
We Know Who You Followed Last Summer: Inferring
Social Link Creation Times In Twitter

Brendan Meeder
Carnegie Mellon University

Pittsburgh, PA, USA
bmeeder@andrew.cmu.edu

Brian Karrer
University of Michigan
Ann Arbor, MI, USA

karrerb@umich.edu

Amin Sayedi
Carnegie Mellon University

Pittsburgh, PA, USA
ssayedir@andrew.cmu.edu

R. Ravi
Carnegie Mellon University

Pittsburgh, PA, USA
ravi@cmu.edu

Christian Borgs
Microsoft Research

Cambridge, MA, USA
borgs@microsoft.com

Jennifer Chayes
Microsoft Research

Cambridge, MA, USA
jchayes@microsoft.com

ABSTRACT
Understanding a network’s temporal evolution appears to
require multiple observations of the graph over time. These
often expensive repeated crawls are only able to answer ques-
tions about what happened from observation to observation,
and not what happened before or between network snap-
shots. Contrary to this picture, we propose a method for
Twitter’s social network that takes a single static snapshot
of network edges and user account creation times to accu-
rately infer when these edges were formed. This method
can be exact in theory, and we demonstrate empirically for
a large subset of Twitter relationships it is accurate to within
hours in practice.

We study users who have a very large number of edges or
who are recommended by Twitter. We examine the graph
formed by these nearly 1,800 Twitter celebrities and their
862 million edges in detail, showing that a single static
snapshot can give novel insights about Twitter’s evolution.
We conclude from this analysis that real-world events and
changes to Twitter’s interface for recommending users strongly
influence network growth.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: Online In-
formation Services—Web-based services; J.4 [Computer Ap-
plications]: Social and Behavioral Sciences—Sociology

General Terms
Social network analysis, Measurement

Keywords
online social networks, network evolution, graph analysis,
large-scale data collection
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1. INTRODUCTION
Twitter is a popular social networking website that en-

ables users to send and receive short messages of at most
140 characters, which are also called tweets. Tweets are not
highly directed messages like email, but are instead broad-
cast to all of a user’s followers. Following is the sole social
connection in Twitter; a user’s primary view in Twitter is
a reverse chronological stream of tweets from accounts that
user is following. Academic studies of Twitter typically rep-
resent the user population as a directed graph (or directed
network) because the following relationship can, and often
is, asymmetric.

Information about Twitter can be gathered from the open
Twitter API [1] which provides access to a broad range of
information including both tweet content and the current
social graph. Despite providing timing information on most
other accessible data, Twitter does not provide the time
at which edges in the social network were formed. Un-
like smaller social networks for which recrawling or continu-
ous observation of the social graph is feasible, even a single
crawl of a relatively small fraction of Twitter can be a time-
consuming enterprise. A major contribution of this work
is a simple method to assign times to the creation of edges
that only requires one static social network snapshot. For
any edge in the network, the assigned time is a lower bound
for the time the edge was created. Despite only using one
crawl, for users who rapidly gain followers, we show that the
process of assigning times, which we call timestamping, can
be extremely accurate both in theory and in practice.

Fortunately, Twitter has interesting users who rapidly
gain followers. Most users only have a few followers but
some accounts on Twitter have garnered an enormous num-
ber of followers. These popular accounts include real-life
celebrities such as Lady Gaga and Justin Bieber, politicians
such as President Barack Obama and former vice president
Al Gore, and news media such as CNN Breaking News and
The New York Times. These users can gain thousands of
new followers a day on Twitter. Twitter itself promotes
following others by presenting a list of recommended users,
also called the suggested users list, at the last step of cre-
ating an account. A new user is encouraged to follow these
suggested users as an introduction to Twitter and the lucky
users placed on the suggested users list gain elevated num-
bers of followers per day.



How does the rate of accumulation of followers change
over time for these prominent users in Twitter? What are
the key factors that influence these changes? What is the
pattern of users following celebrities in relation to their ac-
count creation times and can this pattern for existing users
tell us anything about the importance of celebrities to the
Twitter graph? For all these questions, we need accurate
temporal information about edge formation times that is
not available from Twitter’s API. In Section 3 we explain
the simple timestamping method that recovers estimates of
edge creation times in Twitter, proving its good theoreti-
cal properties and demonstrating explicitly how the error
should decrease as a function of follow rate. We validate
this method in practice on the members of the suggested
users list and Twitter celebrities, finding it to be very accu-
rate and robust to link deletions over time in Section 4. We
use the inferred times to answer many of the above ques-
tions through a detailed study of the temporal properties
of this Twitter subgraph. Our analysis reveals the impor-
tance of the Twitter interface in driving followers to the
subgraph and case studies indicate the qualitative magni-
tude of these effects during different phases of the interface.
Examining the distribution of inferred timestamps reveals
that more than half of the edges in the subgraph, a non-
negligible fraction of the total number of edges in Twitter’s
social network, formed within one month of the user joining
Twitter. Furthermore, cyclical behavior with a period of
24 hours shows that users tend to create edges, and by ex-
tension, be logged into Twitter, around the same hour each
day as when they created their account. Finally, we demon-
strate through several examples that real-world events can
correlate strongly with the attractiveness of a celebrity to
followers. These results, all temporal in nature, are cap-
tured by a single network snapshot in combination with the
timestamping method.

