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This article examines the direction in 
which knowledge bases are constructed 

for diagnosis and decision making When 
building an expert system, it is traditional 

to elicit knowledge from an expert in the 
direction in which the knowledge is to be 

applied, namely, from observable evi- 
dence toward unobservable hypotheses 

However, experts usually find it simpler to 
reason in the opposite direction-from 

hypotheses to unobservable 
evidence-because this direction reflects 
causal relationships Therefore, we argue 

that a knowledge base be constructed fol- 
lowing the expert’s natural reasoning 

direction, and then reverse the direction 
for use This choice of representation 

direction facilitates knowledge acquisi- 
tion in deterministic domains and is 

essential when a problem involves uncer- 
tainty We illustrate this concept with 
influence diagrams, a methodology for 

graphically representing a joint probabili- 
ty distribution Influence diagrams pro- 

vide a practical means by which an expert 
can characterize the qualitative and quan- 
titative relationships among evidence and 

hypotheses in the appropriate direction 
Once constructed, the relationships can 
easily be reversed into the less intuitive 

direction in order to perform inference and 
diagnosis, In this way, knowledge 

acquisition is made cognitively simple; 
the machine carries the burden of trans- 

lating the representation 

A few years ago, we were dis- 
cussing probabilistic reasoning 

with a colleague who works in com- 
puter vision He wanted to calculate 
the likelihood of a tiger being present 
in a field of view given the digitized 
image. “OK,” we replied, “If the tiger 
were present, what is the probability 
that you would see that image? On 
the other hand, if the tiger were not 
present, what is the probability you 
would see it?” Before we could say 
“what is the probability there is a 
tiger in the first place?” our colleague 
threw up his arms in despair “Why 
must you probabilists insist on think- 
ing about everything backwards?” 

Since then, we have pondered this 
question. Why is it that we want to 
look at problems of evidential reason- 
ing backward? After all, the task of 
evidential reasoning is, by definition, 
the determination of the validity of 
unobservable propositions from 
observable evidence; it seems best to 
represent knowledge in the direction 
it will be used. Why then should we 
represent knowledge in the opposite 
direction, from hypothesis to evi- 
dence? 

In this article, we attempt to 
answer this question by showing how 
some backward thinking can simplify 
reasoning with expert knowledge 1 We 
believe that the best representation 
for knowledge acquisition is the sim- 
plest representation which captures 
the essence of an expert’s beliefs We 
argue that in many cases, this repre- 
sentation will correspond to a direc- 
tion of reasoning that is opposite the 
direction in which expert knowledge 
is used in uncertain reasoning. 

This question has relevance to arti- 
ficial intelligence applications 
because several popular expert system 
architectures represent knowledge in 

the direction from observables to 
unobservables. For example, in the 
MYCIN certainty factor (CF) model 
(Shortliffe and Buchanan 1975), 
knowledge is represented as rules of 
the form 

IF <evidence> THEN 
<hypothesis, CF, 

where CF is a measure of the change 
in belief in the hypothesis given the 
evidence. Observable propositions are 
most often found in the antecedent of 
rules, and unobservable propositions 
are usually found in the consequent. 
We argue it is often much simpler to 
represent knowledge in the direction 
opposite the direction of usage, that 
is, in the direction IF <hypothesis> 
THEN <evidence>.2 

Our argument is based on three 
observations. First, many real-world 
problems involve causal interactions 
In this article, we make no attempt to 
define causality in terms of basic con- 
cepts; we take it to be a primitive and 
subjective notion. Second, the direc- 
tion of causality is most often oppo- 
site the direction of usage; that is, 
hypotheses tend to cause evidence. 
Many examples of this statement 
exist in medicine, where the unob- 
servable hypothesis is the true cause 
of an illness, and the observable evi- 
dence is the illness’ effect in the form 
of symptoms. Of course, there are 
exceptions. For example, in trauma 
cases, such as automobile accidents, 
the cause is observable, and some of 
the effects are difficult to observe. 
However, tests to determine the hid- 
den effects of the accident fit the 
usual model of unobservable cause 
and observable effect Third, experts 
are more comfortable when their 
beliefs are elicited in the causal direc- 
tion. It appears that it is cognitively 
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simpler to construct assessments in 
this direction (Kuipers and Kassier 
1984). Furthermore, representations of 
expert knowledge are often less com- 
plex in the causal direction. Thus, 
these three observations suggest that 
there might be advantages to repre- 
senting knowledge in the direction 
opposite the direction of usage. This 
argument is summarized in figure I 

CAUSE a.ssesment c EFFECT 
(usually) (usually) 

Unobservable - usage Observable 

Figure 1. 
Two Directions of Representation. 

