
Abstract 

A human‟s ability to diagnose errors, gather data, 
and generate features in order to build better 
models is largely untapped. We hypothesize that 
analyzing results from multiple models can help 
people diagnose errors by understanding 
relationships among data, features, and algorithms. 
These relationships might otherwise be masked by 
the bias inherent to any individual model. We 
demonstrate this approach in our Prospect system, 
show how multiple models can be used to detect 
label noise and aid in generating new features, and 
validate our methods in a pair of experiments. 

1 Introduction 

Adoption of machine learning is hampered by the 
difficulties practitioners encounter in debugging their 
models [Patel et al. 2008]. Poor model performance can 
stem from a variety of underlying reasons: labels may be 
noisy, features may not be sufficiently descriptive, or a 
practitioner may have chosen an inappropriate algorithm. 
When a problem lies in data (e.g., label noise, insufficiently 
descriptive features), diagnosing and fixing poor 
performance often requires human input and domain 
expertise. For example, feature creation often involves 
inspecting data and applying domain knowledge to write 
discriminative features.  

We propose a new method for debugging machine 
learning systems by aggregating results from a collection of 
models. We hypothesize that multiple models can 
effectively marginalize the bias of individual models, 
providing practitioners with information that is usually 
masked when inspecting any single model. We address the 
problem of choosing the correct algorithm by trying many 
configurations (e.g., feature sets, learner algorithms, learner 
parameters, cross-validation folds). Each configuration 
provides a predicted label for each example, and we analyze 
the distribution of labels for a dataset.  

We test our hypothesis in a system called Prospect. 
Prospect automatically trains a collection of models, 
aggregates results from those models, and provides 
interactive visualizations to help practitioners understand 
and debug data. We illustrate and evaluate these methods in 

two problems: detecting label noise and generating new 
features. In our first experiment, we show that using 
multiple models to identify potential label noise can provide 
a threefold reduction in the number of spurious examples a 
practitioner examines. In our second experiment, we show 
that analyses of multiple models can identify examples that 
are significantly more likely to respond to additional 
informative features, thus helping a practitioner focus their 
attention the most relevant areas of a problem. Our user 
evaluation shows that practioners can effectively use 
Prospect to understand their data. 

2 Related Work 

A recent study examined difficulties faced by machine 
learning practitioners [Patel et al. 2008]. Key findings 
highlight that practitioners have trouble understanding 
relationships between data, features, and models. As a 
result, they often have little guidance on how to improve 
predictive performance. When models do not work, 
practitioners often spend an inordinate amount of time 
optimizing their classification algorithm without checking 
the quality of their data and features. Prospect addresses 
these difficulties in two ways. First, Prospect automates rote 
experimentation by trying multiple configurations of 
different algorithms. Second, Prospect enables new analyses 
that help practitioners link classification results back to 
noteworthy examples. Practitioners can inspect these 
examples and apply their expertise to determine how to best 
improve performance. 
 Most development support for machine learning takes the 
form of an API. Some machine learning APIs are bundled 
with GUIs that allow practitioners to load featurized data, 
select an algorithm, and gather results. Weka is a well-
known, widely-used example of this type of tool [Witten et 
al. 2005]. Although Weka and some of its extensions allow 
practitioners to train many different models on one dataset 
[Mierswa et al. 2006; Berthold et al. 2008], comparisons 
between trained models are limited to comparing model 
accuracy. Prospect provides deeper analytic support through 
functionality for generating multiple models, gathering 
results, and inspecting data. Prospect also allows 
practitioners to compare and interpret results from multiple 
models through interactive visualizations.  
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 Other interactive machine learning tools have explored 
leveraging the complimentary strengths of humans and 
computers. By creating a synergistic relationship, interactive 
machine learning systems can be used to train better models 
[Raghavan et al. 2005; Kapoor et al. 2010; Talbot et al. 
2009]. Several systems have explored this but their primary 
focus is direct interaction with the machine learning 
algorithm to improve its performance. Our ultimate goal is 
to train better models as well, but we believe tools must 
support the complex relationships between data, features, 
and algorithms. We are therefore deeply interested in the 
challenge of general methods to help practitioners to 
understand these relationships. 

