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Abstract

Pair encodings and predicate encodings, recently introduced by Attrapadung (Eurocrypt 2014)
and Wee (TCC 2014) respectively, greatly simplify the process of designing and analyzing pred-
icate and attribute-based encryption schemes. However, they are still somewhat limited in that
they are restricted to composite order groups, and the information theoretic properties are not
sufficient to argue about many of the schemes. Here we focus on pair encodings, as the more
general of the two. We first study the structure of these objects, then propose a new relaxed but
still information theoretic security property. Next we show a generic construction for predicate
encryption in prime order groups from our new property; it results in either semi-adaptive or
full security depending on the encoding, and gives security under SXDH or DLIN. Finally, we
demonstrate the range of our new property by using it to design the first semi-adaptively secure
CP-ABE scheme with constant size ciphertexts.
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1 Introduction

In traditional public key encryption systems, a message is encrypted under a particular public key,
with the guarantee that it can only be decrypted by the party holding the corresponding secret key.
Attribute based encryption (ABE), introduced in [SW05], instead allows us to use attributes to de-
termine who has the power to decrypt. In these systems, there is a single entity which publishes
system parameters and distributes the appropriate decryption keys to various parties. In key-policy
ABE (KP-ABE) [GPSW06], a message is encrypted under a set of attributes describing that mes-
sage, and each decryption key is associated with a policy describing which ciphertexts it can de-
crypt. Conversely, in ciphertext-policy ABE (CP-ABE) [BSW07] each user is given a decryption
key that depends on his attributes, and ciphertexts are encrypted with policies describing which
users can decrypt them. ABE has been proposed for a variety of applications, from social net-
work privacy to pay-per-view broadcasting to health record access-control to cloud security (see e.g.
[PTMW06, TBEM08, BBS+09, APG+11, SRGS12]).

Recently there has been a lot of progress in terms of both security and functionality. Using
the dual system framework introduced by Waters [Wat09], several works [LOS+10, LW12] have
designed ABE schemes that satisfy the natural security definition, avoiding the restrictions of selective
security1. Other works consider extra features like short ciphertexts whose length is independent of
the size of the associated attribute set and policy [ALdP11, YAHK14], or “unbounded” schemes that
place no bounds on the space of possible attributes or the number of attributes that can be tied to a
ciphertext or key [LW11, OT12, RW13]. Predicate encryption [BSW11] generalizes the concept to
require only that the ciphertext and key are associated with values x, y, and decryption succeeds iff
some predicate P (x, y) holds. Note that in this work we assume that x and y are revealed by the
ciphertext and key respectively; we do not consider attribute-hiding [BW07, KSW08] or predicate-
hiding [SSW09, BRS13].

As these schemes have progressed, however, constructions and proofs have become increasingly
complex. Many of the proposed schemes require composite order pairings, in which the order of the
pairing groups is a product of two or more primes; since these schemes require that factoring the
group order is hard, this in practice means that these groups must be at least an order of magnitude
larger than prime order groups of comparable security level, and according to [Gui13] composite
order pairing computations are at least 2 orders of magnitude slower. This has prompted efforts to
design schemes in prime order groups [OT10, OT12, Fre10, Lew12, HHH+14], but many of these
schemes still have fairly high cost as compared to their selectively secure counterparts, and designing
and analyzing security of such schemes can be quite challenging.

Two very recent works, by Wee [Wee14] and Attrapadung [Att14] make significant progress in
simplifying the design and analysis of new constructions. These works introduce simple new objects,
called predicate encodings and pair encodings respectively in the two works, which can be used to
construct ABE and other predicate encryption schemes. Essentially, they consider one decryption
key and one ciphertext, and focus on what happens in the exponent space. Both formalisms introduce
simple information theoretic properties on these objects and show that if these properties are met,
they can be extended into fully secure ABE/predicate encryption schemes. The major advantage of
this approach is that instead of having to design and prove security of a complex scheme, now all one
has to do is design and analyze an appropriate encoding, which is a much simpler task. This vastly
simplifies the design of new schemes, and in fact, both works resulted in new constructions and more
efficient variants of previously known schemes.

1The original construction of Sahai and Waters [SW05], and much of the following work, considers what is referred to
as the selective security model, in which the adversary must commit to the attributes/policy used in the challenge ciphertext
before requesting any decryption keys.
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Currently these works have two primary limitations. First, they both result in ABE schemes that
rely on composite order pairings, which as explained above is very undesirable from an efficiency
standpoint. The second drawback is that the strict information theoretic properties they require from
the underlying objects mean that there are many constructions that they cannot capture in their model.
Attrapadung [Att14] addresses this by introducing a computational security notion, which allows
several more interesting constructions to be captured in the framework. However, this security notion
is much harder to analyze - it involves not only the encodings in the exponent space, but also elements
in the composite order group in which it is embedded, and the proofs that the encodings satisfy this
notion are not only computational (rather than information theoretic) but are based on much stronger
assumptions.

Still these encodings seem extremely promising as a way to simplify the design and analysis of
predicate encryption schemes. In our work we further study these objects, with the aim of under-
standing them better and beginning to address these limitations. In particular we focus on the pair
encodings from [Att14], as they seem to be able to capture more constructions.

Our Contributions. First, we study the structure of pair encodings. Attrapadung’s pair encodings
have only limited structural requirements. This means that he is able to capture many existing con-
structions in his framework, although as mentioned above, in many cases the information theoretic
security property he defines does not hold for these schemes. A better understanding of the natural
structure of these schemes may help to design new schemes, by providing better intuition for what is
important and simply by limiting the search space.

Here we consider two structural properties. First we assume a simple property that describes
where the public parameters appear in the key and ciphertext. This seems to reflect some basic
structure, as all the pair encodings in [Att14] have this property. Looking ahead, this property allows
us to instantiate these schemes efficiently in prime order groups. We then show that this implies a
second, seemingly unrelated property involving the use of random variables in the key and ciphertexts.
We can use this second property to simplify our security definitions and analyses.

Using this understanding, we propose a relaxation of the information theoretic security property
proposed in [Att14]. This property essentially allows us to consider the scheme at smaller granularity
than an an entire key or ciphertext. It is still information theoretic, and it does not depend on the group
in which it will be used; this means it is still easy to analyze whether a given encoding satisfies this
property. We consider two flavors of this property and show that the stronger of the two is implied by
the security properties in [Att14]. However, we will see that our new property is indeed a relaxation
in that it allows us to consider encodings that did not satisfy the original property. Thus, we make
a first step towards addressing the limitations of the strict information theoretic property of previous
work.

Next we present a generic construction of predicate encryption from pair encodings. Here we
make use of the dual system groups introduced by [CW13]; although we must modify their properties
slightly, we show that their instantiations are still sufficient2. We show that pair encodings which
satisfy the stronger flavor of our new property result in fully secure predicate encryption schemes,
while pair encodings which satisfy the weaker flavor result in schemes which can still be shown to be
semi-adaptively secure3. While full security is preferable, we will see that this second result allows
us to design schemes in areas in which even selectively secure constructions are hard to construct.

This approach has two advantages. First, this means that we can transform any pair encoding
2Since we use these groups in a black box way, any improvement in the underlying instantiation will translate directly

into an improvement in our generic construction. In particular we believe that the simplified new dual system groups
proposed in [CGW15] satisfy our modified definitions as well, so they could be used to simplify our construction.

3Unlike selective security, in semi-adaptive security an adversary is not forced to commit to the challenge before seeing
the public parameters.
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scheme which satisfies the information theoretic security properties in [Att14] into a fully secure
ABE or predicate encryption scheme in a prime order group based only on the SXDH or DLIN
assumption. This results in schemes which are of practical efficiency, with strong security guarantees
based on mild assumptions. Moreover, the advantage of this approach is that while proof of our
generic construction is fairly involved, analyzing a given pair encoding scheme to verify the necessary
property is still quite straightforward.

Finally, to demonstrate how our relaxed security property allows us to consider additional func-
tionalities, we present a new pair encoding for CP-ABE with constant-size ciphertext. When used
in our generic construction, this results in a CP-ABE with constant size-ciphertext which is semi-
adaptively secure and can be instantiated under either SXDH or DLIN. To the best of our knowledge,
prior to our work there were no known schemes for constant-size CP-ABE, even considering only
selectively security and allowing for very strong assumptions.4 This shows then that our new tech-
niques allow us to consider a strictly greater range of schemes; we hope that they will continue to
prove useful and lead to other interesting constructions.

Other related work. As mentioned above, the original works of [Wee14] and [Att14] gave con-
structions only in composite order groups. In a recent work, however, Chen, Gay, and Wee [CGW15]
proposed a transformation to go from pair encodings to prime order predicate encryption schemes, re-
quiring the same strong information theoretic property on the underlying pair encoding as in [Wee14].
However, they also require strict restrictions on the structure of pair encodings, which are not satis-
fied by most of the encodings which had previously been proposed; essentially this requires that there
be only one unit of randomness in each ciphertext or key. They show that the previous encodings
which satisfy the information theoretic property from [Att14] (the basic KP- and CP-ABE schemes)
have counterparts which satisfy these stricter requirements. This results in the most efficient known
constructions for a number of problems. As mentioned above, our generic construction can be ap-
plied directly to the original pair encodings [Att14]; this will yield similar constructions, with slightly
different tradeoffs (generally smaller public parameters but slower decryption). Interestingly, our re-
laxed perfect security property is designed to leverage exactly the kind of structure they prohibit, so
perhaps it suggests another way forward for predicates that cannot be addressed under their model.

In concurrent work, Attrapadung [Att15] proposed a generic construction that compiles any se-
cure (computational or information-theoretic) pair encoding scheme for a predicateR to a fully secure
FE scheme for the same predicate in prime-order groups under Matrix Diffie-Hellman assumption
[EHK+13] (of which DLIN is a special case) with an additional q-type assumption in the case of pair
encodings that only satisfy the computational security definition from [Att14]. This then also gives
prime order group constructions for any predicate encoding scheme satisfying the strong information
theoretic property under DLIN, and for KP-ABE with short ciphertext (as well as unbounded KP-ABE
and ABE for regular languages) under a q-type assumption. However, as compared to this work, our
results have the following advantages: First, we use dual system groups in a black box way, which
simplifies the transformation, unifies prime and composite order group constructions, and means that
any new construction of dual system groups directly gives new constructions for ABE. Moreover,
our relaxed perfect security property allows us to show semi-adaptive security for the short ciphertext
schemes based only on SXDH or DLIN, without any q-type assumptions; in addition to giving us
the new results on CP-ABE, we can also give a much simpler proof of semi-adaptive security for
Attrapadung’s KP-ABE with short ciphertexts, and this proof does not require q-type assumptions.
(See Appendix E.)

Finally, we mention the concurrent work of Attrapadung, Hanaoka, and Yamada [AHY15]. This
4Here we discount threshold access policies because when only threshold policies are considered, CP-ABE and KP-ABE

are equivalent.
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work presents various conversions among pair encoding schemes. Among other things, they show that
if one starts with the KP-ABE scheme with constant-size ciphertexts recently proposed by Takashima
[Tak14], then by applying the conversion one gets a CP-ABE scheme with constant-size ciphertexts,
which is selectively secure under the DLIN assumption. On the other hand, we get a semi-adaptive
scheme secure under any assumption which can be used to construct dual system groups (which
includes SXDH, DLIN, etc). Moreover, since Takashima’s construction does not use any abstractions,
our construction is significantly more modular, easier to analyze and easier to extend. As we view
the CP-ABE more as a test-case for the utility of our new definition and transformation, having an
approach that can extend easily to other types of ABE schemes seems particularly valuable.

2 Preliminaries

We use ∼=,≡ and ≈ to denote statistical, perfect and computational indistinguishability respectively.
Security parameter is denoted by λ, and negl(λ) denotes a negligible function in λ.

We normally use lower case letters in bold to denote vectors; but if a vector’s elements are them-
selves vectors, we use upper case. For two vectors u = (u1, . . . , un) and v = (v1, . . . , vn), we
use u · v to denote the entry-wise product, i.e., (u1v1, . . . , unvn), and 〈u, v〉 to denote the inner-
product, i.e.,

∑n
i=1 uivi. The · operator naturally extends to vectors of vectors (or matrices): if

U = (u1, . . . ,um) and V = (v1, . . . ,vm), then U ·V = (u1 ·v1, . . . ,um ·um). gu should be inter-
preted as the vector (gu1 , . . . , gun). gA, where A is a matrix, should be interpreted in an analogous
way.

We use u1, . . . ,um ← SampAlg(·) to denote that the algorithm SampAlg is run m times with
independent coin tosses to generate samples u1, . . . ,um. Since the output of this algorithm is a
vector, we also use (u1, . . . , un) ← SampAlg(·) to denote that a single sample with co-ordinates
u1, . . . , un is drawn from SampAlg (this should not be confused with the previous notation). Finally,
a←R S denotes drawing an element a uniformly at random from the set S.

Bilinear Pairings: Let G,H and GT be three multiplicative groups. A pairing e : G × H → GT is
bilinear if for all g ∈ G, h ∈ H and a, b ∈ Z, e(ga, hb) = e(g, h)ab. This pairing is non-degenerate if
whenever e(g, h) = 1GT , then either g = 1G or h = 1H (where 1G, for instance, denotes the identity
element of G.) We will only be interested in bilinear pairings that are efficiently computable.

The order of an element g of a group G is the smallest positive integer a such that ga = 1G. The
exponent of a group is defined as the least common multiple of the orders of all elements of the group.
One can show that if a non-degenerate bilinear pairing e : G × H → GT can be defined over three
groups G,H and GT , then they all have the same exponent. We use exp(G) to denote the exponent
of a group G.

Homomorphism: A homomorphism from a group 〈G, ·〉 to a group 〈H,⊕〉 is a function ψ : G→ H
such that for all g1, g2 ∈ G, ψ(g1 · g2) = ψ(g1) ⊕ ψ(g2). We define two sets with respect to a
homomorphism: Image(ψ) = {ψ(g) | g ∈ G} and Kernel(ψ) = {g ∈ G | ψ(g) = 1H}.

