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ABSTRACT
High-quality, personalized recommendations are a key fea-
ture in many online systems. Since these systems often have
explicit knowledge of social network structures, the recom-
mendations may incorporate this information. This paper
focuses on networks which represent trust and recommen-
dations which incorporate trust relationships. The goal of
a trust-based recommendation system is to generate per-
sonalized recommendations from known opinions and trust
relationships.

In analogy to prior work on voting and ranking systems,
we use the axiomatic approach from the theory of social
choice. We develop an natural set of five axioms which we
desire any recommendation system exhibit. Then we show
that no system can simultaneously satisfy all these axioms.
We also exhibit systems which satisfy any four of the five
axioms. Next we consider ways of weakening the axioms,
which can lead to a unique recommendation system based on
random walks. We consider other recommendation systems
(personal page rank, majority of majorities, and min cut)
and search for alternative axiomatizations which uniquely
characterize these systems.

Finally, we determine which of these systems are incen-
tive compatible. This is an important property for systems
deployed in a monetized environment: groups of agents in-
terested in manipulating recommendations to make others
share their opinion have nothing to gain from lying about
their votes or their trust links.
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1. INTRODUCTION
Ranking, reputation, recommendation, and trust systems

have become essential ingredients of web-based multi-agent
systems (e.g. [16, 21, 8, 24, 11]). All of these systems aggre-
gate agents’ reviews of one another, as well as about external
events, into valuable information. Notable commercial ex-
amples include Google’s page ranking system [19], Amazon
and E-Bay’s recommendation and reputation systems (e.g.
[20]), and the Epinions web of trust/reputation system (e.g.
[18]).

This paper is concerned particularly with the setting where
there is a single item of interest (e.g., a product, service, or
political candidate). A subset of the agents have prior opin-
ions about this item. Any of the remaining agents might
desire to estimate whether or not they would like the item,
based on the opinions of others. In the offline world, a person
might first consult her friends for their recommendations.
In turn, the friends, if they do not have opinions of their
own, may consult their friends, and so on. Based on the
cumulative feedback the initial consulter receives, she might
form her own subjective opinion. An automated trust-based
recommendation system aims to provide a similar process
to produce high-quality personalized recommendations for
agents.

We model this setting as an annotated directed graph,
where some of the nodes are labeled by votes of + and −.
Here a node represents an agent, an edge directed from a
to b represents the fact that agent a trusts agent b, and a
subset of the nodes are labeled by + or −, indicating that
these nodes have already formed opinions about the item
under question. Based on this input, a recommendation
system must output a recommendation for each unlabeled
node. We call such an abstraction a voting network because
it models a variety of two-candidate voting systems, where
the candidates are + and −. A directed star graph where
a single root node points to n agents with labels models
a committee making a recommendation to the root node.
Here majority and consensus are two common voting rules.
The U.S. presidential voting system can be modeled as a
more complicated digraph, where the root points to nodes
representing the members of the electoral college, and the
electoral college nodes point to nodes representing the voters
in the state or congressional district that they represent.

A multitude of recommendation systems have been pro-



posed and implemented, both in the laboratory and in prac-
tice, and many fit in to the network-based framework de-
scribed above. This raises the question of how to determine
the relative merits of alternative approaches to solving the
recommendation problem. The comparison of recommen-
dation systems is further complicated by the difficulty of
producing an objective measure of recommendation quality.

We begin with an impossibility theorem: for a small, nat-
ural set of axioms, there is no recommendation system si-
multaneously consistent with all axioms in the set. However,
for any proper subset of the axioms there exists a recommen-
dation system which satisfies all axioms in the subset. We
consider two ways past this negative result, both by replac-
ing the transitivity axiom (defined below). We prove that
there are recommendation systems consistent with both new
sets of axioms and we also show that when one new set is
augmented with an additional axiom the resulting system is
unique.

We also consider the descriptive approach, in which we
characterize existing (acyclic) systems like simple commit-
tees and the U.S. presidential elections by a simple major-
ity axiom. We generalize this to an axiom that leads to a
unique “minimum cut” system on general undirected (pos-
sibly cyclic) graphs.

Prior work on personalized ranking system has produced
a ranking system called “personalized pagerank” [13]. This
system can be translated into a recommendation system by
augmenting it to handle votes. The details are discussed in
Section 3.4. This provides a natural hybrid of a ranking and
recommendation system.

We define a notion of incentive compatibility for recom-
mendation systems. This is important when designing sys-
tems for deployment in monetized settings, because, as ex-
perience has shown, self-interested agents will not respect
the rules of the system when there is money to be made
by doing otherwise. We find that all of the recommenda-
tion systems which are uniquely consistent with our axioms
also turn out to be incentive compatible, while personalized
pagerank and other natural systems are not.

For simplicity, this paper focuses on the case of unweighted
multigraphs and binary votes. Most of our observations
carry over to the more general cases of weighted graphs and
fractional votes.

The rest of this paper is organized is follows. The next
section contains related work. Section 1.2 is a brief sum-
mary of our axioms, algorithms, and results. Some formal
definitions and notations appear in Section 2, and in Section
3 we present some recommendation systems. In Section 4
we formally define our axioms. Section 5 provides the out-
line of the proofs of our results. Section 6 shows that our
systems are incentive compatibility.

1.1 Related work
There are several ways to study recommendation systems.

Standard evaluation tools include simulations and field ex-
periments (e.g. [7, 20, 15]). In addition, one may also con-
sider computational properties of suggested systems.

Our work builds on previous work on axiomatizations of
ranking systems. The literature on the axiomatic approach
to ranking systems deals with both global ranking systems
[1, 2, 23, 9, 24, 4, 5] and personalized ranking systems [7, 10,
3, 17]. Personalized ranking systems are very close to trust-
based recommendation systems. In such systems, agents

rank some of the other agents. Then an aggregated rank-
ing of agents, personalized to the perspective of a particular
agent, is generated based on that information. However,
previous studies on the axiomatic approach have not been
concerned with situations where the participants share re-
views or opinions on items of interest which are not the other
agents in the system.

Many existing recommendation system are based on col-
laborative filtering (CF), which is a completely different ap-
proach than the trust-based systems considered in this pa-
per. Combining trust-based and CF approaches is a direc-
tion of current research [22].