Recent work on the Gestalt system has also focused on 
aiding machine learning practitioners [Patel et al. 2010]. 
While Prospect and Gestalt share a common goal, they 
differ in approach. Gestalt supports the process of writing 
code to train a model, whereas Prospect allows practitioners 
to compare multiple models to understand label noise and 
generate new descriptive features. We feel that Prospect 
provides a complementary approach to Gestalt, both can be 
used in conjunction to help practitioners train better models.  

There has been prior work on building visualizations that 
help practitioners interpret the behavior of machine learning 
algorithms [Caragea et al. 2001; Dai et al. 2008]. While 
successful, much of this work focuses on visualizing the 
innards of a single algorithm or a single type of data. This is 
limiting because some existing algorithms are intrinsically 
hard to interpret and because the space of datasets and 
algorithms is always increasing. Our methods abstract the 
algorithms and data to focus on the general problem of 
supervised learning (i.e., discrete labeled examples and 
models that provide predicted labels). As such, our 
technique scales to new models and diverse datasets and can 
work with models that are difficult to directly interpret.   

The bias plus variance decomposition is a useful 
framework for evaluating supervised learning algorithms 
[Kohavi et al. 1996]. It defines three values. Target noise is 
inherent to data (i.e., it will exist even in perfect conditions). 
Bias is the difference between the expected value and 
optimal (i.e., structural error of the model). Variance is how 
much an algorithm‟s predictions vary based on different 
training data. All models have some inherent bias and 
variance, but these differ between algorithms. 

Ensemble methods exploit intuitions about bias and 
variance to achieve better performance by combining results 
from multiple models. Combinations of classifier outputs 
based on simple rules (e.g., majority vote, sum, etc.) often 
produce results better than a single model [Kittler et al. 
1998]. Other ensemble techniques, such as Boosting 
[Schapire 2002] and Bagging [Breiman 1996], automatically 

generate simple models and combine them to build more 
accurate ensemble models. However, this work is generally 
aimed at learning ensembles to directly improve accuracy. 
Our approach differs in that we leverage differences in 
biases to help practitioners better understand data 
independent of individual  algorithms. 

3 The Prospect System  

In order to make correct choices about what algorithm to 
use, a practitioner must understand key properties inherent 
to the data. These properties are independent of any 
particular classification algorithm. Prospect lets 
practitioners better understand key properties of their data 
by first applying a collection of models and then analyzing 
the behavior and output of those models. The collection of 
machine learning models acts as a lens for scrutinizeing 
some of the key properties of data.  

3.1 System Description 

Figure 1 presents an overview of Prospect. Starting from 
data, Prospect first generates a set of configurations. Each 
configuration defines feature selection procedures, a 
learning algorithm, its parameters, and other specifications 
needed to completely determine a model creation process. 
Configurations are generated by systematically varying 
algorithms and parameters throughout the process. The goal 
is to create configurations that can be used to generate a 
collection of models that provide an unbiased perspective 
on the data. Our intuition is that by training multiple models 
using a diverse set of configurations, Prospect can 
marginalize the individual bias of any particular model.  

Prospect considers each available configuration and uses 
k-fold cross-validation to generate classification results for 
the entire dataset. Formally, data consists of a set of 
examples   *       +, with labels   *       +  and 
C, a set of different configurations. We use  ̅   to denote the 
predicted label of    resulting from the     configuration. 
Thus cross validation for each configuration creates tuples 
of the form (       ̅  ). Interaction with Prospect is based 
on summarizing these tuples and allowing practitioners to 
visualize and analyze them. 

One way Prospect summarizes these tuples is with 
descriptive statistics about examples. In the case of systems 
based on a single model, the predicted label is the only new 
information about an example. In contrast, Prospect 
computes a distribution of predicted labels for each 
example. This distribution allows Prospect to compute 
example-centric statistics like agreement (the percentage of 
configurations that agree on a label for an example) and 
max label (the label picked by majority of configurations).  

 
Figure 1:  Given data, Prospect generates a set of models which output tuples containing predicted labels for each example in a dataset. 

Prospect computes statistics over the set of tuples and provides visualizations that help practitioners understand data and diagnose errors. 

