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Abstract Solvability of the reconstruction problem is, to some

extent, governed by the second eigenvéloéthe chan-

We establish the exact threshold for the reconstruc- nel M. More precisely, for the binargymmetricchan-
tion problem for a binary asymmetric channel on the nNel, it was shown in [2] that the reconstruction problem
b-ary tree, provided that the asymmetry is Sufﬁcienﬂy is solvable if and Only b2 > 1. For all other channels,
small. This is the first exact reconstruction threshold it was also known—and easy to prove—thét > 1 im-
obtained in roughly a decade. We discuss the implica- Plies solvability, buexactthresholds for non-solvability
tions of our result for Glauber dynamics' phy|ogenetic were not known before this work. Here we show that the
reconstruction, noisy communication and the so-called boundbg* > 1—which we refer to as thkesten-Stigum
“replica symmetry breaking” in spin glasses and ran- bound[13]—is tight provided thafl/ is close enough to
dom satisfiability problems. symmetric, i.e., letting
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we show that the reconstruction problem faron T is

The so-calledeconstruction probleris a fundamen- ~ Not solvable ifb6* < 1 and|d] is sufficiently small.
tal problem concerning signal decay in noisy commu-  As we explain next, our results have potential ap-
nication with duplication, that is intimately related to plications in noisy computation, mixing, phylogenetics,
noisy computation [5, 21], mixing of Glauber dynam- and random satisfiability problems.
ics [1, 16] and phylogenetic reconstruction [4, 23]. In
the binary case, the problem is defined as follows. Let L )
T, be a completé-ary tree andV/ be a binary (asym- Noisy Communication/Computation. The recon-
metric) channel, i.e. a 2x2 stochastic matrix. Consider struction problem is concerned essentially with a trade-
the following Markov process that associates a state in ©f P€tween noise and duplication in a tree communica-
{+, -1 to each node of}; first pick a state at the root tion network. At the root of the tree network a state is
in {+, —} according to the stationary distribution bf; chosen. Itis then propagated down the tree by applying
then move away from the root and iteratively apply the the channel at each edge and duplicated at each node
channelM on each edge. The reconstruction problem towards all outgoing edges. The reconstruction problem
is the problem of determining the state of the roofigf is solvable if the signal obtained down the tree has non-
given the state of the Markov chain on levelof the trivial correlation with the state at the root.
tree, asn goes to+oco. Roughly speaking, the recon- Itis natural to expect that the existence of correlation
struction problem or(T}, M) is said to be “solvable” IS @ monotone property of the branching ratio and of the
if one can determine the root value significantly better noise level. The basic question is: what is the trade-off
than by guessing according to the stationary distribution between the two? The threshdié® = 1 for the b-ary
(a precise definition is given below). tree yields a very elegant trade-off. This threshold was

previsouly known only for binary symmetric channels
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The reconstructon problem is also closely related Replica Symmetry Breaking/Random SAT. The
to noisy computation models where each gate indepen-replica and cavity methods were invented in theoreti-
dently introduces error, see [27, 6]. The reconstruction cal physics to solve Ising spin glass problems on the
problem is not equivalent to noisy computation. How- complete graph—the so-called Sherrington-Kirkpatrick
ever, the two problems are closely related. See [5, 21] model. Spin-glass problems are random instances of sat-
for details. ifiability problems and the main interest in physics is in
the distribution of optimal (maximally satisfying) solu-
tions. Spin-glass problems in the complete graph corre-
Phylogenetic Reconstruction. Phylogenetic recon-  spond to satisfiability problems where a (weighted) ran-
struction is a major task of systematic biology [7]. ltwas dom constraint exists between every pair of variables.

recently shown in [4] that for binary symmetric chan-  The replica and cavity methods, while not mathe-
nels, also called CFN models in evolutionary biology, matically rigorous, led to numerous predictions on the
the sampling efficiency of phylogenetic reconstruction spin glass and other models on dense graphs, a few of
is determined by the reconstruction threshold. Thus, which were proved many years later. These methods
if for all edges of the tree, it holds that? > 1the  were later applied to random satisfiability problems in
tree can be recovered efficiently frai{log ) samples.  \hich every variable appears in expectation in a constant
If 26> < 1, then [23] implies than®(")) samples are  number of randomly chosen clauses. The analysis of
needed. In fact, the proof of the lower bound in [23] im- these problems, called to dilute spin glasses in physics,
plies the lower bound (") whenever the reconstruction  haye led to the best known empirical algorithms for solv-
problem is “exponentially” unsolvable. ing random satisfiability problems [20, 19].

