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Abstract

We establish the exact threshold for the reconstruc-
tion problem for a binary asymmetric channel on the
b-ary tree, provided that the asymmetry is sufficiently
small. This is the first exact reconstruction threshold
obtained in roughly a decade. We discuss the implica-
tions of our result for Glauber dynamics, phylogenetic
reconstruction, noisy communication and the so-called
“replica symmetry breaking” in spin glasses and ran-
dom satisfiability problems.

1 Introduction

The so-calledreconstruction problemis a fundamen-
tal problem concerning signal decay in noisy commu-
nication with duplication, that is intimately related to
noisy computation [5, 21], mixing of Glauber dynam-
ics [1, 16] and phylogenetic reconstruction [4, 23]. In
the binary case, the problem is defined as follows. Let
Tb be a completeb-ary tree andM be a binary (asym-
metric) channel, i.e. a 2x2 stochastic matrix. Consider
the following Markov process that associates a state in
{+,−} to each node ofTb: first pick a state at the root
in {+,−} according to the stationary distribution ofM ;
then move away from the root and iteratively apply the
channelM on each edge. The reconstruction problem
is the problem of determining the state of the root ofTb,
given the state of the Markov chain on leveln of the
tree, asn goes to+∞. Roughly speaking, the recon-
struction problem on(Tb, M) is said to be “solvable”
if one can determine the root value significantly better
than by guessing according to the stationary distribution
(a precise definition is given below).
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Solvability of the reconstruction problem is, to some
extent, governed by the second eigenvalueθ of the chan-
nel M . More precisely, for the binarysymmetricchan-
nel, it was shown in [2] that the reconstruction problem
is solvable if and only ifbθ2 > 1. For all other channels,
it was also known—and easy to prove—thatbθ2 > 1 im-
plies solvability, butexactthresholds for non-solvability
were not known before this work. Here we show that the
boundbθ2 > 1—which we refer to as theKesten-Stigum
bound[13]—is tight provided thatM is close enough to
symmetric, i.e., letting

M =
1
2

[(
1 + θ 1− θ
1− θ 1 + θ

)
+ δ

(−1 1
−1 1

)]
, (1)

we show that the reconstruction problem forM on T is
not solvable ifbθ2 ≤ 1 and|δ| is sufficiently small.

As we explain next, our results have potential ap-
plications in noisy computation, mixing, phylogenetics,
and random satisfiability problems.

Noisy Communication/Computation. The recon-
struction problem is concerned essentially with a trade-
off between noise and duplication in a tree communica-
tion network. At the root of the tree network a state is
chosen. It is then propagated down the tree by applying
the channelM at each edge and duplicated at each node
towards all outgoing edges. The reconstruction problem
is solvable if the signal obtained down the tree has non-
trivial correlation with the state at the root.

It is natural to expect that the existence of correlation
is a monotone property of the branching ratio and of the
noise level. The basic question is: what is the trade-off
between the two? The thresholdbθ2 = 1 for the b-ary
tree yields a very elegant trade-off. This threshold was
previsouly known only for binary symmetric channels
and is extended here to roughly symmetric channels. In
particular, our results suggest that thebθ2 = 1 trade-
off in the symmetric case is in fact “robust” to a small
“systematic bias” in the channelM .



The reconstructon problem is also closely related
to noisy computation models where each gate indepen-
dently introduces error, see [27, 6]. The reconstruction
problem is not equivalent to noisy computation. How-
ever, the two problems are closely related. See [5, 21]
for details.

Phylogenetic Reconstruction. Phylogenetic recon-
struction is a major task of systematic biology [7]. It was
recently shown in [4] that for binary symmetric chan-
nels, also called CFN models in evolutionary biology,
the sampling efficiency of phylogenetic reconstruction
is determined by the reconstruction threshold. Thus,
if for all edges of the tree, it holds that2θ2 > 1 the
tree can be recovered efficiently fromO(log n) samples.
If 2θ2 < 1, then [23] implies thatnΩ(1) samples are
needed. In fact, the proof of the lower bound in [23] im-
plies the lower boundnΩ(1) whenever the reconstruction
problem is “exponentially” unsolvable.

Our results here implynΩ(1) lower bounds for phy-
logenetic reconstruction for asymmetric channels such
that2θ2 < 1 and|δ| sufficiently small. The details are
omitted from this extended abstract. It is natural to con-
jecture that this is tight and that if2θ2 > 1 then phy-
logenetic reconstruction may be achieved withO(log n)
sequences.

Mixing of Markov Chains. One of the main themes
at the intersection of statistical physics and theoretical
computer science in recent years has been the study of
connections between spatial and temporal mixing. It is
widely accepted that spatial mixing and temporal mixing
of dynamics go hand in hand though this was proven
only in restricted settings.

