
Models of Continual Computation

Eric Horvitz
Microsoft Research

Redmond, Washington 98025

horvitz@microsoft.com

Abstract

Automated problem solving is viewed typically as the
expenditure of computation to solve one or more prob-
lems passed to a reasoning system. In response to each
problem received, e�ort is applied to generate a solu-
tion and problem solving ends when the solution is
rendered. We discuss the notion of continual compu-

tation that addresses a broader conception of problem
by considering the ideal use of the idle time between
problem instances. The time is used to develop solu-
tions proactively to one or more expected challenges in
the future. We consider analyses for traditional all-or-
nothing algorithms as well as more
exible computa-
tional procedures. After exploring the allocation of
idle time for several settings, we generalize the analy-
sis to consider the case of shifting computation from
a current problem to solve future challenges. Finally,
we discuss a sample application of the use of continual
computation in the setting of diagnostic reasoning.1

Introduction

Computational problem solving is viewed traditionally

as the automated solution of problem instances that

begins when an instance is submitted for analysis and

ends when a solution is rendered. Research on
exible,

anytime procedures has extended the simple notion of

termination of problem solving from that of generating

a precise result to a process of incremental re�nement.

However, these algorithms also solve challenges as they

are encountered in real time. In this paper, we describe

work on continual computation that extends the de�ni-

tion of the problem instance to a continuing sequence

of problems and that considers the ideal use of the pe-

riods of time that are traditionally viewed as idle time

between problems. We develop policies for e�ectively

harnessing idle time to develop solutions or partial so-

lutions to challenges that may be encountered in the

future.

We �rst review the use of knowledge about poten-

tial future instances under uncertainty and describe the

1
Copyright c
1997, American Association for Arti�cial Intelli-

gence (www.aaai.org). All rights reserved.

limitations in the scope of our analyses. Following dis-

cussion of policies for allocating idle time, we generalize

the analysis to consider the case of directing resources

from solving a current challenge to a potential future

challenge. Finally, we discuss a sample application of

the use of continual computation in automated diag-

nostic reasoning.

Continual Computation

Computational systems are often used in environments

where relatively large amounts of idle time are pierced

by intermittent bursts of problem instances. As an

example, consider the case of the interactive use of a

diagnostic reasoning system that computes the proba-

bility of diseases in a patient or faults in a mechanical

system and that makes recommendations for gather-

ing additional information. The process of diagnosis

and information gathering is often marked by periods

of idle time between the inferences undertaken to re-

vise a diagnosis in response to the entry of additional

observations or test results.

We will explore the ideal allocation of idle-time

resources for precomputing results in several contexts.

Rather than pursuing the use of general optimization

methods to allocate resources (Dantzig 1963), we seek

to elucidate principles of continual computation and

tractable policy-generation procedures for classes of

prototypical problems. Our analyses hinge on a con-

sideration of the likelihood of alternate forthcoming

problems. Given information about the likelihood of

future problem instances, ranging from detailed prob-

ability distributions to more qualitative orderings in

terms of likelihood, we wish to develop policies for the

ideal expenditure of idle time.

In related work, investigators have discussed the

value of optimizing the performance of computational

systems given resource constraints (Horvitz 1988; 1990;

Breese & Horvitz 1990; Dean & Wellman 1991; Heck-

erman, Breese, & Horvitz 1989; Zilberstein & Russell

1995). Previous work has also addressed the set of

opportunities for developing methods for caching par-

tial, approximate results and �nal, precise results so as

to optimize the run-time behavior of system (Horvitz

1989). However, few speci�cs were given in that work

on design principles and decision policies.

Minimizing Computational Delay

Assume we have access to exact or approximate infor-

mation about the probabilities, p(IjE), of seeing di�er-
ent problem instances I in the next period, given some

evidence about the problem or environment situation

E. Explicit probability distributions, as well as more

qualitative orderings over the likelihood of future in-

stances, can be learned from data or may be generated

by a model of a system or environment. We will review

an example of the latter in the discussion of a sample

application in diagnostic reasoning. Gaining access or

modeling the likelihood of future instances can range

from trivial to di�cult depending on the application.

