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Abstract. We study the power of local information algorithms for op-
timization problems on social and technological networks. We focus on
sequential algorithms where the network topology is initially unknown
and is revealed only within a local neighborhood of vertices that have
been irrevocably added to the output set. This framework models the
behavior of an external agent that does not have direct access to the
network data, such as a user interacting with an online social network.
We study a range of problems under this model of algorithms with lo-
cal information. When the underlying graph is a preferential attachment
network, we show that one can find the root (i.e. initial node) in a polylog-
arithmic number of steps, using a local algorithm that repeatedly queries
the visible node of maximum degree. This addresses an open question of
Bollobás and Riordan. This result is motivated by its implications: we
obtain polylogarithmic approximations to problems such as finding the
smallest subgraph that connects a subset of nodes, finding the highest-
degree nodes, and finding a subgraph that maximizes vertex coverage
per subgraph size.
Motivated by problems faced by recruiters in online networks, we also
consider network coverage problems on arbitrary graphs. We demon-
strate a sharp threshold on the level of visibility required: at a certain
visibility level it is possible to design algorithms that nearly match the
best approximation possible even with full access to the graph structure,
but with any less information it is impossible to achieve a non-trivial
approximation. We conclude that a network provider’s decision of how
much structure to make visible to its users can have a significant effect
on a user’s ability to interact strategically with the network.

1 Introduction

In the past decade there has been a surge of interest in the nature of complex
networks that arise in social and technological contexts; see [9] for a recent survey
of the topic. In the computer science community, this attention has been directed
largely towards algorithmic issues, such as the extent to which network structure
can be leveraged into efficient methods for solving complex tasks. Common prob-
lems include finding influential individuals, detecting communities, constructing
subgraphs with desirable connectivity properties, and so on.
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The standard paradigm in these settings is that an algorithm has full access
to the network graph structure. More recently there has been growing interest
in local algorithms, in which decisions are based upon local rather than global
network structure. This locality of computation has been motivated by appli-
cations to distributed algorithms [17, 11], improved runtime efficiency [10, 20],
and property testing [15, 18]. In this work we consider a different motivation:
in some circumstances, an optimization is performed by an external user who
has inherently restricted visibility of the network topology. For such a user, the
graph structure is revealed incrementally within a local neighborhood of nodes
for which a connection cost has been paid. The use of local algorithms in this
setting is necessitated by constraints on network visibility, rather than being a
means toward an end goal of efficiency or parallelizability.

As a motivating example, consider an agent in a social network who wishes
to find (and link to) a highly connected individual. For instance, this agent
may be a newcomer to a community (such as an online gaming or niche-based
community) wanting to interact with influential or popular individuals, or a re-
cruiter attempting to form strategic connections in a social network application.
Finding a high-degree node is a straightforward algorithmic problem without
information constraints, but many online and real-world social networks reveal
graph structure only within one or two hops from a user’s existing connections.

Is it possible for an agent to solve such a problem using only the local infor-
mation available on an online networking site? This question is relevant not only
for individual users, but also to the designer of a social networking service who
must decide how much information to reveal. For example, LinkedIn allows each
user to see the degree of nodes two hops away in the network, whereas Facebook
does not reveal this information by default. We ask: what impact do such design
decisions have on an individual’s ability to interact with the network?

More generally, we consider graph algorithms in a setting of restricted net-
work visibility. We focus on optimization problems for which the goal is to return
a subset of the nodes in the network; this includes coverage, connectivity, and
search problems. An algorithm in our framework proceeds by incrementally and
adaptively building an output set of nodes, corresponding to those vertices of
the graph that have been queried (or connected to) so far. When the algorithm
has queried a set S of nodes, the structure of the graph within a small radius of
S is revealed, guiding future queries. The principle challenge in designing such
an algorithm is that decisions must be based solely on local information, whereas
the problem to be solved may depend on the global structure of the graph. In
addition to these restrictions, we ask for algorithms that run in polynomial time.

