
Abstract

A human‟s ability to diagnose errors, gather data,
and generate features in order to build better
models is largely untapped. We hypothesize that
analyzing results from multiple models can help
people diagnose errors by understanding
relationships among data, features, and algorithms.
These relationships might otherwise be masked by
the bias inherent to any individual model. We
demonstrate this approach in our Prospect system,
show how multiple models can be used to detect
label noise and aid in generating new features, and
validate our methods in a pair of experiments.

1 Introduction

Adoption of machine learning is hampered by the
difficulties practitioners encounter in debugging their
models [Patel et al. 2008]. Poor model performance can
stem from a variety of underlying reasons: labels may be
noisy, features may not be sufficiently descriptive, or a
practitioner may have chosen an inappropriate algorithm.
When a problem lies in data (e.g., label noise, insufficiently
descriptive features), diagnosing and fixing poor
performance often requires human input and domain
expertise. For example, feature creation often involves
inspecting data and applying domain knowledge to write
discriminative features.

We propose a new method for debugging machine
learning systems by aggregating results from a collection of
models. We hypothesize that multiple models can
effectively marginalize the bias of individual models,
providing practitioners with information that is usually
masked when inspecting any single model. We address the
problem of choosing the correct algorithm by trying many
configurations (e.g., feature sets, learner algorithms, learner
parameters, cross-validation folds). Each configuration
provides a predicted label for each example, and we analyze
the distribution of labels for a dataset.

We test our hypothesis in a system called Prospect.
Prospect automatically trains a collection of models,
aggregates results from those models, and provides
interactive visualizations to help practitioners understand
and debug data. We illustrate and evaluate these methods in

two problems: detecting label noise and generating new
features. In our first experiment, we show that using
multiple models to identify potential label noise can provide
a threefold reduction in the number of spurious examples a
practitioner examines. In our second experiment, we show
that analyses of multiple models can identify examples that
are significantly more likely to respond to additional
informative features, thus helping a practitioner focus their
attention the most relevant areas of a problem. Our user
evaluation shows that practioners can effectively use
Prospect to understand their data.

2 Related Work

A recent study examined difficulties faced by machine
learning practitioners [Patel et al. 2008]. Key findings
highlight that practitioners have trouble understanding
relationships between data, features, and models. As a
result, they often have little guidance on how to improve
predictive performance. When models do not work,
practitioners often spend an inordinate amount of time
optimizing their classification algorithm without checking
the quality of their data and features. Prospect addresses
these difficulties in two ways. First, Prospect automates rote
experimentation by trying multiple configurations of
different algorithms. Second, Prospect enables new analyses
that help practitioners link classification results back to
noteworthy examples. Practitioners can inspect these
examples and apply their expertise to determine how to best
improve performance.
 Most development support for machine learning takes the
form of an API. Some machine learning APIs are bundled
with GUIs that allow practitioners to load featurized data,
select an algorithm, and gather results. Weka is a well-
known, widely-used example of this type of tool [Witten et
al. 2005]. Although Weka and some of its extensions allow
practitioners to train many different models on one dataset
[Mierswa et al. 2006; Berthold et al. 2008], comparisons
between trained models are limited to comparing model
accuracy. Prospect provides deeper analytic support through
functionality for generating multiple models, gathering
results, and inspecting data. Prospect also allows
practitioners to compare and interpret results from multiple
models through interactive visualizations.

Using Multiple Models to Understand Data

Kayur Patel
‡
, Steven M. Drucker

†
, James Fogarty

‡
, Ashish Kapoor

†
, Desney S. Tan

†

‡
Computer Science and Engineering

DUB Group, University of Washington
Seattle, WA 98115

{kayur, jfogarty}@cs.uw.edu

†
Microsoft Research
One Microsoft Way

Redmond, WA 98052
{sdrucker, akapoor, desney}@microsoft.com

 Other interactive machine learning tools have explored
leveraging the complimentary strengths of humans and
computers. By creating a synergistic relationship, interactive
machine learning systems can be used to train better models
[Raghavan et al. 2005; Kapoor et al. 2010; Talbot et al.
2009]. Several systems have explored this but their primary
focus is direct interaction with the machine learning
algorithm to improve its performance. Our ultimate goal is
to train better models as well, but we believe tools must
support the complex relationships between data, features,
and algorithms. We are therefore deeply interested in the
challenge of general methods to help practitioners to
understand these relationships.