We will not dwell in this paper on alternative means

for acquiring information about the likelihood of prob-

lem instances. Rather, we focus on the derivation of

ideal policies that take as input likelihood information

at any level of precision that is available.

Given access to probabilities of future challenges,

how should an agent spend its idle time? We will

limit our analysis to the subset of models of continual

computation that address maximizing the timeliness or

quality of the solution of the next problem challenge.

We wish to identify e�ciently the best allocation of

resources to solve this greedy continual computation

problem for canonical contexts, and, more generally, to

identify some basic principles for harnessing idle time.

We �rst consider models for achieving the goal of

minimizing the time required for a system to solve

problems. We will assume that the time required to

solve each problem is equal and that we have enough

memory to store the partial results for the poten-

tial next subproblems, I. Our goal is minimize the

expected delay when a challenge is posed to the sys-

tem. Idle time ends at the moment that a new problem

is received by the reasoning system.

The expected delay associated with solving the next

problem instance is a function of the actions the system

takes to precompute answers to problem challenges and

the duration of the idle-time period. We use t(Ii) for

the time required to compute a solution to problem in-

stance Ii, T for the total usable idle time, and t
f
i for the

idle-time fraction allocated to computing the answer to

problem instance Ii ahead of time. The maximal time

that can be allocated to a future problem instance is

the time needed to solve the problem, t(Ii), and the

total usable idle time T is less then or equal to the

maximal idle time, Tm =
P

i t(Ii), su�cient to solve

all potential future problems.

The expected delay before generating a solution to

a future problem is,

X
j

p(T = Tj)
X
i

p(IijE)[t(Ii)� Tjt
f
i] (1)

where the idle-time, T , is indexed by its magnitude

and Tjt
f
i � t(Ii). The expected savings gained from

performing idle-time computation is

X
j

p(T = Tj)
X
i

p(IijE)Tjt
f
i (2)

What can we say about optimizing an assignment of

the set of fractions t
f
i of total usable idle-time resource,

T to alternate problems? Let us consider the case for

some constant amount of idle time, T . We can rewrite

the expected savings in the next period as

T

X
i

p(IijE)t
f
i (3)

which will be maximized for any value of T by maxi-

mizing the quantity
P
i p(IijE)t

f
i .

Theorem 1 Idle-Time Partition. Given an ordering

over the probability of problem instances, p(I1jE) >
p(I2jE) > : : : p(InjE); representing the likelihood that

these problems will be passed to a program in the next

period, the idle-time resource partition that minimizes

the expected computation time in the next period is to

apply all resources to the most likely problem until it

is solved, then the next most likely, and so on, until

the cessation of idle time or solution of all problems

possible in the next period.

Proof : Assume an ordering over the probability of the

next problem instances

p(I1jE) > p(I2jE) > : : : ; > p(InjE) (4)

Consider the case where resources are only applied

to the most likely subproblem. The total savings are

maximized when we maximize,

T

X
i

p(I1jE)t
f
i = Tp(I1jE) (5)

where T t
f
i � t(Ii) and the total usable idle time T is

T �
P
i t(Ii).

Now consider the case where some resource fraction

x is diverted from solving problem I1, and is applied

to one or more of the other subproblems I2; :::; In. We

show that directing some portion x of the idle-time

resource fraction from the most likely instance to the

other problems must be less optimal than allocating

all of the resources to the most likely problem. That

is, we show that

Tp(I1jE) > Tp(I1jE)(1� x) + T

nX
i=2

p(IijE)t
f
i (6)

Our goal reduces to showing that

xp(I1jE) >

nX
i=2

p(IijE)t
f
i (7)

We know that
Pn

i=2 t
f
i = x, so we need to show that

p(I1jE)

nX
i=2

t
f
i >

nX
i=2

p(IijE)t
f
i (8)

As p(I2jE) > p(Ii>2jE), we know that

p(I2jE)

nX
i=2

t
f
i >

nX
i=2

p(IijE)t
f
i (9)

By de�nition, p(I1) > p(I2). Thus, we know that

xp(I1jE) >

nX
i=2

p(IijE)t
f
i (10)

for any x. Thus, the allocation of any resource to other

subproblems is not as valuable as expending those re-

source on the subproblem that is most likely to be seen.