1.2 Overview of results
We model a voting network by a partially labeled directed

multigraph whose nodes represent agents. A subset of the
nodes, called voters, is labeled with votes of + and −. The
remaining nodes are nonvoters. The recommendation sys-
tem must assign, to a source nonvoter, a recommendation in
{−, 0, +}.1

Below we informally summarize our axioms. Many of
them are illustrated in Figure 1. We caution that our aim
is only to succinctly convey the spirit of the axioms; formal
definitions are found in Section 2.

1. Symmetry. Isomorphic graphs result in correspond-
ing isomorphic recommendations (anonymity), and the
system is also symmetric with respect to + and − votes
(neutrality).

2. Positive response. If a node’s recommendation is 0
and an edge is added to a + voter, then the former’s
recommendation becomes +.

3. Independence of Irrelevant Stuff (IIS). A node’s
recommendation is independent of agents not reach-
able from that node. Recommendations are also inde-
pendent of edges leaving voters.

4. Neighborhood consensus. If a nonvoter’s neigh-
bors unanimously vote +, then that node may be taken
to cast a + vote, as well.

If, in a particular graph, a source node is recommended
+, then we say that the source trusts the set of agents that
voted + more than those that voted −. As we imagine
varying the votes of various subsets of agents, this relation
should be transitive.

5. Transitivity. For any graph (N, E) and disjoint sets
A, B, C ⊆ N , for any source s, if s trusts A more than
B, and s trusts B more than C, then s trusts A more
than C.

Theorem 1. Axioms 1-5 are inconsistent. Any proper
subset of these axioms is satisfied by some recommendation
system.

Instead of transitivity, we consider the following two ax-
ioms. Similar axioms have been used in the axiomatization
of pagerank in the context of ranking systems [2].

1It is easy to see, e.g., a three-node network, that symmetry
(Axiom 1) is impossible with ± recommendations alone.
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Figure 1: Illustrative voting networks. Labels ± indicate votes, not recommendations. a) IIS: Node s’s
recommendation does not depend on any of the dashed node or dashed edges, since we ignore unreachable
nodes as well as edges out of voters. b) Neighborhood consensus: Node v can be assigned + vote. c) If the
recommendation for s is + then we say s trusts {v} more than {u}. d) Trust propagation: The dashed edges
the upper part can be removed and replaced by dashed edges in the lower part.. e) Scale invariance: Edges
leaving s are tripled without consequence. f) No groupthink: The three nonvoting nodes cannot all be given
+ recommendations.

6. Trust propagation. Suppose node u trusts nonvoter
v. Suppose that u has k edges to v and v has k edges
to other nodes. Then the edges from u to v can be
replaced directly by edges from u to the nodes that
v trusts without changing any resulting recommenda-
tions.

7. Scale invariance. Duplicating the outgoing edges of
a node does not change recommendations.

We specify a random walk algorithm, a (deterministic) al-
gorithm that computes a recommendation for node s by con-
sidering a (hypothetical) random walk in the directed graph
that starts at node s and follows outgoing edges, uniformly
at random, until the first voter is reached. Its recommen-
dation for s is based on whether it is more likely that the
first voter reached votes + or −. The system computed
by the random walk algorithm is called the Random Walk
recommendation system (RW).

Theorem 2. Axioms 1-4 and 6-7 are satisfied uniquely
by RW.

As we will see in the proof of Theorem 1, the transitivity
axiom and the IIS axiom are hard to reconcile because IIS
implies the edges out of the voting nodes do not matter
while transitivity implies that the sets in the trust graph
must obey a certain relation regardless of who is voting. A
weaker version of transitivity which does not conflict with
IIS is the following:

5′. Sink Transitivity. For any graph (N, E) and any
disjoint sets A, B, C ⊆ N for which A, B, C contain
only vertices with out-degree 0, for any source s, if s
trusts A more than B and s trusts B more than C,
then s trusts A more than C.

Theorem 3. Axioms 1-4 and 5′ are satisfied by RW.

We also consider axioms which lead uniquely to known
recommendation systems:

8. Majority. The recommendation of a node should be
equal to the majority of the votes and recommenda-
tions of its trusted neighbors.

9. No groupthink. Suppose a set of nonvoters unani-
mously have the same nonzero recommendation. Then
their recommendation should equal the majority of
their trusted (external) neighbors’ votes and recom-
mendations.

The first axiom represents a reasonable semantics — an
agent might like to wait for its trusted neighbors to receive a
recommendation and then take a simple majority. However,
this axiom alone still permits a large clique of nonvoters
to all have positive recommendations when they only point
to external agents with negative recommendations (see Fig-
ure 1f).

The no-groupthink axiom is a natural extension to larger
sets. It implies the majority axiom when one considers just
singleton sets.

Unfortunately, on general directed graphs axiom 9 is in-
consistent. However, it is a statement about a single graph
G, so we can consider it on limited classes of graphs. Two
interesting classes of graphs are directed acyclic graphs and
undirected graphs,where axioms 8 and 9 lead uniquely to two
interesting solutions. These are the majority-of-majorities
and minimum-cut systems are defined in Section 3.

Theorem 4. (a) Axiom 8 on a rooted DAG implies the
majority-of-majorities system. (b) Axiom 9 on an undirected
graph implies the min-cut recommendation system.

2. NOTATION AND DEFINITIONS
Following the motivation provided in the previous section,

we now formally define the basic setting of a trust-based
recommendation system. In the remainder of the paper, we
refer to such systems simply as recommendation systems, for
brevity.

Definition 1. A voting network is a directed anno-
tated multigraph G = (N, V+, V−, E) where N is a set of
nodes, V+, V− ⊆ N are disjoint subsets of positive and neg-
ative voters, and E ⊆ N2 is a multiset of edges with parallel
edges allowed but no self-loops.

When V+ and V− are clear from context, we denote the
set of voters by V = V+ ∪ V− and the set of nonvoters by
V = N \ V .



Definition 2. A recommendation system R takes as
input a voting network G and source s ∈ V and outputs
recommendation R(G, s) ∈ {−, 0, +}.