2. BACKGROUND
Online social networks have attracted much attention as

topics for academic study [12, 16]. Many recent papers
have demonstrated that online social networks have some
of the typical characteristics of real-world networks [18] in-
cluding short path-lengths, clustering, and heavy-tailed dis-
tributions in the number of connections. These distributions
are often claimed power-law, although this requires careful
study [4].

Twitter, as one of the major online social media web-
sites, has not escaped scrutiny. Communities in Twitter’s
social network who tweet about similar topics and interests
were studied by [9]. Huberman et. al. [8] studied the in-
teraction patterns underlying the social network, suggest-
ing that only a portion of the edges matter for commu-
nication over Twitter. Parts of the graph collected under
three separate methodologies were analyzed and compared
in [11]. More recently, a network analysis based on data
collected through breadth-first search was performed by [13]
who found a non-power-law follower distribution and low
following reciprocity. None of these studies captured the
whole of Twitter’s social network though, and a discussion
of whether network measures are robust under imperfect
data is contained in [3].

The interest in online social networks goes well beyond
static network analysis. Questions regarding the dynamical
evolution of a social network are often very interesting, but

also difficult to answer. The dynamical social networks of
Flickr and Yahoo! 360 were studied in [12] which had access
to precise event times, like those we wish to recover for Twit-
ter. Learning the time intervals in which events occur only
from repeated crawling can result in bias for studying cer-
tain influence models over social networks [5]. In [15], several
networks were shown to densify over time, with the number
of edges growing superlinearly with the number of vertices,
and average distances shrunk with network size. These novel
insights, which contradicted standard views, were not pos-
sible without temporal data.

The empirical analysis of mechanisms for network growth
(cf. [6]) also requires such data and has occurred at two
scales. Macroscopic observations such as that done by [10,
20] found that preferential attachment, a particular mech-
anism, does appear to hold in certain empirical networks.
Microscopic investigations of social networks, at the scale
of individual edge placement, has recently been suggested
by [14] who compute the likelihood of a host of network for-
mation mechanisms, although not for Twitter. A specific
investigation of Twitter was done by [21] who demonstrate
the importance of triangle closure in formulating ties. At
a smaller scale, triangle closure among many other tie for-
mation mechanisms was investigated in [7]. However, the
large-scale study of mechanistic explanations for Twitter’s
network evolution is limited by the lack of temporal edge
placement data from Twitter. Triangle closure is a special
case that can be studied with information from the Twitter
API directly. We now show how to gather temporal edge
placement data for Twitter and bypass this limitation.

3. INFERRING EDGE CREATION TIMES
In this section, we define our timestamping method to

infer edge creation times. To understand the procedure, we
need to describe the relevant temporal information available
from Twitter. There is a single API query that returns the
current followers of a particular user in the reverse order in
which they followed that user. So even though the time at
which the network edges were created is not provided, the
order of their creation is known. Another API query can
return who a particular user follows, the so-called friends
list, and again, this list is returned in reverse temporal order
of edge creation. While in general the combination of these
local orders is not sufficient to recover a total temporal order
of edge placements, combining the friends and follower lists
has been useful for studying triangle closure [21].

While the global order of edge placement would be in-
teresting enough to recover, the timestamping method goes
beyond this to estimate the actual time at which edges are
created. For this feat, we use more than these local orders.
Surprisingly, it suffices to just consider each user and their
followers individually after incorporating other temporal in-
formation from Twitter. Another separate query can map
the user identifiers returned by the follower lists to account
creation time.

These user creation times along with the edge ordering for
a chosen user, will be the input to our procedure. Times-
tamping a whole collection of users’ followers is done through
repeated application to each user in turn. Because we apply
this method to Twitter’s celebrities, for the sake of conve-
nience, we refer to the user chosen for timestamping as a
celebrity.

We estimate the edge creation time for any follower of a



celebrity by positing that it is equal to the greatest lower
bound that can be deduced from the edge orderings and
follower creation times for that celebrity. To make this ex-
plicit, we define a few relevant variables and then compute
this greatest lower bound.

Consider a particular celebrity and let U be the set of all
users following that celebrity. Let Cu be the creation time
of a user u ∈ U . Naturally, Cu ≤ Fu, where Fu is the actual
unknown time at which user u followed the celebrity, for all
u ∈ U . From the local order contained in this celebrity’s
follower list, we know that Fu ≤ Fv if and only if u appears
before v in the follower list. These inequalities form the basis
of our lower bounds.

Focus on a particular user u following the celebrity. From
the local order, we can construct V (u) ⊆ U defined to be the
set of all users v ∈ U such that Fv ≤ Fu. The complement of
this set, V (u)c, are the users who follow the celebrity after
u. Every user v ∈ V (u) (which includes u) provides a lower
bound on Fu because Cv ≤ Fv ≤ Fu. Users in v ∈ V (u)c for
which Fv > Fu do not provide such a bound because they
could have been created before or after the follow time of
u. We take the maximum over all the bounds provided by
v ∈ V (u) and use that as our estimate for the follow time of

u, denoted F̂u, as follows

F̂u = max
v∈V (u)

Cv. (1)

We call any user v who is the argument of this maximum
for user u ∈ U a record-breaker for user u. If v is a record-
breaker for u 6= v then v is a record-breaker for itself. A
simplified definition of record-breaker is thus a user u that
has creation time greater than all preceding users in the
follower order. Note that a user is, or is not, a record-breaker
for each celebrity that they follow independently.

