician has added a node and arc representing his knowledge that gastric ulcer can

lead to reports of chest pain.  To assess the probability distributions over alternate degrees

of chest pain, we must now consider all combinations of the values of gastric ulcer and

coronary artery disease.  In general, we can add many more manifestation and hypothesis
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CORONARY 
ARTERY 
DISEASE

CHEST 
PAIN

GASTRIC 
ULCER

Figure 4.  We can represent multiple causes with a belief network. Here, we capture a physician’s
knowledge that gastric ulcer, as well as coronary artery disease, can cause chest pain.

nodes to a belief network.  Decision-support systems have been constructed which rely on

belief networks consisting of hundreds of interconnected nodes.

Typically, we assess belief networks in the causal direction.  That is, we draw arrows and

assess conditional probabilities in terms of the likelihood of an observation, given a

causal hypothesis.  However, we often wish to use this information by performing

inference in the diagnostic direction; that is, we would like to determine the probabilities

of alternative hypotheses, given the observation (or assumption of the truth) of one or

more symptoms. To do this, we apply belief-network inference algorithms.   For example,

we can apply an inference algorithm to determine the probability of various levels of

severity of coronary artery disease when we hear the age of a patient and also hear a

particular complaint about chest pain on exertion. A number of exact and approximate

algorithms have been developed for revising the assignment of likelihoods to alternate

hypotheses in a belief network, given observations of some evidence (see reviews in Pearl

1988 and Horvitz et al. 1988).

Influence Diagrams.  Belief networks capture knowledge only about probabilistic

dependencies among hypotheses and observations.  An influence diagram (Howard and

Matheson 1981; Olmsted 1983) is an extension of belief networks which, in addition to

probabilistic-dependency information, represents alternative actions and outcomes, as

well as information about a decision maker’s preferences for different outcomes.  The

influence diagram is in many ways a more compact representation of the more familiar

"decision-tree" representation of actions, events, and outcomes.
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 An influence diagram is a directed acyclic graph similar to a belief network.  However,

an influence diagram contains several types of nodes.  Chance nodes, which are the only

nodes in a belief network, define distinctions about states of the world.  Decision nodes

represent alternative actions; and value nodes represent the utility of different outcomes.

For clarity, nodes are drawn as different shapes (typically, chance nodes are round,

decision nodes are square, and value nodes are diamond-shaped).

Figure 5 displays an influence diagram that represents the problem of deciding whether to

perform an angiogram test on a patient with chest pain.  In determining the expected

value of taking, versus not taking, the costly and potentially dangerous test, we consider

how different outcomes of the test will affect a decision to have heart surgery.  We also

consider such factors as how the test, and future surgery will effect future chest pain, and

the possibility of future myocardial infarction, or heart attack.

FUTURE 
CHEST 

PAIN

TEST 
RESULT

VALUE
LIFE 

YEARS

LIFE 
QUALITY

HEART 
ATTACK

COST

HEART 
SURGERY

ANGIOGRAM 
TEST

CHEST 
PAIN

CORONARY 
ARTERY 
DISEASE

Figure 5.  An influence diagram extends a belief network with decision nodes (squares), and a value node
(diamond).  Here, we represent the problem of whether or not a patient  should receive an angiogram, given
chest pain  (from Horvitz, et  al  1988).
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All arcs point into a set of nodes that represent fundamental attributes of value to the

patient. The value node represents a function that combines the value of the basic

attributes into a scaler utility.  This influence diagram also depicts another type of node,

called a deterministic node (double-circled).  The value of a deterministic node is a

deterministic function of the inputs to the node.  In this case, a physician has specified

that the monetary cost is a deterministic function of the values of its predecessors

(whether the angiogram is given, whether surgery is performed, and whether the patient

has a myocardial infarction).

Algorithms have been developed that perform inference directly on influence diagrams

through direct manipulation of the graphical structure of the representation (Shachter

1986; Shachter 1988).  The output of such decision-theoretic inference is the best

decision to make, given a decision maker’s preferences, the uncertainties about the world,

and the information that is available.

Acquiring Probabilities from Experts and from Data

Typically, the qualitative dependency relationships defined by the structure of a belief

network or influence diagram require hundreds, or even thousands, of conditional

probabilities to be gathered, or assessed, from experts.  Some investigators have been

concerned about the difficulty of acquiring these conditional probabilities, and a specific

class of probabilities, called the prior probabilities of alternate hypotheses.   A prior

probability is the prevalence of a state of the world, conditioned only on the background

state of information.   For example, the prior probability, p(CORONARY ARTERY DISEASE

= SEVERE|ξ), is the prevalence of severe coronary artery disease in a population.