For convenience, we will use R+(G), R−(G), and R0(G) to
denote the set of sources to which R gives a particular rec-
ommendation, i.e. R+ = {s ∈ V | R(G, s) = +}. Also, we
define R(G) = 〈R+(G), R−(G), R0(G)〉.

We denote by sgn : R → {−, 0, +} the function that com-
putes the sign of its input. We denote by PredE(v) and
SuccE(v) the multisets of nodes that point to v and that
v points to, respectively (where, for example, u appears in
PredE(v) with multiplicity equal to the number of arcs (u, v)
in multiset E).

Given a multiset of recommendations, S ⊆ {−, 0, +}, we
define the majority MAJ(S) to be: + if more than half the
elements of S are +; − if more than half of S are −; and 0
otherwise.

3. SYSTEMS AND ALGORITHMS

3.1 Random walk system (RW)
We first describe a recommendation system based on ran-

dom walks. Given a voting network G = (N, V+, V−, E) and
a source s ∈ V , the random walk system simulates the fol-
lowing: start a walker at node s and, at each step, choose
an outgoing edge uniformly at random and follows it to the
destination node. Continue this random walk until a node
with a ± vote is reached, or until a node with no outgoing
edges is reached (note this walk may never terminate). Let
ps be the probability that the random walk terminates at a
node with positive vote and qs be the probability that the
random walk terminates at node with negative vote. Let
rs = ps − qs. The random walk recommendation sys-
tem recommends sgn(rs) to s.

Input: G = (N, V+, V−, E), s ∈ V .
Output: recommendation ∈ {−, 0, +}.

1. Let S ⊆ V be the set of nonvoters that cannot reach
any voter.

2. For each v ∈ N , create a variable rv ∈ R. Solve the
following from rv:

rv =

8

>

>

>

<

>

>

>

:

0, if v ∈ S

1, if v ∈ V+

−1, if v ∈ V−
P

w∈SuccE(v) rw

|SuccE(v)|
, otherwise

3. Output sgn(rs).

Figure 2: The random walk algorithm. (Recall that
V = V+ ∪ V− is the set of voters and V = N \ V is the
set of nonvoters.)

The algorithm given in Figure 2 correctly computes rec-
ommendations as defined by the RW system. To see this,
first note that, for any node that cannot reach a voter, the
recommendation must be 0 in both the RW system and the
RW algorithm. Next, probabilistic arguments show that the
equations defined must be obeyed by the random walk. Fi-
nally, the uniqueness of the solution follows from the fact

that the random walk will terminate, with probability 1,
when starting from any node not in S. Also note that the
algorithm can be implemented efficiently and in polynomial
time.

As stated in Theorem 2 (Section 1.2), the RW recommen-
dation system is the unique system which satisfies axioms
1-4 and 6-7. The formal definitions of these axioms appear
in Section 4 and the proof of Theorem 2 is sketched in Sec-
tion 5 and provided in full in Appendix B. Theorem 3 states
that RW satisfies 1-4 and 5′. The proof of this is omitted.

3.2 Majority-of-Majorities (MoM)
The system in this section and in the next seem quite

different at first glance, but both derive from the same single
axiom.

In this section, we present a system that is well defined
only when the graph underlying the voting network is a Di-
rected Acyclic Graph (DAG). Nodes in a finite DAG can
always be partitioned into a finite number of levels. In level
0, nodes have out-degree 0. In each level i ≥ 1, nodes have
edges only to nodes in level j < i.

The Majority-of-majorities system assigns a recom-
mendations as follows: each nonvoter that is a sink (i.e. in
level 0) receives recommendation 0; each voter in level i re-
ceives a recommendation that equals to the majority of the
recommendations and votes of its outgoing neighbors (where
multiple edges are counted multiple times). This is can be
computed recursively by an efficient algorithm. Recall that
we use the definition of Majority from Section 2, which is
conservative in the sense that in order to have a non-zero
recommendation, there must be a strict majority of match-
ing recommendations.

As stated in Theorem 4a, the majority-of-majorities rec-
ommendation system is the unique system which satisfies
axiom 8 when the voting network is a DAG. The proof of
Theorem 4 is sketched in Section 5 and provided in full in
Appendix C.

3.3 Minimum cut system (min-cut)
Let G = (N, V+, V−, E) be a voting network. Let E′ ⊆ E

be the set of edges in E that originate at nonvoters, i.e.,
eliminate edges out of voters. We say that cut C ⊆ E′ is a
(V+, V−)-cut of G if there is no path from V+ to V− using
edges in E′ \ C. We say that C is a min-cut of G if its size
|C| is minimal among all (V+, V−)-cuts.

The minimum cut system can be defined as follows.
The recommendation of a source s is + if in all min-cuts
there is a path from s to V+ among edges in E′ \ C. The
recommendation is − if all min-cuts leave a path from s to
V−. Otherwise, the recommendation is 0.

This may be computed as follows: first, compute a min-
cut C in G. Next, consider network G+ which is formed
from G by adding an edge from source s to a + voter, and
compute C+ in G+. If |C| < |C+| then the recommendation
is −. Otherwise, consider network G−, formed from G by
adding an edge from s to a − voter. For a min-cut C− of G−,
if |C| < |C−| then the recommendation for s is +. Other-
wise, the recommendation for s is 0. This can be computed
in polynomial time by repeatedly using a polynomial-time
algorithm for (s, t)-minimum cut. To see that it correctly
computes the min-cut recommendation, note that if s is con-
nected to V+ in all min-cuts then adding an edge from s to
a − voter will create a path from V− to V+ in all min-cuts.



This will increase the min-cut cost by 1. On the other hand,
if there is a cut of G where s is not connected to V+, then
this edge set will still be a cut in G− so the min-cut cost
will not increase. Similarly, |C| < |C+| if and only if s is
connected to V− in all min-cuts of G. In the remaining case,
the sizes of all three min-cuts will be the same because there
are some min-cuts in which s is connected to V− and some
in which s is connected to V+.

As stated in Theorem 4b, the min-cut recommendation
system is the unique system which satisfies axiom 8 on undi-
rected graphs. The proof of Theorem 4 is sketched in Sec-
tion 5 and provided in full in Appendix C.