Most real-world problems involve causal 
interactions in which one event (the 
cause) affects the outcome of another (the 
effect) We often use an effect that we can 
observe to help us learn about a cause 
which we cannot directly observe. How- 
ever, we are more comfortable quantify- 
ing the relationship between the two 
events in the causal direction, assessing 
the likelihood of the effect if only we 
knew whether the cause were true 

Influence Diagrams 
In this article, we examine these 
issues in the context of probability 
theory. Nonetheless, we believe that 
the distinction between direction of 
usage and direction of natural assess- 
ment is a fundamental issue, indepen- 
dent of the language in which belief is 
represented. 

Within the theory of probability, 
several graphical representations exist 
for uncertainty that feature both 
directed graphs (Wright 1921; Howard 
and Matheson 1981; Pearl 1986; 
Cooper 1984) and undirected graphs 
(Speed 19781 Spiegelhalter 1985). The 
different approaches share the basic 
concept of the factorization of an 
underlying joint distribution and the 
explicit representation of conditional 
independence. We use a directed 
graph representation method because 
direction is central to our discussion. 
In particular, we use the influence 
diagram representation scheme 
(Howard and Matheson 1981). 

Although the influence diagram has 

proven intuitive for knowledge acqui- 
sition, the representation is precise 
and well-grounded in theory. Each of 
the oval nodes in an influence diagram 
represents a random variable or uncer- 
tain quantity, which can take on two 
or more possible values The arcs indi- 
cate conditional dependence: a vari- 
able’s probability distribution depends 
on the outcomes of its direct predeces- 
sors in the graph. For example, three 
possible influence diagrams exist for 
the two random variables X and Y 
shown in figure 2. In the first case, X 
has no predecessors, so we assess a 
marginal (unconditional] distribution 
for X and a conditional distribution for 
Y given X. In the next case, with the 
arc reversed, we assess a marginal dis- 
tribution for Y and a conditional dis- 

Figure 2. 
Influence Diagrams with Two Nodes 

The joint probability distribution for two 
variables can be represented by three dif- 
ferent influence diagrams In diagram a, 
there is a probability distribution for vari- 
able X and a conditional distribution for 
variable Y given that we observe the value 
of X (indicated by the arc from X to Y) In 
diagram b, there is an unconditional dis- 
tribution for Y and a distribution for X 
given Y Diagram c asserts that the two 
variables are independent because we can 
obtain their joint distribution from an 
unconditional distribution for each. Any 
two variables can be modeled by a or b, 
but the missing arc in diagram c imposes 
a strong assumption on the relationship 
between X and Y, namely, that knowing X 
will not change our distribution for Y and 
vice versa 

tribution for X given Y. Both corre- 
spond to the same fundamental model 
at the underlying joint distribution, 
but the two diagrams represent two 
different ways of factoring the model. 
The transformation between them, 
which involves reversing the direction 
of conditioning and, hence, the rever- 
sal of the arc, is simply Bayes’ theo- 
rem. Finally, in the third case, neither 
node has any predecessors, so X and Y 
are independent. Therefore, we can 

obtain the joint by assessing marginal 
distributions for both X and Y. When 
the two variables are independent, we 
are free to use any of the three forms, 
but we prefer the last one, which 
explicitly reveals this independence in 
the graph. 

As a detailed example, consider the 
influence diagram in figure 3. This fig- 
ure shows the relationship between 
diabetes and a possible symptom of 
the disease, blue toe. Associated with 
the influence diagram are the proba- 
bility distributions, a marginal 
(unconditional) distribution for dia- 
betes, and a conditional distribution 
for blue toe given diabetes. 