For many problems we derive strong lower bounds on the performance of lo-
cal algorithms in general networks. We therefore turn to the class of preferential
attachment (PA) graphs, which model properties of many real-world social and
technological networks. For PA networks, we prove that local information algo-
rithms do well at many optimization problems, including shortest path routing
and finding the k vertices of highest degree (up to polylogarithmic factors).
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We also consider node coverage problems on general graphs, where the goal
is to find a small set of nodes whose neighborhood covers all (or much) of the
network. Such coverage problems are especially motivated in our context by ap-
plications to employment-focused social networking platforms such as LinkedIn,
where there is benefit in having as many nodes as possible within a few hops
of one’s direct connections3. We design local information algorithms whose per-
formances approximately match the best possible even when information about
network structure is unrestricted. We also demonstrate that the amount of local
information available is of critical importance: strong positive results are possible
at a certain range of visibility (made explicit below), but non-trivial algorithms
become impossible when less information is made available. This observation has
implications for the design of online networks, such as the amount of information
to provide a user about the local topology: seemingly arbitrary design decisions
may have a significant impact on a user’s ability to interact with the network.

Results and Techniques Our first set of results concerns algorithms for preferen-
tial attachment (PA) networks. Such networks are defined by a process by which
nodes are added sequentially and form random connections to existing nodes,
where the probability of connecting to a node is proportional to its degree.

We first consider the problem of finding the root (first) node in a PA network.
A random walk would encounter the root in Õ(

√
n) steps (where n is the number

of nodes in the network). The question of whether a better local information
algorithm exists for this problem was posed by Bollobas and Riordan [5]. They
conjecture that such short paths can be found locally in Θ(log n) steps. We
make the first progress towards this conjecture by showing that polylogarithmic
time is sufficient: there is an algorithm that finds the root of a PA network in
O(log4(n)) time, with high probability. We show how to use this algorithm to
obtain polylogarithmic approximations for finding the smallest subgraph that
connects a subset of nodes (including shortest path), finding the highest-degree
nodes, and finding a subgraph that maximizes vertex coverage per subgraph size.

The local information algorithm we propose uses a natural greedy approach:
at each step, it queries the visible node with highest degree. Demonstrating that
such an algorithm reaches the root in O(log4(n)) steps requires a probabilistic
analysis of the PA process. A natural intuition is that the greedy algorithm will
find nodes of ever higher degrees over time. However, such progress is impeded by
the presence of high-degree nodes with only low-degree neighbors. We show that
these bottlenecks are infrequent enough that they do not significantly hamper
the algorithm’s progress. To this end, we derive a connection between node
degree correlations and supercritical branching processes to prove that a path of
high-degree vertices leading to the root is always available to the algorithm.

We then consider general graphs, where we explore local information algo-
rithms for dominating set and coverage problems. A dominating set is a set S

3 For example, LinkedIn allows recruiters to execute searches for potential job candi-
dates among all nodes within distance 3 from the recruiter, additionally displaying
resume information for those within distance 2.
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such that each node in the network is either in S or the neighborhood of S.
We design a randomized local information algorithm for the minimum dominat-
ing set problem that achieves an approximation ratio that nearly matches the
lower bound on polytime algorithms with no information restriction. As has been
noted in [14], the greedy algorithm that repeatedly selects the visible node that
maximizes the size of the dominated set can achieve a very bad approximation
factor. We consider a modification of the greedy algorithm: after each greedy
addition of a new node v, the algorithm will also add a random neighbor of v.
We show that this randomized algorithm obtains an approximation factor that
matches the known lower bound of Ω(log∆) (where ∆ is the maximum degree
in the network) up to a constant factor. We also show that having enough local
information to choose the node that maximizes the incremental benefit to the
dominating set size is crucial: no algorithm that can see only the degrees of the
neighbors of S can achieve a sublinear approximation factor.

Finally, we extend these results to related coverage problems. For the partial
dominating set problem (where the goal is to cover a given constant fraction
of the network with as few nodes as possible) we give an impossibility result:
no local information algorithm can obtain an approximation better than O(

√
n)

on networks with n nodes. However, a slight modification to the local informa-
tion algorithm for minimum dominating set yields a bicriteria result (in which
we compare performance against an adversary who must cover an additional ε
fraction of the network). We also consider the “neighbor-collecting” problem, in
which the goal is to minimize c|S| plus the number of nodes left undominated
by S, for a given parameter c. For this problem we show that the minimum
dominating set algorithm yields an O(c log∆) approximation (where ∆ is the
maximum degree in the network), and that the dependence on c is unavoidable.

