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Abstract

A well-known result in game theory known as “the Folk Theorem” suggests that finding
Nash equilibria in repeated games should be easier than in one-shot games. In contrast, we show
that the problem of finding any (approximate) Nash equilibrium for a three-player infinitely-
repeated game is computationally intractable (even when all payoffs are in {−1, 0,−1}), unless
all of PPAD can be solved in randomized polynomial time. This is done by showing that
finding Nash equilibria of (k + 1)-player infinitely-repeated games is as hard as finding Nash
equilibria of k-player one-shot games, for which PPAD-hardness is known (Daskalakis, Goldberg
and Papadimitriou, 2006; Chen, Deng and Teng, 2006; Chen, Teng and Valiant, 2007). This also
explains why no computationally-efficient learning dynamics, such as the “no regret” algorithms,
can be rational (in general games with three or more players) in the sense that, when one’s
opponents use such a strategy, it is not in general a best reply to follow suit.
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1 Introduction

Complexity theory provides compelling evidence for the difficulty of finding Nash Equilibria
(NE) in one-shot games. It is NP-hard, for a two-player n × n game, to determine whether
there exists a NE in which both players get non-negative payoffs [GZ89]. Recently it was shown
that the problem of finding any NE is PPAD-hard [DGP06], even in the two-player n× n case
[CD06], even for ε-equilibria for inverse polynomial ε [CDT06], and even when all payoffs are
±1 [CTV07]. PPAD-hardness implies that a problem is at least as hard as discrete variations
on finding Brouwer fixed-point, and thus presumably computationally intractable [P94].

Repeated games, ordinary games played by the same players a large — usually infinite —
number of times, are believed to be a different story. Indeed, a cluster of results known as the Folk
Theorem1 (see, for example, [AS84, FM86, FLM94, R86]) predict that, in a repeated game with
infinitely many repetitions and/or discounting of future payoffs, there are mixed NE (functions
mapping histories of play by all players to a distribution over the next round strategies for each
player) which achieve a rich set of payoff combinations called the individually rational region —
essentially anything above what each player can absolutely guarantee for him/herself (see below
for a more precise definition). In the case of prisoner’s dilemma, for example, a NE leading to full
collaboration (all players playing “mum” ad infinitum) is possible. In fact, repeated games and
their Folk Theorem equilibria have been an arena of early interaction between Game Theory
and the Theory of Computation, as play by resource-bounded automata was also considered
[S80, R86, PY94, N85].

Now, there is one simple kind of mixed NE that is immediately inherited from the one-shot
game: Just play a mixed NE each time. In view of what we now know about the complexity
of computing a mixed NE, however, this is hardly attractive computationally. Fortunately, in
repeated games the Folk Theorem seems to usher in a space of outcomes that is both much
richer and computationally benign. In fact, it was recently pointed out that, using the Folk
Theorem, a pure NE can indeed be found in polynomial time for any repeated game with two
players [LS05].

The main result in this paper is that, for three or more players, finding a NE in a repeated
game is PPAD-complete, under randomized reductions. This follows from a simple reduction
from finding NE in k-player one-shot games to finding NE in k + 1-player repeated games, for
any k (the reverse reduction is immediate). In other words, for three or more players, playing
the mixed NE each time is not as bad an idea in terms of computational complexity as it may
seem at first. In fact, there is no general way that is computationally easier. Our results also
hold for finding approximate NE, called ε-NE, for any inverse-polynomial ε and discounting
parameter, and even in the case where the game has all payoffs in the set {−1, 0, 1}.

To understand our result and its implications, it is useful to explain the Folk Theorem.
Looking at the one-shot game, there is a certain “bottom line” payoff that any player can
guarantee for him/herself, namely the minmax payoff: The best payoff against a worst-case
mixed strategy by everybody else. The vector of all minmax payoffs is called the threat point
of the game, call it θ. Consider now the convex hull of all payoff combinations achievable by
pure strategy plays (in other words, the convex hull of all the payoff data); obviously all mixed
and pure NE are in this convex hull. The individually rational region consists of all points x in
this convex hull such that such that x ≥ θ coordinate-wise. It is clear that all Nash equilibria
lie in this region. Now the Folk Theorem, in its simplest version, takes any payoff vector x in
the individually rational region, and approximates it with a rational (no pun) point x̃ ≥ x ≥ θ
(such a rational payoff is guaranteed to exist if the payoff data are rational). The players then
agree to play a periodic schedule of plays that achieve, in the limit, the payoff x̃ on the average.
The agreement implicit in the NE further mandates that, if any player ever deviates from this
schedule, everybody else will switch to the mixed strategy that achieves the player’s minmax.

1Named this way because it was well-known to game theorists far before its first appearance in print.
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It is not hard to verify that this is a mixed NE of the repeated game. Since every mixed NE
can play the role of x, it appears that the Folk Theorem indeed creates a host of more general,
and at first sight computationally attractive, equilibria.