In figure 4, we see four possible 
influence diagrams for the uncertain 
variables X, Y, and Z. In the first 
case-the general situation-the three 
variables appear to be completely 
dependent. We assess a marginal dis- 
tribution for X and conditional distri- 
butions for Y, given X, and Z given X 
and Y. In general, there are n! factor- 
izations of a joint distribution among 
n variables. Each possible permutation 
leads to a different influence diagram. 
In the second case in the figure, the 
three variables are completely inde- 
pendent; in the third case, X and Y are 
dependent, but Z is independent of 
both of them. In the fourth case, we 
see conditional independence. The 
absence of an arc from X to Z indi- 
cates that although X and Z are depen- 
dent, they are independent given Y. 
This type of conditional independence 
is an important simplifying assump- 
tion for the construction and assess- 
ment of uncertainty models. 

Returning to the earlier diabetes 
example, blue toe is caused by 
atherosclerosis, which might be 
caused by diabetes. This relationship 
is shown in figure 5. The absence of a 
direct arc from diabetes to blue toe 
indicates that given the state of 
atherosclerosis, knowing whether the 
patient has diabetes tells us nothing 
about whether the patient has blue 
toe. The probability distributions 
needed to completely describe this 
model are shown below the influence 
diagram. They are a marginal distribu- 
tion for diabetes [the same as previ- 
ously), and conditional distributions 
for atherosclerosis, given diabetes, and 
blue toe given atherosclerosis. 
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formation is accomplished by revers- 
ing the arcs in the influence diagram, 
which corresponds to the general ver- 
sion of Bayes’ theorem (Howard and 
Matheson 1981; Olmsted 1983; 
Shachter 1986), as shown in figure 6. 
As long as no other path exists 
between chance nodes (either proba- 
bilistic or deterministic node] X and Y, 
we can reverse the arc from X to Y. If 
there were another path, the newly 
reversed arc would create a cycle. In 
the process of the reversal, both 
chance nodes inherit each other’s pre- 
decessors. This inheritance can add a 
considerable number of arcs to the 
influence diagram We are concerned 
in later sections about the relative 
complexity of the model before and 
after reversals. Sometimes, not all the 
arcs are needed after reversals, but in 
general they can be. If multiple rever- 

Figure 3 
A Simple Influence Diagram for Diabetes. 

The influence diagram tells us about the joint behavior of the events diabetes and blue 
toe We have an unconditional probability distribution for diabetes: diabetes is present 
with probability 1 and absent with probability 9 We also have a conditional distribu- 
tion for blue toe given that we observe diabetes: if diabetes is present, then blue toe is 
present with probability 014, but if diabetes is absent, then blue toe is present with 
probability 006 

Figure 4 
Influence Diagrams 
with Three Nodes 

The joint probability distribution for 
three variables can be represented by 
many possible influence diagrams, some 
of which are shown in figure 4 Diagram a 
is the general case, and it could apply to 
any of the three variables: we have an 
unconditional distribution for X; a condi- 
tional distribution for Y, given X; and a 
conditional distribution for Z given both 
X and Y Diagram b is the most restrictive 
case: it indicates that the three variables 
are independent because we have an 
unconditional distribution for all three 
Diagram c allows X and Y to be depen- 
dent but asserts that Z is independent of 
X and Y Finally, diagram d represents 
conditional independence: X and Z might 
be dependent, but once we observe Y, we 
would not learn anything more about Z 
by seeing X Z and X are said to be condi- 
tionally independent given Y 

In the influence diagram, we always 
require that there be no directed 
cycles. By doing so, an ordering 
always exists among the variables so 
that we can recover the underlying 
joint distribution. 

One other type of influence diagram 
node is relevant to our discussion, a 
deterministic node, drawn as a double 
oval (as opposed to the probabilistic 
node, which we have shown as a sin- 
gle oval). The deterministic variable is 
a function of its predecessors, so its 
outcome is known with certainty if 
we can observe the outcomes of these 

predecessors. In general, we cannot 
observe all these predecessors, so 
there can be uncertainty in the out- 
come of a deterministic variable. 

