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1. Introduction

In biological tissue, water is ubiquitous and constantly in motion. This motion of water inside biological
tissue is called diffusion. Water usually diffuses at different rates both in different locations and along
different directions at one location. The difference of diffusion rates at one location is called anisotropy.
The following pictures show three types of diffusion illustrated by the ellipsoids. The ellipsoid would be
regarded as the shape that the water will diffuse into from one point after a short period of time. Thus it is a
natural icon for diffusion information.

The diffusion of water is constrained by, and correlated with, micro-structure in the biological tissue. By
visualizing diffusion information, we can elucidate the connectivity and micro-structural detail.

With MRI technology, diffusion information can be measuriedvivo from biological tissues, producing a
three-dimensional, second-order tensor field. This tensor field consists of a description of the diffusion
information at every sample point in the three-dimensional volume.

In this project, we produce images from the three-dimensional diffusion tensor fields that illustrate the
connectivity and other micro-structural information in the nervous system; we provide the user with
interactivity so that he/she can explore the image from different angles and distances; we also put
anatomical landmarks in the image which is proved to be essential in understanding the images.

2. Related Work: Ellipsoids in 2D



Pierpaoliet aluse arrays of ellipsoids[Pierpaoli and Basser, 1996] to represent a two-dimensional diffusion
tensor field(Figure a). A diffusion tensor matrix is symmetric and has positive eigenvalues. These special
properties make an ellipsoid a natural geometric representation of the diffusion tensor. Each axis of the
ellipsoid represents one eigenvector and its corresponding eigenvalue. Laiditmormalized the size of

the ellipsoid to give a more continuous visual appearance [Laidlaw et al., 1998](Figure b).

3. Related Work: Brushstrokes in 2D

Laidlaw




Laidlaw et al [Laidlaw et al., 1998] borrow concepts from oil painting. Two-dimensional brush strokes are
used to represent different aspects of the diffusion tensors. The information is also classified and visualized
in different layers such as the underpainting, checkerboard layer, and stroke layer.

4. Geometric representation in 3D

There are two limitations of ellipsoids methods when applied to a three-dimensional dataset. First,
visualizing every sample point in the three-dimensional dataset, only the outermost layer of the dataset can
be displayed on the screen. The internal data points will be blocked. Second, continuity inherent in
biological tissues will not be properly represented in the final image. For example, the neural fibers in the
brain that connect different anatomical regions would be difficult to locate within an array of ellipsoids.
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Similar problems arise when we try to apply the brushstrokes method to visualize a three-dimensional
diffusion tensor field.

5. Related Work: 3D Volume Rendering

Kindimannet al [Kindimann and Weinstein, 1999] take a volume rendering approach to the problem. The
philosophy behind this method is to display only some of the information, but display that information
densely within a volume. The “hue-ball” and a “barycentric map” assign color and opacity to each location
in the dataset based on the properties of the diffusion tensor information. Although low opacity is assigned
to unimportant data to avoid visual cluttering, in many cases there are a number of important data points
along the direction of one ray. The compression of all these points into a single pixel makes it difficult for a
viewer to extract precise positional information from the final image. This makes it difficult to pick out the
path of a certain fibrous structure from its neighborhood. Also, a lack of interactivity limits a user’'s
understanding of the image.

6. Our method—Streamtubes and streamsurfaces

Our solution is to distinguish between linear and planar anisotropy regions, and employ streamtubes and
streamsurfaces to visualize these two types of regions, respectively.
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Streamtubes Streamsurfaces

The streamtubes represent linear anisotropy region. The trajectory sweeps along the major vector field, and
the cross-section shape is an ellipse representing the other two eigenvectors. We normalize the length of the
medium eigenvector to a constant value so that the size of the streamtube is predictable, while the ratio
between medium and minor eigenvalues remains intact. The color of the streamtube is related to the linear
anisotropy value.

The streamsurfaces represent planar anisotropy region. It is an approximation of the integral surface in both
the major eigenvector field and the medium eigenvector field. Colors are mapped to the surfaces to
represent the planar anisotropy value.

8. Anatomical Landmarks



Ventricle Inside Skull Surface

Based on the feedback from preliminary results, we found that biologists tended to explore the image more
efficiently if they can easily identify some obvious large structures that they are familiar with in the image.
For example, if they are looking at an image of the human brain, knowing the position of the skull, eyes,
and ventricles makes it easier to find structures in the rich information provided by our diffusion tensor
visualization method. For this reason, we provided anatomical landmarks in our image. These landmarks
are created by generating isosurfaces from T2-weighted images using AVS[Upson et al., 1989].

7. Geometry selection

Initially, we generate streamtubes and streamsurfaces so that every voxel that has linear anisotropy or
planar anisotropy will be run through by a streamtube or a streamsurface. That will give us a dense set of
geometries. Visualizing them all is not only expensive, but also undesirable, as the inclusion of too many
streamtubes in the scene will generate visual cluttering. So we have to decide which ones should be
selected and visualized.

For streamtubes, we use three criteria to measure their importance:

e Length—Streamtubes shorter than a given threshold are removed. Short streamtubes could be the
result of either noise or reflection of short linear structures. For our purpose, short structures are less
significant than long ones.

e Average linear anisotropy-By averaging the linear anisotropies at each point on a streamtube, we
can get an idea of whether the streamtube passes through a region of high anisotropy. If so, it is
assumed to represent a preferred direction of diffusion, and it is kept for visualization.

e Similarity to previously selected streamtube¥/e drop the streamtubes that are too “close” to
selected ones, thus removing the “duplicates”. We define the distance between two curves to be:

0 if f:ol max(sgn(dist(s) — 77),0)ds = 0
D= fssol max(dist(s)—t,0)ds

f:ol max(sgn(dist(s)—1T7),0)ds otherwise




These two pictures show us the original set of streamtube-trajectories, and a selected set of
streamtube-trajectories.

Similarly, for streamsurface, we use the size of the streamsurface, average planar anisotropy, and similarity
to previously selected streamsurfaces as three criteria to measure their importance.

9. Results



~ ﬂ)‘edundes

This annotated image shows the human brain from the eye to the top of the head. Through the
semi-transparent skull surface, we can see the ventricle (colored blue) in the middle, and the streamtubes
and the streamsurfaces in the space.

The parameters used to generate this image are listed in table below:



Streamtube length > 26.70 mm

Average linear anisotropy > 0.40

T; used inD for streamtubes | 1.34mm
Distance between lines > 44.5 mm
Surface size > 7.00 mm?
Average planar anisotropy > 0.30

T, used inD for streamsurfaces$ 1.34 mm
Distance between surfaces > 8.9 mm

10. Different views of the human brain image
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11. Effects of parameters on the final images
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Distance between lines reduced
from > 44.5 mm to > 26.7 mm
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Distance between streamsurfaces reduced from
> 8.9mm to > 4.5mm

Lessons

e The geometric models we create show connectivity in the brain
e Anatomical landmarks are essential for understanding these images

¢ Choosing which parts of the data to represent is a difficult problem
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