Our algorithm embodied in Eq. 1 is then to identify the
record-breakers of the celebrity and assign each follow time
to be at the creation time of the most recent record-breaker.

3.1 Theoretical analysis
In this subsection, we demonstrate that under circum-

stances appropriate to Twitter’s celebrities, the actual fol-
low times are concentrated about the estimated follow times
using the record-breaker users’ creation times. To analyze
the inference, we consider a model of following for a given
celebrity: Fix creation times Cu for all users u that will
follow the celebrity. For each user u, draw an indepen-
dent, identically distributed non-negative random variable
Lu from an arbitrary latency distribution L that represents
how long u waits until they decide to follow this celebrity.
The probability density function of the latency distribution
is given by f(t), where f(t) allows arbitrarily small laten-
cies. So for each user u the actual follow time is given by
Fu = Cu + Lu.

For simplicity, the creation times are assumed spaced uni-
formly with time interval λ between each user and the first
user is created at time 0. The sequence of creation times is
then 0, λ, 2λ, etc. Let P (Fu − F̂u > δ) be the probability
that the error in the inferred following time for user u is
greater than δ. (Remember that F̂u ≤ Fu so the error is
always non-negative.) Our main theoretical result, proved
in the appendix, shows the following error bound:

Proposition 1. Let ǫ > 0. If
 

Z ∞

δ/2

f(t)dt

!δ/(2λ)

≤ ǫ,

then P (Fu − F̂u > δ) < ǫ for any user u.

Note that as λ goes to zero, the theorem is satisfied for any
δ, implying that the method becomes arbitrarily accurate in
this asymptotic limit. This proves that the follow times
become concentrated about their greatest lower bounds for
small spacing (i.e. high rates of user creation.) Furthermore,
the theorem provides an error guarantee for given values of
error probability ǫ and spacing λ.

It is not essential that the latency distribution be identi-
cal between users, that the spacing be given by λ, or that
the distribution allow arbitrarily small latencies. Fundamen-
tally, if the rate of new user arrival for a celebrity is high
as defined by the proposition, then the error in the inferred
follow times will be small. In the next section, we present
a thorough validation of the method on empirical Twitter
data and demonstrate this negligible error explicitly.

4. EMPIRICAL VALIDATION
Now that we have presented the timestamping method, we

evaluate its performance on real data. The method requires
two inputs, a map between user identifiers and account cre-
ation times and a collection of ordered follower lists for all
users that we want to timestamp. In fact, we only actually
require a map between record-breaker user identifiers and
their account creation time. Because the number of record-
breakers in our data would require an unreasonable num-
ber of queries to the API, we estimate the creation time of
record-breakers using a reference set of users. We crawl ev-
ery 250th user ID for this reference set and use these times
to compute the best lower bound on every record-breaker
users’ creation time, given only the creation times of users
in the reference set. The error introduced through this pro-
cedure is insignificant.

Gathering ordered follower lists requires selecting users.
While the method provides lower bounds on follow times for
any user, a high follow rate is required for these lower bounds
to be accurate and therefore timestamping is generally in-
applicable to most Twitter users. However, there is a col-
lection of interesting users on Twitter for whom the method
is naturally applied because they generally gain followers at
a high rate. One such candidate set are those “celebrity”
users who already have a large number of followers. We de-
fine a celebrity to be any of the 1,000 most followed users
on Twitter, according to the website Twitaholic.com. An-
other candidate set are those users on the suggested user list.
We include the accounts on the suggested user list and put
off discussing the various implementations of the suggested
users list until Section 5. Hereafter, we also refer to these
users as celebrities because they are likely to gain followers
at a higher rate compared to accounts with a comparable
number of followers that are not on the list. Collected from
these two sources on September 18, 2010, we have slightly
less than 1,800 celebrity users with varying, yet relatively
high, rates of following.1 We call the collection of relation-

1Because the list of celebrities selected this way would vary
over time, the complete list of celebrities studied here is
available upon request.



ships in which any user follows any of the celebrities the
celebrity follower subgraph.

The assumptions required in the theoretical analysis, while
not particularly strong, are not necessarily met by this em-
pirical data. For example, the process of following a celebrity
may not be adequately described by the combination of ac-
count creation time and latency distribution. Moreover, it
is unlikely that users select their following times indepen-
dently; Romero and Kleinberg [21] have shown that triangle
closure influences network formation.

We identify two criteria to determine whether the inferred
timestamps are useful in practice. First, the inferred follow
times should ideally have errors on the order of hours; we
do not want to have errors greater than one day. In order to
be consistent with the theory, the timestamp errors should
decrease as the new follower rate increases. Second, the
method must be robust against follower deletions. Follower
relationships can disappear because Twitter deletes a spam
account that followed the celebrity, or because a user chooses
to unfollow the celebrity or deletes their account.2

Our validation proceeds by testing the two criteria of accu-
racy and robustness against repeated crawls of the celebrity
follower subgraph in Sec. 4.1. Finally, in Sec. 4.2, we de-
termine the celebrities for which the inferred timestamps
are highly likely to be accurate arbitrarily far into Twitter’s
past.