In an influence diagram, knowledge 
can be encoded in a comfortable and 
intuitive direction for the expert and 
later transformed for use. Such trans- 

Pr I D,iabetes } 
Diabetes : 

Atherosclerosis Absent _ 0.9 ’ 

Present ‘; 
Absent ‘- 

Figure 5 
An Influence Diagram Representing Conditional Independence 

This influence diagram shows that blue toe is conditionally independent of diabetes 
given atherosclerosis Our distribution for blue toe would change if we knew whether 
diabetes were present However, once we know whether atherosclerosis is present, find- 
ing out about diabetes would tell us nothing new about blue toe The distribution for 
blue toe is now conditioned by atherosclerosis If atherosclerosis is present, then blue 
toe is present with probability 9; otherwise, it is only present with probability 005 

Figure 6 
Arc Reversal in an Influence Diagram. 

Bayes’ theorem is represented in the influence diagram by an arc leversal In the dia- 
gram on the left, Y is conditioned by X If we want to express the distribution of X con- 
ditioned by Y instead, we can reverse the arc between them In general, both X and Y 
will have other conditioning variables, indicated by the three sets (The middle set con- 
tains their common conditioning variables) As a consequence of the arc reversal, the 
new distributions for X and Y will (in general) be conditioned by all the variables in the 
three sets As a rule, the distributions become more complicated after we perform arc 
reversals 
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Figure 7 
Influence Diagram Transformation for Diagnosis. 

Arc reversals permit us to move from an influence diagram that is easy to assess to one 
which helps with diagnosis The influence diagram a shows that blue toe and glucose in 
urine are conditionally independent given diabetes This fact is also evident in diagram 
b, which is obtained by reversing the arc from diabetes to blue toe When the arc from 
diabetes to glucose in urine is reversed to obtain diagram c, we must also add an arc 
from blue toe to glucose in urine, and there is no longer any conditional independence 
indicated in the diagram The distribution for diabetes is now conditioned by both blue 
toe and glucose in urine If they are both present, then diabetes is present with probabili- 
ty 959; if they are both absent, then diabetes is present with probability .OOl. 

sals are needed, then the order in 
which they are performed can affect 
this arc structure.3 

To continue with the diabetes 
example, consider the influence dia- 
gram shown in figure 7a. We have 
added a second symptom of diabetes, 
the presence of glucose in the urine. 
The conditional probabilities for glu- 
cose in the urine, given diabetes, are 
given below the influence diagram. 
The two symptoms are shown to be 
conditionally independent in the dia- 
gram given diabetes. If we know 
whether the patient has diabetes, then 
the presence of one symptom tells us 
nothing about the other. Although the 
diagram is natural for assessment, it 
cannot be used for diagnosis We can 
transform the diagram into one that is 
useful for diagnosis by first reversing 
the arc from diabetes to blue toe and 
then reversing the arc from diabetes 
to glucose in urine as shown in figures 
71, and 7c. When performing the sec- 
ond reversal, an arc is added from blue 
toe to glucose in urine The arc is 

needed because the symptoms are not 
independent. When we do not know 
whether the patient has diabetes, the 
presence of one symptom tells us 
much about the other. 

Deterministic Models 
The importance of the distinction 
between direction of assessment and 
direction of usage appears even in the 
simplest categorical models. Suppose, 
for example, that we have an error in 
the output from a small computer pro- 
gram. If we knew the source of the 
error, then we would know with cer- 
tainty the type of output error to 
expect Thus, we could use the model 
shown in figure 8, in which the pro- 
gramming error is represented by a 
probabilistic node conditioning the 
computer output represented by a 
deterministic node. When we observe 
the output and wish to learn about the 
source of the error, we reverse the arc 
using Bayes’ theorem and find that 
after the reversal, both nodes have 
become probabilistic. Given the out- 

Figure 8. 
An Influence Diagram for Diagnosing 

Computer Programming Errors. 
The influence diagram on the left is a sim- 
ple model of a computer program Output 
is a deterministic variable; if we know 
whether a particular error is present, then 
we know exactly what output to expect 
However, we are uncertain about what 
the output will be because we are uncer- 
tain about the error Therefore, after we 
reverse the arc to perform diagnosis, out- 
put becomes a probabilistic variable. The 
error remains probabilistic because the 
same output could arise from different 
errors 

put, we do not necessarily know what 
type of error caused it, but we are able 
to update our previous beliefs about 
the possible errors in light of this new 
evidence. Our direction of usage is 
clearly in the more complex, reverse 
direction, but the model is easier to 
construct in the original direction, 
which exploits the categorical behav- 
ior of our man-made computer sys- 
tem. 

