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ABSTRACT 

We present a logical relationship between a small number of 
intuitive properties for measures of belief and the axioms of 
probability theory. The relationship was first demonstrated 
several decades ago but has remained obscure. We introduce 
the proof and discuss its relevance to research on reasoning 
under uncertainty in artificial intelligence. In particular, we 
demonstrate that the logical relationship can facilitate the 
identification of differences among alternative plausible 
reasoning methodologies. Finally, we make use of the 
relationship to examine popular non-probabilistic strategies. 

I INTRODUCTION 

As artificial intelligence research has extended beyond 
deterministic problems, methodologies for reasoning under 
uncertainty or plausible reasoning have become increasingly 
ten tral. Several competing approaches to reasoning in 
complex and uncertain settings have been formulated. These 
include probability [I], fuzzy logic [2], Dempster-Shafer 
theory [3], certainty factors [4], and multi-valued logics [S]. 
There has been debate on the theoretical and pragmatic 
benefits and disadvantages of these alternative strategies. 

A particular focus of discussion has centered around the 
adequacy of probability theory for handling reasoning under 
uncertainty [6]. While probabilists have defended the use of 
probability, others have cited benefits achieved through the 
use of non-probabilistic formalisms [2, 3, 7, 41. Such 
discussion has been heightened in recent years as the demand 
has grown for applicable methodologies for reasoning under 
uncertainty. 

In this paper, we discuss the ramifications of a proof 
showing that the axioms of probability theory follow logically 
from a set of simple properties. We shall reformulate the 
work of R.T. Cox, a physicist interested in reasoning under 
uncertainty. Cox demonstrated, over forty years ago, that the 
axioms of probability theory are a necessary consequence of 
intuitive properties of measures of belief [S]. That is, if a 
set of simple properties are assumed, the axioms of 
probability theory must be accepted. Even though others, 
including Jaynes [9] and Tribus [lo] have since demonstrated 
similar proofs, the work has remained obscure. 

We think it is important that the artificial intelligence 
community become familiar with Cox’s result. After 
clarifying the focus of this paper, we will present fundamental 
properties that Cox and Jaynes have asserted as necessary for 
any measure of belief. We will then discuss the relevance of 
the proof to current discussions within the artificial 
intelligence community on the use of alternative formalisms 
for plausible reasoning. Finally, we will describe how the 
proof can serve as a framework for analyzing and 
communicating differences about alternative methodologies for 
plausible reasoning. We will use the framework to critique 
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the non-probabilistic methods of fuzzy logic, the Dempster- 
Shafer theory of belief functions, and the MYCIN certainty 
factor model. 

II THE LIMITS OF BELIEF ENTAILMENT 

We intend to present a useful perspective on methodologies 
for the entailment of belief. We use the phrase belief 
entailment to refer to the consistent assignment of measures 
of belief to propositions, in the context of established belief. 
Belief entailment schemes, such as the MYCIN certainty 
factor model, fuzzy logic, and probability theory dictate the 
belief in Boolean combinations of propositions given 
measures of belief in component propositions. Entailment 
schemes also provide a mechanism whereby beliefs can be 
updated as new information becomes available. 

Some have rightly pointed out that theories of belief 
entailment do not capture the rich semantics of plausible 
reasoning [7]. We stress that such methods are, indeed, only 
intended for the relatively simple task of the consistent 
assignment of measures of belief. We believe that belief 
entailment should be distinguished from the more 
encompassing task of plausible reasoning. 

It is useful to decompose the problem of reasoning under 
uncertainty in to three distinct components: problem 
formulation, initial belief assignment, and belief entailment. 
We use the term problem formulation to refer to the task of 
constructing the plausible reasoning problem. This consists of 
the process of enumerating important propositions as well as 
relations among propositions. The initial assignment of 
belief requires the direct assessment of belief or some 
procedure for constructing belief. Belief entailment occurs 
after a problem is formulated and an initial assignment of 
belief is completed. 

Belief entailment methodologies are relatively well- 
developed. For example, there are a number of different 
axiomatic schemes to choose from. In contrast, aspects of 
problem formulation and belief construction currently pose 
significant challenges for artificial intelligence research. 
Problem formulation has proven to be particularly difficult; 
there has been continuing debate as to whether or not an 
axiomatic theory for problem formulation is possible at 
all [ll, 12, 131. 