Recent work on the Gestalt system has also focused on
aiding machine learning practitioners [Patel et al. 2010].
While Prospect and Gestalt share a common goal, they
differ in approach. Gestalt supports the process of writing
code to train a model, whereas Prospect allows practitioners
to compare multiple models to understand label noise and
generate new descriptive features. We feel that Prospect
provides a complementary approach to Gestalt, both can be
used in conjunction to help practitioners train better models.

There has been prior work on building visualizations that
help practitioners interpret the behavior of machine learning
algorithms [Caragea et al. 2001; Dai et al. 2008]. While
successful, much of this work focuses on visualizing the
innards of a single algorithm or a single type of data. This is
limiting because some existing algorithms are intrinsically
hard to interpret and because the space of datasets and
algorithms is always increasing. Our methods abstract the
algorithms and data to focus on the general problem of
supervised learning (i.e., discrete labeled examples and
models that provide predicted labels). As such, our
technique scales to new models and diverse datasets and can
work with models that are difficult to directly interpret.

The bias plus variance decomposition is a useful
framework for evaluating supervised learning algorithms
[Kohavi et al. 1996]. It defines three values. Target noise is
inherent to data (i.e., it will exist even in perfect conditions).
Bias is the difference between the expected value and
optimal (i.e., structural error of the model). Variance is how
much an algorithm‟s predictions vary based on different
training data. All models have some inherent bias and
variance, but these differ between algorithms.

Ensemble methods exploit intuitions about bias and
variance to achieve better performance by combining results
from multiple models. Combinations of classifier outputs
based on simple rules (e.g., majority vote, sum, etc.) often
produce results better than a single model [Kittler et al.
1998]. Other ensemble techniques, such as Boosting
[Schapire 2002] and Bagging [Breiman 1996], automatically

generate simple models and combine them to build more
accurate ensemble models. However, this work is generally
aimed at learning ensembles to directly improve accuracy.
Our approach differs in that we leverage differences in
biases to help practitioners better understand data
independent of individual algorithms.

3 The Prospect System

In order to make correct choices about what algorithm to
use, a practitioner must understand key properties inherent
to the data. These properties are independent of any
particular classification algorithm. Prospect lets
practitioners better understand key properties of their data
by first applying a collection of models and then analyzing
the behavior and output of those models. The collection of
machine learning models acts as a lens for scrutinizeing
some of the key properties of data.

3.1 System Description

Figure 1 presents an overview of Prospect. Starting from
data, Prospect first generates a set of configurations. Each
configuration defines feature selection procedures, a
learning algorithm, its parameters, and other specifications
needed to completely determine a model creation process.
Configurations are generated by systematically varying
algorithms and parameters throughout the process. The goal
is to create configurations that can be used to generate a
collection of models that provide an unbiased perspective
on the data. Our intuition is that by training multiple models
using a diverse set of configurations, Prospect can
marginalize the individual bias of any particular model.

Prospect considers each available configuration and uses
k-fold cross-validation to generate classification results for
the entire dataset. Formally, data consists of a set of
examples * +, with labels * + and
C, a set of different configurations. We use ̅ to denote the
predicted label of resulting from the configuration.
Thus cross validation for each configuration creates tuples
of the form (̅). Interaction with Prospect is based
on summarizing these tuples and allowing practitioners to
visualize and analyze them.