Suppose now that we have a much 
larger computer system. If it were 
written with a modular design, we 
might have the influence diagram 
shown in figure 9. Again, this model is 
relatively easy to construct because of 
the categorical nature and the inde- 
pendence among subsystems. If, how- 
ever, we observe the output and wish 
to update our knowledge about these 
subsystems, we find that they are no 
longer categorical, nor are they inde- 
pendent, in light of the new informa- 
tion.4 This newer, more complex 
model is the correct one to use to 
update our beliefs as we observe evi- 
dence, but it is less convenient for 
knowledge acquisition. 

Probabilistic Models 
In most real-world domains, we do not 
have a categorical model to assess, but 
there is still considerable advantage to 
thinking about a problem in the 
causal direction. Often, basic and 
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straightforward probabilistic models 
become complex when viewed in the 
direction of usage. 

Consider the case of two effects 
with a single common cause. Even 
when the effects are conditionally 
independent given the cause, as in fig- 
ure 10, in general, they are dependent 
when the problem is reversed for 
usage. We saw a specific example of 
this case earlier in figure 7. Similarly, 
when there are two independent caus- 
es and a single common effect, as in 
figure 11, we see complete dependen- 
cy when the problem is reversed. 
Clearly, as the number of causes and 
effects increases, the problem stays 
straightforward in the causal direction 
but becomes complex in the direction 
of usage. 

As an example, consider two disor- 
ders-congestive heart failure and 
nephrotic syndrome [a kidney 
disease)-that essentially arise inde- 
pendently. Congestive heart failure 
often results in an enlarged heart (car- 
diomegaly) and an accumulation of 
fluid in the ankles (pitting edema), 
and nephrotic syndrome often leads to 
protein in the urine and pitting edema 
as well. A simple test for protein in 
the urine is whether the urine is 
frothy; an X ray can detect car- 
diomegaly. The model corresponding 
to this problem is shown on the left in 
figure 12 If we turn the model around 
to show how the unobservable events 
of interest-heart failure and nephrot- 
ic syndrome-depend on the observ- 
ables-X ray, pitting edema, and 
frothy urine-then the model 
becomes the one shown on the right 
in figure 12. The original model was 
not only simpler but more natural to 
assess, going in the causal direction. 
The reversed model would be intoler- 
ably confusing to assess, but it has all 
the dependencies one needs for proper 
usage. 

Another major advantage to view- 
ing a problem in different directions 
for construction and solution is that 
parts of the assessment might not 
vary much from case to case. Consid- 
er the simple medical example in fig- 
ure 13, in which the presence or 
absence of a disorder affects the likeli- 
hood that a set of symptoms will 
manifest. Although the probability 
distribution for the disorder can vary 

Figure 9 
An Influence Diagram for a Modular Computer Program 

This influence diagram represents a modular computer system The diagram on the left 
shows considerable conditional independence; for example, neither system2 nor subsys- 
tern12 will be affected by errors in subsystem11 The new diagnostic diagram obtained 
after arc reversals shows much less conditional independence It helps one to understand 
the relationships among the variables after we observe output In this case, knowing 
whether system1 is working could change the distribution for system2; if output reveals 
an error that is not explained by systeml’s state, then system2 must be responsible 

Figure 10. 
A Single Cause with Multiple Effects 

Figure IO ilhrstrates a cause for which there are multiple effects The diagram on the 
left is easier to assess because the effects are conditionally independent given the true 
cause To reason about the cause from the effects, the arcs are reversed to obtain the 
cause conditioned by the effects The effects are now dependent because observing one 
will change the distribution for the cause, which in turn changes the distribution for 
the other effect 