From this point on, we shall explicitly distill away the 
problems and issues concerning problem formulation in our 
discussion of alternative methods for reasoning under 
uncertainty. 

III FUNDAMENTAL PROPERTIES OF BELIEF 

We now turn to the intuitrve basis for probability theory. 
We shall assert a set of fundamental properties for measures 
of belief. The intuitive basis is a reformulation of the 
properties asserted by Cox, Jaynes, and Tribus as being 
essential for any measure of belief that could vary between 
truth and falsehood. We have attempted to make explicit all 
the properties used in the classic proof, including those that 
were not emphasized in the original work. We will enumerate 
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seven properties for measures of belief and name each for presented in Tribus [lo]. 
reference. 

Like many artificial intel ligence researchers, Cox reasoned 
about the nroblem of uncertaintv from a deductive 
perspective. He sought essential properties required of a 
measure that remesen ted degree of belief in the truth of a 

Another assertion is that belief in the negation of a 
proposition Q, denoted -Q, should be determined by the 
belief in the proposition itself. Formally, there should be a 
continuous monotonically decreasing function G such that 

-Qle = G(Qle). Boolean proposition, or proUposi tions 
combination rules of Boolean algebra. 

created through the 

We refer to this as the complementarity property. 
The first nronertv in our formulation asserts that 

A final property focuses on logically equivalent 
propositions. Consider two propositions, Q and R where it is 
possible to show that Q logically implies R and vice-versa. In 
this case, we assert that Qle q  Rle for any prior information 
e. In other words, if two propositions have the same truth 
value, an individual should believe each of them with equal 
conviction. We term this the consistency property. 

In summary, we have presented seven fundamental 
properties for continuous measures of belief in the truth of 
propositions. We have termed these properties: 

1. Clarity: Propositions should be well-defined. 

propositions td w’hic6 belief can be assigned must be well- 
defined. That is, propositions must be defined precisely 
enough so that it would be theoretically possible to determine 
whether a proposition is indeed true or false. The intention 
of this property is captured by the notion that a proposition 
should be defined clearly enough so that a n omniscient being 
(often referred to in the decision analysis literature as a 
clairvoyant) could determine its truth or falsehood. We shall 
refer tb this requirement as the clarity property. 

A second assertion is that measures of degree of belief in 
the truth of a uroDosition should be able to vary continuously 
between values’of ‘certain truth and certain falsehood and that 
the continuum of belief can be represented by a single real 

2. Scalar continuity: A single real number is both 
necessary and sufficient for representing a degree 
of belief. 

number. We refer to the use of’ a single real number to 
represent continuous measures of belief as the scalar 
continuity property. 

A third assertion in our formulation is that it is oossible to 
assign a degree of belief to any proposition which is precisely 
defined. We refer to this property as the completeness 

3. Completeness: A degree of belief can be assigned 
to any well-defined proposition. 

4. Context dependency: The belief assigned to a 
proposition can depend on the belief in other 

property. 

UDon what might a degree of belief depend? An propositions. 

Hypothetical conditioning: There exists some 
function that allows the belief in a conjunction of 
propositions to be calculated from the belief in 
one proposition and the belief in the other 
proposition given that the first proposition is true. 

Complementarity: The belief in the negation of a 
proposition is a monotonically decreasing function 
of the belief in the proposition itself. 

indcvidual’s or computer Dcogram’s degree of -belief in a 
proposition should. - of c&r&. depend on the particular . . 
ProPosition under consideration. I6 addition, the degree of 
bel ikf in a particular proposition can depend upon knowledge 
about other nrouosi tions. We refer to this as the context 
dependency piop’erty. We shall use the term Qle to represent 
the degree of belief in proposition Q by an individual with 
background knowledge e. The background knowledge e refers 
to information relevant to the belief in Q that is assumed or 
believed to be true. 