2.1 Predicate Encryption (PE)

An encryption scheme for a predicate family P = {Pκ}κ∈Nc over a message spaceM = {Mλ}λ∈N
consists of four PPT algorithms which satisfy a correctness condition defined below.

• Setup(1λ, par) → (MPK,MSK). The Setup algorithm takes as input the unary representation
of the security parameter λ and some additional parameters par. It outputs a master public key
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MPK and a master secret key MSK. The output of Setup defines a number N ∈ N (perhaps
implicitly), and κ is set to (N, par).

• Encrypt(MPK, x,m)→ CT. The encryption algorithm takes public parameters MPK, an x ∈ Xκ
and an m ∈Mλ as inputs, and outputs a ciphertext CT.

• KeyGen(MPK,MSK, y)→ SK. The key generation algorithm takes as input the public parame-
ters MPK, the master secret key MSK and a y ∈ Yκ, and outputs a secret key SK.

• Decrypt(MPK, SK, CT) → m′. The decryption algorithm takes as input the public parameters
MPK, a secret key SK and a ciphertext CT, and outputs a message m′ ∈Mλ.

Correctness: For all par, MPK and MSK output by Setup(1λ, par), m ∈ Mλ, x ∈ Xκ and y ∈ Yκ
such that Pκ(x, y) = 1, if

CT ← Encrypt(MPK, x,m) SK ← KeyGen(MPK,MSK, y),

then
Pr[Decrypt(MPK, CT, SK) 6= m] ≤ negl(λ),

where the probability is over the random coin tosses of Encrypt,KeyGen and Decrypt.

Security: Let Π be an encryption scheme for a predicate family P = {Pκ}κ∈Nc over a message space
M = {Mλ}λ∈N. Consider the following experiment Expt(b)A,Π (λ, par) between an adversary A and
a challenger Chl for b ∈ {0, 1} when both are given input 1λ and par:

1. Setup: Chl runs Setup(1λ, par) to obtain MPK and MSK. It gives MPK to A.

2. Query: A issues a key query by sending y ∈ Yκ to Chl, and obtains SK ← KeyGen(MPK,
MSK, y) in response. This step can be repeated any number of times A desires.

3. Challenge: A sends two messages m0,m1 ∈ Mλ and an x ∈ Xκ to Chl, and gets CT ←
Encrypt(MPK, x,mb) as the challenge ciphertext.

4. Query: This step is identical to step 2.

At the end of the experiment, A outputs a bit which is defined to be the output of the experiment.
We call an adversary admissible if for every y ∈ Yκ queried in steps 2 and 4, Pκ(x, y) = 0. This
prevents A from succeeding in the experiment simply by decrypting CT.

Definition 1. An encryption scheme Π is adaptively or fully secure for a predicate family P =
{Pκ}κ∈Nc if for every PPT admissible adversary A and every par,

|Pr[Expt(0)
A,Π(λ, par) = 1]− Pr[Expt

(1)
A,Π(λ, par) = 1]| ≤ negl(λ),

where the probabilities are taken over the coin tosses of A and Chl. On the other hand, Π is semi-
adaptively secure if the above condition is satisfied w.r.t. to a modified experiment where A provides
x ∈ Xκ to Chl right after the setup phase (instead of the challenge phase), i.e., before it starts
querying [CW14b].

5



3 Pair encoding schemes

The notion of pair encoding schemes (PES) was introduced by Attrapadung [Att14]. Our definition
of this scheme is slightly different from the one given by [Att14] in that we place a restriction on the
structure. Though the latter definition is more general, we believe that our formulation mirrors the
concrete design of such schemes more closely. In particular, all the constructions of pair encoding
schemes given in [Att14] fit into our framework without any changes.

We first present the definition given by Attrapadung and discuss the restrictions we impose af-
terwards. A pair encoding scheme for a predicate family Pκ : Xκ × Yκ → {0, 1} indexed by
κ = (N, par) consists of four polynomial-time deterministic algorithms which satisfy a correctness
condition as defined below.

• Param(par) → n. The Param algorithm takes the parameters par as input, and outputs a
positive integer n ∈ N which specifies the number of common variables shared by the following
two algorithms. Let b := (b1, b2, . . . , bn) denote the common variables.

• EncC(x,N)→ (c := (c1, c2, . . . , cw1);w2). The EncC algorithm takes an N ∈ N and an x ∈
X(N,par) as inputs, and outputs a sequence of w1 polynomials c1, c2, . . . , cw1 with coefficients
in ZN and a w2 ∈ N. Every polynomial c` is a linear combination of monomials of the form
s, si, sbj , sibj in variables s, s1, s2, . . . , sw2 and b1, . . . , bn. More formally, for ` ∈ [1, w1],

c` := ζ`s +
∑

i∈[1,w2]

η`,isi +
∑
j∈[1,n]

θ`,jsbj +
∑

i∈[1,w2],j∈[1,n]

ϑ`,i,jsibj ,

where ζ`, η`,i, θ`,j , ϑ`,i,j ∈ ZN are constants which define c`.

• EncK(y,N)→ (k := (k1, k2, . . . , km1);m2). The EncK algorithm takes an N ∈ N and a y ∈
Y(N,par) as inputs, and outputs a sequence of m1 polynomials k1, k2, . . . , km1 with coefficients
in ZN and an m2 ∈ N. Every polynomial kt is a linear combination of monomials of the form
α, ri′ , ri′bj in variables α, r1, r2, . . . , rm2 and b1, . . . , bn. More formally, for t ∈ [1,m1],

kt := τtα +
∑

i′∈[1,m2]

υt,i′ri′ +
∑

i′∈[1,m2],j∈[1,n]

φt,i′,jri′bj ,

where τt, υt,i′ , φt,i′,j ∈ ZN are constants which define kt.

• Pair(x, y,N) → E. The EncC algorithm takes an N ∈ N, an x ∈ X(N,par) and a y ∈ Y(N,par)

as inputs, and outputs a matrix E ∈ Zm1×w1
N .

Correctness: A pair encoding scheme is correct if for every κ = (N, par), x ∈ Xκ and y ∈ Yκ such
that Pκ(x, y) = 1, the following holds symbolically

kEcT =
∑

t∈[1,m1],
`∈[1,w1]

Et,`ktc` = αs.

Structural restrictions. We impose an additional restriction on the form of E. Essentially this says
that if kt has a monomial of the form ri′bj′ and a c` has a monomial of the form sbj or sibj then Et,`
must be 0. One can easily verify that every pair encoding scheme given in [Att14] (as well as the new
one we propose) satisfies this.
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Moreover, we can show that given the constraint on E, we can assume w.l.o.g. that the set of poly-
nomials output by EncC and EncK have a fairly restricted structure. In simple words, if a polynomial
contains the monomial sibj (resp. ri′bj), then there must exist a polynomial which only contains the
monomial si (resp. ri′). Further, there exists a polynomial with only the monomial s.

In Appendix A, we formally show that for any pair encoding which satisfies the restriction on E,
there is a corresponding one in which the polynomials output by EncC and EncK have the additional
structure described before, and this correspondence preserves all of the security properties defined in
[Att14]. For the rest of this work then, we will assume that all pair encodings satisfy the properties
listed above.

3.1 Security

Attrapadung provided two security notions for pair encoding schemes: perfect and computational. As
discussed in Section 1, in this paper we focus on perfect security, which is the information theoretic
property, for which we propose a relaxation. First, we restate here the original security definition
given by Attrapadung (which is referred to as perfectly master-key hiding in his paper).

Definition 2 (Perfect security [Att14]). A pair encoding scheme (Param,EncC, EncK,Pair) for a
predicate family Pκ is perfectly secure if for every κ = (N, par), x ∈ Xκ and y ∈ Yκ such that
Pκ(x, y) = 0, (

c(s,b),k(0, r,b)
)
≡
(
c(s,b),k(α, r,b)

)
, (1)

where s←R Zw2+1
N , b←R ZnN , r←R Zm2

N and α←R ZN .

We propose a new relaxed notion of perfect security that allows more flexibility in the design of
pair encoding schemes. Very roughly, this property will allow us to add noise gradually to the param-
eters used in the key, as long as this noise is not detectable given the relevant part of the key and the
ciphertext. The goal is to eventually add sufficient noise to completely hide the master secret. Towards
this, we define a new randomized polynomial-time sampling algorithm for pair encoding schemes.
While the algorithms above are used in the generic construction, the Samp algorithm described below
will be used in the security proof.

• Samp(d, x, y,N) → (bd := (bd,1, bd,2, . . . , bd,n)). This algorithm takes a d ∈ [1,m2], an
N ∈ N, an x ∈ X(N,par), and a y ∈ Y(N,par) as inputs, and outputs a sequence of n numbers in
ZN . We require that the probability of this algorithm producing (u · bd,1, u · bd,2, . . . , u · bd,n)
as output is equal to the probability that it produces (bd,1, bd,2, . . . , bd,n) as output, for any
u ∈ Z∗N .

Jumping ahead, the dependence of Samp on its inputs will play a crucial role in the proof of
security of our generic construction. We will see that if Samp doesn’t depend on x, then we can prove
our construction to be fully secure. But in case it does, we can only prove semi-adaptive security.

Recall that EncK on input y and N produces a sequence of polynomials k(α, r,b) with coeffi-
cients in ZN , where every polynomial is a linear combination of monomials of the form α, ri′ , ri′bj
in variables α, r1, r2, . . . , rm2 and b1, . . . , bn. In the following we use kd(α, rd,b), for d ∈ [1,m2],
to denote the polynomials in k obtained by setting all the variables in {r1, r2, . . . , rm2} except rd to
0. We are now ready to define our new notion of perfect security.

Definition 3 (Relaxed perfect security). A pair encoding scheme Γ = (Param, EncC,EncK,Pair) for
a predicate family Pκ is relaxed perfectly secure if there exists a PPT algorithm Samp (as defined
above) such that for every par, x ∈ Xκ and y ∈ Yκ such that Pκ(x, y) = 0, and every d ∈ [1,m2]:

{c(s,b),kd(0, rd,b)}N∈N ∼= {c(s,b),kd(0, rd,b + bd)}N∈N, (2)
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where s←R Zw2+1
N , b←R ZnN , rd ←R ZN ,bd ← Samp(d, x, y,N). Furthermore,{

c(s,b),
∑

d∈[1,m2]

kd(0, rd,b + bd)

}
N∈N

∼=
{
c(s,b),

∑
d∈[1,m2]

kd(α, rd,b + bd)

}
N∈N

, (3)

where s ←R Zw2+1
N , b ←R ZnN , r1, r2, . . . , rm2 ←R ZN , α ←R ZN , bd ← Samp(d, x, y,N) for

d ∈ [1,m2], and ∼= denotes statistical indistinguishability. We say Γ satisfies strong relaxed perfect
security if Samp does not depend on x.

Note that in equations (2) and (3), we have distribution ensembles indexed by N , unlike the
definition of perfect security where we are dealing with only one distribution. We require that the en-
sembles are statistically indistinguishable from each other, which means that for large enough values
of N , the statistical distance between the distributions is negligible.

We now show that any pair encoding scheme that is perfectly secure under the original definition
is also secure under the stronger flavor of the relaxed definition.

Lemma 1. Let Γ = (Param,EncC,EncK,Pair) be a pair encoding scheme. If Γ is prefectly secure
(Definition 2), then Γ is also relaxed perfectly secure (Definition 3). Moreover, we can define a Samp
algorithm for Γ that does not depend on the input x.

Proof. For any pair encoding scheme Γ, define Samp to output a vector of zeroes on any input. With
this definition, (2) is trivially satisfied for every d ∈ [1,m2], and the two distributions in (3) reduce toc(s,b),

∑
d∈[1,m2]

kd(0, rd,b)

 and

c(s,b),
∑

d∈[1,m2]

kd(α, rd,b)

 . (4)

Since Γ is perfectly secure, we know that if s ←R Zw2+1
N , b ←R ZnN , r ←R Zm2

N and α ←R ZN ,
then

{c(s,b),k(0, r,b)} ≡ {c(s,b),k(α, r,b)}.

We can replace k(α, r,b) with k(m2α, r,b) in the above without changing the joint distribution.
Now, observe that k(0, r,b) =

∑
d∈[1,m2] kd(0, rd, b) and k(m2α, r,b) =

∑
d∈[1,m2] kd(α, rd,b)

symbolically. Therefore, the two distributions in (4) are identical.

4 Dual System Groups

Our construction of predicate encryption schemes from pair encodings is based on dual system groups
(DSG), introduced by Chen and Wee [CW14a] in a recent work. Our formulation of DSG, given
below, can be seen as a generalization of theirs. However, as we will show, both their instantiations
satisfy the new properties without making any changes.

A dual system group is parameterized by a security parameter λ and a number n. It consists of
six PPT algorithms as described below.

4.1 Syntax

• SampP(1λ, 1n): On input 1λ and 1n, SampP outputs public parameters PP and secret parame-
ters SP, which have the following properties:
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– PP contains a triple of groups (G,H,GT ) and a non-degenerate bilinear map e : G×H→
GT , a homomorphism µ from H to GT , along with some additional parameters used
by SampG, SampH. Given PP, we know the exponent of group H and how to sample
uniformly from it. Let N = exp(H) (see Section 2). We require that N is a product of
distinct primes of Θ(λ) bits.

– SP contains h̃ ∈ H (where h̃ 6= 1H) along with additional parameters used by SampG and
SampH.

• SampGT takes an element in the image of µ and outputs another element from GT .

• SampG and SampH take PP as input and output a vector of n + 1 elements from G and H
respectively.

• SampG and SampH take both PP and SP as inputs and output a vector of n + 1 elements from
G and H respectively.