To implement the Folk Theorem in a computationally feasible way, all one has to do is to
compute the threat point and corresponding punishing strategies. The question thus arises:
what is the complexity of computing the minmax payoff? For two players, it is easy to compute
the minmax values (since in the two-player case this reduces to a two-player zero-sum game),
and the Folk theorem can be converted to a computationally efficient strategy for playing a NE
of any repeated game [LS05]. In contrast, we show that, for three or more players, computing
the threat point is NP-hard in general (Theorem 1).

But a little reflection reveals that this complexity result is no real obstacle. Computing the
threat point is not necessary for implementing the Folk Theorem. In fact our negative result
is more general. Not only these two familiar approaches to NE in repeated games (playing
each round the one-shot NE, and implementing the Folk Theorem) are both computationally
difficult, but also any algorithm for computing a mixed NE of a repeated game with three or
more players can be used to compute a mixed NE of a two-person game, and hence it cannot
be done in polynomial time, unless there is a randomized polynomial-time algorithm for every
problem in PPAD (Theorem 3). In other words, the Folk Theorem gives us hope that other
points in the individually rational region will be easier to compute than the NE; well, they are
not.

We feel that this result is conceptually important as it dispels a common belief in game
theory, stemming from the folk theorem, that it is easy to play equilibria of repeated games.
Our analysis has interesting negative game-theoretic implications regarding learning dynamics.
An example is the elegant no-regret strategies, which have been shown to quickly converge to the
set of correlated equilibria [FV97] of the one-shot game, even in games with many players (see
[BM07] Chapter 4 for a survey). Our result implies that, for more than two players (under the
same computational assumption), no computationally efficient general game-playing strategies
are rational in the sense that if one’s opponents all employ such strategies, it is not in general
a best response in the repeated game to follow suit. Thus the strategic justification of no-regret
algorithms is called into question.

Like all negative complexity results, those about computing NE have spawned a research
effort focusing on approximation algorithms [CDT06, DMP07], as well as special cases [CTV07,
DP07, DP07b]. As we have mentioned, our results already severely limit the possibility of
approximating a NE in a repeated game; but the question remains, are there meaningful classes
of games for which the threat point is easy to compute? In Section 4, we show that computing
the threat point in congestion games (a much studied class of games of special interest in
Algorithmic Game Theory) is NP-complete. This is true even in the case of network congestion
games with linear latencies on a directed acyclic graph (DAG). (It is open whether the NE of
repeated congestion games can be computed efficiently.) In contrast, applying the techniques
of [DP07, DP07b] we show that the threat point can be approximated by a PTAS in the case
of anonymous games with a fixed number of strategies — another broad class of great interest.
This of course implies, via the Folk Theorem, that NE are easy to approximate in repeated
anonymous games with few strategies; however, this comes as no surprise, since in such games
even NE can be so approximated [DP07b]. In further contrast, for the even more restricted class
of symmetric games (albeit with an unbounded number of strategies), we show that computing
the threat point in repeated games are as hard as in the general case. It is an interesting
open question whether there are natural classes of games (with three or more players) with an
intractable NE problem, for which however the threat point is easy to compute or approximate;
that is, classes of games for which the Folk Theorem is useful.

We give next some definitions and notation. In Section 2, we show that computing the
threat point is NP-complete. In Section 3, we show that computing NE of a repeated game with
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k + 1-players is equivalent to computing NE of a k-player one-shot game, and extend this result
to ε-NE. Finally, in Section 4, we show that our negative results hold even for symmetric games
and congestion games.

1.1 Definitions and Notation

A game G = (I,A, u) consists of a set I = {1, 2, . . . , k} of players, a set A = ×i∈IAi of
action profiles where Ai is the set of pure actions2 for player i, and a payoff function
u : A → Rk that assigns a payoff to each player given an action for each player. We write
ui : A → R for the payoff to player i, so u(a) =

(
u1(a), . . . , uk(a)

)
. We use the standard

notation a−i ∈ A−i = ×j∈I\{i}Aj to denote the actions of all players except player i.
Let ∆i = ∆(Ai) denote the set of probability distributions over Ai and ∆ = ×i∈I∆i. A

mixed action αi ∈ ∆i for player i is a probability distribution over Si. An k-tuple of mixed
actions α = (α1, . . . , αk) determines a product distribution over A where α(a) =

∏
i∈I αi(ai).

We extend the payoff functions to α ∈ ∆ by expectation: ui(α) = Ea∼α [ui(a)] , for each player
i.

Definition 1 (Nash Equilibrium). Mixed action profile α ∈ ∆ is an ε-NE (ε ≥ 0) of G if,

∀ i ∈ I ∀ āi ∈ Ai ui(α−i, āi) ≤ ui(α) + ε.

A NE is an ε-NE for ε=0.

For any game G = (I,A, u), we denote the infinitely repeated game by G∞. In this
context, G is called the stage game. In G∞, each period t = 0, 1, 2, . . . , each player chooses
an action at

i ∈ Ai. A history ht = (a0, a1, . . . , at−1) ∈ (A)t is the choice of strategies in each of
the first t periods, and h∞ = (a0, a1, . . .) describes the infinite game play.