One way Prospect summarizes these tuples is with
descriptive statistics about examples. In the case of systems
based on a single model, the predicted label is the only new
information about an example. In contrast, Prospect
computes a distribution of predicted labels for each
example. This distribution allows Prospect to compute
example-centric statistics like agreement (the percentage of
configurations that agree on a label for an example) and
max label (the label picked by majority of configurations).

Figure 1: Given data, Prospect generates a set of models which output tuples containing predicted labels for each example in a dataset.

Prospect computes statistics over the set of tuples and provides visualizations that help practitioners understand data and diagnose errors.

These statistics can then be used to filter or visualize data.
Prospect provides a library of common visualizations, such
as histograms, scatter plots, and confusion matrices.
Practitioners can interact with these multiple visualizations
to filter their data. For example, they can select and filter
examples on a scatter plot. Instead of describing the full set
of visualizations and interactions enabled by Prospect, the
following sections focus on how the summary statistics and
interactive visualizations can be used to address two
problems: helping detecting label noise and helping provide
insight for generating new features.

3.2 Experimental Setup
Both experimental studies were conducted on three multi-
class datasets taken from different domains: the 20
newsgroups dataset [Lang 1995], the MNIST digit
recognition dataset [Lecun et al. 1998], and the flowers
image recognition dataset [Nilsback et al. 2006]. We use the
same scheme for generating configurations in both
evaluations. This section describes these common datasets
and configurations.

Datasets: The newsgroups dataset consists of posts
collected from 20 different newsgroups. We select 1000
articles balanced by class and use the Weka API [Witten et
al. 2005] to tokenize documents, stem words, and compute
word count features (2057 features in total).

The digits dataset consists of 28x28 images of
handwritten numerical digits. We select 1000 images
balanced by class (100 for each digit) and use pixel values
for features (784 features in total).

The flowers dataset consists of images of 17 types of
flowers. Images vary in scale, pose, and lighting with large
within-class variations. We select 680 examples balanced by
class (40 per class). We use precomputed shape, color and
texture features provided by Nilsback et al. [2006].

Configurations: To create different configurations, we
systematically vary our feature space, classification
algorithm, training and testing split, and other parameters.
Specifically, we create multiple feature spaces using feature
selection based on information gain. We apply three
different classification algorithms (support vector machines,
decision trees, and Naïve Bayes) and vary parameters for
each algorithm. We also randomly vary the composition of
cross-validation folds. Our implementation uses feature
selection and classification algorithms provided by Weka.

We prune our set of configurations using two heuristics.
First, in the interest of speed, we launch each configuraiton
in a thread that terminates after one minute. If the
executaiton does not terminate and produce a model we
remove it from our list of configurations. Second, because
we want a varied distribution of predicted labels, we remove
configurations that apply the same classification algorithm
and yield the same distribution of predicted labels.

Our current process for automatically generating
configurations is limited, as there is no guarantee our set of
configurations adequately samples the space of possible
configurations. Optimal sampling remains future work.
Even with this current limitation, our results are promising.

4 Detecting Label Noise

Ground truth labels are often imperfect for a variety of
reasons. For instance, humans are prone to make errors
when fatigued, when distracted, or when presented with
inherently ambiguous data. Noisy labels can adversely
impact results, and they are often expensive to find because
detecting them often requires human inspection. Prospect
can use multiple models to reduce the number of examples a
practitioner inspects in debugging label noise.

Figure 2 (middle) shows a scatter plot visualization of
two summary statistics for examples: incorrectness and
label entropy. Incorrectness (x-axis) is the percentage of
configurations that misclassify an example. Label entropy
(y-axis) is the entropy of the distribution of labels predicted
by each configuration for an example. Given the indicator
function 1{}, the set of configurations C, and the set of
labels L; these values are computed as follows:

 () ∑
 { ̅ }

| |

| |

 () ∑
∑ { ̅ }
| |

| |

∑ { ̅ }
| |

| |

Figure 2 highlights three regions in the scatter plot. The
canonical region contains examples that most
configurations classify correctly (i.e., low-incorrectness,
low-entropy). The unsure region contains examples for
which different configurations generate widely varying
predicted labels (i.e., high entropy). The confused region
contains examples with high incorrectness and low entropy.
These are the examples for which most configurations agree
on a predicted label, but the predicted label is not the same
as the ground truth label. These confused examples are of
the most interest for detecting label noise, as the consistent
misclassification by many different models suggests the
ground truth label may be incorrect.