 



These statistics can then be used to filter or visualize data. 
Prospect provides a library of common visualizations, such 
as histograms, scatter plots, and confusion matrices. 
Practitioners can interact with these multiple visualizations 
to filter their data. For example, they can select and filter 
examples on a scatter plot. Instead of describing the full set 
of visualizations and interactions enabled by Prospect, the 
following sections focus on how the summary statistics and 
interactive visualizations can be used to address two 
problems: helping detecting label noise and helping provide 
insight for generating new features.  

3.2 Experimental Setup 
Both experimental studies were conducted on three multi-
class datasets taken from different domains: the 20 
newsgroups dataset [Lang 1995], the MNIST digit 
recognition dataset [Lecun et al. 1998], and the flowers 
image recognition dataset [Nilsback et al. 2006]. We use the 
same scheme for generating configurations in both 
evaluations. This section describes these common datasets 
and configurations.  

Datasets: The newsgroups dataset consists of posts 
collected from 20 different newsgroups. We select 1000 
articles balanced by class and use the Weka API [Witten et 
al. 2005] to tokenize documents, stem words, and compute 
word count features (2057 features in total).  

The digits dataset consists of 28x28 images of 
handwritten numerical digits. We select 1000 images 
balanced by class (100 for each digit) and use pixel values 
for features (784 features in total).  

The flowers dataset consists of images of 17 types of 
flowers. Images vary in scale, pose, and lighting with large 
within-class variations. We select 680 examples balanced by 
class (40 per class). We use precomputed shape, color and 
texture features provided by Nilsback et al. [2006]. 

Configurations: To create different configurations, we 
systematically vary our feature space, classification 
algorithm, training and testing split, and other parameters. 
Specifically, we create multiple feature spaces using feature 
selection based on information gain. We apply three 
different classification algorithms (support vector machines, 
decision trees, and Naïve Bayes) and vary parameters for 
each algorithm. We also randomly vary the composition of 
cross-validation folds. Our implementation uses feature 
selection and classification algorithms provided by Weka.  

We prune our set of configurations using two heuristics. 
First, in the interest of speed, we launch each configuraiton 
in a thread that terminates after one minute. If the 
executaiton does not terminate and produce a model we 
remove it from our list of configurations. Second, because 
we want a varied distribution of predicted labels, we remove 
configurations that apply the same classification algorithm 
and yield the same distribution of predicted labels.  

Our current process for automatically generating 
configurations is limited, as there is no guarantee our set of 
configurations adequately samples the space of possible 
configurations. Optimal sampling remains future work. 
Even with this current limitation, our results are promising.  

4 Detecting Label Noise 

Ground truth labels are often imperfect for a variety of 
reasons. For instance, humans are prone to make errors 
when fatigued, when distracted, or when presented with 
inherently ambiguous data. Noisy labels can adversely 
impact results, and they are often expensive to find because 
detecting them often requires human inspection. Prospect 
can use multiple models to reduce the number of examples a 
practitioner inspects in debugging label noise. 

Figure 2 (middle) shows a scatter plot visualization of 
two summary statistics for examples: incorrectness and 
label entropy. Incorrectness (x-axis) is the percentage of 
configurations that misclassify an example. Label entropy 
(y-axis) is the entropy of the distribution of labels predicted 
by each configuration for an example. Given the indicator 
function 1{}, the set of configurations C, and the set of 
labels L; these values are computed as follows: 
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Figure 2 highlights three regions in the scatter plot. The 
canonical region contains examples that most 
configurations classify correctly (i.e., low-incorrectness, 
low-entropy). The unsure region contains examples for 
which different configurations generate widely varying 
predicted labels (i.e., high entropy). The confused region 
contains examples with high incorrectness and low entropy. 
These are the examples for which most configurations agree 
on a predicted label, but the predicted label is not the same 
as the ground truth label. These confused examples are of 
the most interest for detecting label noise, as the consistent 
misclassification by many different models suggests the 
ground truth label may be incorrect. 

Illustration of the Procedure: Figure 2 shows the exact 
steps a practitioner would take within Prospect to find 
potential label noise. First, a practitioner uses a 
configuration accuracy histogram to filter configurations 
with poor performance; this removes noisy models and 
reduces variance. Second, they select a set of relevant 
examples from the confused region of the scatter plot. 