3.4 Personalized pagerank system
In designing a recommendation system, we can consider

systems based on aggregating the level of trust on differ-
ent nodes. For a voting network G, the idea is to de-
fine a trust level wuv for any two nodes u and v in the
network, and to compute the recommendation for a non-
voter u by comparing two values: W+(u) =

P

v∈V+
wuv and

W−(u) =
P

v∈V−
wuv.

A natural way to capture the level of trust in a network is
to apply a personalized ranking system such as personalized
pagerank (as introduced by Haveliwala in [13]). The per-
sonalized pagerank of node v for a node u is defined based
on a random walk Rα(u) with a restarting probability α,
and is denoted by pprα(u → v). Given a restarting proba-
bility α, pprα(u → v) is the probability of visiting node v
in the random walk Rα(u). In this random walk Rα(u), at
each step, with probability α, we restart the random walk at
node u; and with probability 1 − α, we go uniformly to one
of the outgoing neighbors, i.e, from a node w we go to one
of the neighbors of w with probability 1−α

out-degree(w)
. The

personalized pagerank values can be computed efficiently
by simulating this random walk. For details of computation
and extensions see [13, 14].

Using this notation, the personalized pagerank recom-
mendation system is as follows: Given a voting network
G = (N, V+, V−, E), and a parameter α, we compute the
personalized pagerank, pprα(u → v) of nodes for each other.
For a nonvoter s, we compute W+(s) =

P

v∈V+
pprα(s → v),

and W−(s) =
P

v∈V−
pprα(s → v), and we set R(G, s) =

sgn(W+ − W−).
We can show that the personalized pagerank system sat-

isfies the axioms symmetry, positive response, and transitiv-
ity, but it does not satisfy the axioms IIS, and neighborhood
consensus. The positive results are omitted and the negative
results are presented in Appendix D.

4. AXIOMS
We are now ready to consider properties of a recommen-

dation systems as candidate axioms. These properties are
motivated by related literature on social choice and rank-
ing systems, as well as from the machinery used in practical
recommendation systems. Similar to other axiomatic stud-
ies, the choice of axioms is to some extent arbitrary, and
other sets of axioms are possible. Nevertheless, we believe
that any one of our axioms by itself does capture a desirable
property for recommendation systems, and that the study
of the combination of these axioms leads to informative in-
sights and interesting algorithms.

The first properties, symmetry, is purely structural. Sym-

metry means that the names of the agents do not matter for
the source node; all that matters is the structure of the trust
graph and the votes provided. It also means that the values
+/- are arbitrary.

Axiom 1. (Symmetry) Let G = (N, V+, V−, E) be a
voting network. Anonymity: For any permutation π : N →
N , let G′, be the isomorphic voting network under π. Then
R+(G′) = π(R+(G)) and R−(G′) = π(R−(G)). Neutrality:
Also, let G′′ = (N, V−, V+, E). Then R+(G) = R−(G′′) and
R−(G) = R+(G′′).

The next axiom is a classic social choice axiom. It states
that if a node s has recommendation 0 (or +) and an addi-
tional +-voter is added to the network along with an edge
from s to the new node, then s’s new recommendation should
be +. It reflects a razor’s-edge view of a 0 recommendation.
The axiom “pushes” the systems towards strict recommen-
dations. (Without such an axiom, systems may almost al-
ways recommend 0.)

Axiom 2. (Positive response) Let w 6∈ N , s ∈ V ,
G = (N, V+,V−, E), and G′ = (N ∪ {w}, V+ ∪ {w}, V−, E ⊎
{(s, w)}). If s /∈ R−(G) then s ∈ R+(G′).

Note that the above axiom is presented asymmetrically
in terms of ± votes and recommendations. In combination
with the Symmetry axiom, the corresponding version with
− votes and recommendations follows directly. We use an
asymmetric presentation for readability in several of the ax-
ioms.

The next axiom, Independence of Irrelevant Stuff (IIS)
captures the semantics of recommendation systems discussed
in the introduction: a source node is viewed as consulting
neighboring agents in the trust graph, who consult their
neighbors etc., while agents who have formed opinions just
vote according to their opinion. This means that when con-
sidering the recommendation for a particular source node in
a particular trust graph, where part of the agents vote (per-
haps based on first-hand experience), feedback from these
agents is independent of who they trust (i.e., they trust
themselves infinitely more than others) and the recommen-
dation system should consider only reachable nodes and ig-
nore links out of voters. While one may consider other types
of semantics, something similar to this axiom appears in
many previously designed systems.

Axiom 3. (IIS) Let G = (N, V+, V−, E) and e ∈ V × N
be an edge leaving a voter. Then for the subgraph G′ =
(N, V+, V−, E \ {e}) in which e has been removed, R(G) =
R(G′). Similarly, if v ∈ N is a node not reachable from
s ∈ V , then for the subgraph G′′ in which node v (and its
associated edges) have been removed, R(G, s) = R(G′′, s).

When we write R(G) = R(G′), as in the above, it means
that the recommendations on the two voting networks are
identical.

The following requirement deals with some minimal ratio-
nality we wish to attribute to the agents; as in the classical
theory of choice we are willing to assume something about
the vote of an agent who has no a priori opinion only in ex-
treme cases. The neighborhood-consensus axiom does just
that: if all the agents trusted by a node v vote +, and no
other nodes touch v’s neighbors, then v might be considered
to vote + as well. Formally, we have:



Axiom 4. (Neighborhood Consensus) Let voting net-
work G = (N, V+, V−, E) and let s, u ∈ V be distinct non-
voters. Suppose u has at least one outgoing edge, and sup-
pose that each outgoing edge (u, v) ∈ E points to v such
that v ∈ V+ and v has no (incoming or outgoing) neigh-
bors other than u. Let G′ = (N, V+ ∪ {u}, V−, E). Then
R(G, s) = R(G′, s).

4.1 Transitivity
Transitivity is a central concept in the axiomatization of

voting [6]. In our context, we consider the case where the
underlying trust graph is fixed, while the system needs to
deal with more than one item, where different subsets of
nodes vote on different items. An example of transitivity is
that if a source node is recommended +, then it means that
the system assigns higher trust to the agents who report +
than to the agents who report −.