Our results here imply(*) lower bounds for phy- A central concept in this theory is the notion of a
logenetic reconstruction for asymmetric channels suchug|assy phase” of the spin glass measure. In the glassy
that2¢> < 1 and|d| sufficiently small. The details are  phase, the distribution on random optimal solutions
omitted from this extended abstract. It is natural to con- decomposes into an exponential number of “lumps”,
jecture that this is tight and that #° > 1 then phy-  \here the Hamming distance between every two lumps
logenetic reconstruction may be achieved véttiog n) is Q(n). One of the standard techniques in physics
sequences. for determining the glassy phase is via “replica sym-

metry breaking”. Moreover, there are certain glassy
o ] ) phases for which the replica symmetry breaking is rela-
Mixing of Markov Chains. = One of the main themes {jyely simple—those which are said to have “one-step
at the mtersgctlon_of statistical physics and theoretical replica symmetry breaking”; and others in which the
computer science in recent years has been the study Ofeplica symmetry breaking is more complicated—those
connections between spatial and temporal mixing. It is \ith so-called “full replica symmetry breaking”. Rougly
widely accepted that spatial mixing and temporal mixing speaking, in the “full replica” case each lump decom-
of dynamics go hand in hand though this was proven poses futher into lumps etc., while in the “one-step
only in restricted settings. replica” each lump is “connected” (with respect to the

In particular, the spatial mixing condition is usually usual Hamming metric).
stated in terms of uniqueness of Gibbs measures. How- |, 3 recent paper [18] it is claimed that the parame-
ever, as shown in [1] , this spatial condition is too strong. iers for which a “glassy phase occurs” are exactly the
In particular, it is shown in [1] that the spectral gap of same as the parameters for which the reconstruction
continuous-time Glauber dynamics for the Ising model problem is not solvable. More formally, for determin-
with no external field and no boundary conditions on ing if the glassy phase occurs for randéba- 1)-regular
the b-ary tree is(1) whenever¢® < 1. This should  graphs and Gibbs measures with some parameters, one
be compared with the uniqueness condition on the trépeeqs to check if the reconstruction problem for the

given bybt < 1. In[16] this resultis extended tothe og 41y tree and associated parameters is solvable or not.
Sobolev constant. In [16] it is also shown that for mea- Furthermore, it is claimed in [18] that the recon-

sures on trees, a super-linear decay of point-to-set COlctruction problem determines the tvpe of alassy phase
relations implies arf2(1) spectral gap for the Glauber P yp glassy p

dvnamics with free boundary conditions as follows. Mezard and Montanari predict that one-
y y ’ ' step replica symmetry breaking occurs exactly when the
Thus our results not only give the exact threshold for i agten-Stigum bound is not equal to the reconstruction

reconstructibility. They also yield an exact threshold for ,5ng: otherwise full replica symmetry breaking oc-
mixing of Glauber dynamics on the tree for Ising models ;s

with a small external field. The details are omitted from

this extended abstract. Thus our results proved here, in conjunction with the



theoretical physics predictions of [18], suggest the exis- satisfyingd = 0 for which the reconstruction problem is
tence of two types of glassy phases for spin systems onsolvable. On the other hand, in [24, 12] it is shown that
random graphs. It is an interesting challenge to statethe thresholdb9? = 1 is the threshold for two variants
these predictions in a compact mathematical formula- of the reconstruction problem: “census reconstruction”

tion to prove or disprove them. and “robust reconstruction” (see [24, 12] for details).
The results above led some to believe that “recon-
1.1 Previous Results struction” unlike its siblings “census reconstruction” and