Illustration of the Procedure: Figure 2 shows the exact
steps a practitioner would take within Prospect to find
potential label noise. First, a practitioner uses a
configuration accuracy histogram to filter configurations
with poor performance; this removes noisy models and
reduces variance. Second, they select a set of relevant
examples from the confused region of the scatter plot.

Figure 2: The middle image shows the incorrectness vs. entropy plot.

To find label noise remove low accuracy configurations and inspect

examples in the confused region.

Finally, they create a grid view to inspect those examples
together with their ground truth labels. In this case, we can
see that an example labeled „9‟ is clearly a „4‟ and that an
example labeled „1‟ may be a „9‟.

4.1 Experimental Evaluation

The confused region can be seen as a classifier that attempts
to determine whether examples are incorrectly labeled.
Because we want to minimize the examples a human
inspects when identifying label noise, we want to maximize
incorrectly labeled examples (true positives) while
minimizing correctly labeled examples (false positives) in
the confused region. We examine this tradeoff in
comparison to two experimental baseline thresholds.

We first compare to sampling according to the posterior
probability of the highest-accuracy model in the collection
(sampling in order of increased confidence). This finds
examples about which the single best model has the least
confidence. We choose this for two reasons. First,
practitioners often debug using their highest-accuracy
model. Second, good training performance is often
indicative of low bias, and a model with low bias is likely to
have a good true positive / false positive tradeoff. This
comparison thus shows the value of explicitly considering
multiple models.

Our second comparison is to a threshold considering only
our incorrectness statistic. Our confused region is
differentiated from the unsure region according to the
entropy of labels predicted by different configurations. This
comparison confirms that both statistics provide distinct
information to help in identifying noisy labels.
 Procedure Details: To simulate label noise, we randomly
selected 10 examples and randomly changed their ground
truth label. Consistent with the process illustrated in Figure
2, we removed poorly performing models by using only the
top quartile of configurations (ordered by model accuracy).

Our baseline conditions classify examples based
threshold cutoffs. Examples below the threshold are
correclty labeled, and examples above are incorrectly
labeled. To compute ROC curves for the baselines, we set a
high threshold value such that all examples are correctly
labeled and then lower the threshold to compute the true
positive and false positive rates.

We compare the baseline conditions to the confused
region classifier. The confused region is a rectangle defined
by two points. The bottom-right point is anchored, and the
top-left point is variable. Examples within the rectangle are
classified as incorrectly labeled. To compute the ROC curve

for the confused region, we generate a set of possible
confused regions by sampling different values for the top-
left point and compute true-positive and false-positive rates
for each possible confused region.

Results: Table 1 shows the area under the ROC curve for
our three datasets. The area is high for all three conditions,
but that is because ROC looks at the false positive and true
positive rates. We have an unbalanced set of positive and
negative examples, so the rates will not correspond to the
actual number of false positives. Because we are trying to
reduce the human cost of finding label noise, measured in
the number of examples a human must verify, the number of
false positives is important. Each new false positive is
another example that must be manually verified.

To show the number of examples a human must inspect,
we plotted the tradeoff between number of true positives
(incorrectly labeled examples detected) and false positives
(correctly labeled examples classifed as mislabeled
examples). Figure 3 shows this tradeoff for our three
datasets. The plots show that looking at the confused region
(the solid red incorrectness and entropy line) results in fewer
false positives for each true positive detected than the
baseline conditions. Focusing on the confused region can
reduce the number of examples a person must inspect by up
to a factor of 3.