Related Work Over the last decade there has been a substantial body of work
on understanding the power of sublinear-time approximations. In the context of
graphs, the goal is to understand how well one can approximate graph properties
in a sublinear number of queries. See [18] and [13] for recent surveys. Motivated
by distributed computation, a notion of local computation was formalized by [19]
and further developed in [1]. They define a local computation algorithm as com-
puting only certain specified bits of a global solution. In contrast, our notion
of locality is motivated by information constraints imposed upon a sequential
algorithm. h Local algorithms motivated by efficient computation, rather than
informational constraints, were explored by [2, 20]. These works explore local
approximation of graph partitions to efficiently find a global solution.

Preferential attachment (PA) networks were suggested by [3] as a model
for large social networks. There has been much work studying the properties of
such networks, such as degree distribution [6] and diameter [5]; see [4] for a short
survey. The problem of finding high degree nodes, using only uniform sampling
and local neighbor queries, is explored in [7]. The low diameter of PA graphs
can be used to implement distributed algorithms in which nodes repeatedly
broadcast information to their neighbors [11, 8]. A recent work [8] showed that
such algorithms can be used for fast rumor spreading. Our results on the ability
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to find short paths in such graphs differs in that our algorithms are sequential,
with a small number of queries, rather than applying broadcast techniques.

The ability to quickly find short paths in social networks has been the focus
of much study, especially in the context of small-world graphs [16, 12]. It is
known that local routing using short paths is possible in such models, given
some awareness of global network structure (such as coordinates in an underlying
grid). In contrast, our shortest-path algorithm for PA graphs does not require
an individual know the graph structure beyond the degrees of his neighbors.
However, our result requires that routing can be done from both endpoints; in
other words, both nodes are trying to find each other.

For the minimum dominating set problem, Guha and Khuller [14] designed a
local O(log∆) approximation algorithm. As a local information algorithm, their
method requires that the network structure is revealed up to distance two from
the current dominating set. By contrast, our local information algorithm requires
less information to be revealed on each step. Our focus, and the motivation
behind this distinction, is to determine sharp bounds on the amount of local
information required to approximate this problem (and others) effectively.

2 Model and Preliminaries

Graph Notation We write G = (V,E) for an undirected graph with node and
edge sets V and E, respectively. We write nG for the number of nodes in G,
dG(v) for the degree of a vertex v in G, and NG(v) for the set of neighbors of
v. Given a subset of vertices S ⊆ V , NG(S) is the set of nodes adjacent to at
least one node in S. We also write DG(S) for the set of nodes dominated by S:
DG(S) = NG(S)∪S. We say S is a dominating set if DG(S) = V . Given nodes u
and v, the distance between u and v is the number of edges in the shortest path
between u and v. The distance between vertex sets S and T is the minimum
distance between a node in S and a node in T . Given a subset S of nodes of
G, the subgraph induced by S is the subgraph consisting of S and every edge
with both endpoints in S. Finally, ∆G is the maximum degree in G. In all of the
above notation we often suppress the dependency on G when clear from context.

Algorithmic Framework We focus on graph optimization problems in which the
goal is to return a minimal-cost4 set of vertices S satisfying a feasibility con-
straint. We will consider a class of algorithms that build S incrementally under
local information constraints. We begin with a definition of local neighborhoods.

Definition 1 (Local Neighborhood). Given a set of nodes S in the graph
G, the r-closed neighborhood around S is the induced subgraph of G containing
all nodes at distance less than or equal to r from S, plus the degree of each
node at distance r from S. the r-open neighborhood around S is the r-closed
neighborhood around S, after the removal of all edges between nodes at distance
exactly r from S.

4 In most of the problems we consider, the cost of set S will simply be |S|.
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Definition 2 (Local Information Algorithm). Let G be an undirected graph
unknown to the algorithm, where each vertex is assigned a unique identifier. For
integer r ≥ 1, a (possibly randomized) algorithm is an r+-local algorithm if:

1. The algorithm proceeds sequentially, growing step-by-step a set S of nodes,
where S is initialized either to ∅ or to some seed node.