In exploring the dependency of belief in one proposition on 
another, Cox specifically focused on the belief in the 

e . Consistency: There will be equal belief in 
propositions that have the same truth value. 

conjunction of two propositions given belief in each 
proposition. He asserted that the belief in the proposition 
QR should be related to the belief in Q alone as well as to 
the belief in R given that Q is true. That is, the belief in an 
event of interest should depend on one’s belief in the event 
given the truth of some conditioning event as well as the 
degree of belief in the conditioning event itself. Formally, we 
asiert that measures of belief shduld have the property that 
there exists some function F such that 

IV A LOGICAL MAPPING 

As mentioned above, Cox and others have demonstrated that 
the above properties logically necessitate the axioms of 
probability theory. According to the proof, if one accepts the 
above intuitive properties, one must, accept the axioms of 
probability. More precisely, it can be shown that if the 
intuitive properties of belief are assumed, there exists a 
continuous monotonic function (,I such that 

QRle = F(Qle, RIQe). (1) 
0 5 b(Qle) 15 1 

The function is asserted to be continuous and monotonically 
increasing in both arguments when the other is held constant. o(TRUEle) = 1 We refer to the -above property as the hypothetical 
conditioning property. 
often refefred to as hypothetical reasoning. 

This property is related to what is 
Individuals o(Qle) + o(-Qle) = 1 

commonly assign belief to events conditioned on the truth of 
other events. This property may be viewed as a specialization 
of context dependency. 

p(QRle) = o(Qle) . @lQe) 

These relations are the axioms of probability theory as they 
are commonly formulated. That is, u(Qle) satisfies the axioms 
of probability. Given the above fundamental properties, the 
onfy measure of belief in the truth of proposition Q in light 
of evidence E must be the probability of Q given E, written 
p(QIE) or some monotonic transformation of this quantity. 
Bayes’ theorem follows directly from the last axiom above. 

Although the hypothetical conditioning property was stated 
bv Cox. it can actually be Droved from a weaker assumption 
about ;he relationshid of belief in the conjunction of- two 
propositions to belief in the individual component 
propositions. The proof considers functions of belief in two 
propositions that could generate a measure of belief in the 
conjunction of the propositions. Alternative arguments are 
eliminated based on contradiction and symmetry, leaving only 
the hypothetical conditioning form. This work is elegantly 

The proof of the necessary relationship between the 
intuiti ve properties and the axioms of probabil ity theory is 
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based on an analysis of solutions for the functional 
forms [14] implied by the intuitive properties. We 
recommend the referenced versions of the proof to the reader. 

V RELEVANCE OF THE MAPPING TO AI RESEARCH 

The logical mapping relating intuitive properties to the 
axioms of probability has important implications for artificial 
intelligence research. In the context of the mapping, if one 
subscribes to the simple intuitive properties of belief in 
systems that reason under uncertainty, one thereby agrees that 
the axioms of probability are theoretically sound for capturing 
all aspects of belief entailment; arguments for alternative 
entailment schemes based on theoretical or pragmatic 
considerations must involve the violation or modification of 
one or more of the enumerated properties. 

In addition to serving as a proof of logical necessity 
between the intuitive properties and the axioms of probability 
theory, the Cox result can provide a useful perspective on the 
differences between alternative entailment methodologies. 
Investigation of differences between competing methods may 
be hampered when the formalisms are defined with axiomatic 
systems that are difficult to compare. As an example, the 
most common axiomatization of Dempster’s 
evidence [15] is in a 

theory of 
form not particularly suited for 

comparison with the axioms of probability theory. As we will 
see in section VII, moving discussion into the realm of 
intuitive properties can highlight the fundamental differences 
between alternative belief entailment schemes. 

The mapping can be especially helpful in identifying the 
basis of possible dissatisfaction with probability theory. An 
individual, harboring ill-defined dissatisfaction with 
probability theory, might be able to identify the sources of 
his uneasiness at the level of the intuitive properties. 

VI A FRAMEWORK FOR COMPARING ALTERNATIVES 

Cox’s proof of a mapping between a set of intuitive 
properties and probability theory can serve as an integrative 
framework for identifying differences among alternative belief 
entailment schemes. We believe that the set of intuitive 
properties are so basic as to be relevant to any belief 
entailment scheme; the properties, or close analogs of them, 
were undoubtedly addressed in the creation of the 
methodologies. Ascertaining the status of each of the 
fundamental properties in a non-probabilistic methodology is 
usually straightforward. 