4.2 Properties

We require that all the properties below hold for every PP and SP output by SampP. Let SampG0

be the algorithm that outputs only the first element of SampG. Analogously, SampH0, SampG0 and
SampH0 can be defined. A dual system group is correct if it satisfies the following two properties5:

Projective: For all h ∈ H and coin tosses σ, SampGT(µ(h);σ) = e(SampG0 (PP;σ), h).

Associative: If (g0, g1, . . . , gn) and (h0, h1, . . . , hn) are samples from SampG(PP) and SampH(PP)
respectively, then for all i ∈ [1, n], e(g0, hi) = e(gi, h0).

For security we require the following three properties to hold:

Orthogonality: h̃ ∈ Kernel(µ), i.e., µ(h̃) = 1GT .

Non-degeneracy:

1. SampH0(PP, SP) ∼= h̃δ, where δ ←R ZN .

2. ∃ g̃ ∈ G s.t. SampG0(PP, SP) ∼= g̃α, where α←R ZN .

3. For all ĝ0 ← SampG0(PP, SP), e(ĝ0, h̃)β is uniformly distributed over GT , where β ←R ZN .

(Here ∼= denotes statistical indistinguishability.)

Remark 1. In [CW14a], the non-degeneracy property is defined in a slightly different way. First,
they require that for all ĥ0 ← SampH0(PP, SP), h̃ lies in the group generated by ĥ0, instead of the
first point above. And secondly, they do not have any constraint on the output of SampG0(PP, SP) like
in the second point above. The third property, though, is also present in their definition6.

Indistinguishability. For two (positive) polynomials poly1(·) and poly2(·), define G,H, Ĝ, Ĥ, Ĝ′, Ĥ′

as follows:
(PP, SP)← SampP(1λ, 1n); γ1, γ2, . . . , γn ←R ZN ;

g1,g2, . . . ,gpoly1(λ) ← SampG(PP);G := (g1,g2, . . . ,gpoly1(λ));

5Note that we have omitted the H-subgroup property. It is required to construct encryption schemes with key delegation
like HIBE. We do not use this property in our constructions.

6In the composite-order instantiation of [CW14a], this property holds only in a computational sense.
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h1,h2, . . . ,hpoly2(λ) ← SampH(PP);H := (h1,h2, . . . ,hpoly2(λ));

∀i ∈ [1, poly1(λ)], ĝi := (ĝi,0, . . .)← SampG(PP, SP); ĝ′i := (1, ĝγ1i,0, ĝ
γ2
i,0, . . . , ĝ

γn
i,0)

∀j ∈ [1, poly2(λ)], ĥj := (ĥj,0, . . .)← SampH(PP, SP); ĥ′j := (1, ĥγ1j,0, ĥ
γ2
j,0, . . . , ĥ

γn
j,0)

Ĝ := (ĝ1, ĝ2, . . . , ĝpoly1(λ)); Ĥ := (ĥ1, ĥ2, . . . , ĥpoly2(λ));

Ĝ′ := (ĝ′1, ĝ
′
2, . . . , ĝ

′
poly1(λ)); Ĥ

′ := (ĥ′1, ĥ
′
2, . . . , ĥ

′
poly2(λ)).

We call a dual system group Left Subgroup Indistinguishable (LSI), Right Subgroup Indistinguishable
(RSI) and Parameter hiding (PH) if for all polynomials poly1(·) and poly2(·),

{PP,G} ≈ {PP,G · Ĝ}, (5)

{PP, h̃,G · Ĝ,H} ≈ {PP, h̃,G · Ĝ,H · Ĥ}, and (6)

{PP, h̃, Ĝ, Ĥ} ≡ {PP, h̃, Ĝ · Ĝ′, Ĥ · Ĥ′} (7)

hold respectively. Observe that the two distributions in (5) and (6) are computationally indistinguish-
able, while the two distributions in (7) are identical.

Instantiations of DSG. The three indistinguishability properties defined above are generalizations of
the corresponding ones in Chen and Wee[CW14a]. In Appendix B, we show that the two instantia-
tions of DSG – in composite-order groups under the subgroup decision assumption and in prime-order
groups under the decisional linear assumption (d-LIN) – given by [CW14a] satisfy our generalized
indistinguishability properties as well as our new definition of non-degeneracy.

Remark 2. In the prime-order instantiation of dual system groups under the d-LIN assumption given
by [CW14a], an element from groups G or H is represented by d+ 1 elements from a source prime-
order group (an element from GT is mapped to just one element of a target prime-order group). Now,
suppose we have an encryption scheme in dual system groups where the ciphertext/key consists of
elements from G or H (and possibly an element from GT ). Then, a concrete instantiation in prime-
order groups would only double the size of ciphertext/key, if we make the SXDH assumption (special
case of d-LIN with d = 1), and only triple it if we make the DLIN assumption (special case of d-LIN
with d = 2).

5 Predicate encryption from pair encodings

In this section, we show how to construct a predicate encryption scheme ΠP = (Setup,Encrypt,
KeyGen,Decrypt) for any predicate family P = {Pκ}κ∈Nc for which we have a pair encoding scheme
ΓP = (Param,EncC,EncK,Pair), using dual system groups. The message space for ΠP would be
the target group in DSG. Recall that κ specifies a number N ∈ N and some additional parameters
par.

• Setup(1λ, par): First run Param(par) to obtain n, then run SampP(1λ, 1n) to obtain PP and
SP. Recall that given PP, we know the exponent of group H and can sample uniformly from it.
Output

MSK ←R H MPK := (PP, µ(MSK)).

Set N = exp(H) and κ = (N, par).
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• Encrypt(MPK, x,m): On input an x ∈ Xκ and an m ∈ GT , run EncC(x,N) to obtain a
sequence of w1 polynomials (c1, c2, . . . , cw1) and a w2 ∈ N. Draw w2 + 1 samples from
SampG:

(g0,0, . . . , g0,n)← SampG(PP;σ)

(g1,0, . . . , g1,n)← SampG(PP), . . . , (gw2,0, . . . , gw2,n)← SampG(PP),

where σ denotes the coin tosses used in drawing the first sample from SampG.

Recall that the polynomial c` is given by

ζ`s +
∑

i∈[1,w2]

η`,isi +
∑
j∈[1,n]

θ`,jsbj +
∑

i∈[1,w2],j∈[1,n]

ϑ`,i,jsibj ,

where ζ`, η`,i, θ`,j , ϑ`,i,j ∈ ZN are constants. Output CT := (CT1, . . . , CTw1 , CTw1+1) as the
encryption of m under x where

CT` := gζ`0,0 ·
∏

i∈[1,w2]

g
η`,i
i,0 ·

∏
j∈[1,n]

g
θ`,j
0,j ·

∏
i∈[1,w2],j∈[1,n]

g
ϑ`,i,j
i,j

for ` ∈ [1, w1] and CTw1+1 := m · SampGT(µ(MSK);σ). Notice that the monomials s, si, sbj ,
and sibj are mapped to group elements g0,0, gi,0, g0,j , and gi,j , respectively.

• KeyGen(MPK,MSK, y): On input a y ∈ Yκ, run EncK(y,N) to obtain a sequence of m1 poly-
nomials (k1, k2, . . . , km1) and an m2 ∈ N. Draw m2 samples from SampH:

(h1,0, . . . , h1,n)← SampH(PP), . . . , (hm2,0, . . . , hm2,n)← SampH(PP).

Output the key as SK := (SK1, SK2, . . . , SKm1) where for t ∈ [1,m1]

SKt := MSKτt ·
∏

i′∈[1,m2]

h
υt,i′

i′,0 ·
∏

i′∈[1,m2],j∈[1,n]

h
φt,i′,j
i′,j .

In this case, the variables α, ri′ , and ri′bj are mapped to MSK, hi′,0, and hi′,j , respectively.

• Decrypt(MPK, SKy, CTx): On input SKy := (SK1, SK2, . . . , SKm1) and CTx := (CT1, . . . , CTw1+1),
run Pair(x, y,N) to obtain an m1 × w1 matrix E. Output

CTw1+1 ·

 ∏
t∈[1,m1],`∈[1,w1]

e(CT`, SK
Et,`
t )

−1

.

Correctness (Sketch). We know that if Pκ(x, y) = 1, then
∑

t∈[1,m1],`∈[1,w1] Et,`ktc` = αs. Con-
sider two polynomials kt and c`. When these polynomials are multiplied together, no two monomials
– one from kt and one from c` – combine to give the same monomial in the product polynomial ktc`,
except when

• s is multiplied with ri′bj and sbj is multiplied with ri′ , or

• si is multiplied with ri′bj and sibj is multiplied with ri′ ,
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because of the restriction on the form of E. Now, s is mapped to g0,0, ri′bj is mapped to hi′,j , sbj
is mapped to g0,j and ri′ is mapped to hi′,0. By the associativity property of dual system groups, we
know that e(g0,0, hi′,j) = e(g0,j , hi′,0). Further, we mapped si to gi,0 and sibj to gi,j , and associativity
guarantees that e(gi,0, hi′,j) = e(gi,j , hi′,0). Therefore, from the observations above, it follows that∏

t∈[1,m1],`∈[1,w1]

e(CT`, SK
Et,`
t ) = e(g0,0,MSK).

Finally, by projective property we know that e(g0,0,MSK) = SampGT(µ(MSK);σ).

Remark 3 (Preserving size). Observe that the output of Encrypt consists of w1 + 1 elements, w1

from G and 1 from GT , where w1 is the number of polynomials output by EncC. Further, any key
has the same number of elements from H as the number of polynomials output by EncK. Hence, in
particular, if w1 (resp. m1) is a constant then ciphertexts (resp. keys) are also of constant size, in
terms of dual system group elements. Further, if we instantiate dual system groups in prime-order
groups under SXDH or DLIN assumption, then the ciphertexts (resp. keys) would still be of constant
size (see Remark 2.)

6 Proof of security

In this section, we show that the encryption scheme ΠP constructed for a predicate family P =
{Pκ}κ∈Nc in the previous section is secure using the properties of dual system groups and relaxed
perfect security of pair encoding schemes. More formally, we prove the following theorem.

Theorem 1. For any predicate family P = {Pκ}κ∈Nc , if ΓP = (Param,EncC, EncK,Pair) is a
relaxed perfectly secure pair encoding scheme, then the encryption scheme ΠP = (Setup,Encrypt,
KeyGen,Decrypt) constructed in Section 5 (using ΓP ) is semi-adaptively secure. Furthermore, if the
algorithm Samp does not depend on input x, then ΠP is fully secure (see Definition 1).

Using Lemma 1, a corollary of the above theorem is that:

Corollary 2. For any predicate family P = {Pκ}κ∈Nc , if ΓP = (Param,EncC, EncK, Pair, Samp)
is a perfectly secure pair encoding scheme, then the encryption scheme ΠP = (Setup,Encrypt,
KeyGen,Decrypt) constructed in Section 5 (using ΓP ) is fully secure.

Recall that dual system groups can be instantiated in prime-order groups under the d-LIN assump-
tion. Together with the above corollary, this gives a useful and interesting result:

Corollary 3. Every perfectly secure pair encoding scheme proposed by Attrapadung [Att14] has a
fully secure predicate encryption scheme in prime order groups under the d-LIN assumption.

The rest of this section is devoted to the proof of Theorem 1. We first define auxiliary algorithms
for encryption and key generation.

• Encrypt(PP, x,m; (g′0,g
′
1, . . . ,g

′
w2

),MSK): This algorithm is the same as Encrypt except that
it uses the input g′i ∈ Gn+1 instead of choosing samples gi from SampG for i ∈ [0, w2], and
sets CTw1+1 := m · e(g′0,0,MSK), where g′0,0 if the first element of the vector g′0.

• KeyGen(PP,MSK, y; (h′1, . . . ,h
′
m2

)): This algorithm is the same as KeyGen except that it uses
h′i instead of the samples hi from SampH for i ∈ [1,m2].

Using these algorithms, we define alternate forms for the ciphertext and master secret key:
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Table 1: Various types of keys

Type of key Inputs to KeyGen (besides PP and y)

Normal MSK; (h1, . . . ,hm2)

ρ-Intermediate-1 MSK; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ,hρ+1, . . . ,hm2)

ρ-Intermediate-2 MSK; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 , hρ · ĥρ · h̃zρ ,hρ+1, . . . ,hm2)

ρ-Intermediate-3 MSK; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 , hρ · h̃zρ ,hρ+1, . . . ,hm2)

Pseudo-normal noisy MSK; (h1 · ĥ1 · h̃z1 , . . . ,hm2 · ĥm2 · h̃zm2 )

Pseudo-SF noisy MSK ; (h1 · ĥ1 · h̃z1 , . . . ,hm2 · ĥm2 · h̃zm2 )

SF noisy MSK; (h1 · h̃z1 , . . . ,hm2 · h̃zm2 )

ρ-SF-intermediate-1 MSK; (h1, . . . ,hρ−1,hρ · ĥρ · h̃zρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2 )

ρ-SF-intermediate-2 MSK; (h1, . . . ,hρ−1, hρ · ĥρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2 )

ρ-SF-intermediate-3 MSK; (h1, . . . ,hρ−1, hρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2 )

SF MSK; (h1, . . . ,hm2)

• Semi-functional master secret key is defined to be MSK := MSK · h̃β where β ←R ZN .

• Semi-functional ciphertext is given by Encrypt(PP, x,m;G·Ĝ,MSK) where g1,g2, . . . ,gw2 ←
SampG(PP), ĝ1, ĝ2, . . . , ĝw2 ← SampG(PP, SP), G := (g1,g2, . . . ,gw2), and Ĝ := (ĝ1, ĝ2,
. . . , ĝw2). Observe that Encrypt(PP, x,m;G,MSK) is identically distributed to Encrypt(MPK,
x,m) – the normal ciphertext – by the projective property of dual system groups.