Definition 3. Let G = (N, V+, V−, E) be a voting net-
work. If s ∈ R+(G), then we say that s trusts V+ more
than V− relative to multigraph (N, E).

In this case, a partial ordering among sets of nodes is
generated, and we wish that this relation to be transitive.

Axiom 5. (Transitivity) For all multigraphs (N, E), s ∈
V , and disjoint A, B, C ⊆ N , if, relative to (N, E), s trusts
A more than B and s trusts B more than C, then s trusts
A more than C.

4.2 Trust propagation
In this section, we consider propagation of trust. Intu-

itively, if u trusts v and v trusts w, then u should trust
w. Much has been written about trust propagation within
social networks (see, e.g., [12]) and the axiom below is a
conservative interpretation that agrees with much of the lit-
erature.

One would like to say that if u trusts nonvoter v, and v
trusts w, then we can simply add an edge from u to w with-
out changing anything. However, our system is supposed to
reflect degrees of trust, and this would falsely inflate such
trust. Instead, we count edges as follows. Suppose there
are k edges leaving v (that don’t point to u). Suppose that
there happen to be k edges from u to v. Then we can re-
move k edges from u to v and replace them by k new edges
from u to the k nodes that v trusts (besides u), and no
recommendations should change.

Axiom 6. (Trust propagation) Let voting network G =
(N, V+, V−, E), u 6= v ∈ V , and suppose that the edges leav-
ing v (besides those to u) are (v, w1), . . . , (v, wk), (wi 6= u)
for some integer k. Suppose that E contains exactly k copies
of (u, v). Then, for E′ =

`

E ⊎ {(u, w1), . . . , (u, wk)}
´

\
{(u, v) ∗ k} and G′ = (N, V+, V−, E′), we have that R(G) =
R(G′).

Another natural axiom is scale invariance. Loosely speak-
ing, this means that the amount of trust placed in a node is
relative.

Axiom 7. (Scale invariance) In voting network G =
(N, V+, V−, E), u ∈ V , and k ≥ 1. Let G′ = (N, V+, V−, E ⊎
E′), where E′ is the multiset containing k copies of each of
the edges leaving v. Then R(G) = R(G′).

It states that we can duplicate all edges leaving a node
an arbitrary number of times without changing recommen-
dations.

4.3 Majority and Groupthink
The majority axiom states that a node’s recommendation

should equal the majority of the recommendations and votes
of its trusted neighbors. We say the sign of an edge is posi-
tive, negative, or neutral if it points to a node with positive
vote or recommendation, negative vote or recommendation,
or 0 recommendation, respectively.

Axiom 8. (Majority) Take G = (N, V+, V−, E) and any
nonvoter s ∈ V , the recommendation of s should be equal to
the majority of the signs of the edges leaving s.

We are using the strict notion of majority as defined in
Section 2. This choice is somewhat arbitrary, though it fits
well with the next axiom. Also note that one can further
axiomatize majority itself, but we leave it as is for the sake
of brevity. Unfortunately, the majority axiom by itself does
not imply unique recommendations on cyclic graphs (think
about a graph with two nonvoters that point to each other).
Instead, we consider the following property.

Groupthink refers to a social phenomenon in which an en-
tire group of people arrive at a ridiculous conclusion, through
too much intra-group interactions. The no-groupthink ax-
iom rules this out and imposes strong semantics on the sys-
tem. There are two parts to this axiom. First, we consider
the case that an entire group of nonvoters are all recom-
mended +. This strong position should be based on some-
thing external, since no member voted. The requirement is
that, among the edges leaving the group, a majority must
point to nodes with + votes or recommendations. Con-
versely, if a majority of the edges leaving the group point
to nodes with + votes or recommendations, then the group
must contain at least one node with + recommendation.

Since no-groupthink is inconsistent for general directed
graphs, we define it for specific graphs. We say that a rec-
ommendation system R avoids groupthink for G if the fol-
lowing holds:

Axiom 9. (No groupthink) Let S ⊆ V be a nonempty
set of nonvoters. Let E′ be the multiset of edges in E from
S to N \ S. (a) If S ⊆ R+(G) (resp. R−(G)), then a
strict majority of the edges in E′ must point to nodes in
R+(G)∪ V+ (resp. R−(G)∪ V−). (b) Conversely, if a strict
majority of the edges in E′ point to nodes in R+(G) ∪ V+

(resp. R−(G)∪V−), then S∩R+(G) 6= ∅ (resp. S∩R−(G) 6=
∅).

When S is a singleton the no-groupthink reduces to the
majority axiom. Hence no-groupthink can be interpreted as
a generalization of the majority axiom to larger sets.

5. ANALYSIS SKETCH
In this sections, we give intuition underlying the proofs

of the three theorems from Section 1.2. Formal proofs are
deferred to the Appendix.

For Theorem 1, the example in Figure 3(i) is used to
demonstrate impossibility. Relative to the depicted graph,
one can show that s trusts set A more than B, B more than
C, and C more than A, contradicting transitivity. To show
that the set of axioms is a minimal impossible set, we con-
struct five recommendation systems, each one satisfying all
but one of the axioms. For example, the RW recommenda-
tion system satisfies axioms 1-4 but does not satisfy axiom
5 (transitivity).
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Figure 3: (i) Example demonstrating the impossibil-
ity of axioms 1-5. (ii) Another illuminating example.
Intuitively, (though not following directly axioms 1-
5) s trusts {u} more than {v}, {v} more than {w} and
{w} more than {u}.

Figure 3(ii) gives another example worthy of discussion.
When u votes +, v votes −, and w does not vote, it is
reasonable that s should be + due to its extra path to u
through w and the fact that multiple edges in our system
reflect additional trust. However, continuing along these
lines, symmetry leads to a cycle in the transitivity relation.
While this argument does not follow from axioms 1-5, it is
suggestive of problems due to transitivity.

For Theorem 2, we first apply a sequence of transforma-
tions to the graph, to get the graph to a point in which all
edges lead to voters. Each of these transformations can be
shown, by the axioms, not to change any recommendations.
Moreover, none of these transformations change the recom-
mendations computed by RW. Thus, the problem is reduced
to showing that the theorem holds when all edges point to
voters.