In particular, the spatial mixing condition is usually
stated in terms of uniqueness of Gibbs measures. How-
ever, as shown in [1] , this spatial condition is too strong.
In particular, it is shown in [1] that the spectral gap of
continuous-time Glauber dynamics for the Ising model
with no external field and no boundary conditions on
the b-ary tree isΩ(1) wheneverbθ2 < 1. This should
be compared with the uniqueness condition on the tree
given bybθ < 1. In [16] this result is extended to the log
Sobolev constant. In [16] it is also shown that for mea-
sures on trees, a super-linear decay of point-to-set cor-
relations implies anΩ(1) spectral gap for the Glauber
dynamics with free boundary conditions.

Thus our results not only give the exact threshold for
reconstructibility. They also yield an exact threshold for
mixing of Glauber dynamics on the tree for Ising models
with a small external field. The details are omitted from
this extended abstract.

Replica Symmetry Breaking/Random SAT. The
replica and cavity methods were invented in theoreti-
cal physics to solve Ising spin glass problems on the
complete graph—the so-called Sherrington-Kirkpatrick
model. Spin-glass problems are random instances of sat-
ifiability problems and the main interest in physics is in
the distribution of optimal (maximally satisfying) solu-
tions. Spin-glass problems in the complete graph corre-
spond to satisfiability problems where a (weighted) ran-
dom constraint exists between every pair of variables.

The replica and cavity methods, while not mathe-
matically rigorous, led to numerous predictions on the
spin glass and other models on dense graphs, a few of
which were proved many years later. These methods
were later applied to random satisfiability problems in
which every variable appears in expectation in a constant
number of randomly chosen clauses. The analysis of
these problems, called to dilute spin glasses in physics,
have led to the best known empirical algorithms for solv-
ing random satisfiability problems [20, 19].

A central concept in this theory is the notion of a
“glassy phase” of the spin glass measure. In the glassy
phase, the distribution on random optimal solutions
decomposes into an exponential number of “lumps”,
where the Hamming distance between every two lumps
is Ω(n). One of the standard techniques in physics
for determining the glassy phase is via “replica sym-
metry breaking”. Moreover, there are certain glassy
phases for which the replica symmetry breaking is rela-
tively simple—those which are said to have “one-step
replica symmetry breaking”; and others in which the
replica symmetry breaking is more complicated—those
with so-called “full replica symmetry breaking”. Rougly
speaking, in the “full replica” case each lump decom-
poses futher into lumps etc., while in the “one-step
replica” each lump is “connected” (with respect to the
usual Hamming metric).

In a recent paper [18] it is claimed that the parame-
ters for which a “glassy phase occurs” are exactly the
same as the parameters for which the reconstruction
problem is not solvable. More formally, for determin-
ing if the glassy phase occurs for random(b+1)-regular
graphs and Gibbs measures with some parameters, one
needs to check if the reconstruction problem for theb-
ary tree and associated parameters is solvable or not.

Furthermore, it is claimed in [18] that the recon-
struction problem determines the type of glassy phase
as follows. Mezard and Montanari predict that one-
step replica symmetry breaking occurs exactly when the
Kesten-Stigum bound is not equal to the reconstruction
bound; otherwise full replica symmetry breaking oc-
curs.

Thus our results proved here, in conjunction with the



theoretical physics predictions of [18], suggest the exis-
tence of two types of glassy phases for spin systems on
random graphs. It is an interesting challenge to state
these predictions in a compact mathematical formula-
tion to prove or disprove them.

1.1 Previous Results

The study of the reconstruction problem began in the
seventies [26, 10] where the problem was introduced in
terms of the “extremality of the free Gibbs measure” on
the tree. (We will not attempt to define this notion here.
See the papers [26, 10] for details.). In particular, in [10]
it is shown that the reconstruction problem for the bi-
nary symmetric channel on the binary tree is solvable
when2θ2 > 1. This in fact follows from a previous
work [13] which implies that for any Markov chainM ,
the reconstruction problem on theb-ary tree is solvable
if bθ2 > 1 whereθ is the second largest eigenvalue of
M in absolute value.

Proving non-reconstructibility turned out to be
harder. While coupling arguments easily yield non-
reconstruction, these arguments are typically not tight.
A natural way to try to prove non-reconstructibility is
to analyze recursions 1) in terms of random variables
each of whose values is the expectation of the chain at
a vertex, given the state at the leaves of the subtree be-
low it, 2) in terms of ratios of such probabilities, or 3) in
terms of log-likelihood ratios of such probabilities. Such
recursions were analyzed for a closely related model
in [3]. Both the reconstruction model and the model an-
alyzed in [3] deal with the correlation between leveln
and the root. However, while in the reconstruction prob-
lem, the two random variables are generated according
to the Markov model on the tree, in [3] the nodes at level
n are set to have an i.i.d. distribution and the root has the
conditional distribution thus induced.