Table 1 defines various forms of keys for ρ ∈ [1,m2] and the inputs that need to be passed to
KeyGen (besides PP and y) in order to generate them. Intermediate-3 and SF-intermediate-3 keys are
also defined for ρ = 0 (SF stands for semi-functional). In the table, h1, . . . ,hm2 ← SampH(PP),
ĥ1, . . . , ĥm2 ← SampH(PP, SP), and zd := (1, zd,1, . . . , zd,n), where (zd,1, . . . , zd,n)← Samp(d, x,
y,N) for all d ∈ [1,m2]. For convenience in the following, we define a slightly modified form of
Samp, called Samp, which just prepends 1 to the output of Samp. Note that 0-Intermediate-3 is
distributed identically to a normal key and 0-SF-intermediate-3 is distributed identically to a SF noisy
key. Since we have many forms of keys, (where appropriate) we use a box to highlight the part of a
key which is different from the previous key.

Proof structure: The novelty in our proof is that instead of working at the level of a key, we work at
the level of samples that form the key. Let ξ denote the number of queries made by the adversary, and
let yϕ denote the ϕth query for ϕ ∈ [1, ξ]. Further, let m2,ϕ be the second output of EncK(yϕ, N).
We define the following hybrids for ϕ ∈ [1, ξ] and ρ ∈ [1,m2,ϕ] (fix any b ∈ {0, 1}).

• Hyb0: This is the real security game Expt
(b)
A,ΠP (λ, par) described in Section 2.1.

• Hyb1: This game is same as the above except that the ciphertext is semi-functional.

• Hyb2,ϕ,i,ρ for i ∈ {1, 2, 3}: This game is same as the above except that the first ϕ− 1 keys are
semi-functional, ϕth key is of the form ρ-intermediate-i, and rest of the keys are normal.
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Indistinguishability Properties needed Proof

Hyb0 ≈ Hyb1 left subgroup indistinguishability Lemma 12

Hyb2,ϕ,3,ρ−1 ≈ Hyb2,ϕ,1,ρ right subgroup indistinguishability Lemma 13

Hyb2,ϕ,1,ρ
∼= Hyb2,ϕ,2,ρ non-degeneracy, parameter-hiding, RPS (2) Lemma 2

Hyb2,ϕ,2,ρ ≈ Hyb2,ϕ,3,ρ right subgroup indistinguishability similar to Lemma 13

Hyb2,ϕ,3,m2,ϕ
≈ Hyb2,ϕ,4 right subgroup indistinguishability similar to Lemma 13

Hyb2,ϕ,4
∼= Hyb2,ϕ,5 non-degeneracy, parameter-hiding, RPS (3) Lemma 3

Hyb2,ϕ,5 ≈ Hyb2,ϕ,6 right subgroup indistinguishability similar to Lemma 13

Hyb2,ϕ,9,ρ−1 ≈ Hyb2,ϕ,7,ρ right subgroup indistinguishability similar to Lemma 13

Hyb2,ϕ,7,ρ
∼= Hyb2,ϕ,8,ρ non-degeneracy, parameter-hiding, RPS (2) similar to Lemma 2

Hyb2,ϕ,8,ρ ≈ Hyb2,ϕ,9,ρ right subgroup indistinguishability similar to Lemma 13

Hyb2,ξ,9,m2,ξ
∼= Hyb3 projective, orthogonality, non-degeneracy Lemma 14

Table 2: An outline of the proof structure. After proving a lemma for a certain pair of hybrids, we
discuss how the proof can be modified to show indistinguishability of other related pairs. In the above,
RPS is a shorthand for relaxed perfect security.

• Hyb2,ϕ,4: This game is same as the above except that the ϕth key is Pseudo-normal noisy.

• Hyb2,ϕ,5: This game is same as the above except that the ϕth key is Pseudo-SF noisy.

• Hyb2,ϕ,6: This game is same as the above except that the ϕth key is SF noisy.

• Hyb2,ϕ,i,ρ for i ∈ {7, 8, 9}: This game is same as the above except that the ϕth key is of the
form ρ-SF-intermediate-(i− 6).

• Hyb3: This game is same as Hyb2,ξ,9,m2,ξ
except that the ciphertext is a semi-functional en-

cryption of a random message in GT .

Our goal is to show that Hyb0 and Hyb3 are computationally indistinguishable from each other,
for both values of the bit b used by Chl in the security game Expt

(b)
A,ΠP (λ, par). Since Chl encrypts a

random message in Hyb3, there would be no way for a PPT adversary to tell whether m0 or m1 was
encrypted. This would imply that ΠP is a secure encryption scheme.

Our proof proceeds as follows. We first show that Hyb0 and Hyb1 are computationally indistin-
guishable due to the left subgroup indistinguishability (LSI) property of dual system groups; this takes
the ciphertext from normal to semi-functional space (the form of the ciphertext doesn’t change after
this step). After that, we take the keys one by one from normal to semi-functional space by going
through a series of hybrids. We show that Hyb2,1,3,0 (or, equivalently, Hyb1) is computationally in-
distinguishable from Hyb2,1,9,m2,1

by following the steps shown in Table 2 for ϕ = 1; this makes the
first key semi-functional while keeping the rest of the keys unchanged. Then, we show that Hyb2,2,3,0

(or, equivalently, Hyb2,1,9,m2,1
) is computationally indistinguishable from Hyb2,2,9,m2,2

by once again
following the steps shown in Table 2, but now for ϕ = 2; as a result, the second key also moves into
the semi-functional space. We continue in the same fashion till all the keys are in the semi-functional
space, i.e., we are in the hybrid Hyb2,ξ,9,m2,ξ

. The last step of the proof is to show that Hyb2,ξ,9,m2,ξ

and Hyb3 are statistically close to each other.
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We formally prove the indistinguishability of hybrids that require relaxed perfect security, our
new information-theoretic notion of security, in Lemma 2 and 3 below, but defer the proof of Lemma
12, 13, and 14 to Appendix C because they follow directly from the properties of dual system groups
in a manner similar to Chen and Wee’s security proof for HIBE [CW14a]. Though Lemma 13 shows
that Hyb2,ϕ,3,ρ−1 and Hyb2,ϕ,1,ρ are computationally indistinguishable, we discuss immediately af-
terwards how the proof can be modified to show indistinguishability of other related pairs of hybrids.
We do the same with other lemmas too.

Remark 4 (Full vs. semi-adaptive security.). In transitioning from Hyb2,ϕ,1,ρ to Hyb2,ϕ,2,ρ in Lemma
2, we add randomness using the algorithm Samp to the ρ-th sample of the ϕ-th key. Observe that if
Samp depends on input x, then this transition can only take place if x is known before any key queries
are issued. Therefore, in this case, we can prove semi-adaptive security. On the other hand, if Samp
does not depend on x, then we get full security (and as shown in Lemma 1, this is the case for all of
the perfectly secure pair encoding schemes of [Att14]).

Remark 5 (Perfectly secure encodings). Recall from the proof of Lemma 1 that for any perfectly
secure pair encoding scheme, we can define a dummy sampling algorithm that always outputs a
vector of 0s. When this is the case, the security proof can be considerably simplified: we could
directly go from Hyb1 to Hyb2,ϕ,4 and also from Hyb2,ϕ,5 to Hyb2,ϕ,9,m2,ϕ

using right subgroup
indistinguishability.

Remark 6 (Cost of our reduction). There are many complex predicates for which we do not know
any perfectly secure pair encoding schemes. But if one can design a scheme that is relaxed per-
fectly secure, then we show that an encryption scheme can be derived from it, which is secure under
standard assumptions. The reduction cost of our security proof, however, is higher than usual: if
an adversary makes ξ queries and m2 is the maximum number of samples used in any key, then the
cost is O(ξ ·m2). For instance, this cost only depends on the number of pre-challenge queries in the
case of Attrapadung’s computationally secure encodings (Theorem 1 in [Att14]). Note, however, that
computational security of the encoding itself is proved under q-type assumptions.

Lemma 2. For every ϕ ∈ [1, ξ] and ρ ∈ [1,m2,ϕ], Hyb2,ϕ,1,ρ
∼= Hyb2,ϕ,2,ρ.

Proof. Given PP,MSK and h̃, one can generate MPK and every key except the ϕth (because in order to
generate this key and the ciphertext, we need to be able to sample from SampH and SampG, for which
secret parameters SP are required). Hence, it suffices to show that the following two distributions are
statistically close (for clarity, we omit ϕ in the following):

{PP,MSK, h̃,Encrypt(PP, x,m;G · Ĝ,MSK),

KeyGen(PP,MSK, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ,hρ+1, . . . ,hm2))},

{PP,MSK, h̃,Encrypt(PP, x,m;G · Ĝ,MSK),

KeyGen(PP,MSK, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ · h̃zρ ,hρ+1, . . . ,hm2))}.

But observe that:

Encrypt(PP, x,m;G · Ĝ,MSK) = Encrypt(PP, x,m;G,MSK) · Encrypt(PP, x, 1; Ĝ,MSK),

KeyGen(PP,MSK, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ,hρ+1, . . . ,hm2))

= KeyGen(PP,MSK, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ,hρ+1, . . . ,hm2))·
KeyGen(PP, 1, y; (1, . . . , 1, ĥρ, 1, . . . , 1)),
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KeyGen(PP,MSK, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ · ĥρ · h̃zρ ,hρ+1, . . . ,hm2))

= KeyGen(PP,MSK, y; (h1 · h̃z1 , . . . ,hρ−1 · h̃zρ−1 ,hρ,hρ+1, . . . ,hm2))·
KeyGen(PP, 1, y; (1, . . . , 1, ĥρ · h̃zρ , 1, . . . , 1)),

because of the way Encrypt and KeyGen are defined and bilinearity of e (see the construction in
Section 5). The first component on the right hand side of each of the above equations can be generated
given PP,MSK and h̃. Hence, we only need to focus on the second components, i.e., it is enough to
show that the following two distributions are statistically close:

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ,MSK),KeyGen(PP, 1, y; (1, . . . , 1, ĥρ, 1, . . . , 1))}, (8)

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ,MSK),KeyGen(PP, 1, y; (1, . . . , 1, ĥρ · h̃zρ , 1, . . . , 1))}. (9)

Let us focus on the first distribution between the two above. By the parameter-hiding property of
dual system groups we know that {PP, h̃, Ĝ, ĥρ} and {PP, h̃, Ĝ·Ĝ′, ĥρ·ĥ′ρ} are identically distributed.
Hence (8) is identically distributed to

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ · Ĝ′,MSK),KeyGen(PP, 1, y; (1, . . . , 1, ĥρ · ĥ′ρ, 1, . . . , 1))}. (10)

Let ĈT := (ĈT1, . . . , ĈTw1+1) and ŜK := (ŜK1, . . . , ŜKm1) denote the output of Encrypt and KeyGen
respectively. We know that for ` ∈ [1, w1],

ĈT` = ĝζ`0,0 ·
∏

i∈[1,w2]

ĝ
η`,i
i,0 ·

∏
j∈[1,n]

(ĝ0,j · ĝ
γj
0,0)θ`,j ·

∏
i∈[1,w2],j∈[1,n]

(ĝi,j · ĝ
γj
i,0)ϑ`,i,j ,

where (ĝi,0, . . . , ĝi,n) ← SampG(PP, SP) for i ∈ [0, w2] and γ1, . . . , γn ←R ZN . Also, ĈTw1+1 =
e(ĝ0,0,MSK). Using the non-degeneracy property of dual system groups, we can write ĝ0,0 and ĝi,0
as g̃δ and g̃δi respectively, for i ∈ [1, w2], where δ, δ1, . . . , δw2 ←R ZN . Then we consider ĝ0,j (and
ĝi,j) for j = 1, . . . , n to be values sampled from SampG conditioned on the value of ĝ0,0 (resp. ĝi,0).
(These values may not be efficiently sampleable.) Therefore, we have

ĈT` = g̃
ζ`δ+

∑
i∈[1,w2]

η`,iδi+
∑
j∈[1,n] θ`,jδγj+

∑
i∈[1,w2],j∈[1,n]

ϑ`,i,jδiγj ·∏
j∈[1,n]

ĝ
θ`,j
0,j ·

∏
i∈[1,w2],j∈[1,n]

ĝ
ϑ`,i,j
i,j (11)

Shifting our focus to the key, we know that its tth component is given by

ŜKt = ĥ
υt,ρ
ρ,0 ·

∏
j∈[1,n]

(ĥρ,j · ĥ
γj
ρ,0)φt,ρ,j ,

for t ∈ [1,m1], where (ĥρ,0, . . . , ĥρ,n) ← SampH(PP, SP). Using non-degeneracy once again, we
can write ĥρ,0 as h̃ω for an ω ←R ZN , and consider ĥρ,j for j = 1, . . . , n to be sampled from SampH

conditioned on the value of ĥρ,0. Hence,

ŜKt = h̃υt,ρω+
∑
j∈[1,n] φt,ρ,jωγj ·

∏
j∈[1,n]

ĥ
φt,ρ,j
ρ,j . (12)

Now, observe the superscripts of g̃ and h̃ in (11) and (12) respectively (over ` ∈ [1, w1] and
t ∈ [1,m1]). We know that δ, δ1, . . . , δw2 , γ1, . . . , γn and ω are randomly chosen from ZN . Hence,
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we can use the first property (2) of relaxed perfect security to add noise to the ρ-th sample used in the
key. But the problem is that in any sample drawn from SampG and SampH, elements of the sample
may depend on each other. In particular ĝ0,j may reveal some information about δ, and similarly for
ĝi,j and for ĥρ,j , so we must ensure that (2) applies even given this information. Recall the discussion
on structural restrictions after the definition of pair encoding schemes. We know that if ϑ`,i,j 6= 0 for
any ` ∈ [1, w1] and j ∈ [1, n] (otherwise, we don’t need to worry about ĝi,j), then δi is an explicit
part of the encoding output by EncC. Similarly, if φt,ρ,j 6= 0 for any t ∈ [1,m1] and j ∈ [1, n], then
ω is an explicit part of the encoding output by EncK. Further, δ is always explicit. Therefore, given a
sample from either of the distributions in (2), one can compute the first element of the samples from
SampG and SampH, and then draw rest of the elements conditioned on the first ones.