5 Generating New Features

Feature discovery is a complex process, with practitioners
often needing to acquire specialized domain knowledge
before they can discover discriminative features. We
emphasize that the key to discovering new discriminative
features lies in understanding properties of the data that
distinguish one class from another. Such understanding can
be developed through deep analysis of the features or
through analysis of how different examples are classified.
Automated feature selection methods generally focus on
analysis of the feature set, but this can be non-trivial for
humans (especially in a high-dimensional feature space). On
the other hand, looking at how different examples are
classified is generally easier to comprehend and can provide
insight into deficiencies of a feature set. Prospect provides
visualizations to examine aggregate statistics regarding how
different examples are classified and misclassified. This can
in turn be used to identify situations where the current
feature set is not sufficiently descriptive.

Figure 4 illustrates how Prospect supports the interactive
process of finding examples to help build intuition for new

Figure 3: True positive vs. false positive for the three datasets.

 inc+ent inc
single

classifer

news 0.9978 0.9963 0.9929

digits 0.9952 0.9935 0.9878

flowers 0.9910 0.9804 0.9837

Table 1: Area under the ROC curve.

features. The key idea is to enable practitioners to observe a
summarization of how different examples are classified,
which should then help them develop insights about the
differentiable characteristics of data. Figure 2‟s
incorrectness vs. entropy plot again plays an important role
in this process. To help develop insight into new potential
features, we focus on the unsure region of the plot
(examples with high entropy). These are misclassified by
many configurations, but are not predominately mistaken
for any particular class. These seem crucial to the process of
feature discovery because their high entropy suggests that
the available features cannot support reliable differentiation
between classes. Focusing on the development of new
features that are relevant to these examples should therefore
provide new discriminative power to models.

Illustration of the Procedure: Figure 4 shows the exact
steps a practitioner would take within Prospect to examine
unsure examples to help develop insight for new features. A
practitioner first uses a rubberband tool to focus on a set of
examples with high entropy and high incorrectness. After
filtering to focus only upon these examples, they create an
aggregate confusion matrix. This presents the normalized
sum of confusion matrices for each configuration,
highlighting which classes are commonly confused across
all models. The practitioner can then click into a cell in this
aggregate confusion matrix to directly inspect examples that
might benefit from new features. Prospect presents a
representative example of a class together with each
confused example. Here we can see that two examples have
similar shape and color, but could likely be better
differentiated by a new feature capturing image texture.

5.1 Experimental Evaluation

Human intuition is difficult to measure, and developing
effective intuition about a feature often requires in-depth
understanding of the problem. Instead of attempting to
directly measure intuition, we assess how relevant examples
are to the creation of new features. Relevant examples are
those with the most capacity for improvement, those that
will be “most helped” by the addition of new features. These
should be most responsive to new features, exhibiting a
larger change in correctness than other examples.

We claim that the unsure region contains relevant
examples. To evaluate this claim, we conduct an experiment
adding new descriptive features to a dataset and measuring
the change in correctness for examples from the unsure
region relative to the remainder of examples. We establish
that examples from the unsure region are significantly more
responsive to new descriptive features. This validates that
practitioner focus on the unsure region can be an effective
strategy for developing insight to generate new features.

Procedure Details: Our experiment requires two
versions of each dataset: a before dataset and an after
dataset created by the addition of new features. We define
our base datasets (Section 3.2) to be the after datasets, then
create the before datasets by removing features. For the
flowers dataset, we remove the shape feature. The
newsgroup features are not as clearly divisible, so we
remove a random 75% of the features. Random removal is
ineffective in the digits data because adjacent pixel values
provide redundant information. We therefore define the
before features to be only the top-left region of each digit.

We define the unsure region in terms of the before
dataset, thresholding at the top quartile of examples
(according to the entropy of distributions from the before
configurations). This splits our set of examples into the
unsure region and the not unsure region We then
compute , the change in correctness for each example
resulting from adding additional features to create the after
dataset. To test that contains more relevant examples, we
use a t-test to determine whether is significantly greater
in than in .