The transformation process iterates through the nonvot-
ers, and, for each non-voter, it removes all incoming edges by
a combination of edge duplication and with trust propaga-
tion. When we are left with edges only to nonvoters, axioms
1-4 are still not sufficient to determine the recommendations
of nodes due to possible multiple edges. However, by apply-
ing the trust propagation axiom again (in some sense in
reverse), we complete the argument.

For Theorem 4, part (a) on rooted trees is much simpler
than part (b). For part (a), the no-groupthink axiom on
an individual implies directly that its vote will equal the
majority of its outgoing neighbors’ recommendations. This
can be applied from the sinks upwards to get uniquely the
MoM system.

For part (b), our proof is by contradiction. We begin by
assuming that the recommendations do not match those of
the min-cut system and use a case analysis to show that, in
each case, some set of nodes engages in groupthink.

6. INCENTIVE COMPATIBILITY
Incentive compatibility is a desirable property for voting

systems. In our context, it not only means that an agent
will have incentive to vote according to its prior opinion,
but it means that an agent (or a set of agents) cannot be
more effective by creating false edges (or even false nodes).

To discuss incentive compatibility, one needs to discuss
preferences. We say an agent has positive preferences if an
agent prefers a set of recommendations that is, node by

node, larger than or equal to another set of recommenda-
tions (where + is larger than 0 and −, and 0 is larger than
−). Similarly, for negative preferences.

We say a recommendation system is incentive compatible
if (1) every set of agents with positive preferences is at least
as happy with the outcomes when they all vote + and report
trust honestly, as they would be in any other scenario that
they can collude to create; and (2) the same is true for every
set of agents with negative preferences when they all vote
−.

For example, suppose a set of agents T have positive pref-
erences, and node s 6∈ T receives a 0 or − when all agents in
S vote +. Incentive compatibility implies that s cannot re-
ceive a greater recommendation when agents in T take any
of the following strategic actions (sometimes called Sybil at-
tacks):

• T create an arbitrarily large set of fictitious agents F .

• T and F create arbitrary edges between themselves
and arbitrary outgoing edges from themselves to other
agents. (They are not allowed to alter edges which
start at non-malicious agents.)

• Arbitrary subsets of S ∪F vote +, vote −, and do not
vote.

This implies that the set S will never strictly prefer any
outcome (under their control) other than that achieved when
they all vote +. It is relatively straightforward to see that
RW satisfies incentive compatibility, as the best strategy
for a group of agents to maximize another node’s vote is to
maximize the probability that the first voting node encoun-
tered votes +. Before a random walk reaches that malicious
agents, it is out of their control. Once it reaches them, they
might as well terminate the walk with a + vote.

It is similarly straightforward to verify that the MoM sys-
tem also satisfies incentive compatibility if we enforce the
fact that the cheating agents cannot create any cycles in the
graph. Lastly, the min-cut system also obeys the above type
of incentive compatibility. Note that personalized pagerank
does not satisfy incentive compatibility.

Incentive compatibility is closely linked to axiom 3 (IIS),
but they are not equivalent.

7. CONCLUSIONS
In this paper, we initiated the axiomatic study of trust-

based recommendation systems. This allows for rigorous
evaluation of recommendation systems. Our work deals
both with a normative approach, where the ramifications
of natural postulates are considered, and with the descrip-
tive approach where we aim at fully characterizing particu-
lar systems. In particular, we have found five basic axioms
that cannot be satisfied simultaneously, for which any proper
subset can be satisfied. In addition, we have given a sharp
characterization of the random walk recommendation sys-
tem. This was obtained by replacing an axiom capturing a
notion of transitivity with ones capturing trust propagation
and duplication.
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APPENDIX

A. PROOF OF THEOREM 1
First, we show that there exists a recommendation that

satisfies any proper subset of the axioms. In the following
cases, we consider a voting network G = (N, V+, V−, E) and
source s ∈ N .
1. System without symmetry. Consider the trivial rec-
ommendation system that always recommends +. This sys-
tem trivially satisfies the remaining axioms.
2. System without positive response. Consider the
trivial recommendation system that always recommends 0.
This system trivially satisfies the remaining axioms. (Recall
that axiom 4, neighborhood consensus, refers only to distinct
non-voters.)
3. System without neighborhood-consensus. Con-
sider the recommendation system which assigns to each non-
voter u the recommendation equal to sgn(a − b) where a is
the number of edges from u to positive voters and b is the
number of edges to negative voters. It is symmetric, neu-
tral, and obey positive response. It obeys IIS since imme-
diate neighbors of s are reachable and can not be removed.
Transitivity is implied by the fact that this “local majority”
system simply counts the number of edges leading to a set of
nodes; since the number of edges connecting to X ⊆ Succ(s)
is fixed, it obeys transitivity.
4. A System Without IIS. In order to design a rec-
ommendation system that satisfies all axioms except IIS,
define S+ to be the set of nodes u ∈ N that have at least
one outgoing neighbor, and all of whose outgoing neighbors
are v ∈ V+ and have no neighbors other than u. (These
are essentially the nodes described in the consensus axiom,
except that it applies to voters as well, e.g., S+ ∩ V− is not
necessarily empty.) Similarly define S−. For any nonvoter



s ∈ V , the recommendation to s is + if s ∈ S+, − if s ∈ S−.
For all of the remaining nonvoters, the recommendation is
sgn(|S+ ∪ V+| − |S− ∪ V−|).

It is easy to see that this recommendation system satisfies
symmetry. The positive response axiom follows from the fact
that the recommendation 0 for s can be generated only when
|S+ ∪ V+| = |S− ∪ V−|. Adding a new positive voting node
w that is pointed to by only s must increase |S+ ∪ V+| and
cannot increase |S−∪V−|, since s 6∈ S−∪S+∪V−∪V+. To see
that the system satisfies neighborhood consensus, note that
moving a nonvoter from S+ to V+ doesn’t change any the
sets in any other way. Finally, to see that the system satisfies
transitivity, consider disjoint A, B, C ⊆ N and s ∈ N such
that s trusts A more than B and B more than C. Note that
S+ depends only on V+ and is independent of V−. Also note
that switching the sign of the votes switches the sets S+ and
S− due to the symmetry of the algorithm.