How can we critique alternatives of probability in terms of 
the intuitive properties ? It is useful to carefully identify the 
status of the seven intuitive properties in each entailment 
methodology. In most cases, the spirit of a non-probabilistic 
methodology can be captured by identifying a fundamental 
dissimilarity with one or two of the intuitive properties of 
probability theory. Although such a difference will often 
have the side effect of invalidating other intuitive properties, 
it may still be useful to focus on the primary property 
violation that best captures the rationale behind the creation 
of the method. 

The identification of a primary property violation can focus 
debate on well-defined fundamental principles. Such a focus 
can be especially useful in discussions of perceived theoretical 
advantages of alternative belief entailment schemes. When 
the selection of a scheme is based on the pragmatics of 
computation or belief assessment, identifying a ten tral 
property violation can be useful in characterizing problems 
that may arise in practice. 

It may also be useful to categorize the differences between 
probability and alternative belief entailment methods. Such a 
categorization scheme can summarize agreement of any 
methodology with the intuitive properties. If we examine the 
status of the seven intuitive properties of belief, non- 
probabilistic strategies can be viewed to fall into one of the 
following categories: 
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1. Generalization: The elimination or weakening of 
particular intuitive properties. 

2. Specialization: The addition of new fundamental 
properties or the strengthening of existing 
properties. 

3. Self-inconsistency: The addition or strengthening 
of properties such that a logical inconsistency 
arises in the set of fundamental properties; the set 
of properties become self-inconsistent. 

4. Substitution: The substitution of one or more 
properties for another such that the set does not 
fall into one of the above categories. 

Armed with this intuitive framework, we will now explore 
specific examples of popular belief entailment methodologies 
that are often viewed as competing with probability theory. 
In particular we will examine fuzzy logic, the Dempster- 
Shafer theory of belief functions, and the MYCIN certainty 
factor model. 

VII EXAMINATION OF ALTERNATIVE METHODS 

A. Fuzzy Logic 

There are currently at least two distinct forms of fuzzy logic 
used to manage uncertainty. Each deviates from the intuitive 
properties in a different way. 

One form of fuzzy reasoning applied to managing 
uncertainty was introduced by Zadeh [2]. Fuzzy logicians 
using this methodology do not object to the use of probability 
theory when events are precisely defined. However, they argue 
that it is desirable to reason with imprecision in the 
definition of events in addition to uncertainty about their 
occurrence. They allow beliefs to be assigned to imprecise 
events as well as precise ones. This version of fuzzy logic 
theory includes fuzzy versions of Bayes’ theorem [16]. Zadeh 
attempts to demonstrate the need to assign belief to fuzzy 
propositions in’ the following challenge: 

An urn contains approximately n balls of various 
sizes, of which several are large. What is the 
probability that a ball drawn at random IS 
large [16]? 

Returning to our intuitive properties, it appears that the 
central dissimilarity of this kind of fuzzy logic with 
probability theory occurs with the clarity property. This 
methodology weakens the clarity property in that it is 
assumed that events to which belief may be assigned remain 
ill-defined. We would classify this school of fuzzy logic as 
being a generalization of probability theory. 

The identification that a central difference between this 
form of fuzzy logic and probabilrty theory occurs at the level 
of the clarity property defines a particular focus for 
discussion about the benefits or rationale of the methodology. 
Analysis of the advantages and disadvantages of fuzzy logic 
should center on the rationale and ramifications of weakening 
the clarity property. Many probabilists have argued against 
the weakening of the clarity property by pointing out that 
imprecision in the specification of a proposition could always 
be converted to uncertainty about the occurrence of a related 
precise event that had similar or identical semantic content. 
It has also been proposed that probability distributions over 
variables of interest can capture the essence of fuzziness 
within the framework of probability [17]. 