2. Given that the algorithm has queried a set S of nodes so far, it can only
observe the r-closed neighborhood around S.

3. On each step, the algorithm can add a node to S either by selecting a specified
vertex from the r-closed neighborhood around S (a crawl) or by selecting a
vertex chosen uniformly at random from all graph nodes (a jump).

4. In its last step the algorithm returns the set S as its output.

Similarly, for r ≥ 1, we call an algorithm a r-local algorithm if its local
information (i.e. in item 2) is made from the r-open neighborhood around S.

We focus on computationally efficient (i.e. polytime) local algorithms. Our
framework applies most naturally to coverage, search, and connectivity problems,
where the family of valid solutions is upward-closed. More generally, it is suitable
for measuring the complexity, using only local information, for finding a subset of
nodes having a desirable property. In this case the size of S measures the number
of queries made by the algorithm; we think of the graph structure revealed to
the algorithm as having been paid for by the cost of S.

For our lower bound results, we will sometimes compare the performance of
an r-local algorithm with that of a (possibly randomized) algorithm that is also
limited to using Jump and Crawl queries, but may use full knowledge of the
network topology to guide its query decisions. The purpose of such comparisons
is to emphasize instances where it is the lack of information about the network
structure, rather than the necessity of building the output in a local manner,
that impedes an algorithm’s ability to perform an optimization task.

3 Preferential Attachment Graphs

We consider graphs generated by the preferential attachment (PA) process, con-
ceived by Barabási and Albert [3]. The process is defined sequentially with nodes
added one by one. When a node is added it sends m links to previously created
nodes, connecting to a node with probability proportional to its current degree.

We will use the following, now standard, formal definition of the process, due
to [5]. Given m ≥ 1, we inductively define random graphs Gtm, 1 ≤ t ≤ n. The
vertex set for Gtm is [t]. G1

m is the graph with node 1 and m self-loops. Given

G
(t−1)
m , form Gtm by adding node t and then forming m edges from t to nodes

in [t], say p1(t), . . . , pm(t). The nodes pk(t) are referred to as the parents of t.
The edges are formed sequentially. For each k, node s is chosen with probability
deg(s)/z if s < t, or (deg(s) + 1)/z if s = t, where z is a normalization factor.
Note that deg(s) denotes degree in Gt−1m , counting previously-placed edges.

We first present a 1-local approximation algorithm for the following simple
problem on PA graphs: given an arbitrary node u, return a minimal connected
subgraph containing nodes u and 1 (i.e. the root of Gnm).
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Algorithm 1 TraverseToTheRoot

1: Initialize a list L to contain an arbitrary node {u} in the graph.
2: while L does not contain node 1 do
3: Add a node of maximum degree in N(L)\L to L.
4: return L.

Algorithm 2 s-t-Connect

1: P1 ← TraverseToTheRoot(G, s)
2: P2 ← TraverseToTheRoot(G, t)
3: Return P1 ∪ P2

Our algorithm, TraverseToTheRoot, is listed as Algorithm 1. The algorithm
grows a set S of nodes by starting with S = {u} and then repeatedly adding the
node in N(S)\S with highest degree. We will show that, with high probability,
this algorithm traverses the root node within O(log4(n)) steps.

Theorem 1. With probability 1− o(1) over the preferential attachment process
on n nodes, TraverseToTheRoot returns a set of size O(log4(n)).

Remark: For convenience, we have defined TraverseToTheRoot assuming that
the algorithm can determine when it has successfully traversed the root. This
is not necessary in general; our algorithm will have the guarantee that, after
O(log4(n)) steps, it has traversed node 1 with high probability.

Before proving Theorem 1, we discuss its algorithmic implications below.

3.1 Applications of Fast Traversal to the Root

We now describe how to use TraverseToTheRoot to implement local algorithms
for other problems on PA networks. Proofs are omitted due to space constraints.

s-t connectivity. The s-t connectivity (shortest path) problem is to find a small
connected subgraph containing two given nodes s and t in an undirected graph.