4.1 Evaluating timestamp errors
To measure the maximum errors of the inferred times-

tamps we perform a crawl of all 1,800 celebrities every thirty
minutes for a 220 hour period from September 18, 2010 until
September 28, 2010. As said previously, we use the public
Twitter API [1] to collect follower information for each user
which is returned in pages of 5,000 followers per page. By
comparing two consecutive crawls taken at times T1 and T2,
the users who started following a celebrity in the interval
[T1, T2] can be determined. Since we crawled with a high
frequency, it was sufficient to only retrieve the first page of
a celebrity’s followers which contains their most recent 5,000
followers.

Thus we have a sequential list of users who started follow-
ing each celebrity, as well as the time interval in which each
following occurred, for this period. A total of 23,258,723 fol-
low events occurred in this period and we compare each es-
timated follow time to the time interval given by the crawls.

Since we know the interval in which the edge was created,
but we do not know exactly when the user started following
a celebrity, we can only deduce upper bounds on the times-
tamp error. The upper error bounds for a follow time that
happens in [T1, T2] is given by

EU(F̂u) = T2 − F̂u. (2)

The upper bound is always positive, and diminishes as record-
breaking events occur later in each interval. In Figure 1 we
plot for each celebrity the maximum and mean errors (i.e.
these upper bounds) of the follow events versus the number
of followers that celebrity gains during the data collection
period.

2If a user unfollows a celebrity and follows the same celebrity
later, our method would only apply to the second edge cre-
ation as the first follow event would no longer be contained
in the follower list.
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Figure 1: Mean and maximum error (upper bounds)
for all celebrities.

The mean and the maximum errors decrease as the num-
ber (rate) of new followers increases, in qualitative agree-
ment with the theoretical analysis of Sec. 3. The data is
further broken down into points with less than ten record-
breaker users and points with more than ten record-breakers.
Note that receiving more than one record-breaker a day ap-
pears necessary to avoid large maximum errors. For these
celebrities, all average timestamp errors are less than three
hours, and 97% are less than 15 minutes. The figure clearly
shows that the method infers event timestamps with max-
imum errors that are not particularly large (less than one
day) for most celebrities.

The accuracy achieved by the timestamping could be far
greater than the thirty-minute resolution of the repeated
crawls. In order to test further, we did more rapid recrawls,
but because Twitter places a limit on how many API re-
quests can be made per hour, it was not feasible to rapidly
recrawl all of the celebrity accounts. Instead we crawled the
25 users with the highest follow rate for every five minutes
for 128 hours starting on October 10, 2010. For these very
high rate celebrities, the maximum error was a few minutes,
showing that remarkable accuracy is possible for timestamp-
ing the followers of Justin Bieber and Lady Gaga.

Moving on to our second criteria of robustness, we con-
sider applying our method to network snapshots gathered at
two different times. Followers from the first snapshot may
no longer exist in the second snapshot due to effects such as
unfollowing or account deletion. Users disappearing from a
celebrity’s follower list could cause the inferred follow times
to change. In particular, when a record-breaker user u in one
network snapshot no longer follows the celebrity in a later
snapshot, follow times determined by u’s creation time get
reassigned to a smaller creation time which means larger er-
ror. Over a long period, the aggregate effect of unfollowings
could significantly diminish the method’s accuracy.

To test robustness, we take each follower list collected dur-
ing the coarse-scale crawl and randomly delete each follower
with probability 0.5. After the deletions, 1,692 celebrities
still have at least ten record-breaker users. For these users,
the average increase in the maximum error is slightly more
than 5,300 seconds. For all but 26 of these users, the maxi-
mum error increased by no more than six hours. The method



is thus very robust to a large amount of edge deletions.
Because we remove such a large fraction of events, we are

highly confident that the method will continue to accurately
timestamp edges created during this period despite the oc-
casional deletion occurring over time. However, it is likely
that the rate at which celebrities acquire followers has been
changing over time and that the present crawls are not nec-
essarily representative of past performance. In the next sec-
tion, we discuss how we can apply the timestamping method
on historical edge creations for which we do not know the
follow rates.

4.2 Historical accuracy
Our analysis has shown that the timestamp method is ac-

curate and robust during time periods where there are high
follow rates. However, we wish to apply the timestamp-
ing method to every follower of a celebrity, not just those
for whom we can guarantee high rates through compari-
son to repeated crawls. This capability of the timestamping
method is one of the most significant advantages over re-
peated crawls, beyond ease of implementation. Yet how can
we judge the method’s accuracy in the past?

We answer this question by computing an upper bound on
the error that is partially observable from a celebrity’s fol-
lowers. Consider a non-record-breaker user u who is immedi-
ately after record-breaker v and immediately before record-
breaker z. Then the error of the follow time assigned to user
u is

Fu − F̂u = Fu − Cv ≤ Fz − Cv = Lz + Cz − Cv. (3)

This upper bound consists of the unobservable latency of
record-breaker z and the observable difference in the creation
times of the record-breakers.

Without any assumptions on the distribution of the laten-
cies for record-breakers, we cannot provide any guarantees
about inferring historical follow times. At best, confidence
could be retroactively asserted by showing that the edge cre-
ation times are reasonable by other criteria, as indeed occurs
in Section 5. We can do better by assuming that the record-
breakers in the validation data are characteristic of record-
breakers in the past. Of the 23,258,723 follow events in the
validation data, about 10% correspond to record-breakers.

We show the maximum upper bound record-breaker error
and the average upper bound record-breaker error over all
celebrities in Figure 2. Again, we see that like in Figure 1,
record-breakers must come with sufficient frequency, at least
one per day, to avoid large error.