“robust reconstruction” is an extremely sensitive prop-
. . erty and that the threshold? = 1 is tight only for the
The study of the reconstruction problem began inthe pinary symmetric channel. This conceptual picture was
seventies [26, 10] where the problem was introduced in ghaken by recent results in the theoretical physics liter-
terms of the “extremality of the free Gibbs measure” on 4tre [18] where using variational principles developed
the tree. (We will not attempt to define this notion here. i, the context of “replica symmetry breaking” it is sug-

See the papers [26, 10] for details.). In particular, in [10] gested that the boun? — 1 is tight for symmetric
it is shown that the reconstruction problem for the bi- -hannels o and (maybe}t letters.

nary symmetric channel on the binary tree is solvable
when26? > 1. This in fact follows from a previous
work [13] which implies that for any Markov chaii/,

the reconstruction problem on theary tree is solvable

if ¥9%2 > 1 whered is the second largest eigenvalue of
M in absolute value.

Proving non-reconstructibility turned out to be

In Theorem 1 (below) we give the first tight thresh-
old for the reconstruction problem for channels other
than binary symmetric channels. We show that for
asymmetric channels that are close to symmetric, the
Kesten-Stigum boundd? = 1 is tight for reconstruc-
tion. Our proof builds on ideas from [3, 2, 5, 25] and is
) . - U extremely simple. In addition to giving a new result for
harder. While coupling arguments easily yield non- e asymmetric channel, our proof also provides a very
reconstruction, these arguments are typically not tight. simple proof of the previously known result for the bi-
A natural way to try to prove non-reconstructibility is nary symmetricchannel. See also [11, 5, 17] for other

to analyze recursions 1) in terms of random variables elegant proofs of the result in the symmetric case.
each of whose values is the expectation of the chain at

a vertex, given the state at the leaves of the subtree be- . .
low it, 2) in terms of ratios of such probabilities, or 3)in 1-2 Definitions and Main Result
terms of log-likelihood ratios of such probabilities. Such
recursions were analyzed for a closely related model  LetT = (V, E, p) be atred’ with nodesV/, edgest
in [3]. Both the reconstruction model and the model an- and rootp € V. We direct all edges away from the root,
alyzed in [3] deal with the correlation between level  so thatife = (x, %) thenz is on the path connectingto
and the root. However, while in the reconstruction prob- . Letd(-, -) denote the graph-metric distance Bpand
lem, the two random variables are generated accordingr,, = {v € V : d(p,v) = n} be the n'" level of the
to the Markov model on the tree, in [3] the nodes at level tree. Forz € V ande = (y, 2) € E, we denotdz| =
n are set to have an i.i.d. distribution and the root has the d(p, z), d(z, (y, z)) = max{d(z,y),d(z, )}, and|e| =
conditional distribution thus induced. d(p,e). Theb-ary tree is the infinite rooted tree where

In spite of this important difference, the two models each vertex has exacthychildren.
are closely related. In particular, in [3] it is shown that A Markov chain on the tre is a probability mea-
for the binary tree, the correlation between lenednd sure defined on the state spat¥é, whereC is a finite
the root decays if and only #6* < 1. Building on the ~ set. Assume first that is finite and, for each edgeof
techniques of [3] it was finally shown in [2] that the re- T, let M = (Mf,j)z‘,jec be a stochastic matrix. In this
construction problem for the binary symmetric channel case the probability measure defined(dy® : ¢ € E)
is solvable if and only i26? > 1. This result was later  on T is given by
reproven in various ways [5, 11, 1, 17].