Corollary 1. Let G be a PA graph on n nodes. Then, with probability 1− o(1)
over the PA process, Algorithm 2 (listed above), a 1-local algorithm, returns a
connected subgraph of size O(log4(n)) containing vertices s and t.

This result implies that a subset of k nodes can be connected by a local
algorithm in O(k log4(n)) steps, using a subset of size O(k log4(n)). Also, in the
full version of the paper we show that Corollary 1 does not extend to general
graphs: local algorithms cannot achieve sublinear approximations.

Finding high degree nodes. A natural problem on graphs is to find a node with
maximal degree. The algorithm TraverseToTheRoot gives a polylogarithmic ap-
proximation to this problem with high probability. This follows because, with
high probability, the root of a PA network has approximately maximal degree.
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Corollary 2. Let G be a preferential attachment graph on n nodes. Then, with
probability 1 − o(1), algorithm TraverseToTheRoot will return a node of degree
at least 1

log2(n)
of the maximum degree in the graph, in time O(log4(n)).

In the full version we show that Corollary 2 does not extend to general graphs.

Maximizing coverage versus cost. In the full version of the paper we consider
the optimization problem of finding set S such that |D(S)|/|S| is maximized.
For this problem the TraverseToTheRoot algorithm obtains a polylogarithmic
approximation in O(log4(n)) queries, and we prove no such result is possible for
general graphs.

3.2 Analysis of TraverseToTheRoot

We now turn to the proof of Theorem 1. Let us provide some intuition. We would
like to show that TraverseToTheRoot queries nodes of progressively higher de-
grees over time. However, if we query a node i of degree d, there is no guarantee
that subsequent nodes will have degree greater than d; the algorithm may en-
counter local maxima. Suppose, however, that there were a path from i to the
root consisting entirely of nodes with degree at least d. In this case, the algo-
rithm will only ever traverse nodes of degree at least d from that point onward.
One might therefore hope that the algorithm finds nodes that lie on such “good”
paths for ever higher values of d, representing progress toward the root.

Motivated by this intuition, we will study the probability that any given node
i lies on a path to the root consisting of only high-degree nodes (i.e. not much less
than the degree of i). We will argue that many nodes in the network lie on such
paths. We prove this in two steps. First, we show that for any given node i and
parent pk(i), pk(i) will have high degree relative to i with probability greater
than 1/2 (Lemma 2). Second, since each node i has at least two parents, we
use the theory of supercritical branching processes to argue that, with constant
probability for each node i, there exists a path to a node close to the root
following links to such “good” parents (Lemma 3).

This approach is complicated by the fact that existence of such good paths is
highly correlated between nodes; this makes it difficult to argue that such paths
occur “often” in the network. To address this issue, we show that good paths
are likely to exist even after a large set of nodes (Γ in our argument below) is
adversarially removed from the network. We can then argue that each node is
likely to have a good path independently of many other nodes, as we can remove
all nodes from one path before testing the presence of another.

We now provide an outline of the proof. The proofs of technical lemmas
appear in the full version. Set s0 = 160 log(n)(log log(n))2 and s1 = n

225 log2 n
.

We think of vertices in [1, s0] as close to the root, and vertices in [s1, n] as very
far from the root. Let It = [2t+1, 2t+1] be a partition of [n] into intervals. Define
constants β = 1/4 and ζ = 30.

Definition 3 (Typical node). A node i has typical degree if either deg(i) ≥
m
2ζ

√
n
i or i ≤ s0.
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Lemma 1. The following are true with probability 1− o(1):

– ∀i ≥ s0 : deg(i) ≤ 6m log(n)
√

n
i .

– ∀i ≤ s0 : deg(i) ≥ m
√
n

5 log2(n)
.

– ∀i ≥ s0 : P[i is connected to 1] ≥ 3.9
log(n)

√
i
.

– ∀j ≥ i ≥ s0, k ≤ m : P[pk(i) < j] ≥ 0.9
√
i√

j
.

Our next lemma states that, for any set Γ that contains sufficiently few nodes
from each interval It, and any given parent of a node i, with probability greater
than 1/2 the parent will be typical, not in Γ , and not in the same interval as i.

Definition 4 (Sparse set). A subset of nodes Γ ⊆ [n] is sparse if |Γ ∩ It| ≤
|It|/ log log(n) for all log s0 ≤ t ≤ log s1.