A pure strategy for player i in the repeated game is a function si : A∗ → Ai, where
A∗ =

⋃∞
t=0(A)t, and si(ht) ∈ Ai determines what player i will play after every possible history

of length t. A mixed strategy for player i in the repeated game is a function σi : A∗ → ∆i,
where σi(ht) ∈ ∆i similarly determines the probability distribution by which player i chooses
its action after each history ht ∈ (A)t.

We use the standard discounting model to evaluate payoffs in such an infinitely repeated
game. A mixed strategy profile σ = (σ1, . . . , σk) induces a probability distribution over histories
ht ∈ (A)t in the natural way. The infinitely-repeated game with discounting parameter
δ ∈ (0, 1) is denoted G∞(δ). The expected discounted payoff to player i of σ = (σ1, . . . , σk)
by,

pi(σ) = δ
∞∑

t=0

(1− δ)tEht

[
Eat∼σ(ht)

[
ui(at)

]]
,

where the expectation is over action profiles at ∈ A drawn according to the independent mixed
strategies of the players on the tth period based on σ0, . . . , σt. The δ multiplicative term ensures
that, if the payoffs in G are bounded by some M ∈ R, then the discounted payoffs will also be
bounded by M . This follows directly from the fact that the discounted payoff is the weighted
average of payoffs over the infinite horizon.

For G = (I,A, u), G∞(δ) = (I, (A∗)A, p) can be viewed as a game as above, where (A∗)A
i

denotes the set of functions from A∗ to Ai. In this spirit, an ε-NE of G∞ is thus a vector of
mixed strategies σ = (σ1, . . . , σk) such that,

∀ i ∈ I ∀ s̄i : A∗ → Ai pi(σ−i, s̄i) ≤ pi(σ) + ε.

This means that no player can increase its expected discounted payoff more than ε by unilaterally
changing its mixed strategy (function). A NE of G∞ is an ε-NE for ε = 0.

2To avoid confusion, we use the word action in stage games (played once) and the word strategy for repeated
games.
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1.1.1 Computational Definitions

Placing game-playing problems in a computational framework is somewhat tricky, as a general
game is most naturally represented with real-valued payoffs while most models of computing
only allow finite precision. Fortunately, our results hold for a class of games where the payoffs
all in {−1, 0, 1}, so we define our models in this case.

A win-lose game is a game in which the payoffs are in {−1, 1}, and we define a win-lose-
draw game to be a game whose payoffs are in {−1, 0, 1}. We say a game is n×n if A1 = A2 = [n]
and similarly for n×n×n games. We now state a recent result about computing Nash equilibria
in two-player n × n win-lose games due to Chen, Teng, and Valiant. Such games are easy to
represent in binary and their (approximate) equilibria can be represented by rational numbers.

Fact 1. (From [CTV07]) For any constant c > 0, the problem of finding an n−c-NE in a
two-player n× n win-lose games is PPAD-complete.

For sets X and Y, a search problem S : X → P(Y) is the problem of, given x ∈ X , finding
any y ∈ S(x). A search problem is total if S(x) 6= ∅ for all x ∈ X . The class PPAD [P94] is
a set of total search problems. We do not define that class here — a good definition may be
found in [DGP06]. However, we do note that a (randomized) reduction from search problem
S1 : X1 → P(Y1) to S2 : X2 → P(Y2) is a pair of (randomized) polynomial-time computable
functions f : X1 → X2 and g : X1 × Y2 → Y1 such that for any x ∈ X1 and any y ∈ S2(f(x)),
g(x, y) ∈ S1(x). To prove PPAD-hardness (under randomized reductions) for a search problem,
it suffices to give a (randomized) reduction from that problem of finding an n−c-NE for two-
player n× n win-lose games.

We now define a strategy machine for playing repeated games. Following the game-
theoretic definition, a strategy machine Mi for player i in G∞ is a Turing machine that takes
as input any history ht ∈ At (any t ≥ 0), where actions are represented as binary integers,
and outputs a probability distribution over Ai represented by a vector of fractions of binary
integers that sum to 1.3 A strategy machine is said to have runtime R(t) if, for any t ≥ 0 and
history ht ∈ At, its runtime is at most R(t). With a slight abuse of notation, we also denote by
Mi : ht → ∆i the function computed by the machine. We are now ready to formally define the
repeated Nash Equilibrium Problem.

Definition 2 (RNE). Let 〈ε, δ, R〉n≥2 be a sequence of triplets, where εn > 0, δn ∈ (0, 1), and
Rn : N → N. The (εn, δn, Rn)-RNE problem is the following: given a win-lose-draw game G
of size n ≥ 2), output three machines, each running in time Rn(t), such that the strategies
computed by these three machines are an εn-NE to G∞(δn).

2 The Complexity of the Threat Point

The minmax value for player i of game G is defined to be,

θi(G) = min
α−i∈∆−i

max
αi∈∆i

ui(αi, α−i).