The elegance of the threshodd? = 1 raised the 1e(0) = Lio(p)=ey H Mf(”j;)a(y). @)
hope that it is the threshold for reconstruction for gen- (z,y)EE ’
eral channels. However, previous attempts to generalize
any of the proofs to other channels have failed. More- In other words, the root state(p) satisfieso(p) = ¢
over in [22] it was shown that for asymmetric binary and then each vertex iteratively chooses its state from
channels and for symmetric channels on large alphabetghe one of its parent by an application of the Markov
the reconstruction problem is solvable in cases wheretransition rule given by\/¢ (and all such applications
b9? < 1. In fact [22] contains an example of a channel are independent). We can define the meagiiren an



infinite tree as well, by Kolmogorov’s extension theo- Imagine thatr, is drawn according to the Markov chain
rem, but we will not need chains on infinite trees in this on the tree. ThenX,,—as a function ofr,,—is a ran-
paper (see [9] for basic properties of Markov chains on dom variable. Letz, be the second moment of,,.

trees). It is easy to show [5] (see Lemma 3 below) that non-
Instead, for an infinite treel’, we let T, = solvability is implied by
(Va, En, p), whereV, = {z € V : d(z,p) < n}, E, = _ -
{e € E : d(e,p) < n} and defingz} by (2) forT,,. We 1;2_5&1? Tn = 0.
are particularly interested in the distribution of the states
o(z) for z € L,, the set of leaves iff;,. This distri- We prove the latter by induction. The proof has two
bution, denoted by.?, is the projection ofi} on CL» main steps.
given by
© (o) = Z (@) A3) 1. Distributional Recursion. Let X/ _, andX,/_, be

two independent copies df,,_;. We show that

6:0|Lp=0

Recall that for distributiong, and v on the same O(X,,_1+X/_1)

1B

space? the total variation distance betwegrandv is Xn 1+ 62X _ X" " @)
1
Dy (u,v) = 5 Z lu(o) —v(o)]. ) whereZ indicates equality in distribution. This fol-
och lows from the Markov property. See Lemmas 4
Definition 1 (Reconstructibility) The reconstruction and 5.

problem for the infinite tre€” and (M€ : e € E) is

solvableif there existi, j € C for which 2. Moment Recursion. Expanding (7) and taking ex-

pectations, we show that

lim Dy (" 4}) > 0. (5) )

neo ZTn S 20 ‘(Enfla (8)
WhenM ¢ = M for all e, we say that the reconstruction
We will be mostly interested in binary channels, i.e., In the case of asymmetric channels, we use a

transition matrices on the state spgeg}. In this case, ~ Weighted version of the magnetization (see (9) below).
the definition above says that the reconstruction problemCorrection terms now appear in recursions (7) and (8)

is solvable if which somewhat complicate the analysis. The extra
terms can be controlled whehis small by continuity

Jim Dy (p, p) > 0. (6)  type arguments (see Proposition 1). Moreover, we prove
our result for general trees (rather than completey

Our main result is the following: trees). This more general result is proved by decom-

) . posing (7) and (8) into simple tree operations (see Sec-
Theorem 1 (Main Result) For all b > 2, there exists tion 3).

adp > 0 such that for all|§| < d¢, the reconstruction

problem for M on theb-ary tree T} is not solvable if o
bo% < 1. 2 Preliminaries and General Result

See Theorem 2 below for a more general result. For convenience, we sometimes write the channel
1.3 Proof Idea < 1—et et )
M = - .
1—¢ 15
Our proof borrows ideas from several previous ] ] o
works, notably [3, 2, 5, 25]. In this section, we give a Note first that the stationary distribution= (74, 7_)

brief, high-level description of the proof. of M is given by
First, consider the symmetric channel on the com- 1—e— 1 S
plete binary tree. The fundamental quantity in the proof =79 T3 m7
is the so-callednagnetization of the rod8] defined as
X, = Plrootis + |state at level nis oy, and et 1 5

—P[root is — |state at level n is g,,]. 1—-60 2 201-6)



In particular, this expression implies that the stationary In our main result we show
distribution depends only on the ratiy(1 — 0). Or

put differently, each two of the parameters, § andd Theorem 2 (Reconstructibility on General Trees)
determine the third one uniquely. Note also that Let 0 < 6p < 1. Then there exist§, > 0
such that, for all distributionst = (74, 7_) with
f—c — et Ty = L max{|d(m, bp)|,|0(m,—bp)|} < do and for all trees
1-46 (T,0) with sup, |0(e)] < 6y and br(7,60) < 1, the

Without loss of generality, we assume throughout that 'éconstruction problem is not solvable.
m_ > 7w or equivalently that > 0. (Note that) can be
made negative by inverting the role-fand—.) Below,
we will use the notation

It is easy to see that the conditions of Theorem 2 hold
for Ty if 6(e) = 6 for all e andbé? < 1.