When problem instance I1 is solved completely, it is

removed from consideration and the same argument is

made with the remaining n�1 problems and remaining

idle time, T � t(I1).

Theorem 2 Idle-Time Partition Indi�erence. If two

or more of the most likely problem instances have equal

likelihood, the expected computation time in the next

period is minimized by partitioning resources to the

equally likely instances in any con�guration of frac-

tions. If all problem instances are equally likely, we are

indi�erent about the allocation of idle-time resources.

Proof : Consider the terms i = 1; 2 of T
P
i p(IijE)t

f
i

for the two most likely problem instances. As

p(I1jE) = p(I2jE), we know that

Tp(I1jE)t
f
1 + Tp(I2jE)t

f
2 = Tp(I1jE)(t

f
2 + t

f
1) (11)

Thus, the contribution to the expected value will be the

same for any combination of allocations to problems of

equal likelihood as long as the total partition to all of

the problems with equal likelihood is unchanged.

Theorem 1 tells us that we must allocate idle-time

resources to solving problems in order of their likeli-

hood. Problems of equal likelihood are solved after

problems with greater likelihood have been solved and

removed from consideration. In this phase of precom-

putation, we can partition the resources among the

instances of equal likelihood in any way without e�ect

on the expected run-time savings.

Minimizing the Cost of Delay

In many settings, the cost of waiting for a computa-

tional result depends on context-dependent time crit-

icality (Horvitz & Rutledge 1991; Horvitz & Barry

1995). Let us generalize the results on minimizing

expected delay to minimizing the expected cost of delay.

The generalization is based on an analysis similar to

the one we used to identify policies for minimizing de-

lay. We assume that we have for each future problem

instance a time-dependent cost function, Cost(Ii; t),

that takes as arguments, an instance and the time de-

lay required to compute each instance following a chal-

lenge. Beyond specifying time criticality as a function

of the instance, we can employ a distinct context vari-

able. Without precomputation, the expected cost of

waiting for a response to the next challenge is,

X
i

p(IijE)Cost(Ii; t(Ii)) (12)

The contribution to the overall expected cost of the

delay required to solve each future instance Ii is

p(Ii)C(Ii; t(Ii)). Idle time T � t(Ii) applied to pre-

computing instance Ii will reduce the expected cost of

delay by p(Ii)[Cost(Ii; t(Ii)) �Cost(Ii; t(Ii) � T)].

We wish to allocate the total usable idle time in

a way that minimizes the expected cost. To iden-

tify an ideal continual-computation policy for the gen-

eral case of nonlinear cost functions, we must employ

search, or greedy analysis with small amounts of re-

source. However, general strategies can be constructed

for speci�c classes of cost function. For example, con-

sider the case where costs increase linearly with delay,

Cost(Ii; t) = Cit, where Ci de�nes a rate at which

cost is incurred for each instance Ii. The component

of the comprehensive expected cost contributed by the

expected delay solving each instance Ii is p(Ii)Cit(Ii).

Allocating idle time to precompute an instance dimin-

ishes the expected cost or increases the expected value

at a constant rate of p(Ii)Ci. The expected value in

the next period is maximized by allocating idle time

to commence solving the instance associated with the

greatest expected rate of cost diminishment, p(IijE)Ci,
and to continue until it is solved, and then to solve

the instance with the next highest expected rate, and

so on, until all of the instances have been solved. In

the next section, we will delve further into the use of

rates of re�nement in identifying continual computa-

tion policies for
exible strategies.

Considering the Value of Partial

Results

So far, we have considered the minimization of the

expected time and cost to generate a �nal answer given

a problem posed after some period of idle time. We

now generalize the idle-time considerations to optimiz-

ing the expected value of a system's response for the

case where we have access to one or more
exible algo-

rithms with the ability to generate partial results �(I)

that have value to a user before a �nal, precise answer

is reached.

Flexible Computation and Expected Value

Temporally
exible, anytime methods continue to en-

hance the value of partial results with computation.