 

Figure 2: The middle image shows the incorrectness vs. entropy plot. 

To find label noise remove low accuracy configurations and inspect 

examples in the confused region. 



 

Finally, they create a grid view to inspect those examples 
together with their ground truth labels. In this case, we can 
see that an example labeled „9‟ is clearly a „4‟ and that an 
example labeled „1‟ may be a „9‟. 

4.1 Experimental Evaluation  

The confused region can be seen as a classifier that attempts 
to determine whether examples are incorrectly labeled. 
Because we want to minimize the examples a human 
inspects when identifying label noise, we want to maximize 
incorrectly labeled examples (true positives) while 
minimizing correctly labeled examples (false positives) in 
the confused region. We examine this tradeoff in 
comparison to two experimental baseline thresholds.  

We first compare to sampling according to the posterior 
probability of the highest-accuracy model in the collection 
(sampling in order of increased confidence). This finds 
examples about which the single best model has the least 
confidence. We choose this for two reasons. First, 
practitioners often debug using their highest-accuracy 
model. Second, good training performance is often 
indicative of low bias, and a model with low bias is likely to 
have a good true positive / false positive tradeoff. This 
comparison thus shows the value of explicitly considering 
multiple models. 

Our second comparison is to a threshold considering only 
our incorrectness statistic. Our confused region is 
differentiated from the unsure region according to the 
entropy of labels predicted by different configurations. This 
comparison confirms that both statistics provide distinct 
information to help in identifying noisy labels. 
 Procedure Details: To simulate label noise, we randomly 
selected 10 examples and randomly changed their ground 
truth label. Consistent with the process illustrated in Figure 
2, we removed poorly performing models by using only the 
top quartile of configurations (ordered by model accuracy).  

Our baseline conditions classify examples based 
threshold cutoffs. Examples below the threshold are 
correclty labeled, and examples above are incorrectly 
labeled. To compute ROC curves for the baselines, we set a 
high threshold value such that all examples are correctly 
labeled and then lower the threshold to compute the true 
positive and false positive rates.   

We compare the baseline conditions to the confused 
region classifier. The confused region is a rectangle defined 
by two points. The bottom-right point is anchored, and the 
top-left point is variable. Examples within the rectangle are 
classified as incorrectly labeled. To compute the ROC curve 

for the confused region, we generate a set of possible 
confused regions by sampling different values for the top-
left point and compute true-positive and false-positive rates 
for each possible confused region.  

Results: Table 1 shows the area under the ROC curve for 
our three datasets. The area is high for all three conditions, 
but that is because ROC looks at the false positive and true 
positive rates. We have an unbalanced set of positive and 
negative examples, so the rates will not correspond to the 
actual number of false positives. Because we are trying to 
reduce the human cost of finding label noise, measured in 
the number of examples a human must verify, the number of 
false positives is important. Each  new false positive is 
another example that must be manually verified. 

To show the number of examples a human must inspect, 
we plotted the tradeoff between number of true positives 
(incorrectly labeled examples detected) and false positives 
(correctly labeled examples classifed as mislabeled 
examples). Figure 3 shows this tradeoff for our three 
datasets. The plots show that looking at the confused region 
(the solid red incorrectness and entropy line) results in fewer 
false positives for each true positive detected than the 
baseline conditions. Focusing on the confused region can 
reduce the number of examples a person must inspect by up 
to a factor of 3. 

5 Generating New Features  

Feature discovery is a complex process, with practitioners 
often needing to acquire specialized domain knowledge 
before they can discover discriminative features. We 
emphasize that the key to discovering new discriminative 
features lies in understanding properties of the data that 
distinguish one class from another. Such understanding can 
be developed through deep analysis of the features or 
through analysis of how different examples are classified. 
Automated feature selection methods generally focus on 
analysis of the feature set, but this can be non-trivial for 
humans (especially in a high-dimensional feature space). On 
the other hand, looking at how different examples are 
classified is generally easier to comprehend and can provide 
insight into deficiencies of a feature set. Prospect provides 
visualizations to examine aggregate statistics regarding how 
different examples are classified and misclassified. This can 
in turn be used to identify situations where the current 
feature set is not sufficiently descriptive. 