In spite of this important difference, the two models
are closely related. In particular, in [3] it is shown that
for the binary tree, the correlation between leveln and
the root decays if and only if2θ2 ≤ 1. Building on the
techniques of [3] it was finally shown in [2] that the re-
construction problem for the binary symmetric channel
is solvable if and only if2θ2 > 1. This result was later
reproven in various ways [5, 11, 1, 17].

The elegance of the thresholdbθ2 = 1 raised the
hope that it is the threshold for reconstruction for gen-
eral channels. However, previous attempts to generalize
any of the proofs to other channels have failed. More-
over in [22] it was shown that for asymmetric binary
channels and for symmetric channels on large alphabets
the reconstruction problem is solvable in cases where
bθ2 < 1. In fact [22] contains an example of a channel

satisfyingθ = 0 for which the reconstruction problem is
solvable. On the other hand, in [24, 12] it is shown that
the thresholdbθ2 = 1 is the threshold for two variants
of the reconstruction problem: “census reconstruction”
and “robust reconstruction” (see [24, 12] for details).

The results above led some to believe that “recon-
struction” unlike its siblings “census reconstruction” and
“robust reconstruction” is an extremely sensitive prop-
erty and that the thresholdbθ2 = 1 is tight only for the
binary symmetric channel. This conceptual picture was
shaken by recent results in the theoretical physics liter-
ature [18] where using variational principles developed
in the context of “replica symmetry breaking” it is sug-
gested that the boundbθ2 = 1 is tight for symmetric
channels on3 and (maybe)4 letters.

In Theorem 1 (below) we give the first tight thresh-
old for the reconstruction problem for channels other
than binary symmetric channels. We show that for
asymmetric channels that are close to symmetric, the
Kesten-Stigum boundbθ2 = 1 is tight for reconstruc-
tion. Our proof builds on ideas from [3, 2, 5, 25] and is
extremely simple. In addition to giving a new result for
the asymmetric channel, our proof also provides a very
simple proof of the previously known result for the bi-
nary symmetricchannel. See also [11, 5, 17] for other
elegant proofs of the result in the symmetric case.

1.2 Definitions and Main Result

LetT = (V, E, ρ) be a treeT with nodesV , edgesE
and rootρ ∈ V . We direct all edges away from the root,
so that ife = (x, y) thenx is on the path connectingρ to
y. Letd(·, ·) denote the graph-metric distance onT , and
Ln = {v ∈ V : d(ρ, v) = n} be the nth level of the
tree. Forx ∈ V ande = (y, z) ∈ E, we denote|x| =
d(ρ, x), d(x, (y, z)) = max{d(x, y), d(x, z)}, and|e| =
d(ρ, e). Theb-ary tree is the infinite rooted tree where
each vertex has exactlyb children.

A Markov chain on the treeT is a probability mea-
sure defined on the state spaceCV , whereC is a finite
set. Assume first thatT is finite and, for each edgee of
T , let Me = (Me

i,j)i,j∈C be a stochastic matrix. In this
case the probability measure defined by(Me : e ∈ E)
onT is given by

µ`(σ) = 1{σ(ρ)=`}
∏

(x,y)∈E

M
(x,y)
σ(x),σ(y). (2)

In other words, the root stateσ(ρ) satisfiesσ(ρ) = `
and then each vertex iteratively chooses its state from
the one of its parent by an application of the Markov
transition rule given byMe (and all such applications
are independent). We can define the measureµ` on an



infinite tree as well, by Kolmogorov’s extension theo-
rem, but we will not need chains on infinite trees in this
paper (see [9] for basic properties of Markov chains on
trees).

Instead, for an infinite treeT , we let Tn =
(Vn, En, ρ), whereVn = {x ∈ V : d(x, ρ) ≤ n}, En =
{e ∈ E : d(e, ρ) ≤ n} and defineµn

` by (2) forTn. We
are particularly interested in the distribution of the states
σ(x) for x ∈ Ln, the set of leaves inTn. This distri-
bution, denoted byµn

k , is the projection ofµn
k on CLn

given by
µn

k (σ) =
∑

σ̄:σ|Ln=σ

µn
k (σ) (3)

Recall that for distributionsµ and ν on the same
spaceΩ the total variation distance betweenµ andν is

DV (µ, ν) =
1
2

∑

σ∈Ω

|µ(σ)− ν(σ)|. (4)

Definition 1 (Reconstructibility) The reconstruction
problem for the infinite treeT and (Me : e ∈ E) is
solvableif there existi, j ∈ C for which

lim
n→∞

DV (µn
i , µn

j ) > 0. (5)

WhenMe = M for all e, we say that the reconstruction
problem is solvable forT andM .