A system applies a
exible strategy S to re�ne an ini-

tial problem instance I or to further re�ne a partial

result �(I) stemming from prior computation (the par-

tial result is a transformed problem instance I0). The

expected value of computation (EVC) is the value of

the re�nement of a result with computation (Horvitz

1988). In the general case, it is important to consider

the uncertainty of the results of computation, where

computation generates a probability distribution over

results,

S[�(I); t]! p[�0(I)j�(I); S; t] (13)

and, the EVC is,

X
j

p[�0j(I)j�(I); Si; t]uo(�
0
j(I)) � uo(�(I)) (14)

where uo(�(I)) is the object-level value of a previously

computed partial result �(I). For the case where cost

is deterministic and separable from the value of com-

putation, the net EVC (NEVC) is just

NEVC[Si; �(I); t] = EVC[Si; �(I); t]� C(t) (15)

We consider the problem of allocating idle-time

resources in terms of maximizing the expected value

of the system when a problem instance is passed to

the program in the next period problem-solving period.

Rather than attempting to minimize the expected de-

lay or cost for completely solving future problem in-

stances, we attempt to maximize the expected value

at the time a problem instance is received.

For simpli�cation we assume that the selection of

strategy S is prede�ned or optimized, and use S� to

refer to these strategies. The maximal expected value

for the next period is maximized when the resource

fraction assignment t
f
i is selected so as to optimize the

expected value of precomputation (EVP),

X
j

p(T = Tj)
X
i

p(IijE)EV C(S
�
; �(Ii); Tjt

f
i) (16)

In the general case, to optimize the policy on idle-

time resource partition, we must consider the general

problem of optimizing the allocation of resources under

uncertain idle times. However, we can develop theo-

rems analogous to Theorems 1 and 2 for special situa-

tions of EVC for a set of future problem instances.

The value of allocating resources to precomputing

future problem instances in a system relying on
exi-

ble computation can be characterized in terms of the

rate at which the best strategies can deliver value with

computation. We use EVC
ux to refer to the rate

of change of value with computation time. The EVC

ux, (S; I; t), for a problem instance Ii and strategy S

is the instantaneous rate, dEV C
dt

, at which the strategy

delivers value at t seconds into solution of the problem.

In the general case, a strategy applied to a prob-

lem instance may deliver value as a nonlinear function

of computational e�ort. We �rst consider the special

case where computational strategies generate a con-

stant EVC
ux.

Theorem 3 Idle-Time Partition for Constant EVC

Flux. Given problem instances Ii that may be passed

to a program in the next period, and an EVC
ux

 (S; Ii; t) for the solution of each instance that is con-

stant with time, the idle-time resource partition policy

that maximizes the expected value at the start of the

next period is to apply all resources to the problem with

the maximal product of probability and EVC
ux. That

problem should be re�ned until a �nal result is reached,

then the result with the next highest product should be

analyzed, and so on, until the cessation of idle time or

solution of all problems possible in the next period.

Proof : We assume that allocation of time to each

instance for preselected reasoning strategies, S�, ap-

plied to problem instances provide constant EVC
uxes

 (S; Ii; t) = i for each instance based on the re�ne-

ment of a sequence of partial results. We know that

the EVP is,

X
j

p(T = Tj)
X
i

p(IijE)EV C(S
�
; Ii; Tjt

f
i) (17)

and that,

EV C(S�; Ii; Tjt
f
i) =

Z Tjt
f

i

0

 idt = CiTjt
f
i (18)

Thus, the EVP can be rewritten as,

X
j

p(T = Tj)
X
i

p(IijE)CiTjt
f
i (19)

For any amount of idle time Tj , less than the time

required to solve all of the future instances, the fastest

that the EVP can grow is by the instance that max-

imizes p(IijE)Ci. The ideal policy is to apply all

resources to the instance with the highest value of

p(IijE)Ci. Citing the same argument used in Theorem

1, any amount of time x re-allocated to another in-

stance would diminish the total EVP because it would

be multiplied with smaller valued products.

When problem instance I associated with the largest

product, is solved completely, it is removed from con-

sideration and the same argument is made with the

remaining n� 1 problems.