Figure 4 illustrates how Prospect supports the interactive 
process of finding examples to help build intuition for new 

 

Figure 3: True positive vs. false positive for the three datasets. 

 

 inc+ent inc 
single  

classifer 

news 0.9978 0.9963 0.9929 

digits 0.9952 0.9935 0.9878 

flowers 0.9910 0.9804 0.9837 

 
Table 1: Area under the ROC curve. 



features. The key idea is to enable practitioners to observe a 
summarization of how different examples are classified, 
which should then help them develop insights about the 
differentiable characteristics of data. Figure 2‟s 
incorrectness vs. entropy plot again plays an important role 
in this process. To help develop insight into new potential 
features, we focus on the unsure region of the plot 
(examples with high entropy). These are misclassified by 
many configurations, but are not predominately mistaken 
for any particular class. These seem crucial to the process of 
feature discovery because their high entropy suggests that 
the available features cannot support reliable differentiation 
between classes. Focusing on the development of new 
features that are relevant to these examples should therefore 
provide new discriminative power to models. 

Illustration of the Procedure: Figure 4 shows the exact 
steps a practitioner would take within Prospect to examine 
unsure examples to help develop insight for new features. A 
practitioner first uses a rubberband tool to focus on a set of 
examples with high entropy and high incorrectness. After 
filtering to focus only upon these examples, they create an 
aggregate confusion matrix. This presents the normalized 
sum of confusion matrices for each configuration, 
highlighting which classes are commonly confused across 
all models. The practitioner can then click into a cell in this 
aggregate confusion matrix to directly inspect examples that 
might benefit from new features. Prospect presents a 
representative example of a class together with each 
confused example. Here we can see that two examples have 
similar shape and color, but could likely be better 
differentiated by a new feature capturing image texture. 

5.1 Experimental Evaluation 

Human intuition is difficult to measure, and developing 
effective intuition about a feature often requires in-depth 
understanding of the problem. Instead of attempting to 
directly measure intuition, we assess how relevant examples 
are to the creation of new features. Relevant examples are 
those with the most capacity for improvement, those that 
will be “most helped” by the addition of new features. These 
should be most responsive to new features, exhibiting a 
larger change in correctness than other examples.  

We claim that the unsure region contains relevant 
examples. To evaluate this claim, we conduct an experiment 
adding new descriptive features to a dataset and measuring 
the change in correctness for examples from the unsure 
region relative to the remainder of examples. We establish 
that examples from the unsure region are significantly more 
responsive to new descriptive features. This validates that 
practitioner focus on the unsure region can be an effective 
strategy for developing insight to generate new features. 

Procedure Details: Our experiment requires two 
versions of each dataset: a before dataset and an after 
dataset created by the addition of new features. We define 
our base datasets (Section 3.2) to be the after datasets, then 
create the before datasets by removing features. For the 
flowers dataset, we remove the shape feature. The 
newsgroup features are not as clearly divisible, so we 
remove a random 75% of the features. Random removal is 
ineffective in the digits data because adjacent pixel values 
provide redundant information. We therefore define the 
before features to be only the top-left region of each digit. 

We define the unsure region in terms of the before 
dataset, thresholding at the top quartile of examples 
(according to the entropy of distributions from the before 
configurations). This splits our set of examples   into the 
unsure region   and the not unsure region      We then 
compute   , the change in correctness for each example 
resulting from adding additional features to create the after 
dataset. To test that   contains more relevant examples, we 
use a t-test to determine whether    is significantly greater 
in   than in    . 

It is possible greater    in   is due to extreme entropy of 
the examples rather than relevance to a new feature (i.e., an 
effect similar to regression to the mean). To test this, we 
generate a noise dataset by changing the random seed used 
to create cross-validation folds in the before dataset.  

Changing the seed produces different training and 
validation sets, and different training sets will lead to 
changes in models, predicted labels, and entropy values. 
However, the underlying features are the same, it is only 
configuration of examples in the training and verification 
sets that differs. Since the features are the same, we refer to 
this difference as noise, and we use the noise value to 
determine if changes in entropy caused by the introduction 
of new features are significantly different than changes in 
entropy cause by the introduction of noise. We define    as 
the difference due to noise, and use a t-test to determine 
whether    is significantly greater in   than in    . 