We will be mostly interested in binary channels, i.e.,
transition matrices on the state space{±}. In this case,
the definition above says that the reconstruction problem
is solvable if

lim
n→∞

DV (µn
+, µn

−) > 0. (6)

Our main result is the following:

Theorem 1 (Main Result) For all b ≥ 2, there exists
a δ0 > 0 such that for all|δ| ≤ δ0, the reconstruction
problem forM on theb-ary tree Tb is not solvable if
bθ2 ≤ 1.

See Theorem 2 below for a more general result.

1.3 Proof Idea

Our proof borrows ideas from several previous
works, notably [3, 2, 5, 25]. In this section, we give a
brief, high-level description of the proof.

First, consider the symmetric channel on the com-
plete binary tree. The fundamental quantity in the proof
is the so-calledmagnetization of the root[3] defined as

Xn = P[root is + | state at level n is σn]
−P[root is − | state at level n is σn].

Imagine thatσn is drawn according to the Markov chain
on the tree. Then,Xn—as a function ofσn—is a ran-
dom variable. Let̄xn be the second moment ofXn.
It is easy to show [5] (see Lemma 3 below) that non-
solvability is implied by

lim sup
n→+∞

x̄n = 0.

We prove the latter by induction. The proof has two
main steps.

1. Distributional Recursion. LetX ′
n−1 andX ′′

n−1 be
two independent copies ofXn−1. We show that

Xn
d=

θ(X ′
n−1 + X ′′

n−1)
1 + θ2X ′

n−1X
′′
n−1

, (7)

where
d= indicates equality in distribution. This fol-

lows from the Markov property. See Lemmas 4
and 5.

2. Moment Recursion.Expanding (7) and taking ex-
pectations, we show that

x̄n ≤ 2θ2x̄n−1, (8)

for all n. The result follows. See Theorem 3.

In the case of asymmetric channels, we use a
weighted version of the magnetization (see (9) below).
Correction terms now appear in recursions (7) and (8)
which somewhat complicate the analysis. The extra
terms can be controlled whenδ is small by continuity
type arguments (see Proposition 1). Moreover, we prove
our result for general trees (rather than completeb-ary
trees). This more general result is proved by decom-
posing (7) and (8) into simple tree operations (see Sec-
tion 3).

2 Preliminaries and General Result

For convenience, we sometimes write the channel

M =
(

1− ε+ ε+

1− ε− ε−

)
.

Note first that the stationary distributionπ = (π+, π−)
of M is given by

π+ =
1− ε−

1− θ
=

1
2
− δ

2(1− θ)
,

and

π− =
ε+

1− θ
=

1
2

+
δ

2(1− θ)
.



In particular, this expression implies that the stationary
distribution depends only on the ratioδ/(1 − θ). Or
put differently, each two of the parametersπ+, δ andθ
determine the third one uniquely. Note also that

θ = ε− − ε+, π− − π+ =
δ

1− θ
.

Without loss of generality, we assume throughout that
π− ≥ π+ or equivalently thatδ ≥ 0. (Note thatδ can be
made negative by inverting the role of+ and−.) Below,
we will use the notation

π−/+ ≡ π−π−1
+ , ∆ ≡ π−/+ − 1.

2.1 General Trees

In this section, we state our Theorem in a more gen-
eral setting. Namely, we consider general rooted trees
where different edges are equipped with different tran-
sition matrices—all having the same stationary distribu-
tion π = (π+, π−). In other words, we consider a gen-
eral infinite rooted treeT = (V,E) equipped with a
functionθ : E → [−1, 1] such that the edgee of the tree
is equipped with the matrixMe with θ(Me) = θ(e) and
the stationary distribution ofMe is (π+, π−).

In this general setting the notion of degree is ex-
tended to the notion ofbranching number. In [8],
Furstenberg introduced the Hausdorff dimension of a
tree. Later, Lyons [14, 15] showed that many probabilis-
tic properties of the tree are determined by this number
which he named the branching number. For our pur-
poses it is best to define the branching number via cut-
sets.

Definition 2 (Cutsets) A cutsetS for a treeT rooted
at ρ, is a finite set of vertices separatingρ from∞. In
other words, a finite setS is a cutset if every infinite
self avoiding path fromρ intersectsS. An antichain or
minimal cutsetis a cutset that does not have any proper
subset which is also a cutset.