Theorem 4 Idle-Time Partition Indi�erence for Con-

stant EVC Flux. If two or more of the most likely

problem instances have an equal product of likelihood

and EVC
ux, the expected computation time in the

next period is minimized by partitioning resources to

the equally likely instances in any con�guration of re-

source fractions. If all problem instances have equal

product of likelihood and EVC
ux, we are indi�erent

about the allocation of idle-time resources.

The proof follows analogously to the proof of Theo-

rem 2 with substitution of products of likelihood and

EVC
ux for the likelihoods.

Greedy Time-Slicing for Nonlinear EVC

For the general case of nonlinear EVC under uncer-

tain idle time, we are forced to perform general opti-

mization to seek optimal policies. However, we can de-

rive approximate, greedy allocation strategies that take

advantage of the results we described earlier. In the

greedy, myopic approach, we consider the best alloc-

ation of small slices of the usable idle-time, �t. At

each stage, we consider the contribution to the total

EVP for the allocation of �t resources to solving each

of several instances,

p(IijE)EV C(S
�
; Ii;�t) (20)

We allocate all of the time to the instance with the

greatest product of likelihood of seeing the problem

instance, p(IijE) and the EVC for the allocation of �t,

and continue to apply this greedy procedure as more

time is available.

We justify the allocation of all of the resource in the

�t slice to the solution of a single instance by arguing

that the EVC
ux in small �t regions is approximately

constant, and employing Theorem 3 with the substitu-

tion of the average EVC
ux during the time slice for

the constant
ux, Ci.

Considering the Cost of Shifting Attention

Costs may arise in computational systems based in the

overhead of shifting attention from one problem to the

next. Such costs can in
uence decisions about shifting

to problems with greater EVC
ux. Given the pres-

ence of costs of shifting attention, idle-time should be

switched to re�ning an instance that yields a greater

expected EVC
ux only if the expected bene�ts of the

switch are greater than the costs of the shift. To com-

pute the expected net gain in shifting attention, we

need to consider the probability distribution over re-

maining idle time, tr, given idle time that has already

been expended, te. Using EV Ci(t) as shorthand for

EV C(S; Ii; t) and Cost
s as the cost of shifting atten-

tion, the expected value of shifting to the new instance

is, Z
tr
p(tr jte)[EV C2(t

r)p(I2) �EV C1(t
r)p(I1)]dt

r

�Costs (21)

As an example, consider the re�nement of partial

results for instances that are each represented by a

concave-down piecewise linear EVC function. We se-

lect and apply idle time to solve the linear segment of

the instance associated with the largest expected EVC

ux. However, when we reach a segment with a dimin-

ished
ux, we must reexamine the value of continuing

to re�ne the current instance versus moving to another

instance with a greater expected
ux. Let us assume

that the expected EVC
ux for the next leg of re�ne-

ment for the current instance, p(I1) is less than the

expected EVC
ux for another instance p(I2). That

is, p(I1)C1 < p(I2)C2. The expected value of shifting

to the new instance is,Z
tr
p(trjte)tr [C2p(I2)� C1p(I1)]dt

r

�Costs (22)

Equation 22 speci�es that it will only be worth shifting

if the mean remaining idle time, tr , is greater than the

ratio of the cost of shifting attention and the di�erence

of the expected rates,

tr >
Cost

s

C2p(I2) �C1p(I1)
(23)

Beyond Idle Time: Trading the Present

for the Future

So far, we have considered the allocation of idle time

for solving future challenges and have assumed that

real-time resources would be dedicated solely to solv-

ing the current problem challenges. In some situations,

allowing a portion of real time to be allocated to fu-

ture problem solving with degradation of the quality

or speed of solving the current challenges can enhance

the value of a system's performance. It is ideal to allo-

cate current resources to future problem solving when

the expected value of the allocation to the future out-

weighs the expected gains of applying the resource in

the present.

In making such tradeo�s, we must consider a user's

preference regarding the net present value of results

delivered by computational analysis of a future prob-

lem instance. Such a preference can often be captured

by a time-discount factor that diminishes the value de-

livered at some later time to its net present value. In

an analysis of the relative value of using computational

resources to solve a problem in the present momentver-

sus to apply the resources to solving future potential

problems, we must consider the di�erence between the

gains in the discounted value of future problem solving

and the losses in current problem solving based in the

transfer of resources.