In a nutshell, we can apply (2) to conclude that the distribution

{PP,MSK, h̃, (ĈT1, . . . , ĈTw1+1), (ŜK1, . . . , ŜKm1)}

is statistically close to

{PP,MSK, h̃, (ĈT1, . . . , ĈTw1+1), (S̃K1, . . . , S̃Km1)},

where

S̃Kt := h̃υt,ρω+
∑
j∈[1,n] φt,ρ,jω(γj+zj) ·

∏
j∈[1,n]

ĥ
φt,ρ,j
ρ,j

= h̃υt,ρω+
∑
j∈[1,n] φt,ρ,jωγj ·

∏
j∈[1,n]

(ĥρ,j · h̃ωzj )φt,ρ,j ,

for t ∈ [1,m1], and zρ = (z1, . . . , zn)← Samp(ρ, x, y,N). We use the fact that δ is always explicit
to generate the w1 + 1th component of the ciphertext.

Observe that the only difference between ŜKt and S̃Kt is that an extra h̃ωzj is multiplied with ĥρ,j
in the latter case. Hence, the key (S̃K1, . . . , S̃Km1) can be generated by giving ĥρ · ĥ′ρ · h̃zρ as the
ρ-th sample to KeyGen (zρ has the same distribution as ω · zρ since ω ∈ Z∗N with high probability).
Therefore, (10) is statistically close to

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ · Ĝ′,MSK),KeyGen(PP, 1, y; (1, . . . , 1, ĥρ · ĥ′ρ · h̃zρ ,
1, . . . , 1)).

Using parameter-hiding once again, we can show that the above distribution is identical to

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ,MSK),KeyGen(PP, 1, y; (1, . . . , 1, ĥρ · h̃zρ , 1, . . . , 1)),

which completes the proof.

The above proof can be easily adapted to show that Hyb2,ϕ,7,ρ
∼= Hyb2,ϕ,8,ρ. In this case, we want

that the two distributions

{PP,MSK, h̃,Encrypt(PP, x,m;G · Ĝ,MSK),

KeyGen(PP,MSK, y; (h1, . . . ,hρ−1,hρ · ĥρ · h̃zρ ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2 ))},

{PP,MSK, h̃,Encrypt(PP, x,m;G · Ĝ,MSK),

KeyGen(PP,MSK, y; (h1, . . . ,hρ−1,hρ · ĥρ,hρ+1 · h̃zρ+1 , . . . ,hm2 · h̃zm2 ))}.
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are indistinguishable from each other. Observe that the only difference now is that we have MSK

instead of MSK, and noise is present in the samples ρ+ 1, . . . , n instead of 1, . . . , ρ− 1. So, we can
split Encrypt and KeyGen in a way similar to the above proof, and once again it suffices to show that
exactly the distributions in (8) and (9) are indistinguishable.

Lemma 3. For every ϕ ∈ [1, ξ], Hyb2,ϕ,4
∼= Hyb2,ϕ,5.

Proof. This proof proceeds in a manner similar to the proof of Lemma 2. To begin with, we observe
as before that given PP,MSK and h̃, one can generate MPK and every key except the ϕth (for clarity,
we omit ϕ below). Hence, it suffices to show that the distribution

{PP,MSK, h̃,Encrypt(PP, x,m;G · Ĝ,MSK),KeyGen(PP,MSK, y; (h1 · ĥ1 · h̃z1 , . . . ,
hm2 · ĥm2 · h̃zm2 ))},

is statistically close to a distribution where MSK is replaced by MSK, the semi-functional master secret
key. Further,

Encrypt(PP, x,m;G · Ĝ,MSK) = Encrypt(PP, x,m;G,MSK) · Encrypt(PP, x, 1; Ĝ,MSK),

KeyGen(PP,MSK, y; (h1 · ĥ1 · h̃z1 , . . . ,hm2 · ĥm2 · h̃zm2 ))

= KeyGen(PP,MSK, y; (h1, . . . ,hm2)) · KeyGen(PP, 1, y; (ĥ1 · h̃z1 , . . . , ĥm2 · h̃zm2 )),

KeyGen(PP,MSK, y; (h1 · ĥ1 · h̃z1 , . . . ,hm2 · ĥm2 · h̃zm2 ))

= KeyGen(PP,MSK, y; (h1, . . . ,hm2)) · KeyGen(PP, h̃β, y; (ĥ1 · h̃z1 , . . . , ĥm2 · h̃zm2 )),

where β ←R ZN . The first component on the right hand side of each of the above equations can be
generated given PP,MSK and h̃. Hence, it is enough to show that the following two distributions are
statistically close:

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ,MSK),KeyGen(PP, 1, y; (ĥ1 · h̃z1 , . . . , ĥm2 · h̃zm2 ))}, (13)

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ,MSK),KeyGen(PP, h̃β, y; (ĥ1 · h̃z1 , . . . , ĥm2 · h̃zm2 ))}. (14)

Let us focus on the first distribution between the two above. By the parameter-hiding property of
dual system groups, it is identically distributed to

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ · Ĝ′,MSK),KeyGen(PP, 1, y; (ĥ1 · ĥ′1 · h̃z1 , . . . ,
ĥm2 · ĥ′m2

· h̃zm2 ))}. (15)

Let ĈT := (ĈT1, . . . , ĈTw1+1) and ŜK := (ŜK1, . . . , ŜKm1) denote the output of Encrypt and KeyGen
respectively. We know that for ` ∈ [1, w1],

ĈT` = ĝζ`0,0 ·
∏

i∈[1,w2]

ĝ
η`,i
i,0 ·

∏
j∈[1,n]

(ĝ0,j · ĝ
γj
0,0)θ`,j ·

∏
i∈[1,w2],j∈[1,n]

(ĝi,j · ĝ
γj
i,0)ϑ`,i,j ,

where (ĝi,0, . . . , ĝi,n) ← SampG(PP, SP) for i ∈ [0, w2] and γ1, . . . , γn ←R ZN . Using non-
degeneracy property of dual system groups, we can write ĝ0,0 and ĝi,0 as g̃δ and g̃δi respectively,
for i ∈ [1, w2], where δ, δ1, . . . , δw2 ←R ZN . Therefore, we have

ĈT` = g̃
ζ`δ+

∑
i∈[1,w2]

η`,iδi+
∑
j∈[1,n] θ`,jδγj+

∑
i∈[1,w2],j∈[1,n]

ϑ`,i,jδiγj ·∏
j∈[1,n]

ĝ
θ`,j
0,j ·

∏
i∈[1,w2],j∈[1,n]

ĝ
ϑ`,i,j
i,j (16)
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Shifting our focus to the key, we know that its tth component is given by

ŜKt =
∏

i′∈[1,m2]

ĥ
υt,i′

i′,0 ·
∏

i′∈[1,m2],j∈[1,n]

(ĥi′,j · ĥ
γj
i′,0 · h̃

zi′,j )φt,i′,j ,

for t ∈ [1,m1], where (ĥi′,0, . . . , ĥi′,n)← SampH(PP, SP) and (zi′,1, . . . , zi′,n)← Samp(i′, x, y,N)

for i′ ∈ [1,m2]. Using non-degeneracy once again, we can write ĥi′,0 as h̃ωi′ for an ωi′ ←R ZN .
Hence,

ŜKt = h̃
∑
i′∈[1,m2]

[υt,i′ωi′+
∑
j∈[1,n](φt,i′,jωi′γj+φt,i′,jzi′,j)] ·

∏
i′∈[1,m2],j∈[1,n]

ĥ
φt,i′,j
i′,j

= h̃
∑
i′∈[1,m2]

[υt,i′ωi′+
∑
j∈[1,n](φt,i′,jωi′ (γj+zi′,j))] ·

∏
i′∈[1,m2],j∈[1,n]

ĥ
φt,i′,j
i′,j , (17)

since the distribution of (zi′,1, . . . , zi′,n) is statistically close to (ωi′zi′,1, . . . , ωi′zi′,n) (with high prob-
ability ωi′ ∈ Z∗N ) for all i′ ∈ [1,m2].

Now, observe the superscripts of g̃ and h̃ in (16) and (17) respectively (over ` ∈ [1, w1] and
t ∈ [1,m1]). We know that δ, δ1, . . . , δw2 , γ1, . . . , γn and ω1, . . . , ωm2 are randomly chosen from
ZN . Hence, we can use the second property (3) of relaxed perfect security to add noise to the master
secret key. (The dependencies between the elements of the samples drawn from SampG and SampH
can be handled as in the previous proof.) Therefore, we have that the distribution

{PP,MSK, h̃, (ĈT1, . . . , ĈTw1+1), (ŜK1, . . . , ŜKm1)}

is statistically close to

{PP,MSK, h̃, (ĈT1, . . . , ĈTw1+1), (S̃K1, . . . , S̃Km1)},

where

S̃Kt := h̃
τtβ+

∑
i′∈[1,m2]

[υt,i′ωi′+
∑
j∈[1,n](φt,i′,jωi′ (γj+zi′,j))] ·

∏
i′∈[1,m2],j∈[1,n]

ĥ
φt,i′,j
i′,j ,

for t ∈ [1,m1], and β ←R ZN . Observe that the only difference between ŜKt and S̃Kt is that an extra
τtβ is begin added to the exponent of h̃ in the latter case. Hence, the key (S̃K1, . . . , S̃Km1) can be
generated by providing h̃β as master secret key to KeyGen. Therefore, (15) is statistically close to

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ · Ĝ′,MSK),KeyGen(PP, h̃β, y; (ĥ1 · ĥ′1 · h̃z1 , . . . ,
ĥm2 · ĥ′m2

· h̃zm2 ))}.

Using parameter-hiding once again, we can show that the above distribution is identical to

{PP,MSK, h̃,Encrypt(PP, x, 1; Ĝ,MSK),KeyGen(PP, h̃β, y; (ĥ1 · h̃z1 , . . . , ĥm2 · h̃zm2 ))},

which completes the proof.
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7 Ciphertext-Policy ABE

In this section, we design a relaxed perfectly secure pair encoding scheme for Ciphertext-Policy
Attribute Based Encryption (CP-ABE). The access policy is represented by a linear secret sharing
(LSS) scheme (A, π), where A is a matrix of size n1 × n2 with entries in ZN and π is a mapping
from [1, n1] to a universe of attributes U . Let ai denote the ith row of A for i ∈ [1, n1]. Let S ⊆ U be
a set of attributes and Υ = {i | i ∈ [1, n1], π(i) ∈ S} be the indices of rows in A associated with S.

We say that the LSS scheme (A, π) accepts S if e = (1, 0, . . . , 0) lies in the span of rows
associated with S (otherwise the scheme rejects S). In other words, if S is acceptable, there exists
constants {εi}i∈Υ such that

∑
i∈Υ εiai = e. (This set of constants can be easily computed given S.)

An interesting property of LSS schemes that will be useful to us later in the proofs is that if (A, π)
rejects S, then there must exist a vector w = (w1, . . . , wn2) such that 〈w,ai〉 = 0 for all i ∈ Υ but
〈w, e〉 = 1. This, in particular, implies that w1 = 1. (See [Bei11], Claim 2, for a proof of this and
other properties below about secret sharing schemes.)

In order to share a secret s ∈ ZN , one picks v2, v3, . . . , vn1 ←R ZN , and outputs 〈ai,v〉 as the
ith share for i ∈ [1, n1], where v = (s, v2, v3, . . . , vn1). This way of sharing a secret leads to two
useful properties:

• Correctness: For every S accepted by (A, π), every secret s ∈ ZN and any v2, v3, . . . , vn1 ∈
ZN ,

∑
i∈Υ εi〈ai,v〉 = 〈v,

∑
i∈Υ εiai〉 = s.

• Privacy: For every S rejected by (A, π), the distribution of {〈ai,v〉}i∈Υ is independent of the
secret s being shared.

The predicate family for CP-ABE is indexed by κ = (N,n1, n2,U , T ). Xκ is the set of all LSS
schemes where the matrix is of size n1 × n2 with entries in ZN and the mapping is from [1, n1] to U .
Yκ is given by the set {S | S ⊆ U , |S| ≤ T}. For all x ∈ Xκ and y ∈ Yκ, Pκ(x, y) = 1 if and only
if x accepts y. It is clear from our definition of predicate family that there is a bound on the size of
matrices and the number of attributes associated with a key. But there are no other restrictions: the
size of attribute universe U could be arbitrary and π need not be injective. Without loss of generality,
we assume U to be ZN .

We are now ready to design a relaxed perfectly secure pair encoding scheme Φcp-abe = (Param,
EncC,EncK,Pair) for the CP-ABE predicate family.

7.1 Pair Encoding Scheme

• Param(par)→ n1(n2 + T + 1). Let b = ({bi,j}i∈[1,n1],j∈[1,n2], {b′i,t}i∈[1,n1],t∈[0,T ]).

• EncC((A, π), N)→ c(s,b) := (c1, c2) where

c1 = s c2 = s

 ∑
i∈[1,n1]
j∈[1,n2]

ai,jbi,j +
∑

i∈[1,n1]
t∈[0,T ]

π(i)tb′i,t

 ,

and s = (s), and ai,j denotes the entry in the ith row and jth column of A.

• EncK(S,N)→ k(α, r,b) := ({k1,i, k2,i,j k3,i,`,j , k4,i,y k5,i,`,t} i,`∈[1,n1],i 6=`,j∈[1,n2],y∈S,t∈[0,T ])
where

k1,i = ri k2,i,j = ribi,j − vj k3,i,`,j = rib`,j
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k4,i,y = ri
∑
t∈[0,T ]

ytb′i,t k5,i,`,t = rib
′
`,t

and r = (r1, r2, . . . , rn1 , v2, . . . , vn2) and v1 = α.