Definition 3 (Branching Number) Consider a rooted
tree T = (V, E, ρ) equipped with an edge function
θ : E → [−1, 1]. For each vertexv ∈ V we define

η(x) =
∏

e∈path(ρ,x)

θ2(e),

wherepath(ρ, x) is the set of edges on the unique path
betweenρ andx in T . The branching numberbr(T , θ)
of (T , θ) is defined as

br(T , θ) = inf

{
λ > 0 : inf

cutsets S

∑

x∈S

η(x)λ−|x| = 0

}
.

In our main result we show

Theorem 2 (Reconstructibility on General Trees)
Let 0 ≤ θ0 < 1. Then there existsδ0 > 0
such that, for all distributionsπ = (π+, π−) with
max{|δ(π, θ0)|, |δ(π,−θ0)|} < δ0 and for all trees
(T , θ) with supe |θ(e)| ≤ θ0 and br(T , θ) ≤ 1, the
reconstruction problem is not solvable.

It is easy to see that the conditions of Theorem 2 hold
for Tb if θ(e) = θ for all e andbθ2 ≤ 1.

2.2 Magnetization

Let T be a finite tree rooted atx with edge function
θ. Letσ be the leaf states generated by the Markov chain
on (T, θ) with stationary distribution(π+, π−). We de-
note byP+

T ,E+
T (resp.P−T ,E−T , andPT ,ET ) the proba-

bility/expectation operators with respect to the measure
on the leaves ofT obtained by conditioning the root to
be + (resp.−, and stationary). With a slight abuse of
notation, we also writePT [+ |σ] for the probability that
the state at the the root ofT is + given stateσ at the
leaves. The main random variable we consider is the
weighted magnetization of the root

X = π−1
− [π−PT [+ |σ]− π+PT [− |σ]] . (9)

Note that the weights are chosen to guarantee

ET [X] = π−1
− [π−π+ − π+π−] = 0,

while the factorπ−1
− is such that|X| ≤ 1 with probabil-

ity 1.

Note that for any random variable depending only on
the leaf states,f = f(σ), we have

π+E+
T [f ] + π−E−T [f ] = ET [f ],

so that in particular

π+E+
T [X] + π−E−T [X] = ET [X] = 0,

and
π+E+

T [X2] + π−E−T [X2] = ET [X2].

We define the following analogues of the Edwards-
Anderson order parameter for spin glasses on trees
rooted atx

x̄ = ET [X2], x̄+ = E+
T [X2], x̄− = E−T [X2].

Now supposeT is an infinite tree rooted atρ with
edge functionθ. Let Tn = (Vn, En, xn), whereVn =
{u ∈ V : d(u, ρ) ≤ n}, En = {e ∈ E : d(e, ρ) ≤ n},
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Figure 1. A finite tree T .

andxn is identified withρ. It is not hard to see that non-
reconstructibility on(T, θ) is equivalent in our notation
to

lim sup
n→∞

x̄n = 0.

See Lemma 3 below. (Note that the total variation dis-
tance is monotone in the cutsets. Therefore the limit
goes to 0 with the levels if and only if there exists a se-
quence of cutsets for which it goes to 0.)

2.3 Expectations

Fix a stationary distributionπ = (π+, π−). Let T =
(V,E) be a finite tree rooted atx with edge function
{θ(f), f ∈ E} and weighted magnetization at the root
X. Let y be a child ofx andT ′ be the subtree ofT
rooted aty. Let Y be the weighted magnetization at the
root of T ′. See Figure 1. Denote byσ the leaf states of
T and letσ′ be the restriction ofσ to the leaves ofT ′.
Assume the channel one = (x, y) is given by

Me =
(

1− ε+ ε+

1− ε− ε−

)

=
1
2

[(
1 + θ 1− θ
1− θ 1 + θ

)
+ δ

(−1 1
−1 1

)]
.

We collect in the next lemmas a number of useful iden-
tities.

Lemma 1 (Radon-Nikodym Derivative) The follow-
ing hold:

dP+
T

dPT
= 1 + π−/+X,

dP−T
dPT

= 1−X,

E+
T [X] = π−/+ET [X2], E−T [X] = −ET [X2].

Proof: Note that

X = π−1
− [π−PT [+ |σ]− π+PT [− |σ]]

= π−1
− [PT [+ |σ]− π+]

= π−1
−/+

[
PT [+ |σ]

π+
− 1

]
,

so that

dP+
T

dPT
=
PT [+ |σ]

π+
= 1 + π−/+X.

Likewise,

dP−T
dPT

=
PT [− |σ]

π−
= 1−X.