It is possible greater in is due to extreme entropy of
the examples rather than relevance to a new feature (i.e., an
effect similar to regression to the mean). To test this, we
generate a noise dataset by changing the random seed used
to create cross-validation folds in the before dataset.

Changing the seed produces different training and
validation sets, and different training sets will lead to
changes in models, predicted labels, and entropy values.
However, the underlying features are the same, it is only
configuration of examples in the training and verification
sets that differs. Since the features are the same, we refer to
this difference as noise, and we use the noise value to
determine if changes in entropy caused by the introduction
of new features are significantly different than changes in
entropy cause by the introduction of noise. We define as
the difference due to noise, and use a t-test to determine
whether is significantly greater in than in .

Because we find that examples in are more responsive
to noise, it is important to establish that the improvement to
correctness that we see when adding relevant features is
not explained by the noise . We examine this by testing
that is significantly greater in than in . This
validates the relevance of examples in the unsure region.

Results: Table 2 shows a table of the improvement in
correctness resulting from the addition of new features. The
correctness of unsure examples increases significantly more
than other examples (newsgroups: p<0.01, digits: p<0.01,
and flowers: p<0.04). After accounting for variation due to
noise, we observe that this effect is significant for the
newsgroups (p<0.01) and digits (p<0.01) datasets. Although
the improvement in correctness is not significant for the
flowers dataset (p≈0.27), it is also not any worse.

Figure 4: Looking at the confused examples in the unsure region

can help practitioners understand their data and create features.

 rest unsure

news -0.008 0.507

digits 0.138 0.247

flowers 0.057 0.090

Table 2: Improvement in correctness by adding new features

Consequently, we can conclude that focusing on the unsure
examples can indeed provide practitioners with insights
critical to the process of interactive feature discovery.

In summary, our experiments indicate that focusing on
examples in the unsure region can only help. Consequently,
the unsure region is a good place to start when trying to
generate new features. While automatic discovery of new
discriminative features is still a hard problem, Prospect can
help a human practitioner to explore the properties of the
dataset and reason about such exogenous variables.

6 User study

We conducted a user study where participants provided us
data they had collected and were trying to model. After
processing their data with Propsect and creating raw data
visualizations, we brought participants back to the lab and
asked questions about examples in the unsure and confused
region. We had three participants (P1-P3). To maintain
anonymity, we refrain from describing their datasets in
detail. P2 and P3 were working on multi-class problems,
while P1 was working on a binary classification problem.

Automation Saves Time and Effort: P1 had just started
analyzing and modeling, and Prospect allowed them to
concentrate on features and data without worrying about
tweaking parameters. P2 was in the middle of analyzing and
refining their data using a single algorithm. Prospect helped
them explore the space of configurations to find one that
provided a significant accuracy boost (around 30%). P3 was
near the end of their project and had painstakingly
performed a manual exploration of configurations. They
commented that Prospect would have reduced the effort of
manual exploration. In all three cases Prospect either saved
or would have saved participants time and effort.

Redesigning Data Collection: P1 found that their data
was not rich enough to model their classes. Prospect helped
them conclude that a redesign of their data collection
mechanism would help create better models.

Finding Label Noise: P1 took steps to gather and verify
clean data. P3 provided us an early version of their data with
label noise, and the noise was easy to spot in the confused
region (Figure 2). P2 had yet to perform a through data
cleaning, and after reflection, they identified confused
examples as label noise. Data cleaning can be problematic,
so Prospect‟s ability to find label noise was useful.

Reinforcing Feature Ideas: P3 noted that the unsure
region contained examples that were particularly hard to
classify, and that they were modifying their approach to be
robust to these types of errors. Reflecting on their data, we
were able to co-design a potential new feature. In fact, all
three of our participants either came up with ideas for new
features or reinforced ideas they already had. In this way,
Prospect was able to guide the feature creation process.