Lemma 2. Fix sparse set Γ . Then for each i ∈ [s0, s1] and k ∈ [m], the following
are true with probability ≥ 8/15 : pk(i) 6∈ Γ , pk(i) ≤ i/2, and pk(i) is typical.

We now claim that, for any given node i and sparse set Γ , there is likely a
short path from i to vertex 1 consisting entirely of typical nodes that do not
lie in Γ . Our argument is via a coupling with a supercritical branching process.
Consider growing a subtree, starting at node i, by adding to the subtree any
parent of i that satisfies the conditions of Lemma 2, and then recursively growing
the tree in the same way from any parents that were added. Since each node has
m ≥ 2 parents, and each satisfies the conditions of Lemma 2 with probability
> 1/2, this growth process is supercritical and should survive with constant
probability (within the range of nodes [s0, s1]). We should therefore expect that,
with constant probability, such a subtree would contain some node j < s0.

The argument above leads to the following lemma, which we will use in our
analysis of the algorithm TraverseToTheRoot. First a definition.

Definition 5 (Good paths). For any i ∈ [s0, s1], we say i has a good path if
there is a path from i to a node j ≤ s0 consisting of nodes with typical degree.

Lemma 3. Choose any set T of at most 16 log n nodes from [s0, s1]. Then each
i ∈ T has a good path with probability at least 1/5, independently for each i.

We will apply Lemma 3 to the set of nodes queried by TraverseToTheRoot
to argue that progress toward the root is made after every sequence of polylog-
arithmically many steps. We can now complete the proof of Theorem 1, which
we sketch below; a full proof appears in the full version of the paper.

Our analysis of Algorithm 1 consists of three steps, corresponding to three
phases of the algorithm. The first phase consists of all steps until the first time
we traverse a node i < s1 with a good path. The second phase then lasts until
the algorithm queries a node i < s0. The third phase ends when the algorithm
traverses node 1. We will show that each phase lasts at most O(log4(n)) steps.

We will make use of Lemma 3 in our analysis whenever we consider whether
a node has a good path. We will check at most 16 log n nodes in this manner,
and hence the conditions of Lemma 3 will be satisfied throughout the analysis.
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Analysis of phase 1 Phase 1 ends when the algorithm traverses a node i < s1
with a good path. The value of s1 is set large enough so that every node queried
by the algorithm has index ≤ s1 with probability at least 1

O(logn) , regardless of

previous nodes traversed. By Lemma 3, each such node has a good path with
probability at least 1/5. Multiplicative Chernoff bounds therefore imply that the
phase will end after at most O(log2(n)) steps, with high probability.

Analysis of phase 2 We split phase 2 into a number of epochs. For each t ∈
[log s0, log s1], epoch t begins when some node i ∈ It with a good path has been
traversed (and ends when epoch t+ 1 begins). Define random variable Yt to be

the length of epoch t. The total number of steps in phase 2 is
∑log s1
t=log s0

Yt.
Suppose the algorithm is in epoch t, having traversed node i ∈ It with a good

path. Then i has a parent j ∈ Iu with deg(j) ≥ m
2ζ

√
n
i and u < t. This node

j could be traversed by the algorithm, so any node queried before j must have
at least this degree. Moreover, traversing node j would end epoch t, so every
step in epoch t traverses a node with degree at least m

2ζ

√
n
i . By Lemma 1, any

such node ` satisfies ` < zi log2(n) where z is a constant. But now, by Lemma 1,
each node ` traversed in epoch t has a parent r < i/ log2(n) with probability at
least 1

O(log2(n))
. Any such node r has degree greater than any node in It, again

by Lemma 1, so if a queried node had such a parent then the subsequent step
must query a node of index at most 2t. Any such node is on a good path with
probability at least 1/5, by Lemma 3, in which case epoch t would end.

To summarize, each step of epoch t causes an end to the epoch with proba-
bility at least 1

O(log2(n))
. We conclude that

∑log s1
t=log s0

Yt is dominated by the sum

of at most log n geometric random variables, each with mean O(log2(n)). Con-
centration bounds for geometric random variables then imply that, with high
probability, epoch 2 ends in O(log3(n)) steps.