Then, it follows that

E+
T [X] = ET

[
X

(
1 + π−/+X

)]
= π−/+ET [X2],

and similarly forE−T [X]. ¥

Lemma 2 (Child Magnetization) We have,

E+
T [Y ] = θE+

T ′ [Y ], E−T [Y ] = θE−T ′ [Y ].

Also,

E+
T [Y 2] = (1− θ)ET ′ [Y 2] + θE+

T ′ [Y
2],

and

E−T [Y 2] = (1− θ)ET ′ [Y 2] + θE−T ′ [Y
2].

Proof: By the Markov property, we have

E+
T [Y ] = (1− ε+)E+

T ′ [Y ] + ε+E−T ′ [Y ]

=
[
(1− ε+)− ε+ π+

π−

]
E+

T ′ [Y ]

=
[
(1− ε+)− (1− ε−)

]
E+

T ′ [Y ]

= θE+
T ′ [Y ],

and similarly forE−T [Y ].

Also,

E+
T [Y 2] = (1− ε+)E+

T ′ [Y
2] + ε+E−T ′ [Y

2]
= (1− ε+)E+

T ′ [Y
2]

+
ε+

π−
(ET ′ [Y 2]− π+E+

T ′ [Y
2])

= θE+
T ′ [Y

2] + (1− θ)ET ′ [Y 2],

where we have used the calculation above. A similar
expression holds forE−T [Y 2]. ¥



2.4 Information-Theoretic Lemma

The following easy lemma implies that, to establish
non-solvability, it suffices to show that the second mo-
ment of the magnetization goes to 0. See e.g. [5]. We
give a proof for completeness.

Lemma 3 Let T be a finite tree withX the weighted
magnetization at the root. Then, it holds that

DV (P+
T ,P−T ) ≤ 1

2π+

√
ET [X2].

Proof: Let L be the leaves ofT . Bayes’ rule and
Cauchy-Schwarz give immediately,

DV (P+
T ,P−T )

=
1
2

∑

σ∈{±}L

∣∣P+
T [σ]− P−T [σ]

∣∣

=
1
2

∑

σ∈{±}L

PT [σ]
∣∣∣∣
PT [+ |σ]

π+
− PT [− |σ]

π−

∣∣∣∣

=
1

2π+
ET |X|

≤ 1
2π+

√
ET [X2].

¥

3 Tree Operations

To derive moment recursions, the basic graph oper-
ation we perform is the followingAdd-Mergeoperation.
Fix a stationary distributionπ = (π+, π−). LetT ′ (resp.
T ′′) be a finite tree rooted aty (resp.z) with edge func-
tion θ′ (resp.θ′′), leaf stateσ′ (resp.σ′′), and weighted
magnetization at the rootY (resp.Z). Now add an edge
e = (ŷ, z) with edge valueθ(e) = θ to T ′′ to obtain a
new treeT̂ . Then mergêT with T ′ by identifyingy = ŷ
to obtain a new treeT . To avoid ambiguities, we denote
byx the root ofT andX the magnetization of the root of
T (where we identify the edge function onT with those
on T ′, T ′′, ande). We letσ = (σ′, σ′′) be the leaf state
of T . See Figure 2. Let alsôY be the magnetization of
the root onT̂ . Assume

Me =
(

1− ε+ ε+

1− ε− ε−

)
.

We first analyze the effect of adding an edge and merg-
ing subtrees on the magnetization variable.

Lemma 4 (Adding an Edge) With the notation above,
we have

Ŷ = θZ.

x, y, ŷ

T ′′

T ′

σ′

z

σ′′

e

Figure 2. Tree T after the Add-Mergeof T ′

and T ′′. The dashed subtree is T̂ .

Proof: Denote

Fγ = (1− εγ)
PT ′′ [σ′′ |+]
PT ′′ [σ′′]

+ εγ PT ′′ [σ′ | −]
PT ′′ [σ′′]

,

for γ = +,−. By Bayes’ rule, the Markov property, and
Lemma 1,

Ŷ = π+

∑
γ=+,−

γ
PT̂ [γ |σ′′]

πγ

= π+

∑
γ=+,−

γ
PT̂ [σ′′ | γ]
PT̂ [σ′′]

= π+

∑
γ=+,−

γ Fγ ,

where we have usedPT̂ [σ′′] = PT ′′ [σ′′]. We now sim-
plify the expression forFγ . We have

Fγ = (1− εγ)
(
1 + π−/+Z

)
+ εγ (1− Z)

= 1 + π−Z

[
1− εγ

π+
− εγ

π−

]
.

Forγ = +, we get

1− ε+

π+
− ε+

π−
= (1− θ)

[
1− ε+

1− ε−
− 1

]

= (1− θ)
[
ε− − ε+

1− ε−

]

=
θ

π+
.