Next consider two cases. In case 1, suppose that s ∈ S+

when V+ = A. This means that s will receive a positive
recommendation when V− = C so s trusts A more than C.
In case 2, s 6∈ S+ when V+ = A. Since s trusts A more
than B and B more than C, this means in particular that
s 6∈ S+ when V+ = B nor when V+ = C (and s 6∈ S−

when V− = B or V− = C). Hence, in all cases, s’s vote
will equal sgn(|S+ ∪ V+| − |S− ∪ V−|). Thus |S+ ∪ V+| is
a measure of trust of s in a set V+, and hence the system
obeys transitivity.
5. A System Without Transitivity. Theorem 2 implies
that RW, the random walk recommendation system, satisfies
axioms 1-4.
6. Inconsistency Now we prove that there is no recom-
mendation system satisfying axioms 1-5. Consider the graph
(V, E) depicted in Figure 3(i). We claim that s trusts A more
than B and s trusts B more than C, but s does not trust A
more than C. This will prove impossibility.

To see that s trusts A more than B, consider the voting
network G = (V, A, B, E). By the IIS axiom, we can ignore
the edges from B to C without changing the recommenda-
tion to s, to get voting network G′. Next imagine removing
one of the nodes in A (and its associated edge) to get voting
network G′′. Since G′′ is a star graph with three + votes,
three − votes, and 2 nonvoters aside from s, the recommen-
dation for s has to be 0 by the symmetry axiom. By positive
response, therefore, the recommendation for s in G′ has to
be + and hence s trusts A more than B.

To see that s trusts B more than C, consider the voting
network G = (V, B, C, E). Again by the IIS axiom, we can
ignore the edges from B to C without changing the recom-
mendation to s. We are now again in a star graph with 3 +
votes, 2 − votes, and 4 0 votes. By symmetry and positive
response, as above, the recommendation to s must be +,
which is what we needed.

Finally, to see that s does not trust A more than C, con-
sider the voting network G = (V, A, C, E). By three appli-
cations of neighborhood consensus we can take the votes of
B to be all −. By IIS we can transform the graph yet again
into a star graph, this time with 5 − votes and 4 + votes.
As reasoned above, the recommendation to s must be −,
and hence s does not trust A more than C.

B. PROOF OF THEOREM 2
We first apply a sequence of transformations to the graph,

to get the graph to a point in which all edges lead to vot-

ers or sink nonvoters. Each of these transformations can be
shown, by the axioms, not to change any recommendations.
Moreover, none of these transformations change the recom-
mendations computed by RW. Hence, it suffices to show the
theorem for the case where all edges point to voters or sink
nonvoters.

The transformation removes all edges pointing to any sin-
gle nonvoter (that is not a sink), as follows. Take a node
v which is a nonvoter but has out-degree k > 0. Take any
other node u that points to v ℓ > 0 times. We will ap-
ply trust propagation to remove these edges to v, without
adding other edges to v. To do this, we apply ℓ-fold edge du-
plication (scale invariance) to v and k-fold edge duplication
(scale invariance) u without changing any recommendations.
This makes the number of edges from u to v equal to ℓk and
the out-degree of v also equal to ℓk. Hence, we can apply
trust propagation to remove all edges from u to v. This can
be applied in turn to each node that points to v, to get a
graph where all edges point to voters or sink nonvoters.

Note that each of these transformations do not change
the recommendations of the RW system, either. The reason
is that RW obeys scale invariance and trust propagation.
Scale invariance follows directly from the equations (or ran-
dom walk definition). Trust propagation is also easy to see
from the random walk definition. When the random walk
reaches a non-sink nonvoter, it continues on a random edge
out of that nonvoter. The trust propagation simply pro-
vides a “shortcut” which exactly simulates two steps of the
random walk at this point.

So, without loss of generality, it suffices to show the RW
system is correct for a graph with only edges pointing to vot-
ers and sink nonvoters. Consider any source s and the sub-
graph reachable from that source via directed edges through
nonvoters. If no voter had multiple edges pointing to it, then
the theorem would follow from positive response and sym-
metry. The reason is that when there were an equal number
of + and − voters, by symmetry the recommendation of s
would have to be 0, regardless of the structure of edges to
nonvoter sinks. By positive response, adding any number of
edges from s to more new + voters would cause the recom-
mendation of s to become positive. Similarly, if there were
more (nonparallel) edges to − voters.

The case that remains is where there are multiple parallel
edges to voters. Say we have a +-voter v with k incoming
edges (and, without loss of generality, no outgoing edges).
By neighborhood consensus, we can change such a voter to
a nonvoter and add a number of outgoing edges to k new,
distinct + voters that have no other neighbors. Now we can
apply trust propagation to v to get a new graph where all
edges pointing to v have been replaced by edges pointing
directly to new nonvoters, without changing recommenda-
tions or the behavior of RW. In addition, we can remove
v without changing s’s recommendation, since there is no
path from s to v. We can apply this procedure to each +
and − voter with more than one incoming edge, until all
voters have in-degree 1. Then it follows from the argument
in the above paragraph.

C. PROOF OF THEOREM 3
Without loss of generality, we assume there are no edges

between pairs of voters. Part (a) follows trivially from the
majority axiom and the fact that any directed acyclic graph
can be partitioned into levels, where each edge is from a



node in a higher level to a node in a lower level.
For Theorem 4(b), we first state an interesting property

of the min-cut system.

Lemma 1. Let G = (N, V+, V−, E) be a voting network
and R(G) be the recommendations of the min-cut system.
Let C the multiset of edges between nodes in R+(G) and
nodes in V− ∪R−(G)∪R0(G) plus with those between nodes
in R−(G) ∪ R0(G) and nodes in V+. Then C is a min-cut.

Note that this lemma is asymmetric, we have essentially put
all 0 recommendations with the negative recommendations.

Proof. Given cuts C and C′ define the max of the two
min-cuts as follows. For any cut C, let the node-set C+ be
the set consisting of +-voters and also nonvoters that can
reach any + voter after C has been removed. Given min-cuts
C and C′, and their corresponding node sets C+ and C′

+, the
max of the two min-cuts is defined to be the cut that cuts
any edges between nodes in C+ ∩ C′

+ and N \ (C+ ∩ C′
+).