We now only discuss the 1,748 celebrities that meet this
condition (the x and cross symbols). They have maximum
record-breaker errors of less than 8.1 hours and 91.6% have
maximum record-breaker errors of no more than 2 hours.
The average record-breaker error is less than 2.25 hours,
and 99% have an average record-breaker error of no more
than thirty minutes.

Further, note that the maximum record-breaker error (cross
symbols) are nearly constant over all measured rates. In
order to apply Eq. 3 to historical data, we assume that a
record-breaker created less than 24 hours before the next
record-breaker never has a latency bigger than 20 hours and
should be considered accurate. This condition for accuracy
forces record-breakers to come sufficiently quickly, which we
observed to be an important factor in Figures 1 and 2. With
this assumption, we can explicitly evaluate our error bound
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Figure 2: Mean and maximum error (upper bounds)
for the record-breaker users over all 1800 celebrities.

on other follow events using Eq. 3 and Lz = 20 hours for
these accurate record-breakers.

To achieve an error bound of less than a day, the dif-
ference in record-breaker creation times must be less than
4 hours, assuming that the later record-breaker is accurate
and Lz = 20. As said before, an error of less than a day is
considered an accurate timestamp for a created edge. Note
that the accuracy applies to a particular estimated follow
time and not to a celebrity as a whole. The entire procedure
applied to each celebrity’s edges is then as follows: 1. All
record-breaker users that are created less than 24 hours be-
fore the next record-breaker are declared accurate. 2. Any
non-record-breaker user that follows the celebrity between
two record-breakers is accurate if the later record-breaker is
accurate and the later record-breaker created their account
less than 4 hours after the earlier record-breaker. 3. Any
user not covered by either condition is declared inaccurate.

This procedure will denote certain follow times as accu-
rate and others as inaccurate. Roughly speaking, these edges
should form temporal regions when the celebrity was and
was not gaining followers at a reasonably high rate respec-
tively. Examining these regions could be interesting, but
for the purpose of this paper, we focus on those celebrities
that contain predominantly accurate timestamps. We call
a celebrity’s collection of timestamps accurate if it contains
95 percent accurate timestamps.

On October 12, 2010, we crawled the complete follower
lists for each of the 1,800 celebrities in the validation data.
Originally, we planned on timestamping every one of their
followers using the accuracy procedure just described. Un-
fortunately, due to caching issues on Twitter, some of the
follower lists have spurious data, and this necessitated we
drop the earliest ten thousand users from the ordered fol-
lower list for each celebrity. All analysis hereafter will be
of the remaining edges placed between users and celebrities,
where these oldest edges have been removed.

Applying our accuracy procedure, we find that 1508 of the
celebrities are accurate by this standard which shows that
the timestamp method is eminently appropriate for these
Twitter accounts.

5. TEMPORAL NETWORK ANALYSIS



In this section, we study the celebrity subgraph formed
by the 1508 accurate celebrities found in Section 4.2. What
insights can we now gain that would not be possible without
knowing when social links were formed? We first perform a
broad analysis of the celebrity subgraph in Section 5.1 and
then we examine typical accounts in Section 5.2. We focus
largely on temporal analyses of this subgraph as this is the
novel information provided by our method.

5.1 Broad analysis of celebrity subgraph
There are 74, 184, 348, or about 75 million, unique users

who follow at least one of the 1508 accurate celebrities. For
reference, we estimate the total number of unique users on
Twitter to be around 190 million. So a broad spectrum
of user accounts are captured in the subgraph. Some of
these unique users are themselves celebrity accounts, so the
subgraph is not entirely bipartite. Celebrities do follow each
other.

The accurate celebrity subgraph has a total of 835, 117, 954,
or about 835 million, directed edges in it which is actually a
non-negligible fraction of edges in Twitter’s social graph. A
recent study of Twitter as a whole, gathered by breadth-first
search, collected 1.47 billion edges in total [13]. An estimate
of the total number of edges by the present authors suggests
there are around 7 billion edges in the present social graph.

The left window of Figure 3 displays the fraction of celebri-
ties with greater than k followers as a function of k. The plot
is on a log-linear scale and the fairly straight line indicates
that the distribution looks exponential. Around 20% of the
accurate celebrities have more than a million followers. The
right window of Figure 3 displays the fraction of users fol-
lowing k celebrities as a function of k on a log-log scale. One
feature that stands out is the existence of three peaks in the
distribution at following 20, 241, and 461 celebrities.

We have been unable to precisely determine the cause of
the 241 and 461 peaks, but following 20 celebrities has a
simple explanation. It is due to the original formulation of
the suggested users list. The suggested users list, in its orig-
inal design, gave new users the opportunity to automatically
follow 20 users randomly selected from a pre-selected collec-
tion of users. The default option was to follow all 20 users,
but one could click this off to follow a particular subset. The
motivation behind the suggested users list was to provide in-
teresting (hand-picked by Twitter) accounts for a new user
to follow. According to this article [26], the suggested users
list on July 16, 2009 had 241 users on it which is proba-
bly the cause of the peak at 241 celebrities. We have been
unable to determine if at some time the suggested user list
had 461 accounts on it. These peaks constitute prominent
evidence that Twitter’s interface has dramatically effected
the celebrity subgraph.

Further indications can be seen in Figure 4 where the blue
curve shows the number of edges created in the accurate
celebrity subgraph per hour as a function of time. We have
labeled three distinct changes in this total celebrity follow
rate.