It has also been argued that the use of imprecise 
propositions is inappropriate in making important decisions. 
The penalty for reasoning with fuzzy events is often obscured 
by the examples used in presentations of fuzzy set theory. 
Typical examples tend to center on reasoning about events 
with small potential losses and gains. For example, it is 
generally not very important whether or not a person of 
height 4’ 10” is called “short.” However, problems with using 



fuzzy events may be more apparent when large potential 
utility changes are associated with events. The cost for 
relying on a fuzzy entailment calculus is highlighted by the 
following example of a high-stakes situation: 

Stan finally received news about the growth on 
his chin. His physician, who was quite fond of 
fuzzy logic, reported to his nervous patient, “The 
test results usually mean that it is sorneti,hut likely 
that you have cancer. As the tumor is quite large 
and probably dangerous, I will operate. You 
shouldn’t worry; my patients usua(/y survive such 
operations. 

A decision theorist might argue that, in general, lack of 
clarity as in the above problem will lead to lower expected 
utility of outcome. That is, a cost is incurred by foregoing 
the use of the clarity property. The comparison of fuzzy and 
precise versions of a problem would allow an actual penalty 
associated with loss of information to be calculated. Decision 
theorists might argue that imprecision may not be tolerable in 
certain high stakes situations. 

We move next to an alternative fuzzy logic methodology. 
In this methodology [S], the degree of membership of a 
proposition P in the set of true propositions, denoted ,r-p(P), 
is interpreted as the degree of belief in the hypothesis. That 
is, 

/In = Pie. (2) 

We should note that a logical equivalency between this brand 
of fuzzy reasoning and forms of multi-valued logic has been 
demonstrated [S]. In this approach, it is assumed that 

,+B) = MIWTV’) v I@) 1. 

Given the correspondence (2), we see that this brand of fuzzy 
methodology is not consistent with the hypolhetical 
conditioning property. Therefore, this form of fuzzy 
reasoning falls into the subsritution category abole. 

Probabilists who accept I/~(A), i’(B),-, and /lT(AB) as 
measures of belief would object to the violation of the 
hypothetical conditioning relation. They might argue that the 
final belief in the conjunction /fT(AB) is not necessarily 
dependent solely on /tT(A) and I/~(B). The violation of 
hypothetica! conditioning in this case is tantamount lo 
imposing independence or uniform conditional dependence 
(equivalent dependency among all propositions) where such a 
relationship may not exist. 

R. Dempster-Shafer 

In the Dempster-Shafer (DS) theory [3], two separate 
measures of belief can be assigned to each proposition 
P. These measures are referred to as the “belief” and 
“plausibility” in P, denoted Bel(P) and PInus respectively. 
Also, Bel(P) is not directly related to Bel(-P); instead, Bel(P) 
= 1 - Plaus(-P). Similarly, Plaus(P) q  1 - Bel(-P). Thus, the 
theory appears to differ from probability theory with respect 
to the scalar continuity property as well as the 
complementarity property. However, an examination of the 
original motivation for the theory reveals a more fundamental 
difference; the DS theory allows for the existence of well- 
defined hypotheses to which degrees of belief cannot be 
assigned. Thus, it seems that the central issue behind the 
development of the DS theory is the weakening of the 
completeness property. The fact that two numbers can be 
attached to the belief in any hypothesis is a consequence of 
this more fundamental difference between the two theories. 
To illustrate this, consider the following problem taken from 
Shafer [ 181: 

Is Fred, who is about to speak to me, going to 
speak truthfully, or is he, as he sometimes does, 
going to speak carelessly, saying something that 

cotnes to his mind, paying no attention to whether 
it is true or not? Let S denote the possible answers 
to this questlon; S q  (truthful, careless). Suppose I 
know from experience that Fred’s announcements 
are truthful reports on what he knows about 80% of 
the time and are careless statements the other 20% 
of the time. Then I have a probability measure p 
over S: p(truthful} = .8, p(careless} = .2. 

Are the streets outside slippery? Let T denote 
the possible answers to this question; T = (yes, no}. 
And suppose Fred’s answer to this question turns 
out to be, “The streets outside are slippery.” Taking 
account of this, 1 have a compatibility relation 
between S and T; “truthful” IS comuatible with 
“qes” but not with “no,” while 
compatible with both “yes” and “no.” 