Ty =m_T, A=rm_, —1 2.2 Magnetization

2.1 General Trees Let T be a finite tree rooted at with edge function
6. Leto be the leaf states generated by the Markov chain

In this section, we state our Theorem in a more gen- on (7, #) with stationary distributior{r_., 7_). We de-
eral setting. Namely, we consider general rooted treesnote byP., EL. (resp.Pr, EZ., andPr, Er) the proba-
where different edges are equipped with different tran- bility/expectation operators with respect to the measure
sition matrices—all having the same stationary distribu- on the leaves of" obtained by conditioning the root to
tion m = (7w, 7_). In other words, we consider a gen- be + (resp. —, and stationary). With a slight abuse of
eral infinite rooted tree = (V, E) equipped with a  notation, we also writ@r[+ | o] for the probability that
functiond : E — [—1, 1] such that the edgeof the tree  the state at the the root @f is + given states at the
is equipped with the matriX/¢ with (M) = 6(e) and leaves. The main random variable we consider is the
the stationary distribution a¥/¢ is (w1, 7_). weighted magnetization of the root

In this general setting the notion of degree is ex-
tended to the notion obranching number In [8],
Furstenberg introduced the Hausdorff dimension of a
tree. Later, Lyons [14, 15] showed that many probabilis-
tic properties of the tree are determined by this number
which he named the branching number. For our pur-

poses it is best to define the branching number via cut-yhije the factorr— is such thatX| < 1 with probabil-
sets. : - N
ity 1.

Definition 2 (Cutsets) A cutsetS for a tree 7 rooted Note that for any random variable depending only on
at p, is a finite set of vertices separatipgifomco. In  the leaf statesf = (o), we have

other words, a finite set' is a cutset if every infinite + -

self avoiding path fromp intersectsS. Anantichain or T B3 [f] + m_EL[f] = Er[f],

minimal cutseis a cutset that does not have any proper
subset which is also a cutset.

X =7 [m_Pr[+|o] - mPr[-|o]].  (9)
Note that the weights are chosen to guarantee

Er[X]=n"t[r_my —mim_] =0,

so that in particular

EL[X _EZ[X1=E,[X]=0
Definition 3 (Branching Number) Consider a rooted By [X] + 7 Ep[X] = Er[X] =0,

tree T = (V,E,p) equipped with an edge function znq

0: E — [—1,1]. For each vertex € V we define m BA[X2] + m_E5[X2] = E7[X?).
n(z) = H 62(e), We define the following analogues of the Edwards-
cCpath(p,x) Anderson order parameter for spin glasses on trees
rooted atr
wherepath(p, z) is the set of edges on the unique path
betweerp andz in 7. The branching numbear(7, 0) T=Er[X?, z,=Ef[X?], z_=E;[X?.

of (7, 0) is defined as

edge functiord. LetT,, = (V,,, E,, z,), whereV,, =

br(7,0) = inf {)\ >0: inf Y p@)r =0
{u eV :d(u,p) <n}, E,={ecE:dep) <n},

cutsets S

} Now supposeZ is an infinite tree rooted at with
€S



z Proof: Note that

y X = a2t Prl+|o] - mPr[—|o]]
7= [Prlt o] - i)
- 1 [PT['HU] B 1} 7

,/Jr 7T+
so that
T "
dPr Pr[+ o]
= = 1 — X.
dPr Ty T/t
Likewise,
Figure 1. A finite tree 7. dPy _ Pp[—|o] _ e
dPT m_
andz,, is identified withp. It is not hard to see that non- .
S . . : : Then, it follows that
reconstructibility on(T', #) is equivalent in our notation
to Ef[X]=Er [X (1 +7_,4 X)] = n_/  Ep[X?],

limsup z, = 0.