The threat point (θ1, . . . , θk) is key to the definition of the standard folk theorem, as it
represents the worst punishment that can be inflicted on each player if the player deviates from
some coordinated behavior plan.

3We note that several alternative formulations are possible for the definition of strategy machines. For simplicity,
we have chosen deterministic Turing machines. (The limitation to rational-number output is not crucial because our
results apply to ε-NE as well.) A natural alternative formulation would be randomized machines that output pure
actions. Our results could be extended to such a setting in a straightforward manner using sampling.
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Theorem 1. Given a three-player n × n × n game with payoffs ∈ {0, 1}, it is NP -hard to
approximate the minmax value for each of the players to within 3/n2.

The above theorem also implies that it is hard for the players to find mixed actions that
achieve the threat point within < 3/n2. For, suppose that two players could find strategies to
force the third down to its threat value. Then they could approximate the threat value easily
by finding an approximate best response for the punished player and estimating its expected
payoff, by sampling.

Proof. The proof is by a reduction from the NP-hard problem of 3-colorability. For notational
ease, we will show that it is hard to distinguish between a minmax value of 1

n and 1
n + 1

3n2 in
3n×3n×2n games. More formally, given an undirected graph (V,E) with |V | = n ≥ 4, we form
a 3-player game in which, if the graph is 3-colorable, the minmax value for the third player is
1/n, while if the graph is not 3-colorable, the minmax value is ≥ 1/n + 1/(3n2).

P1 and P2 each choose a node in V and a color for that node (ideally consistent with some
valid 3-coloring). P3 tries to guess which node one of the players has chosen by picking a player
(1 or 2) and a node in V . Formally, A1 = A2 = V × {r, g,b} and A3 = V × {0, 1}.

The payoff to P3 is 1 if either (a) P1 and P2 are exposed for not choosing a valid coloring
or (b) P3 correctly guesses the node of the chosen player. Formally,

u3((v1, c1), (v2, c2), (v3, i)) =


1 if v1 = v2 and c1 6= c2

1 if (v1, v2) ∈ E and c1 = c2

1 if vi = v3

0 otherwise

In the case of either of the first two events above, we say that P1 and P2 are exposed. The
payoffs to P1 and P2 are irrelevant for the purposes of the proof. Notice that if the graph is
3-colorable, then the threat point for player 3 is 1/n. To achieve this, let c : V → {r, g,b}
be a coloring. Then P1 and P2 can choose the same mixed strategy which picks (v, c(v)) for
v uniformly random among the n nodes. They will never be exposed for choosing an invalid
coloring, and P3 will guess which node they choose with probability 1/n, hence P3 will achieve
expected payoff exactly 1/n. They cannot force player 3 to achieve less because there will always
be some node that one player chooses with probability at least 1/n.

It remains to show that if the graph is not 3-colorable, then for any (α1, α2) ∈ ∆1 × ∆2,
there is a (possibly mixed) action for P3 that achieves expected payoff at least 1/n + 1/(3n2).

Case 1: there exists i ∈ {1, 2} and v ∈ V such that player i has probability at least
1/n + 1/(3n2) of choosing v. Then we are done because P3 can simply choose (v, i) as his
action.

Case 2: each player i ∈ {1, 2} has probability at most 1/n + 1/(3n2) of choosing any
v ∈ V . We will have P3 pick action (v, 2) for a uniformly random node v ∈ V . Hence, P3 will
succeed with its guess with probability 1/n, regardless of what P1 and P2 do, and independent
of whether or not the two players are exposed.

It remains to show that this mixed action for P3 achieves payoff at least 1/n + 1/(3n2)
against any α1, α2 that assign probability at most 1/n + 1/(3n2) to every node. To see this, a
simple calculation shows that if αi assigns probability at most 1/n+1/(3n2) to every node, this
means that αi also assign probability at least 2/(3n) to every node. Hence, the probability of
the first two players being exposed is,

Pr[being exposed] ≥
∑

v1,v2∈V

Pr[P1 chooses v1]Pr[P2 chooses v2]Pr[being exposed|v1, v2]

≥ 4
9n2

∑
v1,v2∈V

Pr[being exposed|v1, v2] ≥
4

9n2
.
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Given: k-player game G = (I = {1, 2, . . . , k}, A, u)
Ĝ = (Î = {1, 2, . . . , k + 1}, Â, û) is the player-kibitzer version of G:

r = k + 1 (notational convenience)

Âi =

{
Ai if i 6= r

{(j, āj)|1 ≤ j ≤ k, āj ∈ Aj} if i = r

ûi(a, (j, āj)) =


0 if i /∈ {j, r}
uj(a)− uj(āj , a−j) if i = j

uj(āj , a−j)− uj(a) if i = r

Figure 1: The player-kibitzer version of k-player game G. Players i = 1, 2, . . . , k, are the players,
player r = k + 1 is the kibitzer. At most one player may receive a nonzero payoff. The kibitzer
singles out player j and suggests alternative action āj . The kibitzer and player j exchange the
difference between how much j would have received had all the players played their chosen actions
in G and how much they would have received had j played āj instead. All other payoffs are 0.