Conditional and prior probabilities can be gathered through new statistical studies, or

through extraction of data from preexisting studies.  Most often, however, we find that

the distinctions used in a belief network have not been defined and analyzed before.  Thus

there is little statistical information available on dependencies in the network.  Moreover,

we generally do not have the resources to gather information about the frequencies of

thousands of events.
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The subjective probability methodology has proved extremely successful for gathering

the probabilities needed by an expert system.  Our work on the construction of belief

networks with expert diagnosticians from the fields of medicine, aviation, and electric-

power generation has demonstrated that many experts can assess prior probabilities and

conditional probabilities with confidence and ease.

One of the systems we have constructed, called PATHFINDER, performs pathology

diagnosis given information about several hundred features that might be seen under a

microscope (Heckerman et al. 1989; Heckerman et al. 1990; Horvitz et al. 1989b).

PATHFINDER uses a belief network containing about 30,000 probabilities assessed from

an expert pathologist with many years of experience.   To construct a large knowledge

base for the system’s domain of lymph-node pathology, we assessed numbers from

experts such as the probabilities that MONOCYTOID CELLS are ABSENT, MONOCYTOID

CELLS are PRESENT, and MONOCYTOID CELLS are PROMINENT, given NODULAR-

SCLEROSING HODGKIN’S DISEASE.  Such assessments were made for all diseases in the

domain.  The assessment procedures begin only after such distinctions as ABSENT,

PRESENT, and PROMINENT for monocytoid cells are defined precisely.  Assessments can

be more complex: In cases where an expert has identified dependencies among features,

probabilities must be conditioned on the values of other features, in addition to the

presence of a disease.

Studies with the chief expert on the PATHFINDER project showed that probability

assessments are quite stable and repeatable.  Perhaps more important, we found that the

diagnostic accuracy of the system is not very sensitive to small variations in individual

conditional or prior probabilities.  Typically, it is the order of magnitude of a probability

that is most important.   Regarding error in prior probabilities, we have found that for

diagnosing disorders within the pathology application area, the influence of a prior

probability is often dominated quickly by probabilistic updates with evidence.  That is,

small errors in prior probabilities are quickly "washed out" by the updates based on

observations.  PATHFINDER has been shown in formal trials to perform at the level of

expert pathologists.  More detailed clinical trials are under way to ascertain the value of

PATHFINDER as a diagnostic aid for non-experts.
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 Well-defined techniques have been developed for helping experts with the assessment of

probabilities for use in belief networks.  For example, methods have been developed

(Spetzler and Stael von Holstein 1975) to help experts avoid biases in probability

assessment that have been identified by cognitive psychologists (Tversky and Kahneman

1974).  Other methods test an expert’s consistency in probability assessment.  The

expert’s confidence can be measured in terms of a second-order probability distribution, a

probability distribution that describes the probability of alternative probabilities.

Techniques have been developed to simplify the assessment of second-order distributions

and for ideally updating probabilities given new data.  Also, software tools have been

developed that allow an expert to avoid redundancies in the assessment of similar

probabilities.  These tools enable a user to combine diseases into groups and to perform

assessment at greater levels of abstraction.  For example, Heckerman recently developed

a graphical software tool that streamlines the probability-assessment process through

abstraction and pairwise comparisons (Heckerman 1990).

Because subjectivist and frequentist probability are defined by the same system of

axioms, we can refine an expert’s initial assessment by performing statistical studies.

There are well-characterized techniques for updating an expert’s beliefs with statistical

data, based on the assessment of the expert’s confidence in probabilities, in addition to the

probabilities themselves.  Furthermore, we can apply formal cost-benefit analyses to

direct the collection of better subjective assessments or to supplement the subjective

probabilities with statistical information, depending on the importance of the probabilities

and on the confidence of the expert.  Such analyses draw on techniques in decision

science known as "sensitivity analyses." Sensitivity analyses are used to identify the

probabilities that have the greatest impact on the accuracy of a system’s conclusions.

Belief-Network Tools and Applications

Belief networks hold promise as a representation for helping biologists to acquire and

reason with knowledge about the likely identity of organisms given incomplete sets of

observed features.  Belief networks also can provide a coherent means of  integrating

diverse classes of knowledge to solve taxanomic problems.  For example, investigators

might use belief networks to reason about the relative likelihood of alternative
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phylogenetic trees by considering genetic, embryogenetic, ontogenetic, and paleontologic

data.