These changes correspond to three distinct adjustments
to Twitter’s user interface. The first label (1) is the intro-
duction of the suggested users list which occurred around
February 2009 [24, 22]. Using the account creation times
of the users who follow 20 celebrities suggests that the ac-
tual date was Feb. 13, 2009, when there was a large upward
surge in following 20 celebrities. Label (2) shows when the
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Figure 3: Left side: The complementary cumulative
distribution function for the number of followers of a
celebrity. Note that this is a log-linear scale. Right
side: The distribution of the number of celebrities
followed by a user plotted on a log-log scale. Notice
the three peaks at k = 20, 241 and 461.
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Figure 4: The total celebrity follow rate (follow
events per hour) and Twitter account creation rate
(accounts created per day) over time. The three la-
bels correspond to the introduction of the suggested
users list, the update to the suggested users list, and
introduction of “users you may be interested in”.
The black smoothed curve shows a four day average
of the celebrity follow rate.

old suggested user list was changed to its current format on
Jan. 21, 2010 [25] at which point the number of followers
drops dramatically. The updated format displays a number
of categories such as science and entertainment and a new
user is encouraged to follow suggested users corresponding
to their interests.3 Much of the drop in volume that oc-
curs on Jan. 21, 2010 is due to the suggested users list no
longer defaulting to follow 20 celebrities. Correspondingly,
there is a sharp decline in the number of users following 20
celebrities after Jan. 21, 2010.

The last change (3) is due to the introduction of the“users
you may be interested in” (or “Suggestions for You”) feature
which was rolled out on July 30, 2010 [23]. This feature
suggests accounts to existing Twitter users that they might
want to follow. We see another upsurge in celebrity follow

3The suggested users list could also be reached from the
Twitter homepage in both of its implementations.



rate around the same time.
One possible explanation for these rapid changes is that

the introduction of a feature, or change in user recommenda-
tion system, by Twitter adjusts the rate at which accounts
are created. We test this hypothesis by computing the rate
at which accounts were created for Twitter, shown in the
green curve of Figure 4. While there is perhaps a slightly
contemporaneous increase in total celebrity follow rate and
account creation when the old suggested user list is intro-
duced, the increase in user creation is not sustained. Simi-
larly, the change in follow rate due to the switch from old to
categorical suggested user list and introduction of “users you
may be interested in” is not explained by changes in account
creation. Since the creation rate of Twitter accounts is un-
able to account for the changes in celebrity follower rate due
to altered Twitter features, the more plausible explanation
is instead that these features altered how users discover and
follow celebrity accounts.

In order to analyze these effects further, we examine sev-
eral typical accurate celebrities on the suggested users list
as case studies in the next section.

5.2 Impact of the Suggested Users List
Given that the overall celebrity follow rate halved when

Twitter switched to the categorical suggested users list, it
is clear that being on the suggested users list increases the
acquisition of new followers substantially. Anil Dash, a tech
blogger and entrepreneur, has written about his experiences
being on the old version of the suggested users list [2] and
is an illustrative example.

At the time of our data collection, Mr. Dash had 332699
followers in total. In figure 5, we show the fraction of Mr.
Dash’s follow events per day using the inferred timestamps.
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Figure 5: The fraction of follow events for each
celebrity per day as a function of time. The three
labeled grey lines are the times of the interface
changes described in Sec. 5.1.

Very shortly after being put on the old suggested user list
on Oct. 2, 2009, Mr. Dash’s rate of gaining followers in-
creased greatly. During his time on the old suggested user
list, he gained around 2,500 new followers per day compared
to his previous average of about 50 per day. When Twitter
transitions to the categorized suggested user list, his follow-
ing rate drops significantly to around 100 followers per day.

Interestingly, this is still higher than before his presence on
the old suggested user list. We consider two possible expla-
nations for this continued popularity. Many models of net-
work formation assume that edges are “sticky” in the sense
that gaining followers increases the rate at which you will
gain followers in the future. It is reasonable that the large
number of followers gained from being on the old suggested
users list had this effect for Mr. Dash. Alternatively, his
account could have been present immediately in the catego-
rized suggested users list and this mechanism could account
for the additional followers. Mr. Dash is (as of October 20,
2010) in the technology category of the suggested users list,
but as the list changes over time, we cannot say if he was
on the list in January. A smaller, but still evident, increase
in follower rate to around 200 followers per day on average
occurs during the introduction of the “users you may be in-
terested in” feature. This increase is not nearly the boost
given by the old suggested users list, but it is certainly non-
negligible.

Also shown on the figure are the corresponding curves for
the New York Times and Kim Kardashian. The New York
Times account was created before the old suggested users list
and immediately benefits from its introduction at label (1).
Kim Kardashian apparently was placed onto the list shortly
after her account was created as her curve tracks the New
York Times fairly closely during the time of the old sug-
gested users list. In October, when Mr. Dash is placed onto
the suggested user list, both @nytimes and @kimkardashian
drop in their follow rate. It could be that the suggested
users list expanded (perhaps to 461 from 261 accounts) or
they were removed from the suggested users list. Judging by
the sharp decline in @nytimes fraction at (2), it was likely
on the suggested users list with Mr. Dash. Then finally the
introduction of “users you may be interested in” benefited
@nytimes and @kimkardashian, although again not as much
as the old suggested users list. These case studies illustrate
that a wide range of different Twitter celebrities experienced
similar follow behavior due to the interface.