The last step follows from the probabilistic method. To see this, note that the sum in the
equality is the expected number of inconsistencies over all n2 pairs of nodes, if one were to
take two random colorings based on the two distributions of colors. If the expectation were less
than 1, it would mean that there was some consistent coloring, which we know is impossible.
Finally, the probability of P3 achieving a payoff of 1 is ≥ 1/n + (1 − 1/n)4/(9n2), which is
≥ 1/n + 1/(3n2) for n ≥ 4.

3 The Complexity of Playing Repeated Games

Take a k-player game G = (I = {1, 2, . . . , k}, A, u). We will construct an player-kibitzer version
of G, a simple (k+1)-player game Ĝ such that, in the NE of the infinitely repeated Ĝ∞, the first
k players must be playing a NE of G. The construction is given in Figure 3. A few observations
about this construction are worth making now.

• It is not difficult to see that a best response by the kibitzer in Ĝ gives the kibitzer payoff
0 if and only if the players mixed actions are a NE of G. Similarly, a best response gives
the kibitzer ε if and only if the mixed actions of the players are an ε-NE of G but not an
ε′-NE of G for all ε′ < ε. Hence, the intuition is that in order to maximally punish the
kibitzer, the players must play a NE of G.

• While we show that such games are difficult to “solve,” the threat point and individually
rational region of any player-kibitzer game are trivial. They are the origin and the singleton
set containing the origin, respectively.4

• If G is an n× n game, then Ĝ is a n× n× 2n game.
• If the payoffs in G are in {0, 1}, then the payoffs in Ĝ are in {−1, 0, 1}. If the payoffs in

G are in [−B,B], then the payoffs in Ĝ are in [−2B, 2B].
4Considering that Folk theorems are sometimes stated in terms of the set of strictly individually rational payoffs

(those which are strictly larger than the minmax counterparts), our example may seem less convincing because this
set is empty. However, one can easily extend our example to make this set nonempty. By doubling the size of each
player’s action set, one can give each player i the option to reduce all of its opponents payoffs by ρ > 0, at no cost to
player i, making the minmax value −ρk for each player. For ρ < ε/(2k), our analysis remains qualitatively unchanged.

6



Theorem 2. For any k-player game G, let Ĝ be the player-kibitzer version of G as defined in
Figure 3. (a) At any NE of the infinitely repeated Ĝ∞, the mixed strategies played by the players
at each period t, are a NE of G with probability 1. (b) For any ε > 0, δ ∈ (0, 1), at any ε-NE of
Ĝ∞(δ), the mixed strategies played by the players in the first period are a

(
k+1

δ ε
)
-NE of G.

Proof. We first observe that any player in Ĝ, fixing its opponents’ actions, can guarantee itself
expected payoff ≥ 0. Any player can do this simply by playing an action that is a best response,
in G, to the other players’ actions, as if they were actually playing G. In this case, the kibitzer
cannot achieve expected positive payment from this player. On the other hand, the kibitzer can
guarantee 0 expected payoff by mimicking, say, player 1 and choosing α̂r(1, a1) = α̂1(a1) for all
a1 ∈ A1.

Since each player can guarantee itself expected payoff ≥ 0 in Ĝ, and Ĝ is a zero-sum game,
then the payoffs at any NE of Ĝ∞ must be 0 for all players. Otherwise, there would be some
player with negative expected discounted payoff, and that player could improve by guaranteeing
itself 0 in each stage game.

Now, suppose that part (a) of the theorem was false. Let t be the first period in which the
mixed actions of the players may not be a NE of G, with positive probability. The kibitzer may
achieve a positive expected discounted payoff by changing its strategy as follows. On period t,
the kibitzer plays a best response (j, āj) where j is the player that can maximally improve its
expected payoff on period t and āj is player j’s best response during that period. After period
t, the kibitzer could simply mimic player 1’s mixed actions, and achieve expected payoff 0. This
would give the kibitzer a positive expected discounted payoff, which contradicts the fact that
they were playing a NE of Ĝ∞.

For part (b), note that at any ε-NE of Ĝ∞, the kibitzers (expected) discounted payoff cannot
be greater than kε, or else there would be some player whose discounted payoff would be < −ε,
contradicting the definition of ε-NE. Therefore, any change in kibitzer’s strategy can give the
kibitzer at most (k+1)ε. Now, suppose on the first period, the kibitzer played the best response
to the players’ first-period actions, â0

r = b(α̂0
−r), and on each subsequent period guaranteed

expected payoff 0 by mimicking player 1’s mixed action. Then this must give the kibitzer
discounted payoff ≤ (k +1)ε, implying that the kibitzer’s expected payoff on period 0 is at most
(k + 1)ε/δ, and that the player’s mixed actions on period 0 are a (k + 1)ε/δ-NE of G.