We informally discuss how to recover αs by combining the polynomials generated by EncC
and EncK, with an intent to provide some intuition about the scheme, and defer a formal proof to
Appendix D. We can think of v2, v3, . . . , vn1 as the randomness picked in order to share v1 = α
according to the scheme (A, π). Hence, if we find 〈ai,v〉 for all i ∈ Υ, we can recover α (ignore
s for now). One could start out by multiplying ai,j by k2,i,j and summing over j, for an i ∈ Υ.
This does give

∑
j ai,jvj but also produces an extra term ri

∑
j ai,jbi,j (ignore ri for now). We could

try to get rid of this term by using c2 but the product ai,jbi,j there is also summed over i (since we
want EncC to produce a constant number of polynomials, we are forced to pack as much into one
polynomial as possible). Fortunately, we have the polynomials k3,i,`,j for ` 6= i. We can multiply
these by a`,j and remove the unwanted ai,jbi,j terms. But we are not done yet: we must also remove
the term

∑
i,t π(i)tb′i,t left in the mix because we used c2. If π(i) ∈ S, then this is easy: use k4,i,π(i)

to remove
∑

t π(i)tb′i,t, and k5,i,`,t · π(`)t to remove the rest. However, if π(i) /∈ S, there is no way
to do this.

7.2 Relaxed Perfect Security

We now prove that the pair encoding scheme Φcp-abe designed above is relaxed perfectly secure
(Definition 3). Towards this, we first define a sampling algorithm Samp as follows. On input an
i ∈ [1, n1], (A, π) ∈ Xκ, S ∈ Yκ and N , Samp checks whether π(i) /∈ S. If yes, it picks elements
b̂i,1, b̂i,2, . . . , b̂i,n2 independently and uniformly from ZN ; otherwise it picks them uniformly but with
the constraint that

∑
j∈[1,n2] ai,j b̂i,j = 0. Samp outputs

b̂i := (0, . . . , . . . , . . . , 0︸ ︷︷ ︸
(i− 1)n2

, b̂i,1, b̂i,2, . . . , b̂i,n2 , 0, . . . , . . . , . . . , . . . , 0︸ ︷︷ ︸
(n1 − i)n2 + n1(T + 1)

). (18)

Observe that the output of Samp depends on (A, π), the input to EncC. Hence, this sampling algo-
rithm would lead to a semi-adaptively secure scheme.

We consider only those N ∈ N which are a product of distinct primes of Θ(λ) bits. This is suf-
ficient for our purposes because the Setup algorithm of the generic construction in Section 5 defines
N of exactly this form. We first show that for all i ∈ [1, n1] and N ∈ N,(

c(s,b),ki(0, ri,b)
)
≡

(
c(s,b),ki(0, ri,b + b̂i)

)
, (19)

where s ←R Z1
N , b ←R ZnN , ri ←R ZN , b̂i ← Samp(i, (A, π), S,N). Recall that ki denotes the

polynomials in k obtained by setting all the variables in r = (r1, r2, . . . , rn1 , v2, . . . , vn2) except
the ith to 0. For i ∈ [n1 + 1, n1 + n2 − 1], the only polynomial in ki is −vi−n1+1, or, more
importantly, there is no monomial with any b. Hence, the equation above trivially holds for i in this
range irrespective of what Samp outputs. (That is why we don’t care about defining Samp’s behavior
on such inputs.)

Let us refer to the left and right distributions in Equation (19) as ∆L and ∆R respectively. Fix an
arbitrary i∗ ∈ [1, n1]. By the definition of ki∗ , we know that in these two distributions only those com-
ponents of the key survive which have subscript i∗. Further, in the components k2,i∗,1, . . . , k2,i∗,n2 ,
the variables v1, . . . , vn2 are all set to 0. Now, focus on the distribution ∆R. It is clear from Equation
(18) that the added randomness b̂i∗ affects only k2,i∗,1, . . . , k2,i∗,n2 components. For i ∈ [1, n1] and
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j ∈ [1, n2], let δi,j := bi,j if i 6= i∗ and δi∗,j := bi∗,j + b̂i∗,j . Since bi,j are uniformly and indepen-
dently distributed, so are δi,j . The second component of ciphertext encoding, c2, can now be rewritten
as

s

 ∑
i∈[1,n1]
j∈[1,n2]

ai,jδi,j −
∑

j∈[1,n2]

ai∗,j b̂i∗,j +
∑
t∈[0,T ]

π(i∗)tb′i∗,t +
∑

i∈[1,n1],i 6=i∗
t∈[0,T ]

π(i)tb′i,t

 .

Observe that the only difference between ∆L and ∆R is that in the latter case there is an additional
term rand :=

∑
j∈[1,n2] ai∗,j b̂i∗,j in c2. If π(i∗) ∈ S, then this term is 0 by our choice of Samp.

On the other hand when π(i∗) /∈ S, we show that
∑

t∈[0,T ] π(i∗)tb′i∗,t is an independent uniform
random variable over ZN , and therefore, the additional term rand does not matter. Towards this,
consider the polynomial f(x) = b′i∗,T · xT + b′i∗,T−1 · xT−1 + . . . + b′i∗,0. Since b′i∗,T , . . . , b

′
i∗,0 are

chosen at random, any T + 1 distinct points on f(x) are uniformly distributed over ZT+1
N . The

only components of the key which depend on b′i∗,T , . . . , b
′
i∗,0 are {k4,i∗,y}y∈S , which could also be

rewritten as {ri∗f(y)}y∈S . There could be at most T such components because |S| ≤ T . Therefore,∑
t∈[0,T ] π(i∗)tb′i∗,t = f(π(i∗)) is independently and uniformly distributed.
The second and last step in proving relaxed perfect security is to show that when (A, π) does not

accept S, Equation (3) holds, i.e., for large enough values of N , the statistical distance between the
distributions,c(s,b),

∑
i∈[1,n1+n2−1]

ki(0, ri,b + b̂i)

 and

c(s,b),
∑

i∈[1,n1+n2−1]

ki(α, ri,b + b̂i)

 , (20)

is negligible, where s ←R Z1
N , b ←R ZnN , r ←R Zn1+n2−1

N , α ←R ZN , and b̂i ← Samp(i, (A, π),
S,N) for i ∈ [1, n1 + n2 − 1]. Let us denote the left and right distributions in Equation (20) above
by ΓL and ΓR respectively. The second component of the key in these two distributions is given by

k2,i,j = ribi,j + rib̂i,j − vj

for i ∈ [1, n1] and j ∈ [1, n2]. The only difference between the distributions is in the components
k2,1,1, . . . , k2,n1,1. In the case of ΓL, v1 = (n1 + n2 − 1)α = 0, while in the case of ΓR, it is chosen
independently and uniformly from ZN .

Let us focus on the distribution ΓL. Recall that there exists a vector w = (w1, . . . , wn2) orthogo-
nal to all the rows associated with S such that w1 = 1. We claim that if we replace the variables b̂i,j
by b̂i,j − r−1

i wjα, where α←R ZN , then ΓL is not affected. (With high probability ri ∈ Z∗N , so r−1
i

exists.) If π(i) /∈ S, we know that b̂i,1, b̂i,2, . . . , b̂i,n2 are independently and uniformly distributed.
Hence adding −r−1

i wjα has no effect on their joint distribution. On the other hand when π(i) ∈ S,
b̂i,1, b̂i,2, . . . , b̂i,n2 are uniformly chosen with the constraint that

∑
j∈[1,n2] ai,j b̂i,j = 0. Now, when

−r−1
i wjα is added,∑

j∈[1,n2]

ai,j(b̂i,j − r−1
i wjα) =

∑
j∈[1,n2]

ai,j b̂i,j − r−1
i α

∑
j∈[1,n2]

ai,jwj = 0

because w is orthogonal to every ai such that π(i) ∈ S. Hence, the variables b̂i,1, b̂i,2, . . . , b̂i,n2 still
satisfy the constraint they did before.

After replacing b̂i,j by b̂i,j − r−1
i wjα, we have that k2,i,j = ribi,j + rib̂i,j − wjα − vj (where

v1 = 0). The final step in the proof is to replace the variables w1α,w2α + v2, . . . , wn2α + vn2 by
α, v2, . . . , vn2 . This does not affect ΓL because v2, . . . , vn2 are picked independently and uniformly
from ZN (and w1 = 1). But now ΓL is exactly the distribution ΓR.
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7.3 Instantiation: Constant-size ciphertext

We briefly comment about instantiating the pair encoding scheme Φcp-abe = (Param,EncC,EncK,
Pair). Using the generic method in Section 5, one can construct a predicate encryption scheme
Πcp-abe = (Setup, Encrypt,KeyGen,Decrypt) for CP-ABE using Φcp-abe. According to Theorem
1, Πcp-abe is semi-adaptively secure because the Samp algorithm we defined in the previous sub-
section depends on the access structure. However, since EncC outputs only two polynomials, Encrypt
outputs only two elements from G (and one element from GT ). Now, from Remark 2, it follows that
one can design a concrete scheme for CP-ABE in prime-order groups where the ciphertext contains
only 4 group elements under the SXDH assumption, and only 6 elements under the DLIN assumption
(plus an additional element from the target group). Furthermore, only a constant number of pairing
operations would be required to decrypt a ciphertext.
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A Pair encoding schemes

Recall that we consider polynomials of the form:

kt := τtα +
∑

i′∈[1,m2]

υt,i′ri′ +
∑

i′∈[1,m2],j∈[1,n]

φt,i′,jri′bj ,

c` := ζ`s +
∑

i∈[1,w2]

η`,isi +
∑
j∈[1,n]

θ`,jsbj +
∑

i∈[1,w2],j∈[1,n]

ϑ`,i,jsibj .

Here we consider two properties. The first property says that in decryption, an sibj term is never
paired with an ri′bj′ term. This property holds for all known pair encodings. The second property
says that if sibj appears as a term in one of the polynomials in c, then the polynomial si also appears
in c, and similarly for ri′ (also, s is always a part of c). We will show that w.l.o.g. we can assume
that if the first property holds, then the second holds as well, in that we can always construct an
equivalent scheme for which it does hold. This structure allows us to simplify our relaxed perfect
security property for pair encodings.

Definition 4. We say that a pair encoding is dual-system-group-compatible (DSG-compatible) if for
all x, y,N , for all outputs of EncC(x,N), EncK(y,N), Pair(x, y,N), and for all t ∈ [1,m1], ` ∈
[1, w1], if there exist i′ ∈ [1,m2], j′ ∈ [1, n] such that φt,i′,j′ 6= 0 and there exist i ∈ [1, w2], j ∈ [1, n]
such that one of θ`,j or ϑ`,i,j is not zero, then Et,` must be 0.
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Definition 5. We say that a pair encoding has specified variables if for all x, y,N and for all outputs
of EncC(x,N), EncK(y,N) it holds that

• s ∈ c;

• for all i ∈ [1, w2], if ϑ`,i,j 6= 0 for any ` ∈ [1, w1] and j ∈ [1, n], then si ∈ c; and,

• for all i′ ∈ [1,m2], if φt,i′,j 6= 0 for any t ∈ [1,m1] and j ∈ [1, n], then ri′ ∈ k.

Lemma 4. We show that for any pair encoding which is DSG-compatible, we can construct an equiv-
alent encoding which also has specified variables. Here by equivalent we mean that the number of
polynomials produced by EncC and EncK together is increased by at most 1, and that perfect security
and computational security defined by Attrapadung [Att14] are preserved.

Proof. First of all, we can assume without loss of generality that for all x ∈ X , there is at least some
y ∈ Y such that P (x, y) = 1. Let c1, . . . , cw1 be the polynomials output by EncC(x,N), E be the
matrix output by Pair(x, y,N), and τ1, . . . , τt be the coefficients of α in the t polynomials output
by EncK(y,N). Then, if c1, . . . , cw1 are linearly combined using

∑
tEt,1τt, . . .,

∑
tEt,w1τt, the

result should just be s. (If there is any other term σ in the linear combination, then on combining
polynomials produced by EncC and EncK according to E, we will get an unwanted term ασ.) Hence,
we can make s an explicit part of the vector of polynomials c without affecting any of the security
properties. Note that if there exists some linear combination of c1, . . . , cw1 that gives s, then it can be
found efficiently.

Next, we describe a process that iteratively removes any si which is not a part of c, but for which
there is a polynomial with a non-zero sibj term. Call a polynomial simple if it doesn’t have any of the
sbj , sibj , and ri′bj terms (and non-simple otherwise). We consider two separate cases.

1. First, suppose there exists a simple polynomial c` = ζ`s+
∑

i′ η`,i′si′ where the coefficient η`,i
of si is not zero. In this case we will replace si with 1/η`,i(si − (ζ`s +

∑
i′ 6=i η`,i′si′)) every

where in the encoding. Thus, in particular, c` becomes just si in the new encoding. It is easy
to see that this does not affect DSG compatibility or correctness. Security is preserved because
the distribution of new si is still uniform and independent of other variables.

Note that to carry out the aforementioned replacement, it is crucial that c` is simple, for other-
wise, the substitute for si will have an sbj′ or si′bj′ term, and substitution in sibj will result in
sbjbj′ or si′bjbj′ .

We can repeat the above process as long as it applies. Each time we create a polynomial
consisting of a single si (which makes si specified), and this polynomial is not affected by later
steps. Further, since no new variables are introduced, there are at most w2 iterations.

2. If the first condition is not satisfied for an si, then it must be the case that all polynomials that
contain it are non-simple. Due to DSG-compatibility, we know that such polynomials cannot
be paired with a polynomial containing ri′bj for any i′, j. Thus, si is never paired with ri′bj
for any i′, j. Further, the coefficients of sibj · ri′ and si · ri′bj must sum to 0 by correctness
of encoding. Thus, we conclude that the coefficients of sibj · ri′ sum to 0 for all i′, j. So we
can replace sibj with a new variable s′j (for all j for which the coefficient of sibj is not zero
in at least one polynomial) without affecting correctness. (Note that this transformation does
increase the total number of variables, however it does not change the number of polynomials
in c,k.) To see that perfect security is preserved, note that replacing sibj with a new variable
has essentially the same result on the distributions in Definition 2 as adding a uniform random
variable to both sides: if the original distributions were indistinguishable, the resulting ones
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will be as well. Similarly, for Attrapadung’s selective and co-selective security, it can only
decrease the adversary’s advantage.