Figure 11. 
A Single Effect with Multiple Causes 

In this case, multiple causes have a common effect The diagram on the left is easier to 
assess because causes are independent To learn about the causes from the effect 
requires reversing the arcs The causes are now dependent because if the effect were 
observed, then cause2 would be much more likely if cause1 were not true 
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sent in the model. We can then take 
expectation over nephrotic syndrome 
to arrive at our desired conditional 
distribution. If we did not explicitly 
consider nephrotic syndrome, then we 
would be forced to perform the inte- 
gration mentally instead. The addition 
of variables can be of considerable cog- 
nitive aid when trying to assess the 
probability distributions. This process 
is what Tribus (1969) calls “extending 
of the conversation ” We get little ben- 
efit from this technique unless we 

Figure 12 
first build our model in the causal 

An Influence Diagram for a Medical Diagnosis Problem direction. 

Figure 12 illustrates a medical example in which two disorders (causes), congestive 
heart failure and nephrotic syndrome, are indicated by test results (effects), including a Conclusions 
common one, pitting edema The diagram on the left is fairly simple and one that can 
be comfortably assessed by the physician To perform diagnosis, a number of arcs must 

We believe it is important to distin- 

be reversed to obtain the diagram on the right; this diagram has a distribution for con- 
guish between the direction in which 

gestive heart failure conditioned by all possible test results Although the new diagram 
a model is constructed and the direc- 

is useful for diagnosis, it is practically impossible for a physician to assess its condition- tion in which it is applied. Models 

al distributions that capture rich interactions can 
become impossible to assess in the 
usage direction even though they 
might be simple and natural to think 
about in the opposite direction. 

&G&(G&& 
AI researchers have argued that vari- 

ous methods for reasoning with uncer- 
tainty are impractical because of the 
complexity of knowledge acquisition 
(Shortliffe 1976; Rich 1983). Indeed, 
many AI researchers have sacrificed 
self-consistency of the reasoning 
mechanism in order to facilitate sim- 
plicity in the knowledge representa- 

Figure 13 tion process (Heckerman 1986). We 

Taking Advantage of Constant Likelihood contend that the desired simplicity 

In this generic medical example, a number of factors condition the distribution for a 
can often be found by constructing 

disease (cause), but the symptoms (effect) are conditionally independent of those fac- models in the direction opposite that 

tors given the disease This diagram is natural to assess and, in fact, corresponds to the of usage without having to sacrifice 

organization of most medical texts To perform a diagnosis, however, the arcs must be fundamentals 
reversed to produce the diagram on the right, which is much more difficult to assess 
This new diagram corresponds to the physician’s clinical experience If an experienced 
physician changes jobs, there is often a period of adjustment as the physician learns Notes 

about the new factors Similarly, a knowledge base organized like the diagram on the 
right would be less portable than one based on the diagram on the left 

1 Many of the concepts discussed in this 
article were examined ureviouslv in 

widely between cases on the basis of 
patient-specific factors such as age, 
occupation, and climate; the probabil- 
ity distribution for the symptoms, 
given the disorder, is often indepen- 
dent of these factors. However, when 
the model is reversed to the direction 
of usage, both distributions become 
patient specific. Thus, a knowledge 
base organized in the intuitive direc- 
tion is more portable than one con- 
structed in the direction for use. 

Moreover, by building models in the 
direction of natural assessment, con- 
stant likelihoods can be exploited to 
decrease knowledge acquisition time. 

Finally, it is often useful to add new 
variables that simplify the construc- 
tion process. Consider the medical 
example in Figure 12. If we are inter- 
ested in the probability distribution 
for pitting edema given congestive 
heart failure, it is much easier to 
assess with nephrotic syndrome pre- 

Shachter and Heckerman (lj86) Also ;ele- 
vant to our discussion is Pearl (1987) 
z This is not to be confused with forward 
versus backward chaining which is an 
issue of control rather than representation. 
3 It is interesting to note that the reversal 
operation is simplified considerably when 
the predecessor X is a deterministic node. 
It is not simplified, however, when the suc- 
cessor Y is the deterministic node 
4 Notice that the newer model does show 
some conditional independence which can 
be exploited at the time of usage 