(Note that the node-set corresponding to the max of the
two cuts is simply C+ ∩ C′

+.) By repeated application of
this observation, we get the lemma, because the intersection
of all node-sets corresponding to min-cuts gives exactly the
cut described by the lemma.

It remains to show that the max of C and C′ is a min-cut
by itself. To do this, it is helpful to define the min of two
min-cuts, which is the completely symmetric notion to the
max. Let the max be A and the min be B. It is not hard to
see that multisets A⊎B ⊆ C⊎C′, where ⊎ denotes multiset
union. The reason is that the number of times a given edge
is cut by C and C′ (0, 1, or 2) is at least as great as the
number of times it is cut by A and B (those edges between
C+ \ C′

+ and C′
+ \ C+ are not cut at all by A or B). Thus

|A|+ |B| ≤ |C|+ |C′|. Furthermore, A and B are both cuts.
Hence, at least one of them, say A, must no larger than C
and C′, which have the same size. But |A| = |C| = |C′|
since C and C′ are min-cuts. Hence, |B| = |A| and they are
all min-cuts.

We first argue that the min-cut system satisfies the group-
think axiom. Consider first part (a) of groupthink. Suppose
S ⊆ R+(G) is a subset of the nonvoters that are all given
positive recommendations. These nodes are all connected to
positive voters in every min-cut. Take the min-cut defined
in the above lemma. Now, for the purposes of contradiction,
suppose S does not have a majority of positive edges leav-
ing it. Then we claim that we could find another min-cut
C′ in which no node in S is connected to a + voter, which
violates the definition of the min-cut system. In particular,
we would take C′ to be the cut which is equal to C, except
that it also cuts all positive edges leaving S and does not
cut any negative or neutral edges leaving S. This is a cut
because C was a cut and no new paths between positive and
negative voters have been created – they would have to go
through S but S has no positive edges and thus is discon-
nected from the positive voters. Furthermore, C′ would not
be larger than C because we have assumed that S does not
have a majority of positive edges leaving it. Hence, we have
a min-cut and the desired contradiction. The argument for
the case where S all has negative recommendations follows
by symmetry of the system.

We next argue that the min-cut system satisfies Group-
think (b). For the purposes of contradiction, suppose we

have a set S ⊆ R−(G) ∪ R0(G) such that S has a ma-
jority of positive outgoing edges. (The other case, where
S ⊆ R+(G) ∪ R0(G) such that S has a majority of negative
outgoing edges, is similar.) Again, take the min-cut C de-
fined by the above Lemma. Consider the cut C′ which is
the same as C but where we have also cut all negative and
neutral edges from S and haven’t cut any positive edges. As
in the previous argument, this remains a cut and is smaller
than C, giving us the desired contradiction.

It remains to show that the min-cut system is the unique
system implied by the groupthink axiom. Suppose not. Sup-
pose that on some undirected graph, different recommenda-
tions R′(G) satisfy the groupthink axiom.
Case 1: The set S = (R′

−(G)∪R′
0(G))∩R+(G) is nonempty.

Since we have shown that the min-cut system satisfies group-
think and S ⊆ R+(G), this means that a strict majority of
edges between S and N \ S are between a node in S and
a node in V+ ∪ (R+(G) \ S). However, by definition of S,
(R+(G)\S)∩ (R′

−(G)∪R′
0(G)) is the empty set, or in other

words R+(G) \ S ⊆ R′
+(G) since every nonvoter has either

a −, 0, or + recommendation in R′. This gives us the de-
sired contradiction because we have more than half of the
edges leaving S pointing to nodes in R′

+(G) ∪ V+, which
contradicts Groupthink (a).
Case 2: The set (R′

+(G) ∪ R′
0(G)) ∩ R−(G) 6= ∅. This

follows from the previous case by symmetry.
Case 3: The sets (R′

−(G) ∪ R′
0(G)) ∩ R+(G) = (R′

+(G) ∪
R′

0(G)) ∩ R−(G) = ∅, but T = R′
+(G) ∩ R0(G) 6= ∅. Again,

because the min-cut system satisfies groupthink, the set T
which is unanimously 0 under R cannot have a strict major-
ity of its edges pointing to nodes in (R+(G)∪V+)\T . How-
ever, it is unanimously positive under R′, so it must have a
strict majority of edges pointing to nodes in (R′

+(G)∪V+)\T .
However, by our choice of T , these two sets are equal.
Case 4: The sets (R′

−(G) ∪ R′
0(G)) ∩ R+(G) = (R′

+(G) ∪
R′

0(G))∩R−(G) = ∅, but R′
−(G)∩R0(G) 6= ∅. This follows

from the previous case by symmetry.
The above four cases cover all possibilities in which R′ 6=

R.

D. PROPERTIES OF THE PPR SYSTEM
First, we show that PPR does not satisfy the axiom 4,

neighborhood-consensus. Consider G = (N, V+, V−, E) with
N = {s, v1, . . . , vn, u1, . . . , un, v}, V+ = {v}, V− = {vn, un},

and E =



(s,v),(s,v1),(s,u1),
(v1,v2),...,(vn−1,vn),
(u1,u2),...,(un−1,un)

ff

. Applying a sequence of

2(n − 1) of the neighborhood consensus axiom implies the
output of R(G, s) = −1 for this voting network. In contrast,
for a large enough n (which depends on the restarting prob-
ability α), the output of the PPR system for voting network
G is R(G, s) = 1. This shows that PPR does not satisfy
neighborhood-consensus axiom.

Now we show that PPR does not satisfy the IIS axiom.
Let G = (N, V+, V−, E) where N = {s, v1, v2, v3}, V+ =
{v2, v3}, V− = {v1}, and E = {(s, v1), (s, v2), (v2, v3)}. Ax-
iom IIS implies that we can ignore the edge from v2 to v3,
therefore using the IIS axiom, the output for node s should
be R(G, s) = 0. However, in this voting network, starting
from s, there is a nonzero probability of reaching v3, thus
the output of PPR for s is R(G, s) = 1 contradicting the IIS
axiom.