Analysis of phase 3 We first note that the induced graph on the first s0 nodes
is connected with high probability (see [8], corollary 5.15). By Lemma 1 every

node i ≤ s0 has degree at least d = m
√
n

5 log1.9(n)
, so the algorithm will only traverse

nodes of degree at least d in phase 3. By Lemma 1, any node j with degree at
least d must satisfy j < (60ζ)2 log5.8(n). Also by Lemma 1, for each such j, the
probability that j is adjacent to the root is at least 1

211 log3.9(n)
. Chernoff bounds

then imply that such an event will occur with high probability after at most
O(log4(n)) steps. Thus, with high probability, phase 3 will end after at most
s0 +O(log4(n)) = O(log4(n)) steps. This completes the proof of Theorem 1.

4 Minimum Dominating Set on Arbitrary Networks

We now consider the problem of finding a dominating set S of minimal size for
an arbitrary graph G. Even with full (non-local) access to the network structure,
it is known to be hard to approximate the Minimum Dominating Set Problem
to within a factor of H(∆) in polynomial time, where H(n) ≈ ln(n) is the nth
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Algorithm 3 AlternateRandom

1: Select an arbitrary node u from the graph and initialize S = {u}.
2: while D(S) 6= V do
3: Choose x ∈ arg maxv∈N(S){|N(v)\D(S)|} and add x to S.
4: if N(x)\S 6= ∅ then
5: Choose y ∈ N(x)\S uniformly at random and add y to S.
6: return S.

harmonic number. In this section we explore how much local network structure
must be made visible in order for it to be possible to match this lower bound.

Guha and Khuller [14] design an O(H(∆))-approximate algorithm for the
minimum dominating set problem, which can be interpreted in our framework
as a 2+-local algorithm. As we show, the ability to observe network structure up
to distance 2 is unnecessary if we allow the use of randomness: we will construct
a randomized O(H(∆)) approximation algorithm that is 1+-local. We then show
that this level of local information is crucial: no algorithm with less local infor-
mation can return a non-trivial approximation. Proofs in this section are omitted
due to space constraints, but appear in the full version of the paper.

4.1 A 1+-local Algorithm

We now present a 1+-local randomized O(H(∆))-approximation algorithm for
the min dominating set problem. Our algorithm obtains this approximation fac-
tor both in expectation and with high probability in the optimal solution size5.

Roughly speaking, our approach is to greedily grow a subtree of the network,
repeatedly adding vertices that maximize the number of dominated nodes. Such
a greedy algorithm is 1+-local, as this is the amount of visibility required to
determine how much a given node will add to the number of dominated vertices.
Unfortunately, this greedy approach does not yield a good approximation; it is
possible for the algorithm to waste significant effort covering a large set of nodes
that are all connected to a single vertex just beyond the algorithm’s visibility.
To address this issue, we introduce randomness into the algorithm: after each
greedy addition of a node x, we will also query a random neighbor of x. The
algorithm is listed above as Algorithm 3 (AlternateRandom).

We now show that AlternateRandom obtains an O(H(∆)) approximation,
both in expectation and with high probability. In what follows, OPT will de-
note the size of the optimal dominating set in an inplicit input graph. The proof
follows by bounding, for each node v in the optimal solution, the expected num-
ber of neighbors of v that are queried before v is queried.

Theorem 2. AlternateRandom is 1+-local and returns a dominating set S where
E[|S|] ≤ 2(1 +H(∆))OPT + 1 and P[|S| > 2(2 +H(∆))OPT ] < e−OPT .

5 Our algorithm actually generates a connected dominating set, so it can also be seen
as an O(H(∆)) approximation to the connected dominating set problem.
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We end this section by showing that 1+-locality is necessary for constructing
good local approximation algorithms. The example we consider is a clique with
one edge (u, v) removed, plus two additional nodes u′ and v′ that are adjacent
to nodes u and v respectively.

Theorem 3. For any randomized 1-local algorithm A for the min dominating
set problem, there exists an input instance G for which E[|S|] = Ω(n)OPT ,
where S denotes the output generated by A on input G.