The above theorem implies that given an algorithm for computing ε-NE for (k + 1)-player
repeated games, one immediately gets an algorithm for computing (k+1

δ ε)-NE for one-shot k-
player games. Combined with the important point that the payoffs in Ĝ are bounded by a factor
of 2 with respect to the payoffs in G, this is already a meaningful reduction, but only when ε
and δ are small. This is improved by our next theorem.

Lemma 1. Let k ≥ 1, ε > 0, δ ∈ (0, 1), T = d1/δe, G be a k-player game, strategy machine
profile M = (M1, . . . ,Mk+1) be an ε

8k -NE of Ĝ∞(δ), and R ≥ 1 such that the runtime of Mi

on any history of length ≤ T = d1/δe is at most R. Then the algorithm of Figure 3 outputs an
ε-NE of G in expected runtime that is poly(1/δ, log(1/ε), R, |G|).

Proof. Let br : ∆−r → Ar be any best response function for the kibitzer in the stage game G.
On each period t, if the kibitzer plays br(σ̂−r(ht)), then let its expected payoff be denoted by zt,
where, ρt = ur (M−r(ht), br(M−r(ht))) and zt = Eht [ρt] ≥ 0. Note that ρt is a random variable
that depends on ht. As observed before, M−r(ht) is a ρt-NE of G. Note that we can easily
verify if a mixed action profile is an ε-equilibrium in poly(|G|), i.e., time polynomial in the size
of the game. Hence, it suffices to show that the algorithm encounters M−r which is an ε-NE of
G in expected polynomial time. We next argue that any execution of Step 2 of the algorithm
succeeds with probability ≥ 1/2. This means that the expected number of executions of Step
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Given: k-player G, ε > 0, T ≥ 1, strategy machines M = (M1, . . . ,Mk+1)
for Ĝ∞.

1. Let h0 := (), r = k + 1.

2. For t = 0, 1, . . . , T :

• If σ = M−r(ht) is an ε-NE of G, then stop and output σ.

• Let at
k+1 be best response to M−r(ht) in Ĝ (break ties lexicograph-

ically).

• Choose actions at
−(k+1) independently according to M−r(ht), re-

spectively.

• Let ht+1 := (ht, at).

Figure 2: Algorithm for extracting an approximate NE of G from an approximate NE of Ĝ∞.

2 is at most 2. Since each such execution is polynomial time, this will suffice to complete the
proof.

Imagine that the algorithm were run for t = 0, 1, 2, . . . rather than stopping at T = d1/δe.
Also as observed before, the kibitzer’s expected payoff is < (k + 1)ε/(8k) ≤ ε/4, or else there
would be some player that could improve over M by more than ε/(8k). But the kibitzer’s
expected payoff, δ

∑∞
0 (1 − δ)tzt, is an average of zt, weighted according to an exponential

distribution with parameter 1−δ. This average, in turn, can be decomposed into λ = (1−δ)T+1

times the (weighted) average of zt on periods T + 1, T + 2, . . . plus 1 − λ times the (weighted)
average of zt on periods 1, 2, . . . , T . Since zt ≥ 0, the weighted average payoff of the kibitzer
on the first T periods is at most ε/(4(1 − λ)). By Markov’s inequality, this weighted average
is at most ε/(2(1 − λ)) ≤ ε (using λ ≤ (1 − 1/T )T ≤ 1/e) with probability at least 1/2. This
completes the proof.

Theorem 3. Let c1, c2, c3 > 0 be any positive constants. The problem 〈ε, δ, R〉n-RNE, for any
εn = n−c1 , δn ≥ n−c2 and R(t) = (nt)c3 is PPAD-complete under randomized reductions.

Proof. Let c1, c2, c3 > 0 be arbitrary constants. Suppose that one had a randomized algorithm
Â for the 〈ε, δ, T 〉n-RNE problem, for εn = n−c1 , δn ≥ n−c2 and R(t) = (nt)c3 . Then we will
show that there is a randomized polynomial-time algorithm for finding a n−c-NE in two-player
n× n win-lose games, for c = c1/2, establishing Theorem 3 by way of the Fact 1.

In particular, suppose we are given an n-sized game G. If n ≤ 162/c1 is bounded by a con-
stant, then we can brute-force search for an approximate equilibrium in constant time, since we
have a constant bound on the magnitude of the denominators of the rational-number probabili-
ties of some NE. Otherwise, we have n−c ≥ 16n−c1 , so it suffices to find an 16n−c1-NE of G by
a randomized polynomial-time algorithm.

We run Â on Ĝ (Ĝ can easily be constructed in time polynomial in n). With constant
probability, the algorithm is successful and outputs strategy machines S1, . . . , Sk+1 such that
the strategies they compute are an n−c1-NE of Ĝ∞(δ). By Lemma 1, the extraction algorithm
run on this input will give a 8kn−c1 = 16n−c1-NE of G.
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4 Special Cases of Interest

We already know that our negative complexity results (about computing the threat point and
playing repeated games) hold even for the special case of win-lose-draw games. But what about
the many other important restricted classes of games treated in the literature?