The immediate loss of dedicating current resource to

a future problem is the product of the quantity of time

allocated and the average EVC
ux over this period.

The gains of allocating these resources to a future prob-

lem is a function of the amount of idle time that will

be available after the current session is completed. If

there will be su�cient idle time to precompute all pos-

sible future problem instances, nothing can be gained

by the transfer of resources to precomputation. We

must model the probability distribution over the avail-

able idle time, and use this information to compute

the expected value of the transfer of resources to the

future problems.

For the general case of nonlinear EVC
ux on future

problems, we must perform a general optimization.

However, we can develop analyses for special cases.

Let us consider the value of allocating a sequence of

small slices of current time �t to future problem solv-

ing. We assume a goal of maximizing the value of the

result when the next challenge arrives. We assume

that the net present value of enhancements delivered

in the next period is the future value diminished by a

constant time-discount factor, d � 1.

To compute the gain in making the transfer, we

weigh the gain for each amount of idle time by the

probabilities of idle time. We employ Theorem 3 to

order the allocation of resources by the product of the

constant EVC
ux, i, generated by solving each prob-

lem and the likelihood of the problem, p(IijE). We

sort the future problem instances by the product of

the likelihood of the instance and the EVC
ux, and

label these instances I1; : : : ; In.

To compute the value of the precomputation, we

consider the uncertainty about the
ux that will be

achieved with the resource, which will depend on the

future problem that will be solved with the resource.

The
ux generated by the resource depends on the to-

tal usable idle time T and the total amount of time

that has already been re-allocated to future compu-

tation, ta. The current value of transferring current

problem solving time �t to precomputation is,

t(I1)�taX
T=0

p(T) 1�tp(I1jE)d(T)

+

t(I1)+t(I2)�taX
T=t(I1)�ta

p(T) 2�tp(I2jE)d(T)

+:::

P
n

i=1
t(Ii)�taX

T=
P

n�1

i=1
t(Ii)�ta

p(T) n�tp(InjE)d(T) (24)

where the discount rate is a function of time in the

future when the results of precomputation are realized.

In use, as the amount of total time allocated to solv-

ing a strategy grows so that ta � t(Ii), we remove the

future problem (and associated term) from consider-

ation, as that problem instance will have been com-

pletely solved by precomputation.

Theorem 5 Real-time dominance for constant EVC

ux. It is not worthwhile to allocate resources from

current problem solving to future problem solving if the

current constant EVC
ux is greater than the greatest

product of likelihood of future subproblem and its EVC

ux.

Proof : The proof follows from Equation 24 and The-

orem 3. The largest contribution from future compu-

tation will come when the current resource is applied

to precomputing the instance associated with the lead-

ing term in Equation 24. This term contributes when

the usable idle time is less than the time required to

solve the �rst problem instance. Assuming a time-

discounting factor, d � 1, the value of precomputa-

tion will be nonpositive when the current EVC
ux,

 o � 1p(I1jE) for any value of idle time and discount

factor.

Thus, if the current EVC
ux is greater than the

leading product of EVC
ux and likelihood of future

instance, we do not need to consider the discount rate

and the probability of idle time to make a decision

about precomputation with the resources.

We can extend these results to consider situations

beyond constant . For example, consider the case

where the EVC is increasing but the EVC
ux is con-

tinuously diminishing, d o
dt

< 0 (i.e., a monotonically

increasing, concave-down performance pro�le). In this

case, we begin to do precomputation when the EVP be-

comes positive by Equation 24 and continue to check

the EVP as new i are encountered following the so-

lution of alternate future problem instances.

Example: Continual Computation for

Value of Information

Models of continual computation hold promise for en-

hancing the use of a spectrum computational pro-

cedures including optimization of resource allocation

in operating systems and transmission of information

over limited bandwidth networks. For example, the

methods can be harnessed in the prefetching of web

pages. The methods can also enhance a variety of au-

tomated planning and decision-making tasks.