A similar calculation for the− case gives forγ = +,−
Fγ = 1 + γθπ−π−1

γ Z.

Plugging above giveŝY = θZ. ¥



Lemma 5 (Merging Subtrees) With the notation
above, we have

X =
Y + Ŷ + ∆Y Ŷ

1 + π−/+Y Ŷ
.

The same expression holds for a generalT̂ .

Proof: Denote

Gγ = 1 + γπ−π−1
γ (Y + Ŷ ) + (π−π−1

γ )2Y Ŷ .

By Bayes’ rule, the Markov property, and Lemma 1, we
have

X = π+

∑
γ=+,−

γ
PT [γ |σ]

πγ

= π+

∑
γ=+,−

γ
PT [σ | γ]
PT [σ]

= π+

PT ′ [σ′]PT̂ [σ′′]
PT [σ]

∑
γ=+,−

γ
PT ′ [σ′ | γ]
PT ′ [σ′]

PT̂ [σ′′ | γ]
PT̂ [σ′′]

= π+

PT ′ [σ′]PT̂ [σ′′]
PT [σ]

∑
γ=+,−

γ Gγ .

Similarly, we have

PT [σ]
PT ′ [σ′]PT̂ [σ′′]

=
1

PT ′ [σ′]PT̂ [σ′′]

∑
γ=+,−

πγ PT [σ | γ]

=
∑

γ=+,−
πγ Gγ .

Note that
∑

γ=+,−
γ Gγ = π−1

+ (Y + Ŷ ) + π−2
+ (π− − π+)Y Ŷ ,

where we have used

π2
− − π2

+ = (π− − π+)(π− + π+) = π− − π+.

Similarly,
∑

γ=+,−
πγ Gγ = 1 + π−π−1

+ Y Ŷ .

The result follows.¥

4 Symmetric Channels On Regular Trees

As a warm-up, we start by analyzing the binary sym-
metric channel on the infiniteb-ary tree. Our proof is
arguably the simplest proof to date of this result. The
same proof structure will be used in the general case.
The following theorem is due to [2, 5, 11, 24, 12, 1, 16].

Theorem 3 (Symmetric Channel) Let M be a transi-
tion matrix with δ = 0 and bθ2 ≤ 1. Let T be the
infinite b-ary tree. Then, the reconstruction problem on
(T ,M) is not solvable.

Proof: Consider again the setup of Section 3. Note first
that, by Lemma 4, we havêY = θZ and therefore

ET̂ [Ŷ 2] = θ2ET ′′ [Z2]. (10)

In other words, adding an edge to the root of a tree and
re-rooting at the new vertex has the effect of multiplying
the second moment of the magnetization byθ2. Now
consider theAdd-Mergeoperation defined in Section 3.
Using the expansion

1
1 + r

= 1− r +
r2

1 + r
, (11)

the inequality|X| ≤ 1, and Lemma 5, we get

X = Y + Ŷ − Y Ŷ (Y + Ŷ ) + Y 2Ŷ 2X

≤ Y + Ŷ − Y Ŷ (Y + Ŷ ) + Y 2Ŷ 2. (12)

Note that from Lemmas 1 and 2, we have

E+
T [X] = x̄,

E+
T [Y ] = E+

T [Y 2] = ȳ, E+
T [Ŷ ] = E+

T [Ŷ 2] = θ2z̄,

where we have used thatȳ+ = ȳ− = ȳ andz̄+ = z̄− =
z̄ by symmetry. TakingE+

T on both sides of (12), we get

x̄ ≤ ȳ + θ2z̄ − θ2ȳz̄ − θ2ȳz̄ + θ2ȳz̄

= ȳ + θ2z̄ − θ2ȳz̄.

Now, let Tn = (Vn, En, xn) be as in Section 2.2.
Repeating theAdd-Mergeoperation(b − 1) times, we
finally have by induction

x̄n ≤ bθ2x̄n−1 − (b− 1)θ4x̄2
n−1. (13)

Indeed, note that for0 < a < b,

(aθ2x̄n−1 − (a− 1)θ4x̄2
n−1) + θ2x̄n−1

−θ2(aθ2x̄n−1 − (a− 1)θ4x̄2
n−1)x̄n−1

≤ (a + 1)θ2x̄n−1 − aθ4x̄2
n−1,

and the first step of the induction is given by (10). This
concludes the proof.¥

Remark 1 Note that equation (13) implies that if
bθ2 < 1 thenx̄n ≤ exp(−Ω(n)), while if bθ2 = 1 then
x̄n ≤ O(1/n).