Besides knowing when edges are created, we are also inter-
ested in how long users wait to follow celebrities after they
join Twitter.

5.3 Measuring following latency
In our theoretical analysis, users’ following behavior is de-

termined by a latency distribution. We examine the actual
latency of users, the differences between their account cre-
ation time and following time. Because our data only con-
tains users who have followed the celebrities when the net-
work snapshot is taken, early users may exist who will follow
the celebrities in the future and have long latencies. Ignoring
these users, and their long latencies, would bias any attempt
to empirically determine the latency distribution, especially
because we cannot identify which users will ever decide to
follow a celebrity.

So instead we measure the conditional probability that a
user waits t seconds to follow the celebrity given that they
follow the celebrity with a month of account creation. In
Figure 6, this unnormalized probability is estimated by the
number of follow events derived from users created more
than a month ago on a log-linear scale in hourly bins. The
large concentration at zero latency is caused by the set of
record-breaker users. Of those users who follow within a
month, 86 percent follow within 24 hours and 90 percent



follow within six days. If a user is going to follow a celebrity
within a month of joining Twitter, they are most likely
nearly immediately after joining.

Accurate Celebrity Follow Event Latencies
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Figure 6: The number of follow events binned by
hour as a function of latency for the follow events of
users created before September 1, 2010.

The intriguing periodicity in the distribution occurs over
24 hour intervals and this could be because users prefer to
follow celebrities around the same hour of the day that they
created their account. One could imagine that a Twitter
user logs onto Twitter around the same time everyday. We
check this interpretation in Figure 7 which is a heatmap
on a log-scale showing the number of follow events created
during the hour on the y-axis for users created during the
hour on the x-axis. We only include latencies greater than
a day to eliminate the large contribution due to the record-
breakers. This figure is consistent with our interpretation of
the latency distribution as it is nearly diagonal. Moreover,
the peak along the diagonal indicate that 4-10 pm EST is a
popular time to both follow celebrities and create accounts.
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Figure 7: A heatmap of the creation time versus
follow time over all celebrities with latencies greater
than one day on a log-scale. The hours represent
the GMT timezone.

The fraction of each celebrity’s followers who followed the

celebrity within a month of joining Twitter varies widely
over the celebrities with an average of 65% and a standard
deviation of 18%. This large fraction of each celebrity’s fol-
lowers translates into nearly 580 out of the 835 million edges
with latency less than a month. If we change the scale from
a month to a day, on average 48% of a celebrity’s follow-
ers followed them within a day. Again translated into edges,
about 451 million edges have latency less than a day. In fact,
about 140 million of the edges are due to record-breakers and
hence are given a latency of zero. While old users do follow
celebrities with occasionally large latency, low latency edges
are dominant.

5.4 Celebrity popularity and real-world events
We have seen that the rate at which accurate celebrities

gain followers is plausibly changed by adjustments to Twit-
ter’s interface. In this section, we examine whether the rate
at which a celebrity receives followers could also plausibly
be changed by real-world events.

For our first demonstration of a plausible real-world event
that changed Twitter, during the Iran election in late June
2009, Twitter became a vehicle of communication among
Iranian internet users planning protests and rallies. Twitter
was popularized by the mainstream media at this time, and
we witness a sharp increase in the number of new accounts in
July 2009. Conveniently for our purposes, celebrities often
show up in the national news for particular events such as
political rallies, concerts, or sporting events. Are such single
day events important to the temporal evolution of Twitter’s
celebrity follower subgraph?

It is not effective to analyze absolute follow rates to answer
this question because the absolute rate depends on the total
rate of user account creation which varies substantially as
shown in Figure 4 with occasionally sharp changes. To com-
pensate for such overall variation, we consider whether the
relative rate, which we call relative popularity, of a celebrity
changes due to real-world events.

The relative popularity fi(t) is an estimate of the proba-
bility that a user who follows a celebrity at time t decides to
follow celebrity i. This relative popularity is normalized so
that

P

i fi(t) = 1, where the sum is over all celebrities and
the relative popularity is zero for a nonexistent celebrity at
time t. We compute it using the following sliding window:

fi(t) =
|Connections to i within t − ∆ and t + ∆|

|Edges created within t − ∆ and t + ∆|
, (4)

where the variation of fi(t) is assumed to be at a longer
time-scale than window width ∆. We checked several values
∆ to ensure consistent results and decided to use a window
width equal to a week with t samples spaced per day. A
useful comparison is the relative popularity if followers were
placed randomly, which is simply 1/n(t) where n(t) is the
number of celebrities that exist at time t.

We computed these curves utilizing the top 50 celebri-
ties and in Figure 8, we display the resulting relative pop-
ularity values for the top 10 celebrities. These values are
clearly varying over time, and are far from the predictions
of random attachment represented by the black line. The
behavior of the relative popularity when a new celebrity
joins Twitter differs widely. Oprah Winfrey and Ellen De-
Generes, for example, have a quick spike upwards in relative
popularity, but Justin Bieber, one of the most popular of
the top 50 currently, begins with a small relative popular-



ity that gradually increases over time. The relative pop-
ularity shows large variations, including several prominent
peaks and drops that are not due to Twitter’s interface. One
such drop is near June 25, 2010 (arrow 5) where the rapper
Soulja Boy, not on the top 10, gained roughly half a million
followers over a few days, garnering a relative popularity
value of nearly twenty-five percent. A search of blog posts
and news articles reveals that Soulja Boy deleted his Twit-
ter account called @SouljaBoyTellEm and switched to an
account called @SouljaBoy. One explanation is that these
users followed Soulja Boy from his previous popular account.
Alternatively, the hashtag #IfSouljaBoyWasARapper was
a trending topic, which means that tweets containing the
phrase #IfSouljaBoyWasARapper were extremely popular
on Twitter around June 25. While the humor was decid-
edly unfavorable to Soulja Boy, these tweets may have had
a positive effect on his relative popularity.
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Figure 8: The relative popularity as a function of
time for the top 10 celebrities. The random attach-
ment prediction is shown in bold. Labeled arrows
correspond to events discussed in the text.