Observe that this step is quite different from the first one. It removes all occurrences of sibj so
that we don’t have to worry about the second condition in Definition 5 anymore. In the process,
some new variables are introduced, but they only appear by themselves (i.e., never with a bj).
So, we need to repeat this process at most w2 times.

We can apply the same two steps discussed above for the ri′ variables, but a problem occurs when
an ri′ falls into the first category, i.e. there exists a simple kt containing ri′ . In this case, when ri′ is
replaced with 1/υt,i′(ri′ − (τtα+

∑
i′′ 6=i′ υt,i′′ri′′)) in the term ri′bj , we get terms of the form αbj (if

τt 6= 0), which is not allowed. Hence, for simplicity, we first remove α from all but one polynomial.
Suppose there exists a simple polynomial, say k1, containing α with coefficient τ1 6= 0 (if not,

then the problem described before does not arise). Replace any other polynomial kt with τ1kt− τtk1,
where τt is the coefficient of α in kt. At the same time, change the pairing coefficient E1,` with
E1,` + τt/τ1Et,` and Et,` with Et,`/τ1 for all ` and t 6= 1. It is easy to see that correctness still
holds. Further, the modified encoding remains DSG-compatible. No extra variables or polynomials
are generated during this process.

We now have only one polynomial k1 = τ1α + p containing α, where p does not have terms
of the form ri′bj . When this polynomial is paired with different polynomials output by EncC, the
result should just be (1/τ1)s, i.e.

∑
`E1,`c` = (1/τ1)s. Hence, we can as well pair k1 with the new

polynomial that has just s. (If this polynomial is denoted by c0, then E1,0 will be set to 1/τ1, while
E2,0, . . . , Em1,0 will remain 0.)

Suppose we now apply the two steps described before for handling si variables that do not satisfy
the second condition to ri′ variables that do not satisfy the third condition in Definition 5. If there is
a simple polynomial besides k1 that contains ri′ , then the first step will work, and if all polynomials
containing ri′ are non-simple, then the second step works. The only case left to analyze is when k1

is the only simple polynomial ri′ is a part of—all others are non-simple. We know that these non-
simple polynomials cannot be paired with any polynomial containing sbj or sibj , and that k1 too is
only being paired with s. Hence, ri′ never gets paired with sbj or sibj for any i, j. Therefore, by
making an argument similar to the second step, we can replace ri′bj with a new variable r′j without
affecting correctness or any of the security properties.

B Dual System Groups

Chen and Wee instantiate dual system groups under the subgroup decision assumption in composite-
order groups as well as the decisional linear assumption (d-LIN) in prime-order groups. We show
that both these instantiations satisfy the generalized indistinguishability properties and the new non-
degeneracy property we defined (first two conditions) below. (For the rest of the properties, the proofs
given in [CW14a] carry over.)

Remark 7 (Sampling algorithms). In the two concrete constructions of dual system groups discussed
below, the running time of the four sampling algorithms (SampG, SampH, SampG, SampH) depends
linearly on the number of elements we require from a sample. This could significantly improve the
efficiency of encryption schemes built on top of dual system groups. For example, if we need only the
first and third elements from a sample of SampG (which consists of n + 1 elements), then we could
just pass 1 and 3 to SampG (after modifying its definition suitably) and get the required elements,
saving a considerable amount of time.

28



B.1 Composite-order construction

A composite-order bilinear group generator G takes the security parameter λ as input and outputs
(N,GN , GT , g1, g2, g3, e). GN and GT are two multiplicative cyclic groups of order N = p1p2p3,
where p1, p2 and p3 are three distinct primes of Θ(λ) bits each. e is an efficiently computable non-
degenerate bilinear map which maps two elements of GN to an element of GT . g1, g2 and g3 denote
the generators ofGp1 , Gp2 andGp3 respectively, where for every divisor n ofN , we useGn to denote
the subgroup of GN of order n. We require that the following two subgroup decision assumptions
hold with respect to G.

Definition 6 (Assumption 1). Consider the following distribution:

(N,GN , GT , g1, g2, g3, e)← G(1λ);

h123 ←R GN ;

D := ((N,GN , GT , e); g1, g3, h123);

T0 ←R Gp1 , T1 ←R Gp1p2 .

We assume that for any PPT algorithm A,

AdvSD1
A (λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|

is negligible in λ.

Definition 7 (Assumption 2). Consider the following distribution:

(N,GN , GT , g1, g2, g3, e)← G(1λ);

h123 ←R GN , h23 ←R Gp2p3 , g12 ←R Gp1p2 ;

D := ((N,GN , GT , e); g1, g3, h123, h23, g12);

T0 ←R Gp1p3 , T1 ←R GN .

We assume that for any PPT algorithm A,

AdvSD2
A (λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|

is negligible in λ.

We show that the construction given in Section 5.2 of [CW14a] satisfies non-degeneracy, LSI, RSI
and parameter-hiding properties.

Non-degeneracy: The statistical distance between h̃δ and (g2 ·g3)r̂, where δ ←R ZN and r̂ ←R Z∗N ,
is at most 1/p2 + 1/p3, which is negligible in λ. Similarly, if we set g := g2, then the statistical
distance between gµ and gŝ2 for µ ∈ ZN and ŝ ∈ Z∗N , is at most 1/p2.

Lemma 5 (SD1 to LSI). For any PPT adversary A, there exists a PPT adversary B such that

AdvLSIA (λ) ≤ AdvSD1
B (λ) + 2/p1 + 2/p2 + 1/p3.
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Proof. The adversary B gets as input ((N,GN , GT , e); g1, g3, h123, T ), where T is chosen uniformly
at random fromGp1 orGp1p2 . Using this input, B simulates the public parameters as follows. It picks
w←R ZnN and gives

PP := ((N,GN , GT , e); g1, g
w
1 , g3, h123)

toA. Note that PP is properly distributed if h123 is a generator ofGN , which happens with probability
at least 1− 1/p1 − 1/p2 − 1/p3.

Consider any (positive) polynomial poly(x), and let ` := poly(λ). B picks ` numbers u1, u2, . . . , u`
←R ZN such that ui mod p2 6= 0 for i ∈ [1, `], and gives

G′ = ((T u1 , T u1w), . . . , (T u` , T u`w))

as the challenge to A. If T ← Gp1 , then G′ is identically distributed to G when T is a generator
of Gp1 , which happens with probability 1 − 1/p1. On the other hand when T ← Gp1p2 , then G′ is
identically distributed to G · Ĝ when T is a generator of Gp1p2 , which happens with probability at
least 1− 1/p1 − 1/p2.

Lemma 6 (SD2 to RSI). For any PPT adversary A, there exists a PPT adversary B such that

AdvRSIA (λ) ≤ AdvSD2
B (λ) + 3/p1 + 4/p2 + 3/p3.

Proof. The adversary B gets as input ((N,GN , GT , e); g1, g3, h123, h23, g12, T ), where T is chosen
uniformly at random from Gp1p3 or from the whole group. Let poly1 and poly2 be two (positive)
polynomials. Let ` and m denote poly1(λ) and poly2(λ) respectively. B picks w ←R ZnN and `
numbers u1, u2, . . . , u` ←R ZN such that ui mod p2 6= 0 for i ∈ [1, `], and gives

PP := ((N,GN , GT , e); g1, g
w
1 , g3, h123)

h̃ := h23 and G · Ĝ := ((gu112 , g
u1w
12 ), . . . , (gu`12 , g

u`w
12 )

toA. In order for (PP, h̃,G ·Ĝ) to be properly distributed, we need h123, h23 and g12 to be generators
ofGN ,Gp2p3 andGp1p2 respectively, which happens with probability at least 1−2/p1−3/p2−2/p3.

Now to simulate the challenge, B picksm numbers v1, v2, . . . , vm ←R ZN such that vj mod p2 6=
0 for j ∈ [1,m] and vectors X′1,X

′
2, . . . ,X

′
m ←R G

n
p3 (using g3), and outputs

H′ = ((T v1 , T v1w ·X′1), . . . , (T vm , T vmw ·X′m)).

If T ← Gp1p3 , then H′ is identically distributed to H, except when T is not a generator of Gp1p3 ,
which happens with probability at most 1/p1 + 1/p3. On the other hand when T ← GN , then H′ is
identically distributed to H·Ĥ, except when T is not a generatorGN , which happens with probability
at most 1/p1 + 1/p2 + 1/p3.

Lemma 7 (Parameter-hiding). For any polynomials poly1(x) and poly2(x), the following distribu-
tions are identical:

{PP, h̃, ((gŝ12 , g
ŝ1w
2 ), . . . , (gŝ`2 , g

ŝ`w
2 )), ((gr̂12 · g

r̂1
3 , g

r̂1w
2 ·X1), . . . , (gr̂m2 · g

r̂m
3 , gr̂mw

2 ·Xm))}

and

{PP, h̃, ((gŝ12 , g
ŝ1(w+w′)
2 ), . . . , (gŝ`2 , g

ŝ`(w+w′)
2 )),

((gr̂12 · g
r̂1
3 , g

r̂1(w+w′)
2 ·X1), . . . , (gr̂m2 · g

r̂m
3 , g

r̂m(w+w′)
2 ·Xm))},
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where
` := poly1(λ) and m := poly2(λ);

(PP, SP)← SampP(1λ, 1n);

w,w′ ←R ZnN ;

ŝ1, . . . , ŝ` ←R Z∗N ;

r̂1, . . . , r̂m ←R Z∗N ;

X1, . . . ,Xm ←R G
n
p3 .

Proof. Note that w appears in the public parameters PP in the form gw1 . Hence, w mod p2 is a
uniformly random number in Zp2 given PP (by Chinese remainder theorem), and the lemma follows.

B.2 Prime-order construction

A prime-order bilinear group generator G takes the security parameter λ as input and outputs (p,G1,
G2, GT , g1, g2, e). G1, G2 and GT are three multiplicative groups of order p, where p is a prime of
Θ(λ) bits. e is an efficiently computable non-degenerate bilinear map which maps an element of G1

and an element of G2 to an element of GT . g1 and g2 are generators of G1 and G2 respectively.
We first define the following generalization of d-LIN assumption with respect to G, whose security

follows tightly from d-LIN itself.

Definition 8 (gen-d-LIN Assumption). Let poly(x) be a (positive) polynomial in x. Given a group
generator G, we define the following distribution:

(p,G1, G2, GT , g1, g2, e)← G(1λ);

m := poly(λ);

s1,1, . . . , s1,d, . . . , sm,1, . . . , sm,d ←R Zp;

a1, a2, . . . , ad+1, s1,d+1, . . . , sm,d+1 ←R Z∗p;

D := ((p,G1, G2, GT , e); g1, g2, g
a1
1 , . . . , gad1 , g

ad+1

1 , g
a1s1,1
1 , . . . , g

ads1,d
1 , . . . , g

a1sm,1
1 , . . . , g

adsm,d
1 );

T0 := (g
ad+1(s1,1+...+s1,d)
1 , . . . , g

ad+1(sm,1+...+sm,d)
1 );

T1 := (g
ad+1(s1,1+...+s1,d)+s1,d+1

1 , . . . , g
ad+1(sm,1+...+sm,d)+sm,d+1

1 ).

We assume that for any polynomial p and any PPT algorithm A,

Advgen-d-LIN
A (λ) := |Pr[A(D,T0) = 1]− Pr[A(D,T1) = 1]|

is negligible in λ.

The above assumption is defined with respect to the first group G1 output by G. We also as-
sume that this assumption holds with respect to the second group G2. We now show how the d-LIN
assumption (which is a special case of the above with m = 1) can be reduced to gen-d-LIN.

Lemma 8 (d-LIN to gen-d-LIN). If the d-LIN assumption holds for a group generator G, then the
gen-d-LIN assumption stated in Definition 8 also holds in G.
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Proof. Consider any (positive) polynomial poly(x), and letm := poly(λ). LetA be a PPT algorithm
that gets a non-negligible advantage in the gen-d-LIN security game w.r.t. to the polynomial p. We
construct a PPT algorithm B which uses A to break the d-LIN assumption as follows. B obtains

((p,G1, G2, GT , e); g1, g2, g
a1
1 , . . . , gad1 , g

ad+1

1 , ga1r11 , . . . , gadrd1 , T := g
ad+1(r1+...+rd)+rd+1

1 )

as input, where rd+1 is either 0 or uniformly chosen from Z∗p. It picks

s1,1, . . . , s1,d, . . . , sm,1, . . . , sm,d ←R Zp,

s1,d+1, . . . , sm,d+1 ←R Z∗p,

and computes
[ga1r11 · (ga11 )si,1 ]si,d+1 , . . . , [gadrd1 · (gad1 )si,d ]si,d+1 ,

T ′i :=
[
T · (gad+1

1 )si,1 · (gad+1

1 )si,2 . . . (g
ad+1

1 )si,d
]si,d+1

= g
ad+1{si,d+1(r1+si,1)+...+si,d+1(rd+si,d)}+rd+1si,d+1

1 ,

for every i ∈ [1,m]. B then gives ((p,G1, G2, GT , e); g1, g2, g
a1
1 , . . . , gad1 , g

ad+1

1 ) along with the
group elements computed above as challenge to A. It is easy to see that the challenge has the right
distribution.

We are now ready to show how the prime order construction satisfies the security properties we
desire.

Non-degeneracy: We know that h̃ is defined to be gf
∗

2 and SampH0 is distributed as gr̂f
∗

2 for r̂ ←R

Z∗p. Hence, the statistical distance between h̃δ, when δ ←R Zp, and SampH0 can be at most 1/p.
Similarly, if we set g := gf1, we can show that the second condition is satisfied.

Lemma 9 (gen-d-LIN to LSI). For any PPT adversary A, there exists a PPT adversary B such that

AdvLSIA (λ) ≤ Advgen-d-LIN
B (λ).