5 Roughly Symmetric Channels on Gen-
eral Trees

We now tackle the general case. We start by analyz-
ing theAdd-Mergeoperation.

Proposition 1 (Basic Inequality) Consider the setup
of Section 3. Assume|θ| < 1. Then, there is aδ0(|θ|) >
0 depending only on|θ| such that

x̄ ≤ ȳ + θ2z̄,

wheneverδ (one) is less thanδ0(|θ|).
Proof: The proof is similar to that in the symmetric case.
By expansion (11), inequality|X| ≤ 1, and Lemma 5,
we have

X ≤ Y + Ŷ + ∆Y Ŷ (14)

−π−/+Y Ŷ (Y + Ŷ + ∆Y Ŷ ) + π2
−/+Y 2Ŷ 2.

Let ρ′ = (ȳ)−1ȳ+ andρ′′ = (z̄)−1z̄+. Then, by Lem-
mas 1 and 2, we have

E+
T [X] = π−/+x̄,

E+
T [Y ] = π−/+ȳ, E+

T [Y 2] = ȳρ′,

and

E+
T [Ŷ ] = π−/+θ2z̄,

E+
T [Ŷ 2] = θ2z̄[(1− θ) + θρ′′].

Takingπ−1
−/+E

+
T on both sides of (14), we get

x̄ ≤ ȳ + θ2z̄ + ∆π−/+θ2ȳz̄

−π−/+θ2ȳz̄ρ′ − π−/+θ2ȳz̄[(1− θ) + θρ′′]

−∆θ2ȳz̄ρ′[(1− θ) + θρ′′]
+π−/+θ2ȳz̄ρ′[(1− θ) + θρ′′]

≤ ȳ + θ2z̄ − π−/+θ2ȳz̄[A−∆B],

where

A = ρ′ + (1− ρ′)[(1− θ) + θρ′′],

and

B = 1− π−1
−/+ρ′[(1− θ) + θρ′′].

Note that[(1−θ)+θρ′′] ≥ 0 by Lemma 2. SoB ≤ 1 and
it suffices to haveA ≥ ∆. Note also thatA is multilinear
in (ρ′, ρ′′). Therefore, to minimizeA, we only need to
consider extreme cases in(ρ′, ρ′′). By

π+y+ + π−y− = y

it follows that0 ≤ ρ′ ≤ π−1
+ . The same holds forρ′′. At

ρ′ = 0, we have

A = 1− θ[1− ρ′′] ≥
{

1− θ, if θ ≥ 0,
1− π−/+|θ|, if θ ≤ 0,

where we have used

1− π−1
+ = −π−/+.

At ρ′ = π−1
+ , we have

A = π−1
+ + (1− π−1

+ )[1− θ[1− ρ′′]]
= 1 + θπ−/+[1− ρ′′]

≥
{

1− π2
−/+θ, if θ ≥ 0,

1− π−/+|θ|, if θ ≤ 0.

Sinceπ−/+ ≥ 1 by assumption, it follows that

A ≥ 1− π2
−/+|θ|.

At δ = 0, this bound is strictly positive and moreover
∆ = 0. Therefore, by continuity inδ of ∆ and the bound
above, the result follows.¥

Proposition 2 (Induction Step) Let T be a finite tree
rooted atx with edge functionθ. Letw1, . . . , wα be the
children ofx in T and denote byea the edge connect-
ing x to wa. Let θ0 = max{|θ(e1)|, . . . , |θ(eα)|} and
assume that on each edgeea, δ ≤ δ0(θ0), whereδ0 is
defined in Proposition 1. Then

x̄ ≤
α∑

a=1

θ(ea)2w̄a.

Proof: As noted in the proof of Theorem 3, adding an
edgee to the root of a tree and re-rooting at the new
vertex has the effect of multiplying the second moment
of the magnetization byθ2(e). The result follows by
applying Proposition 1(α− 1) times.¥

Proof of Theorem 2: It suffices to show that for allε >
0 there is anN large enough so that̄xn ≤ ε, ∀n ≥ N .
Fix ε > 0. By definition of the branching number, there
exists a cutsetS of T such that

∑

u∈S

η(u) ≤ ε.

Assume w.l.o.g. thatS is actually an antichain and let
N be such thatS is in TN . It is enough to show that

x̄n ≤
∑

u∈S

η(u), ∀ n ≥ N.

Fix n ≥ N . Applying Proposition 2 repeatedly from the
root ofTn down toS, it is clear that

x̄n ≤
∑

u∈S

η(u)ETn(u)[U2] ≤
∑

u∈S

η(u),



whereTn(u) is the subtree ofTn rooted atu andU is
the magnetization atu on Tn(u) (with |U | ≤ 1). This
concludes the proof.¥
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