“careless” is 

If one wanted to use probability theory to determine thd 
belief in the hypothesis that the streets outside are slippery 
given Fred’s report, additional information would be needed. 
In particular, one’s prior belief that the streets outside are 
slippery and the conditional belief that Fred WIII be correct 
ni&n that he is careless will be required. If r is the needed 
zrior belief that the streets outside are slippery and if s is the 
conditional belief that Fred will be correct given that he is 
careless, the belief of interest can be calculated using Bayes’ 
theorem: 

.8r + .2rs 
p(slipperylreport) = ___------------_--------- 

.8r + .2rs + .2(1-r)(l-s) 

In DS theorq, one is allowed to assert that r and s cannot 
be assessed. To make up for this lack of information, the 
theory uses the “compatibility relation” described above in 
order to define beliefs relevant to the problem. The DS 
“belief” and “plausibility” that the roads are slippery (“yes”) 
are given b> 

q  p(“truthful”) = .8 

Plaus( (“yes”}) q  xulXc) ) {“y&‘) () P(X) 

= p(“truthful”)+p(“careless”) q  1. 

where XC) means that x in S and y 111 T are compatible. 
Thus, the violation of the scalar continuity and 
complemeniurity properties arises from a weakening of the 
completeness propert). Based in the weakening of this 
property, DS can be considered a generalization of probability 
theory. 

Many have objected to the weakening of the comp/ereness 
property. For example, most dectsion analysts would insist 
that a personal measure of belief can be assigned to any well- 
defined proposttion when placed in the context of a decision. 
There has been research in the decision analysis community 
focusing on the pragmatics of assessing belief in an) well- 
defined proposition. 

C. Certainty factors 

We now turn to the MYCIN certainty factor model used for 
belief entailment in a number of rule-based systems. The 
MYCIN certainty factor model [4] can be shown to be self- 
inconsistent [ 19, 201. Thus, the original certainty factor 
model falls into the third category above. There are several 
ways to demonstrate inconsistency in the model. We will 
outline one of these approaches here. The model is an 
augmentation to the rule-based representation paradigm. 
Knowledge is represented as rules of the form IF <evidence> 
THEN <hypothesis>. To each rule IS attached a certuinty 
factor, denoted CF(H,F), which is intended to represent the 
chlrnge in belief in hypothesis H given that evidence E 
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becomes known. The definition of CF(h,E) is gtven in the ACKNOWLEDGEMENTS 
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1 - P(H) 

Ted Shortliffe, Michael Wellman, and Lotfi Zadeh for useful 
discussions. 

CF(H,E) = (3) REFERENCES 

\ 

P(HIE) - P(H) ------------- P(H) > P(HIE) 
P(H) 

where p(H) is the prior Ijrobability of H and p(HIE) is the 
posterior probability of H given E. 

One component of the model involves a prescription for 
combining certainty factors. For example, suppose two pieces 
of evidence E, and E, bear on hypothesis H. In the model, 
the two certainty factors CF(H,E,) and CF(H,E,) are 
combined to give an effective certainty factor, CF(H,E,r\E,), 
for the rule IF E,r\E, THEN H with the following function: 

x,y > 0 

x’y < 0 

x + y + xy x,y < 0 

where x q  CF(H,E& Y = CF(H,E2), and z q  CF(H,E,AE,). 

(4) 

An inconsistency follows from the two relations above. 
From (4), it follows that CF(H,E,r\E,) = CF(H,E,r\E,). That 
is, the combination of evidence is commutative. However, it 
can be shown that the definition of certainty factors, (3), 
prescribes non-commutative combination of evidence. 

Recent work has focused on removing inconsistencies in the 
certainty factor model [19]. The consistent refortnulation of 
the MYCIN certainty factor model falls into category 2 above; 
it can be shown that the certainty factor model is a 
specialization of probability in that assumptions of 
conditional independence are imposed by the methodology. 
For example, it can be shown that (4) is consistent with 
Bayes’ theorem only if E, and E, are conditionally 
independent given H and its negation. 

Although the certainty factor model is computationally 
efficient, many probabilists would feel the methodology was 
still unjustified because of its imposition of potentially 
invalid independence assumptions. They might seek a method 
whereby the tradeoff between computational efficiency and 
correctness can be controlled. Indeed, methods in which it is 
possible to selectively ignore dependencies that are not worth 
the computational effort to consider are currently being 
investigated [21]. 
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intuitive perspective on the nature of probability theory and 
on the relationship of non-probabilistic alternatives to 
probability. 
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