First, we consider congestion games, a class of games of central interest in algorithmic game
theory, and show that computing the threat point of congestion games with many players is
hard to compute. Briefly, in a congestion game the actions of each player are source-sink paths
(sets of edges), and, once a set of paths are chosen, the nonpositive payoff of each player is
the negation of the sum over all edges in the chosen path of the delays of those edges, where
each edge has a delay function mapping its congestion (the number of chosen paths that go
through it) to the nonnegative integers. Of special interest are congestion games in which the
paths are not abstract sets of objects called “edges,” but are instead actual paths from source
to sink (where each player may have his/her own source and sink) in a particular graph (ideally,
a DAG). These are called network congestion games.

Theorem 4. Computing the threat point in a network congestion game on a DAG is NP-
complete.

Proof. We give a reduction from SAT. In fact, we shall start from a stylized NP-complete special
case of SAT in which all clauses have either two literals (“short” clauses) or three literals (“long”
clauses), and each variable appears three times, once positively in a short clause, once negatively
in a short clause, and once in a long clause (positively or negatively). It is straightforward to
show that such a problem is NP-complete, as any 3-SAT can be converted into such a form by
replacing a variable xi that occurs k times with new variables xi1, . . . , xik and a cycle of clauses,
(xi1, x̄i2), (xi2, x̄i3), . . . , (xik, x̄i1) forcing them to be equal.

Given such an instance, we construct a network congestion game as follows. We consider two
types of delay functions. The first is a zero-delay which is always 0. The second is a step-delay
which is 0 if the congestion on the edge is ≤ 1 and is 1 if the congestion is ≥ 2. Say there
are n variables, x1, . . . , xn, in the formula. Then there are n + 1 players, one for each variable,
and another player (“the victim”) whose threat level we are to compute. The players sources’
are s1, . . . , sn and s (one for each variable xi and one for the victim) and sinks t1, . . . , tn, t,
respectively. For each short clause c, there are two nodes ac and bc, with a step-delay edge
from ac to bc. Each ac has two incoming zero-delay edges, one from each source si where xi or
x̄i belongs to c. Similarly, each bc has two outgoing zero-delay edges (plus possible additional
outgoing edges, discussed next), one to each ti such that xi or x̄i belongs to c. For each long
clause c, there are nodes uc and vc with a step-delay edge from uc to vc. Each uc as three
incoming edges, one from each bc′ where short clause c′ has a variable in common with c (with
the same positivity/negation). Each vc has three outgoing zero-delay edges, one to each ti such
that xi or x̂i belongs to c.

Finally, we add zero-delay edges from s to each ac and each uc, and zero-delay edges from each
bc and vc to t. Now, each player 1, . . . , n, can saturate either one of the two edges corresponding
to the positive/negative appearances it has in short clauses and possibly also the long clause to
which the variable belongs. However, it saturates edges corresponding to both short and long
clause, they must have the same positive/negative occurrence of the variable.

We claim that the minmax for the victim is −1 if the clauses are satisfiable, and at least
1−3n
3n otherwise. For the if part, suppose that there is a satisfying truth assignment, and each

variable-player chooses the path that goes through the short clause corresponding to the value
of its variable and then through the long clause if possible. Then it is easy to see that all
paths available to the victim are blocked by at least one flow, and thus any strategy chosen will
result in utility −1 or less. Conversely, if the formula is unsatisfiable, by choosing a path from
s through a random edge (ac, bc) to t, uniformly at random over c, the victim will guarantee a
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utility of at least 1−3n
3n , since at least one path must now be left unblocked. It is easy to see

that, because of the step nature of the delay functions, this is guaranteed even if the opponents
randomize.

In many settings, repeated games and the Folk Theorem come up in the literature in the
context of symmetric games such as the prisoner’s dilemma. A game is symmetric if it is
invariant under any permutation of the players; that is, the action sets are the same, and, for
any permutation π of the set of players [n], that the utility of player i when player j plays aj for
j = 1, . . . , n is the same as the utility of player π(i) when player π(j) plays aj for j = 1, . . . , n.
Do the negative results in the previous two sections hold in the case of symmetric games? The
next theorem partially answers this question.

Theorem 5. Computing the threat point in symmetric games with three players is NP-hard.

A proof sketch of the above theorem appears in the Appendix. We conjecture that it is
PPAD-complete to play repeated symmetric games with three or more players, but the special-
ization of this result to the symmetric case is much more challenging. The obvious problem is
the inherent asymmetry of the player-kibitzer game, but the real problem is the resistance of
symmetry to many sophisticated attempts to circumvent it in repeated play.

Anonymous games [DP07, DP07b] comprise a much larger class of games than the symmetric
ones. In such games players have the same action sets but different utilities; however, these
utilities do not depend on the identity of the other players, but only on the number of other
players taking each action. Naturally, computing threat points and playing repeated games
are intractable problems for this class. However, when we further restrict the games to have
an action set of fixed size, then the techniques of [DP07, DP07b] can be used to establish the
following:

Theorem 6. There is a PTAS for approximating the threat point in anonymous games with a
fixed number of actions.