For many other cases, we can also identify spikes in rel-
ative popularity as corresponding to real-world events that
plausibly explain increased Twitter popularity. For example,
Lady Gaga performed at the Emmy’s on Feb. 1st, 2010 (ar-
row 3) and released her music video “Telephone” on March
13, 2010 (arrow 4). Even more interestingly, the peaks
that occur simultaneously for several celebrities appear to
be due to events involving them together. On Friday April
17, 2009 (arrow 1) Ashton Kutcher, who just succeeded in
reaching one million Twitter followers before CNN Break-
ing News, appeared on Oprah’s TV show, during which she
joined Twitter [19]. They both received large boosts in rela-
tive popularity from this event and we suspect that Ashton
and Oprah are collectively responsible for the largest gain
in Twitter accounts ever that occurred on this day in April
(see Figure 4). Lady Gaga also performed at the MTV Video
Music Awards on Sept. 12, 2009 (arrow 2) along with Tay-
lor Swift and Katy Perry. [17] All three of them show an
increase in relative popularity at this time. Unfortunately,
Kanye West, who was involved in an infamous incident with
Taylor Swift that evening, was not on Twitter at the time.

6. CONCLUSIONS

We have devised a simple and effective method for in-
ferring follow times in the Twitter social network that has
several distinct advantages over other ways of recovering this
information. We are able to accurately and robustly infer
link creation times using only a single crawl of the social
network and user creation times. Furthermore, we are able
to recover follow times arbitrarily far into Twitter’s history.
For the most popular users in Twitter’s social network, the
method was accurate to within several minutes.

Using the timestamp information, we recreated the evolu-
tion of the Twitter celebrity subgraph and gained temporal
insights to user following behavior including the distribution
of latencies, the importance of the Twitter interface, and
the possible influence of real-world events. Overall, our ap-
proach gave us a much deeper insight into the structure and
evolution of a significant and large subgraph of the Twitter
social network.

Our work opens several possible avenues for future in-
vestigations. The interaction of user interface with Twitter
network structure deserves detailed investigation beyond the
results provided here. For example, we neglected to consider
the categorization of the users in the current suggested users
list. Another important factor could be where a suggested
user is listed for a given category. Our latency distribution
indicates a characteristic of aggregate user behavior, that
users tend to follow celebrities around the same hour as the
user joined Twitter, that could be useful towards spotting
anomalous user behavior. More speculatively, is it possi-
ble to confirm the influence of external real-world events on
Twitter’s network structure? If this influence is strong, any
network evolution mechanism that is completely internal to
the network would likely fail to describe the Twitter network
fully.
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APPENDIX

A. PROOF OF PROPOSITION
Proof: Pick an arbitrary user u to compute the error prob-

ability. We start from

P (Fu − F̂u > δ) =

Z ∞

0

P (Fu − F̂u > δ|Lu = t)f(t)dt.

Since F̂u ≥ Cu, the error is at most equal to t for fixed
Lu = t, we can change the bottom limit of integration to δ
to get

P (Fu − F̂u > δ) =

Z ∞

δ

P (Fu − F̂u > δ|Lu = t)f(t)dt.

Consider a fixed value t and define N1(u) as the set of users
v such that Fu − δ/2 < Cv < Fu and N2(u) to be the set of
users v such that Fu − δ ≤ Cv ≤ Fu − δ/2. The probability

P (Fu − F̂u > δ|Lu = t) is equal to the probability that all
these users have Fv > Fu. If that happens, all of these users
are in V (u)c and therefore, F̂u = maxv∈V (u) Cv < Fu − δ.
The condition Fv > Fu for fixed Lu = t is met if Lv > Cu −
Cv +t. Let Quv(t) = Cu−Cv +t and P (L > x) =

R∞

x
f(t)dt.



Then we can express the conditional error probability as

P (Fu − F̂u > δ|Lu = t) =
Y

v∈N1(u)
S

N2(u)

P (L > Quv(t)).

We upper-bound this expression as follows:

P (Fu − F̂u > δ|Lu = t) ≤
Y

v∈N2(u)

P (L > Quv(t)).

Note that Quv(t) ≥ δ/2 for v ∈ N2(u). Then

P (Fu − F̂u > δ|Lu = t) ≤ P (L > δ/2)|N2(u)| (5)

= P (L > δ/2)⌊δ/(2λ)⌋.

This bound no longer depends on t. So

P (Fu − F̂u > δ) ≤

Z ∞

δ

P (L > δ/2)⌊δ/(2λ)⌋f(t)dt (6)

< P (L > δ/2)⌊δ/(2λ)⌋+1

< P (L > δ/2)δ/(2λ),

which completes our proof.
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