An example of the use of continual computation is

the computation of the net expected value of infor-

mation (NEVI) in a normative diagnostic reasoning

system|a system that operates based on the prin-

ciples of probability and utility (Henrion, Breese, &

Horvitz 1992). Normative diagnostic systems compute

the probability of states of one or more variables of

interest (e.g., diseases, faults) from observations (e.g.,

�ndings) (Ben-Bassat et al. 1980; Heckerman, Horvitz,

& Nathwani 1992; Shwe et al. 1991). The systems pro-

vide users with a probability distribution, p(HjE; e; �),
over one or more variables of interest H, in response

to evidence e, in the context of previously observed ev-

idence E, and background state of information �. An

important component of many diagnostic systems is

the identi�cation, at any point in a diagnostic setting,

of the best next observations or tests to perform, based

on the net expected value of information.

The NEVI is the di�erence between the value of ob-

serving new information under uncertainty, and the

cost of making the observation. To compute the value

of information, the systems consider, for each ob-

servation, the expected value of the best decision in

the world for each value the observation can take on.

Then, the expected utility for each value is summed,

weighted by the probabilities of seeing the di�erent val-

ues, should the observation be made,

NEVI(ex; E) =X
k

p(ex;kjE)[max
A

X
j

u(Ai;Hj)p(Hj jE; ex;k)]

�max
A

X
j

u(Ai;Hj)p(HjjE)� C(ex; E) (25)

where ex is an unobserved variable and ex;k is the

observation of state k when ex is evaluated. The

computation of the net expected value of information

(NEVI) can impose noticeable delays for computation

in decision-support systems depending on the platform

and the problem being solved. Probabilistic inference

in general graphical models like Bayesian networks

and in
uence diagrams is NP-hard (Cooper 1990;

Dagum & Luby 1993). The computation of NEVI,

even for the case of the greedy analysis, requires, for

each piece of unobserved evidence, probabilistic infer-

ence about the outcome of seeing the spectrum of al-

ternate values should that observation be carried out.

Thus, multiple computations for each potential test or

observation must be considered.

NEVI is a natural candidate for continual compu-

tation. Typically, the observation of evidence requires

e�ort and time, which provides variable amounts of

idle time to the system for precomputation. Also, the

NEVI computation includes computing p(ex;kjE), the
probability of future observations, should an observa-

tion be made. We can use this information to control

continual computation of NEVI (Horvitz & Peot 1996).

The probability of the next observation depends on

the way recommendations for observations are pre-

sented to the user in a diagnostic system. Depend-

ing on the user interface of the diagnostic system, a

user may be presented with only the best next ob-

servation to make or a list of observations to make

ranked by NEVI. In the case of one recommendation,

we use p(ex; kjE), the probability over future instances
I. With the use of a list of recommended observations,

we can employ a model of the probability of selection

based on factors including the position of the recom-

mended observation and/or relative NEVI values. We

can compute the probability of the next problem in-

stances as the product of the probability of the user

selecting �nding y from a list to evaluate, and the

probability of the next observation given that selec-

tion, p(yjdisplay) � p(ex; kjE; y).

If we assume that the system will compute and cache

the probabilities as well as the recommendations on the

best future observations, that we have su�cient local

memory to store the partial results of computation,

and that problem instances are of equivalent di�culty,

we can minimize the total time of computation in the

next period by employing the policy of directing the

available idle time to future NEVI problem instances

in order of their computed probability.

Summary

We presented continual-computation policies for har-

nessing idle time to enhance the quality of solutions in

the next period, given information about the likelihood

of instances. We considered procedures for minimizing

delays and maximizing the quality of the response to

forthcoming challenges. We reviewed procedures for

ideally allocating idle time as well as current solution

time to precompute future problems. The work high-

lights opportunities for leveraging \idle time" to en-

hance the expected value of a system's performance.

We are exploring a variety of applications of continual

computation in decision-making systems, networking,

and operating systems. We are also pursuing exten-

sions to the methodology, including issues that arise

with the consideration of memory limitations and cost.

Research on continual computation holds promise for

enhancing the value of computational systems and for

further bolstering our understanding of problem solv-

ing under bounded resources.