Because we find that examples in   are more responsive 
to noise, it is important to establish that the improvement to 
correctness that we see when adding relevant features    is 
not explained by the noise   . We examine this by testing 
that       is significantly greater in   than in    . This 
validates the relevance of examples in the unsure region. 

Results: Table 2 shows a table of the improvement in 
correctness resulting from the addition of new features. The 
correctness of unsure examples increases significantly more 
than other examples (newsgroups: p<0.01, digits: p<0.01, 
and flowers: p<0.04). After accounting for variation due to 
noise, we observe that this effect is significant for the 
newsgroups (p<0.01) and digits (p<0.01) datasets. Although 
the improvement in correctness is not significant for the 
flowers dataset (p≈0.27), it is also not any worse. 

 

Figure 4: Looking at the confused examples in the unsure region 

can help practitioners understand their data and create features. 

 rest unsure 

news -0.008 0.507 

digits 0.138 0.247 

flowers 0.057 0.090 
 

Table 2: Improvement in correctness by adding new features 



Consequently, we can conclude that focusing on the unsure 
examples can indeed provide practitioners with insights 
critical to the process of interactive feature discovery.  

In summary, our experiments indicate that focusing on 
examples in the unsure region can only help. Consequently, 
the unsure region is a good place to start when trying to 
generate new features. While automatic discovery of new 
discriminative features is still a hard problem, Prospect can 
help a human practitioner to explore the properties of the 
dataset and reason about such exogenous variables.  

6 User study 

We conducted a user study where participants provided us 
data they had collected and were trying to model. After 
processing their data with Propsect and creating raw data 
visualizations, we brought participants back to the lab and 
asked questions about examples in the unsure and confused 
region. We had three participants (P1-P3). To maintain 
anonymity, we refrain from describing their datasets in 
detail. P2 and P3 were working on multi-class problems, 
while P1 was working on a binary classification problem.  

Automation Saves Time and Effort: P1 had just started 
analyzing and modeling, and Prospect allowed them to 
concentrate on features and data without worrying about 
tweaking parameters. P2 was in the middle of analyzing and 
refining their data using a single algorithm. Prospect helped 
them explore the space of configurations to find one that 
provided a significant accuracy boost (around 30%). P3 was 
near the end of their project and had painstakingly 
performed a manual exploration of configurations. They 
commented that Prospect would have reduced the effort of 
manual exploration. In all three cases Prospect either saved 
or would have saved participants time and effort.  

Redesigning Data Collection: P1 found that their data 
was not rich enough to model their classes. Prospect helped 
them conclude that a redesign of their data collection 
mechanism would help create better models. 

Finding Label Noise:  P1 took steps to gather and verify 
clean data. P3 provided us an early version of their data with 
label noise, and the noise was easy to spot in the confused 
region (Figure 2). P2 had yet to perform a through data 
cleaning, and after reflection, they identified confused 
examples as label noise. Data cleaning can be problematic, 
so Prospect‟s ability to find label noise was useful.  

Reinforcing Feature Ideas: P3 noted that the unsure 
region contained examples that were particularly hard to 
classify, and that they were modifying their approach to be 
robust to these types of errors. Reflecting on their data, we 
were able to co-design a potential new feature. In fact, all 
three of our participants either came up with ideas for new 
features or reinforced ideas they already had. In this way, 
Prospect was able to guide the feature creation process.   

7 Conclusion and Future Work 

Input from multiple models can provide new and unique 
insight that can help developers understand various 
properties of the data. Prospect provides one instance of a 

tool that can leverage these insights to build better models. 
While we have shown that Prospect works well for two 
common debugging tasks (detecting label noise and 
generating new features), we believe there is potential to 
leverage the same intuitions to develop new techniques, 
tools, and visualizations that help other hard data 
understanding tasks (e.g., determining whether to collect 
more data). We are focusing on many additional interactive 
machine learning opportunities enabled by the ideas in this 
work, including new methods to better sample 
configurations, interactively generating task-specific 
collections of classifiers, and richer interaction scenarios. 
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