Belief-network programming shells (Andreassen et al. 1987), as well as stable expert

systems, have been produced commercially, ranging in application from sleep disorders

to jet-engine repair (Henrion et al. 1991).  Perhaps the most widespread application has

been in the area of pathology, stemming from the work on PATHFINDER.  Pathologists at

over 300 sites throughout the world are using multimedia expert systems that are based

on belief networks integrated with videodisc systems.  These systems allow pathologists

to employ one of several belief networks, each representing the leading expertise on the

histological analysis of tissue from a major human organ system.

Interest in belief networks has been growing in a variety of areas of AI, beyond

diagnostic problem solving.  For example, there has been recent work in the field of

machine learning on the automatic construction of belief networks from data.  Belief

networks have also been used recently in systems for performing visual identification

(Binford et al.  1989) and for understanding natural language and identifying plans

(Charniak and Goldman 1989).

Other Developments

The last decade has seen a broad spectrum of advances in automated reasoning methods,

beyond techniques for reasoning under uncertainty.  I will briefly mention a few areas of

research with application to systematic biology.

Given the explosion of biomedical literature and information, it is becoming difficult and

time-consuming for investigators to access and integrate information that is relevant to

their problems.   Thus, tools for managing this information and helping biologists,

expecially systematists, to search through a number of large knowledge bases will

become increasingly useful.  Techniques have recently been developed to assist

researchers in the design of databases (Barsalou 1989).  Work has also increased on

methods for performing intelligent searches in databases (Frisse 1988).  In this realm,

tools have been developed that allow a user to search more efficiently through disparate
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knowledge bases and to generate query results that take into account the preferences and

interests of that user.

Another area of research with relevance to the study of biological processes is work on

qualitative reasoning.   In this area, investigators have worked to capture the essential

aspects of physical systems with abstract qualitative models (Forbus 1981).  These

models are used to predict behaviors of a system without using numerical information, by

considering the orders of magnitude of effects, and modeling the competition and synergy

between basic influences in a system.  Several projects have focused on the construction

of qualitative models for reasoning about biological systems (Karp 1988).   Related

research has also been done on qualitative probabilistic reasoning with belief networks.

This work centers on abstracting the networks to qualitative networks that consider only

positive and negative influences on probabilities  (Wellman 1988).

Exciting research is under way on computer-based methods for understanding and

assisting scientific investigation.   Studies of computers in scientific reasoning include

work on tools for assisting with the discovery of new theories and with validation, or

confirmation, of competing theories of scientific phenomena.  For example, in recent

work, computer models and programs have been developed to perform probabilistic

meta-analyses  (Lehmann 1991).   Such analyses supplement standard statistical analyses

to determine the effects of an experimental outcome on the probability of alternate

hypotheses.  In other work, planning techniques have been applied to the task of

designing experiments in molecular biology (Friedland 1979; Stefik 1981).  That is, given

the experimental goals, a computer-based planner determines a sequence of steps that will

perform the analysis.

Another area of growing interest is the control of tradeoffs in reasoning systems.  The

goal of this work is to optimize the value of computing systems, given limitations in the

time available for computation imposed by a scientific investigator, a physician, or an

industrial process.  Several studies have examined methods for trading off the precision

or accuracy of a computational result in exchange for the timeliness of that result (Horvitz

1987; Dean and Boddy 1988).   By applying decision-analytic techniques to control

computation in belief networks and influence diagrams, we can develop a model of

rational belief and action under bounded reasoning resources.  As an example of this
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work, we explored a computational model of bounded rationality with the PROTOS system

(Horvitz et al. 1989a; Horvitz and Rutledge 1991).  PROTOS considers the ideal tradeoff

between the precision of probabilistic inference and the timeliness of action for medical

intensive-care decision problems.

CONCLUSION

I have reviewed advances in automated reasoning that I believe are most relevant to the

problems that challenge systematists and biomedical scientists in related disciplines.  I

organized the presentation of fundamental areas of research in terms of the major research

themes that have characterized three decades of AI research.  In my attempt to make the

best use of the few pages allotted to this chapter, I have unfortunately had to omit broad

areas of research on automated reasoning.  I trust readers will seek more comprehensive

understanding of the topics they find most interesting.
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