7 Conclusion and Future Work

Input from multiple models can provide new and unique
insight that can help developers understand various
properties of the data. Prospect provides one instance of a

tool that can leverage these insights to build better models.
While we have shown that Prospect works well for two
common debugging tasks (detecting label noise and
generating new features), we believe there is potential to
leverage the same intuitions to develop new techniques,
tools, and visualizations that help other hard data
understanding tasks (e.g., determining whether to collect
more data). We are focusing on many additional interactive
machine learning opportunities enabled by the ideas in this
work, including new methods to better sample
configurations, interactively generating task-specific
collections of classifiers, and richer interaction scenarios.

Acknowledgments

We would like to thank Oren Etzioni and Dan Weld for their
feedback on early versions of this work. This work was
supported in part by the National Science Foundation under
grant IIS-0812590 and by Kayur Patel‟s Microsoft Research
Fellowship.

References

[Berthold et al. 2008] Michael R. Berthold et al. “KNIME: The Konstanz In-
formation Miner.” Data Analysis Machine Learning and Applications,

vol. 11.

[Breiman 1996] Leo Breiman. “Bagging Predictors.” Machine Learning, vol. 24.

[Caragea et al. 2001] Doina Caragea, Dianne Cook, and Vasant G. Honavar.

“Gaining insights into support vector machine pattern classifiers using
projection-based tour methods.” KDD 2001.

[Dai and Cheng 2008] Jianyong Dai, and Jianlin Cheng. “HMMEditor: a visual
editing tool for profile hidden Markov model.” BMC Genomics, vol. 9.

[Kapoor et al. 2010] Ashish Kapoor, Bongshin Lee, Deseny Tan, and Eric

Horvitz. “Interactive optimization for steering machine classification.”
CHI 2010.

[Kittler et al. 1998] Josef Kittler, Mohamad Hatef, Robert P. W. Duin, and Jiri
Matas. “On combining classifiers.” IEEE Transactions on Pattern Anal-

ysis and Machine Intelligence, vol. 20.

[Kohavi and Wolpert 1996] Ron Kohavi and David H. Wolpert. “Bias Plus
Variance Decomposition for Zero-One Loss Functions.” ICML 1996.

[Lang 1995] Ken Lang “NewsWeeder: Learning to Filter Netnews.” ICML 1995.

[Lecun et al. 1998] Yann Lecun, Lʼeon Bottou, Yoshua Bengio, and Patrick

Haffner. “Gradient-Based Learning Applied to Document Recognition.”

Proceedings of the IEEE, vol. 86.

[Mierswa et al. 2006] Ingo Mierswa et al. “YALE: Rapid Prototyping for Com-

plex Data Mining Tasks.” KDD 2006.

[Nilsback and Zisserman 2006] Maria-Elena Nilsback and Andrew Zisserman.

“A Visual Vocabulary for Flower Classification.” CVPR 2006.

[Patel et al. 2010] Kayur Patel et al. “Gestalt: Integrated Support for Implemen-

tation and Analysis in Machine Learning.”Proceedings of the Symposi-

um on User Interface Software and Technology, 2010.

[Patel et al. 2008] Kayur Patel, James Fogarty, James A. Landay, and Beverly

Harrison. “Investigating Statistical Machine Learning as a Tool for

Software Development.” CHI 2008.

[Raghavan et al. 2005] Hema Raghavan, Omid Madani, and Rosie Jones. “In-

terActive feature selection.” IJCAI 2005.

[Schapire 2002] Robert E. Schapire. “The boosting approach to machine learn-

ing: an overview.” MSRI Workshop on Nonlinear Estimation and Clas-
sification, 2002.

[Talbot et al. Tan 2009] Justin Talbot, Bongshin Lee, Ashish Kapoor, and Des-

ney S Tan. “EnsembleMatrix: interactive visualization to support ma-
chine learning with multiple classifiers.” CHI 2009.

[Witten and Frank 2005] Ian H. Witten and Eibe Frank. Data Mining: Practical
Machine Learning Tools and Techniques. 2nd ed.