4.2 Partial Coverage Problems

We next study problems in which the goal is not necessarily to cover all nodes
in the network, but rather dominate only sections of the network that can be
covered efficiently. We consider two central problems in this domain: the partial
dominating set problem and the neighbor collecting problem.

Partial Dominating Set In the partial dominating set problem we are given a
parameter ρ ∈ (0, 1]. The goal is to find the smallest set S such that |D(S)| ≥ ρn.

We begin with a negative result: for any constant k and any k-local algorithm,
there are graphs for which the optimal solution has constant size, but with high
probability Ω(

√
n) queries are required to find any ρ-partial dominating set. Our

example will apply to ρ = 1/2, but can be extended to any constant ρ ∈ (0, 1).
The example is a graph with two embedded stars, one with n/2−

√
n leaves and

one with only
√
n leaves; the optimal solution contains the center of each star,

but the smaller star requires many queries to locate.

Theorem 4. For any randomized k-local algorithm A for the partial dominating
set problem with ρ = 1/2, there exists an input G with optimal partial dominat-
ing set OPT for which E[|S|] = Ω(

√
n) · |OPT |, where S denotes the output

generated by A on input G.

Motivated by this lower bound, we consider a bicriterion result: given ε > 0,
we compare the performance of an algorithm that covers ρn nodes with the
optimal solution that covers ρ(1 + ε)n nodes (assuming ρ(1 + ε) ≤ 1). We show
that a modification to Algorithm 3, in which jumps to uniformly random nodes
are interspersed with greedy selections, yields an O((ρε)−1H(∆)) approximation.
The proof is similar in spirit to Theorem 2.

Theorem 5. Given any ρ ∈ (0, 1), ε ∈ (0, ρ−1− 1), and set of nodes OPT with
|D(OPT )| ≥ ρ(1 + ε)n, Algorithm 4 (AlternateRandomAndJump) returns a set
S of nodes with |D(S)| ≥ ρn and E[|S|] ≤ 3|OPT |(ρε)−1H(∆).

The Neighbor Collecting Problem We next consider the objective of minimizing
the total cost of the selected nodes plus the number of nodes left uncovered:
choose a set S of G that minimizes f(S) = c|S|+|V \D(S)| for a given parameter
c > 0. This problem is motivated by the Prize-Collecting Steiner Tree problem.
The proof is similar in spirit to Theorem 2, noting that the optimal dominating
set is no worse than a c-approximation to the optimal solution.



The Power of Local Information in Social Networks 13

Algorithm 4 AlternateRandomAndJump

1: Initialize S = ∅.
2: while |D(S)| < ρn do
3: Choose a node u uniformly at random from the graph and add u to S.
4: Choose x ∈ arg maxv∈N(S){|N(v)\D(S)|} and add x to S.
5: if N(x)\S 6= ∅ then
6: Choose y ∈ N(x)\S uniformly at random and add y to S.
7: return S.

Theorem 6. For any c ≥ 1 and set OPT minimizing f(OPT ), algorithm Al-
ternateRandom returns a set S for which E[f(S)] ≤ 2c(1 +H(∆))f(OPT ).

We show in the full version that the dependency on c is unavoidable and that
Theorem 6 cannot be extended to 1-local algorithms without significant loss.

5 Conclusions

We presented a model of computation in which algorithms are constrained in
the information they have about the input structure, which is revealed over time
as expensive exploration decisions are made. Our motivation lies in determining
whether and how an external user in a network, who cannot make arbitrary
queries of the graph structure, can efficiently solve optimization problems in a
local manner. Our results suggest that inherent structural properties of social
networks may be crucial in obtaining strong performance bounds.

Another implication is that the designer of a network interface, such as an
online social network platform, may gain from considering the power and lim-
itations that come with the design choice of how much network topology to
reveal to individual users. On one hand, revealing too little information may
restrict natural social processes that users expect to be able to perform, such as
searching for potential new connections. On the other hand, revealing too much
information may raise privacy concerns, or enable unwanted behavior such as au-
tomated advertising systems searching to target certain individuals. Our results
suggest that even minor changes to the structural information made available to
a user may have a large impact on the class of optimization problems that can
be reasonably solved by the user.
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