Acknowledgments

Natalia Moore, Jed Lengyel, Jack Breese, Chris Meek,

and Mark Peot provided useful feedback on this work.

References

Ben-Bassat, M.; Carlson, V.; Puri, V.; Davenport,

M.; Schriver, J.; Latif, M.; Smith, R.; Lipnick, E.;

and Weil, M. 1980. Pattern-based interactive diagno-

sis of multiple disorders: The MEDAS system. IEEE

Transactions on Pattern Analysis and Machine Intel-

ligence 2:148{160.

Breese, J., and Horvitz, E. 1990. Ideal reformulation

of belief networks. In Proceedings of Sixth Conference

on Uncertainty in Arti�cial Intelligence, Cambridge,

MA, 64{72. Association for Uncertainty in Arti�cial

Intelligence, Mountain View, CA.

Cooper, G. 1990. The computational complexity

of bayesian inference using bayesian belief networks.

Journal of Arti�cial Intelligence 42(2):393{405.

Dagum, P., and Luby, M. 1993. Approximating prob-

abilistic inference in Bayesian networks is NP-hard.

Journal of Arti�cial Intelligence 60(1):141{153.

Dantzig, G. 1963. Linear Programming and Exten-

sions. Princeton, NJ: Princeton University Press.

Dean, T., and Wellman, M. 1991. Planning and Con-

trol. San Mateo, California: Morgan Kaufmann Pub-

lishers. chapter 8.3 Temporally Flexible Inference,

353{363.

Heckerman, D.; Breese, J.; and Horvitz, E. 1989.

The compilation of decision models. In Proceedings

of Fifth Workshop on Uncertainty in Arti�cial Intelli-

gence, Windsor, ON, 162{173. Association for Uncer-

tainty in Arti�cial Intelligence, Mountain View, CA.

Heckerman, D.; Horvitz, E.; and Nathwani, B. 1992.

Toward normative expert systems: Part I. The Path-

�nder project. Methods of information in medicine

31:90{105.

Henrion, M.; Breese, J.; and Horvitz, E. 1992. Deci-

sion analysis and expert systems. AI Magazine 12:64{

91.

Horvitz, E., and Barry, M. 1995. Display of informa-

tion for time-critical decision making. In Proceedings

of the Eleventh Conference on Uncertainty in Arti�-

cial Intelligence, 296{305. Montreal, Canada: Mor-

gan Kaufmann, San Francisco, CA.

Horvitz, E., and Peot, M. 1996. Flexible strategies for

computing information value in diagnostic reasoning.

In Fall Symposium on Flexible Computation, Cam-

bridge MA, Report FS-96-06, 89{95. AAAI: Menlo

Park, CA.

Horvitz, E., and Rutledge, G. 1991. Time-dependent

utility and action under uncertainty. In Proceedings

of Seventh Conference on Uncertainty in Arti�cial In-

telligence, Los Angeles, CA, 151{158. Morgan Kauf-

mann, San Mateo, CA.

Horvitz, E. 1988. Reasoning under varying and un-

certain resource constraints. In Proceedings AAAI-88,

Minneapolis, MN, 111{116. Morgan Kaufmann, San

Mateo, CA.

Horvitz, E. 1989. Rational metareasoning and

compilation for optimizing decisions under bounded

resources. In Proceedings of Computational Intelli-

gence 89, Milan, Italy. Association for Computing

Machinery.

Horvitz, E. 1990. Computation and Action Un-

der Bounded Resources. Ph.D. Dissertation, Stanford

University.

Shwe, M.; Middleton, B.; Heckerman, D.; Henrion,

M.; Horvitz, E.; Lehmann, H.; and Cooper, G. 1991.

Probabilistic diagnosis using a reformulation of the

INTERNIST-1/QMR knowledge base{II: Evaluation

of diagnostic performance. Methods of information in

medicine 30:256{267.

Zilberstein, S., and Russell, S. 1995. Approximate

reasoning using anytime algorithms. In Natarajan, S.,

ed., Imprecise and Approximate Computation. Kluwer

Academic Publishers.