n—oo

and similarly forE.[X]. B

See Lemma 3 below. (Note that the total variation dis- Lemma 2 (Child Magnetization) We have,
tance is monotone in the cutsets. Therefore the limit
goes to 0 with the levels if and only if there exists ase-  EL[Y] = 0EL [Y], E7[Y] = 60E; [Y].

guence of cutsets for which it goes to 0.)
Also,

2.3 Expectations EXY? = (1 - 0)Er[Y?] + 0ES, [V,

Fix a stationary distributionr = (7o, 7_). LetT = and
(V, E) be a finite tree rooted at with edge function
{0(f), f € E} and weighted magnetization at the root
X. Lety be a child ofzr andT’ be the subtree of’
rooted aty. LetY be the weighted magnetization at the

E-[Y?] = (1 — O)Eq [Y?] + 0EL [Y?].

Proof: By the Markov property, we have

root of 7. See Figure 1. Denote hythe leaf states of EX Yl = (1—eNELY +R= Y
T and leto’ be the restriction of to the leaves of”. rlY] (1= eM)Epn Y]+ Ep[Y]
Assume the channel an= (z, y) is given by = |q—et)—etE E4 [Y]
m_—
Me = (}—ﬁ 6*) = [(1-e") = (-] ELY]
— & € _ HE;, [YL
N A AN Y Sl
o2|\1—-0 146 -1 1)|° and similarly forE.[Y].
We collect in the next lemmas a number of useful iden- Also,
tities.
EF[Y?] = (1-e")Ef[Y?]+ e ER[Y?
Lemma 1 (Radon-Nikodym Derivative) The follow- = (1-eMEF V2]
ing hold: ot , ,
+—(Ep Y] — 7 EL [Y3)
W e x, Py "
dPT o T/ dPT o ' = QE;’ [Y2] + (1 - G)ET' [YQ]a

where we have used the calculation above. A similar
EL[X]=7_, Er[X?],  E;[X]=-Er[X?]. expression holds fdE [Y?]. B



2.4 Information-Theoretic Lemma

The following easy lemma implies that, to establish
non-solvability, it suffices to show that the second mo-
ment of the magnetization goes to 0. See e.g. [5]. We
give a proof for completeness.

Lemma 3 Let T' be a finite tree withX the weighted
magnetization at the root. Then, it holds that

_ 1

Proof: Let L be the leaves of. Bayes’ rule and
Cauchy-Schwarz give immediately,

O_/

DV(P;,P;) Figure 2. Tree T after the Add-Mergeof 7’
1 N B and T"”. The dashed subtree is T.
=5 > |PHlol - P[]
oce{+}L
_1 Z Py ]‘PT[HU] _ Pr[-]d] Proof: Denote
2 ce{£}L T+ T PT” [0'” | +} PT” [O’l ‘ *]
1 f7 == (1 — 67) ]P) . [0_//] E,Y I[D ”[0_/,] )
— TET‘X| T T
T+ forv = +, —. By Bayes' rule, the Markov property, and
< b Er[X?] Lemmal,
o 7127
~ 7 o
u Y = m Z ’Y
y=+,—
i Pzlo" 7]
3 Tree Operations = T Y 7 I{;A
Y=+, — 7l
_ To derive moment recursipns, the basic grap_h oper- = Z v Fy,
ation we perform is the followiné\dd-Mergeoperation. N

Fix a stationary distribution = (7, 7_). LetT” (resp. . . )
T") be a finite tree rooted at(resp.z) with edge func- ~ Where we have uselz[0”] = P [0"]. We now sim-
tion ¢ (resp.0”), leaf stater’ (resp.o”’), and weighted  Plify the expression forF,. We have
magnetization at the rodf (resp.Z). Now add an edge - v