A proof is given in an Appendix. Hence, the Folk Theorem applies to repeated anonymous
games with few strategies, and therefore such games can be approximately played efficiently.
However this follows from the result in [DP07b] that for these games an approximate NE of the
one-shot game is also easy to compute.

5 Conclusions

We have shown that a k-player one shot game can easily be converted to a (k + 1)-player
repeated game, where the only NE of the repeated game are NE of the one-shot game. Since
a one-shot game can be viewed as a repeated game with discounting parameter δ = 1, our
reduction generalizes recent PPAD-hardness results regarding NE for δ = 1 to all δ ∈ (0, 1],
showing that repeated games are not easy to play — the Folk Theorem notwithstanding. Note
that our theorems are essentially independent of game representation. They just require the
player-kibitzer version of a game to be easily representable. Moreover, our simple reduction
should easily incorporate any new results about the complexity of one-shot games that may
emerge.
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6 Appendix

Proof of Theorem 5

Proof. Sketch. To make the construction in the NP-completeness proof of Theorem 1 symmetric,
we assume that all three players have access to all actions (both actions of the type (v, i) where
v is a vertex and i ∈ {1, 2} identifies one of the other two players, namely player number
p+ i mod 3, where p is the player being considered) and actions of type (v, c) where v is a vertex
and c is a color. If two of them choose an action of the type (v, c) and the third an action of the
type (v, i), then the payoffs are as in that proof. If all three choose an action of the type (v, c)
then they all lose 1, and if fewer than two do, then they all win 1. To achieve the maxmin, say
of player P3, P1 and P2 should only play with nonzero probabilities actions of the form (v, c)
— because the other actions are dominated by them — and hence P3 should only play with
nonzero probability strategies of the form (v, i). Now the original argument applies to establish
NP-completeness.

Proof of Theorem 6 With thanks to Costas Daskalakis for this much simplified proof.

Proof. Let us reconsider the min-max problem faced by player i in an anonymous game of k
players and some constant number of a of actions per player: minα−i∈∆−i

maxsi∈[a] ui(si, α−i).
Observe that, since the game is anonymous, the function ui(si, ·) : ×j 6=iAj → R is a symmetric
function of its arguments. Hence, we can rewrite the above min-max problem as follows

min
α−i∈∆−i

max
si∈[t]

EXj∼αj ,j 6=i

ui

si,
∑
j 6=i

Xj

 ,

where by Xj ∼ αj we denote a random a-dimensional vector such that Pr[Xj = e`] = αj(`), for
all ` = 1, . . . , a. It is not hard to see that, if the maximum payoff of every player in the game
is absolutely bounded by some constant U , then, for any sets of mixed strategies {αj}j 6=i and
{α′j}j 6=i,∣∣∣∣∣∣EXj∼αj ,j 6=i

ui

si,
∑
j 6=i

Xj

− EYj∼α′j ,j 6=i

ui

si,
∑
j 6=i

Yj

∣∣∣∣∣∣ ≤ U

∣∣∣∣∣∣
∣∣∣∣∣∣
∑
j 6=i

Xj −
∑
j 6=i

Yj

∣∣∣∣∣∣
∣∣∣∣∣∣
TV

,

where the right hand side represents the total variation distance between
∑

j 6=i Xj and
∑

j 6=i Yj ,
where, for every j, Xj is distributed according to αj and Yj according to α′j . Suppose now
that {α∗j}j 6=i is the set of mixed strategies for which the minimum value of the min-max
problem is achieved. It follows from the above that if we perturb the α∗j ’s to another set of
mixed strategies {α′∗j }j 6=i the value of the minmax problem is only affected by an additive term

U
∣∣∣∣∣∣∑j 6=i Xj −

∑
j 6=i Yj

∣∣∣∣∣∣
TV

, where Xj ∼ α∗j and Yj ∼ α′∗j , for all j 6= i. In [DP07b], it was

shown that there exists some function f(ε) ≈ ε1/5 such that for any set of distributions {α∗j}j 6=i

there exists another set of ε-“discretized” distributions {α′∗j }j 6=i, that is distributions for which
α′∗j (`) is an integer multiple of ε for all ` ∈ [a], such that∣∣∣∣∣∣

∣∣∣∣∣∣
∑
j 6=i

Xj −
∑
j 6=i

Yj

∣∣∣∣∣∣
∣∣∣∣∣∣
TV

≤ a 2af(ε).

Hence, we can restrict the minimization to ε-discretized probability distributions with an addi-
tive loss of ≈ Ua 2aε1/5 in the value of the minmax problem. Even so, the search space is of
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size Ω
((

1
εt

)k−1
)

which is exponential in the input size O(ka). By exploiting the fact that the
functions {ui(si, ·)}si∈[a] are symmetric functions of their arguments we can prune the search
space to O((k − 1)1/εa

) therefore achieving a PTAS.

13