60 AI MAGAZINE 



Acknowledgments 

This work was supported in part by Deci- 
sion Focus, Inc ; the National Library of 
Medicine under grant ROI-LM04529; 
NASA-Ames Research Center, the Henry J 
Kaiser Family Foundation; and the Ford 
Aerospace Corporation Computing facili- 
ties were provided by the SUMEX-AIM 
resource under NM grant RR-00785 

References 

Cooper, G F 1984 NESTOR: A Comput- 
er-Based Medical Diagnostic Aid That Inte- 
grates Causal and Probabilistic Knowledge 
Ph.D. diss., Technical Report STAN-CS- 
84-48, HPP-84-48, Dept. of Computer Sci- 
ence, Stanford Univ. 
Heckerman, D E. 1986 Probabilistic Inter- 
pretations for MYCIN’s Certainty Factors 
In Uncertainty in Artificial Intelligence, 
eds. L Kanal and J. Lemmer, 167-196 New 
York: North Holland 

Analysis, eds. R A. Howard and J. E 

Howard, R. A, and Matheson, J E. 1981. 
Influence Diagrams In Readings on the 
Principles and Applications of Decision 

Matheson, 721-762. Menlo Park, Calif : 
Strategic Decisions Group 
Kuipers, B, and Kassier, J. 1984 Causal 
Reasoning in Medicine: Analysis of a Pro- 
tocol Cognitive Science, 8:363-385 

Olmsted, S. M 1983 On Representing and 
Solving Decision Problems Ph D diss , 
Dept. of Economics and Engineering Sys- 
tems, Stanford Univ. 
Pearl, J 1987 Embracing Causality in For- 
mal Reasoning Technical Report, CSD 
860020, Dept. of Computer Science, Univ 
of California at Los Angeles Also in Pro- 
ceedings of the Sixth National Conference 
on Artificial Intelligence, 369-373 Menlo 
Park, Calif : American Association for 
Artificial Intelligence 
Pearl, J 1986. Fusion, Propagation, and 

Shachter, R. D , and Heckerman, D. E. 

Structuring in Belief Networks Artificial 
Intelligence 29:241-288 
Rich, E 1983 Artificial Intelligence New 
York: McGraw-Hill 
Shachter, R. D 1986. Intelligent Probabilis- 
tic Inference. In Uncertainty in Artificial 
Intelligence, eds L. Kanal and J Lemmer, 
371-382 New York: North Holland 

1986 A Backwards View for Assessment. 
In Proceedings of the Second Workshop on 
Uncertainty in Artificial Intelligence, 237- 
241 Menlo Park, Calif : American Associa- 
tion for Artificial Intelligence 
Shortliffe, E. H 1976 Computer-Based 
Medical Consultations. MYCIN New 
York: Elsevier-North Holland. 
Shortliffe, E H., and Buchanan, B G. 1975. 
A Model of Inexact Reasoning in Medicine 
Mathematical Biosciences 231351-379. 

Speed, T. P 1978. Graphical Methods in 
the Analysis of Data Paper presented at 
the University of Copenhagen Institute of 
Mathematical Statistics, Copenhagen. 
Spiegelhalter, D. J 1985 A Statistical View 
of Uncertainty in Expert Systems Paper 
presented at the Workshop on AI and 
Statistics, Bell Laboratories, Princeton, 
NJ, ll-12April 
Tribus, M 1969. Bayes’ Equation and 
Rational Inference. In Rational Descrip- 

20:55i-585. - 

tions, Decisions, and Designs New York: 
Pergamon 
Wright, S 1921. Correlation and Causa- 
tion lournal of Agricultural Research 

Acquaint is a 
window based system, that 
runs on personal computers. 
li- you want to start simple, the 
Acquaint-Light version lets you 
explore the world of Expert Systems 

(&$j$i 
:: 

without having to make a large 
investment. 

Once you have outgrown the facilities 
-g&q 

of Acquaint-Light, 
you may upgrade The Expert System Development f;~&ry 
to the full version, 
which is intended Tool that grows with you. comparisons. 

to be used by knowledge engineers. Because it is It has a powerful forms facility, that your 
written entirely in muLisp, you can get access to users will feel at home with. 
most of the systems internal functions and you 
may add your own functions as well. For more information, please write to: 
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