= (9, ) with edge valua‘)( ) = 6 toT” to obtain a Py = (A=)t Z) +7(1-2)

new treel’. Then mergd’ with 7" by identifyingy = § = 14712 {1 —e&v 67} )
to obtain a new treé’. To avoid ambiguities, we denote T+ m—
by x the root qu ar_1dX the magnetiz_ation of_the root of Fory = +, we get
T (where we identify the edge function dhwith those
onT’, T, ande). We leto = (o', 0”) be the leaf state 1—et et _ (1-0) [1 —et 1}
of T. See Figure 2. Let alsb be the magnetization of Ty m_ —e~
the root onl". Assume e~ — et
=
e — 1—et et l—e~
S \1l-e e )7 _ b
We first analyze the effect of adding an edge and merg- i
ing subtrees on the magnetization variable. A similar calculation for the- case gives fory = +, —
Lemma 4 (Adding an Edge) With the notation above, Fy=1+rbr_n"Z.

we have ~
Y =02 Plugging above give¥ = 6Z. B



Lemma 5 (Merging Subtrees) With  the  notation

above, we have

Y +Y +AYY

X = —.

The same expression holds for a gendAFaI

Proof: Denote

Gy =1+ym_m HY +Y) + (r_n;')?YY.

By Bayes' rule, the Markov property, and Lemma 1, we
have

P
X = m Z T’Y|U
T=+,—
PT/[ ]P [0”] P[0’ | 7] Pzlo” [1]
:W'*‘I[DT Z,Y];[L}I:;A”
o] & T Prlo] Bilo]
P[0’ Pz [0"]
= My —— ’yg .
+ PT[O'] 7;7 Y
Similarly, we have
]P)T[O']
IP)T/ [J/}PT [O’”]
TP
]P)T’ // 7;777 T |’y
= Z Ty Gy
Y=+,—

Note that

Yo AG =a (Y HY) +a (e - )YY
Y=+,—

where we have used

72—l = (n_ — ) (o ) =T — Ty
Similarly,
Z Ty Gy =1+ 7r_7rJ:1Y§A/.
y=+,—

The result followsH

4 Symmetric Channels On Regular Trees

As a warm-up, we start by analyzing the binary sym-
metric channel on the infinite-ary tree. Our proof is

Theorem 3 (Symmetric Channel) Let M be a transi-
tion matrix withd = 0 andb9?> < 1. Let7 be the
infinite b-ary tree. Then, the reconstruction problem on
(T, M) is not solvable.

Proof: Consider again the setup of Section 3. Note first
that, by Lemma 4, we havEé = 67 and therefore
E;[Y?] = 6°Ern[Z7). (10)
In other words, adding an edge to the root of a tree and
re-rooting at the new vertex has the effect of multiplying
the second moment of the magnetization3y Now

consider theAdd-Mergeoperation defined in Section 3.
Using the expansion

2

— =1- 11
1+7 T 147’ (11)
the inequality| X | < 1, and Lemma 5, we get
X = Y+Y YV (Y +Y)+Y¥2X
< Y4Y-YY(Y+Y)+VV2 (12

Note that from Lemmas 1 and 2, we have

E;[X] =1,
Ef[Y] =Ef[Y?] =g, Ef[Y]=Ef[V? =02,

where we have used that = y_ = gandz, = z_
Z by symmetry. Takin@‘,}r on both sides of (12), we get

T < §+0%z2— 0%z — 0*yz + 0%z
= g+6%* —6%yz
Now, letT,, = (V,, E,,z,) be as in Section 2.2.

Repeating theAdd-Mergeoperation(b — 1) times, we
finally have by induction

Tp < 0O%Z, 1 — (b—1)0%72_,. (13)

Indeed, note that fdb < a < b,

(a0?%,_1 — (a —1)0*7%_)) + 0*7,_,
—0%(ab*z,_1 — (a — 1)0*Z%_ )T,

<(a+1)0%*z,_, —ab*z?_|,

and the first step of the induction is given by (10). This
concludes the proo

arguably the simplest proof to date of this result. The Remark 1 Note that equation (13) |m|gl|es that if
same proof structure will be used in the general case.bd” < 1thenz,, < exp(—Q(n)), while if 59> = 1 then

The following theorem is due to [2, 5, 11, 24, 12, 1, 16].

Zn < O(1/n).



5 Roughly Symmetric Channels on Gen-
eral Trees

We now tackle the general case. We start by analyz-
ing theAdd-Mergeoperation.

Proposition 1 (Basic Inequality) Consider the setup
of Section 3. Assum@| < 1. Then, there is @,(|6|) >
0 depending only oiff| such that

T <7+ 6%z,
whenevep (one) is less thardy(|6]).

Proof: The proof is similar to that in the symmetric case.

By expansion (11), inequalityX| < 1, and Lemma 5,

we have

X < Y4+Y+AYY (14)
—m_ YV (Y +Y +AYY) + 72 VY2

Letp’ = () ‘g4 andp” = (2)~1z,. Then, by Lem-
mas 1 and 2, we have

E}» [X] = 7T,/+.f,

EfY] =75, EF[Y?]=gp,

and
E4[Y] =7, 6%,
E£[Y?] = 6%2](1 — 0) + 6p").
Takingwj}Jr]EJTr on both sides of (14), we get
T < §+0*z+ An_, 0%z
—m_ ) 0%5zp" — 7_/ 0°z[(1 — 0) + 0p"]
—A6*yzp'[(1 - 6) + 6p"]
+m_ 4075z [(1 — 6) + 6p"]
< §g+0Pz—7_, 0%zl A - AB],
where
A=p'+1=p)[1-0)+06p"],
and

B=1 —77:}+p'[(1 —0)+0p"].

Note that(1—-6)+60p"] > 0 by Lemma 2. S8 < 1 and

it suffices to haved > A. Note also tha# is multilinear

in (p/, p""). Therefore, to minimized, we only need to
consider extreme cases(ipl, p”). By

Tyt Ty =y

it follows that0 < p’ < 7;'. The same holds fgr’. At
p' =0, we have

1-90, if 0 >0,
L—7_,. 6], it6<o,

A=1-0[1-p"] >{
where we have used
1- Trfrl =-—T_/y.
At p' =", we have
A

= 70+ (1 =aph)[L—-6[1 - p"]]
L+ 0m_yy 1= p"]

{ 2.6, >0,

1—m_,4]0], if 6 <0.
Sincer_,, > 1 by assumption, it follows that

1—m
>

A>1-7]6].

At § = 0, this bound is strictly positive and moreover
A = 0. Therefore, by continuity in of A and the bound
above, the result followdll

Proposition 2 (Induction Step) Let T' be a finite tree
rooted atz with edge functio. Letw.,...,w, be the
children ofx in T and denote by, the edge connect-
ing = to w,. Letfy = max{|f(e1)|,...,|0(es)|} and
assume that on each edgg, § < dp(6p), wheredy is
defined in Proposition 1. Then

z< Z 0(eq)1w,.
a=1

Proof: As noted in the proof of Theorem 3, adding an
edgee to the root of a tree and re-rooting at the new
vertex has the effect of multiplying the second moment
of the magnetization by?(e). The result follows by
applying Proposition 1o — 1) times.H

Proof of Theorem 2 It suffices to show that for al >

0 there is anV large enough so that, < e, Vn > N.
Fix ¢ > 0. By definition of the branching number, there
exists a cutse$ of 7 such that

> ) <e.
ueSs

Assume w.l.0.g. thaf is actually an antichain and let
N be such thab'is in Ty . It is enough to show that

ZTp < Z 7/(“)7

uesS

¥Yn>N.

Fix n > N. Applying Proposition 2 repeatedly from the
root of T;, down to S, it is clear that

T < Y n(W)Er,w)[U% <Y n(u),

uesS uesS



whereT), (u) is the subtree of, rooted atu andU is
the magnetization at on 7, (u) (with |U| < 1). This
concludes the prool
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