Proof. Consider any (positive) polynomial poly(x), and letm := poly(λ). We first write (PP,g1, . . . ,
gm,g1 · ĝ1, . . . ,gm · ĝm) in terms of the prime order construction.

PP := ((p,G,H,GT , e); g
ρL(B)
1 , g

ρL(BA1)
1 , . . . , g

ρL(BAn)
1 , g

ρL(B∗R)
2 , g

ρL(B∗AT
1 R)

1 , . . . , g
ρL(B∗AT

nR)
1 ),

∀i ∈ [1,m] gi :=

(
g

B

si
0


1 , g

BA1

si
0


1 , . . . , g

BAn

si
0


1

)

∀i ∈ [1,m] gi · ĝi :=

(
g

B

si
ŝi


1 , g

BA1

si
ŝi


1 , . . . , g

BAn

si
ŝi


1

)
In the above, s1, . . . , sm ←R Zdp and ŝ1, . . . , ŝm ←R Z∗p.

32



B obtains as input

((p,G1, G2, GT , e); g1, g2, g
a1
1 , . . . , gad1 , g

ad+1

1 , g
a1s1,1
1 , . . . , g

ads1,d
1 , . . . , g

a1sm,1
1 , . . . , g

adsm,d
1

g
ad+1(s1,1+...+s1,d)+s1,d+1

1 , . . . , g
ad+1(sm,1+...+sm,d+1)+sm,d+1

1 ),

where s1,d+1, . . . , sm,d+1 are all 0 or uniformly chosen from Z∗p.
To begin with, B implicitly sets

si := (si,1, si,2, . . . , si,d),

ŝi := si,d+1,

for all i ∈ [1,m]. It programs B,B∗,A1, . . . ,An,R and simulates the public parameters PP in the
same manner as the proof of Lemma 10 in [CW14a]. This involves defining

W :=



a1

a2

. . .

ad

ad+1 ad+1 . . . ad+1 1


,

and sampling B̃←R GLd+1(Zp) along with Ã1, . . . , Ãn ←R Z(d+1)×(d+1)
p .

Now, observe that

W

si

ŝi

 =


a1si,1

...

adsi,d

ad+1(si,1 + . . .+ si,d) + si,d+1

 ,

and hence B can compute

g

W

si
ŝi


1

for all i ∈ [1,m] using its input. Lastly, it outputs the challenge as

g

B

si
ŝi


1 = g

B̃W

si
ŝi


1 and g

BAj

si
ŝi


1 = g

B̃ÃjW

si
ŝi


1

for all j ∈ [1, n] and i ∈ [1,m]. If s1,d+1, . . . , sm,d+1 are all 0, implying that ŝ1, . . . , ŝm are 0 as
well, then the view ofA is identically distributed to (PP,g1, . . . ,gm), otherwise the view is distributed
according to (PP,g1 · ĝ1, . . . ,gm · ĝm).
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Lemma 10 (gen-d-LIN to RSI). For any PPT adversary A, there exist a PPT adversary B such that

AdvRSIA (λ) ≤ Advgen-d-LIN
B (λ) + poly(λ)/p,

where poly(λ) is independent of Advgen-d-LIN
B (λ).

Proof. Consider two (positive) polynomials poly1(x) and poly2(x). Define ` := poly1(λ) and m :=
poly2(λ). We first write (PP, h̃,g1 · ĝ1, . . . ,g` · ĝ`, h1, . . . ,hm,h1 · ĥ1, . . . ,hm · ĥm) in terms of the
prime order construction.

PP := ((p,G,H,GT , e); g
ρL(B)
1 , g

ρL(BA1)
1 , . . . , g

ρL(BAn)
1 , g

ρL(B∗R)
2 , g

ρL(B∗AT
1 R)

1 , . . . , g
ρL(B∗AT

nR)
1 ),

h̃ := g
ρR(B∗R)
2 ,

∀j ∈ [1, `] gj · ĝj :=

(
g

B

sj
ŝj


1 , g

BA1

sj
ŝj


1 , . . . , g

BAn

sj
ŝj


1

)
,

∀i ∈ [1,m] hi :=

(
g

B∗R

ri
0


2 , g

B∗AT
1 R

ri
0


2 , . . . , g

B∗AT
nR

ri
0


2

)
,

∀i ∈ [1,m] hi · ĥi :=

(
g

B∗R

ri
r̂i


2 , g

B∗AT
1 R

ri
r̂i


2 , . . . , g

B∗AT
nR

ri
r̂i


2

)
.

In the above, s1, . . . , s`, r1, . . . , rm ←R Zdp and ŝ1, . . . , ŝ`, r̂1, . . . , r̂m ←R Z∗p.
B obtains as input

((p,G1, G2, GT , e); g1, g2, g
a1
1 , . . . , gad1 , g

ad+1

1 , g
a1r1,1
1 , . . . , g

adr1,d
1 , . . . , g

a1rm,1
1 , . . . , g

adrm,d
1

g
ad+1(r1,1+...+r1,d)+r1,d+1

1 , . . . , g
ad+1(rm,1+...+rm,d+1)+rm,d+1

1 ),

where r1,d+1, . . . , rm,d+1 are all 0 or uniformly chosen from Z∗p.
To begin with, B picks r̃1, r̃2, . . . , r̃d ←R Z∗p and implicitly sets

R :=



a1r̃1

a2r̃2

. . .

adr̃d

1


,

ri := (r̃−1
1 ri,1, r̃

−1
2 ri,2, . . . , r̃

−1
d ri,d),

r̂i := ri,d+1,
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for all i ∈ [1,m]. It programs B,B∗,A1, . . . ,An and simulates PP, h̃ along with g1 · ĝ1, . . . ,g` · ĝ`
(there is an error of `/p in simulating this) in the same manner as the proof of Lemma 11 in [CW14a].
This involves defining

W∗ :=



1

1

. . .

1

a−1
1 ad+1 a−1

2 ad+1 . . . a−1
d ad+1 1


,

sampling B̃←R GLd+1(Zp) along with Ã1, . . . , Ãn ←R Z(d+1)×(d+1)
p , and setting B̃∗ := (B̃−1)T .

Now, observe that

W∗R

ri

r̂i

 =


a1ri,1

...

adri,d

ad+1(ri,1 + . . .+ ri,d) + ri,d+1

 ,

and hence B can compute

g

W∗R

ri
r̂i


2

for all i ∈ [1,m] using its input. Lastly, it outputs the challenge as

g

B∗R

ri
r̂i


2 = g

B̃∗W∗R

ri
r̂i


2 and g

B∗AT
j R

ri
r̂i


2 = g

B̃∗ÃT
j W∗R

ri
r̂i


2

for all j ∈ [1, n] and i ∈ [1,m]. If r1,d+1, . . . , rm,d+1 are all 0, implying that r̂1, . . . , r̂m are 0 as well,
then the view of A is identically distributed to (PP, h̃,g1 · ĝ1, . . . ,g` · ĝ`,h1, . . . ,hm), otherwise the
view is distributed according to (PP, h̃,g1 · ĝ1, . . . ,g` · ĝ`,h1 · ĥ1, . . . ,hm · ĥm).

Lemma 11 (Parameter-hiding). For any (positive) polynomials poly1(x) and poly2(x), the following
distributions are identical:

{PP, gf
∗

2 , (g
ŝ1f
1 , gŝ1f11 , . . . , gŝ1fn1 ), . . . , (gŝ`f1 , gŝ`f11 , . . . , gŝ`fn1 )

(gr̂1f
∗

2 , g
r̂1f∗1
2 , . . . , g

r̂1f∗n
2 ), . . . , (gr̂mf∗

2 , g
r̂mf∗1
2 , . . . , g

r̂mf∗n
2 )}

and

{PP, gf
∗

2 , (g
ŝ1f
1 , g

ŝ1(f1+γ1f)
1 , . . . , g

ŝ1(fn+γnf)
1 ), . . . , (gŝ`f1 , g

ŝ`(f1+γ1f)
1 , . . . , g

ŝ`(fn+γnf)
1 )

(gr̂1f
∗

2 , g
r̂1(f∗1 +γ1f∗)
2 , . . . , g

r̂1(f∗n+γnf∗)
2 ), . . . , (gr̂mf∗

2 , g
r̂m(f∗1 +γ1f∗)
2 , . . . , g

r̂m(f∗n+γnf∗)
2 )}
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where
` := poly1(λ) and m := poly2(λ);

(PP, SP)← SampP(1λ, 1n);

ŝ1, . . . , ŝ`, r̂1, . . . , r̂m ←R Z∗p;

γ1, . . . , γn ←R Zp.

Proof. Our proof closely follows the one given for Lemma 12 in [CW14a]. In a manner similar to
their’s, we could define

A′i := Ai + γiV

for i ∈ [1, n], where V is a matrix which is 0 everywhere except the bottom right entry which is 1.
We run SampP with (A′1, . . . ,A

′
n) instead of (A1, . . . ,An) to generate (PP, SP) and

ĝ1, ĝ2, . . . , ĝ` ← SampG(PP, SP);

ĥ1, ĥ2, . . . , ĥm ← SampH(PP, SP).

Since all the samples above share the same γ1, . . . , γn, one can easily verify that rest of the proof in
[CW14a] goes through for the present generalized case as well.

C Proof of security

We use Advp−qA (λ) to denote the advantage of an adversary A in distinguishing Hybp from Hybq
when the security parameter is λ.

Lemma 12. For any PPT adversary A, there exists a PPT adversary B such that

Adv0−1
A (λ) ≤ AdvLSIB (λ).

Proof. B gets as input (PP,G′) where G′ is either G or G · Ĝ. While G is an ordered set of
w2 + 1 samples from SampG, Ĝ is an ordered set of the same size with samples from SampG
(recall that LSI property holds for every polynomial, and in particular, for w2 + 1). B first picks
MSK ←R H and outputs (PP, µ(MSK)) as the master public key. When A sends a challenge x∗ and
two messages m0,m1, B responds with Encrypt(PP, x∗,mb;G

′,MSK) as the ciphertext, where b is
uniformly chosen bit. Further, when A issues a key query y (either before or after the challenge), B
responds with KeyGen(PP,MSK, y; (h1, . . . ,hm2)) by sampling h1, . . . ,hm2 from SampH.

When G′ = G, then the view of A is identically distributed as in Hyb0. On the other hand, when
G′ = G · Ĝ, it is easy to see that view of A is identical to Hyb1.

Lemma 13. For any PPT adversary A, there exists a PPT adversary B such that

Adv
(2,ϕ,3,ρ−1)−(2,ϕ,1,ρ)
A (λ) ≤ AdvRSIB (λ),

for every ϕ ∈ [1, ξ] and ρ ∈ [1,m2,ϕ].

Proof. B gets as input (PP, h̃,G · Ĝ,h′) where h′ is either h or h · ĥ (special case of RSI with
poly2(x) = 1). B first picks MSK ←R H and outputs (PP, µ(MSK)) as the master public key. When
A sends a challenge x∗ and two messagesm0,m1, B responds with Encrypt(PP, x∗,mb;G ·Ĝ,MSK)
as the ciphertext, where b is uniformly chosen bit.
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B picks a β ←R ZN and sets MSK := MSK · (h̃)β . When A issues ςth key query yς , it responds
with

SKyς :=


KeyGen(PP,MSK, yς ; (h

(ς)
1 , . . . ,h

(ς)
m2,ς )) if ς < ϕ

KeyGen(PP,MSK, yς ; (h
(ς)
1 · h̃z1 , . . . ,h

(ς)
ρ−1 · h̃zρ−1 ,h′,h

(ς)
ρ+1, . . . ,h

(ς)
m2,ς )) if ς = ϕ

KeyGen(PP,MSK, yς ; (h
(ς)
1 , . . . ,h

(ς)
m2,ς )) otherwise,

where for every ς ∈ [1, ξ] and i ∈ [1,m2,ς ] (except when ς = ϕ and i = ρ), h(ς)
i ← SampH(PP), and

for every j ∈ [1, ρ− 1], zj ← Samp(j, x, y,N). It is easy to see that when h′ = h, then the view of
A is identically distributed to Hyb2,ϕ,3,ρ−1, and when h′ = h · ĥ, then it is identically distributed to
Hyb2,ϕ,1,ρ.

We now see how the above proof can be adapted to show indistinguishability between other pairs
of hybrids. Below, we only describe the changes that need to be made; other details can be easily
worked out.

• Hyb2,ϕ,2,ρ ≈ Hyb2,ϕ,3,ρ: In order to generate the ϕth key, use

KeyGen(PP,MSK, yϕ; (h
(ϕ)
1 · h̃z1 , . . . ,h(ϕ)

ρ−1 · h̃
zρ−1 ,h′ · h̃zρ ,h(ϕ)

ρ+1, . . . ,h
(ϕ)
m2,ϕ

)),

where zρ ← Samp(ρ, x, y,N).

• Hyb2,ϕ,3,m2,ϕ
≈ Hyb2,ϕ,4: Assume that B gets (PP, h̃,G · Ĝ,H′) as input where H′ := (h′1,

. . . ,h′m2,ϕ
) is a vector of m2 + 1 samples (instead of just 1). In order to generate the ϕth key,

it uses
KeyGen(PP,MSK, yϕ; (h′1 · h̃z1 , . . . ,h′m2,ϕ

· h̃zm2,ϕ )),

where zj ← Samp(j, x, y,N) for all j ∈ [1,m2,ϕ].

• Hyb2,ϕ,5 ≈ Hyb2,ϕ,6: Once again assume that B gets (PP, h̃,G · Ĝ,H′) as input where H′ :=
(h′1, . . . ,h

′
m2,ϕ

) is a vector of m2 + 1 samples. In order to generate the ϕth key, it uses

KeyGen(PP,MSK, yϕ; (h′1 · h̃z1 , . . . ,h′m2,ϕ
· h̃zm2,ϕ )),

where zj ← Samp(j, x, y,N) for j ∈ [1,m2,ϕ].

• Hyb2,ϕ,9,ρ−1 ≈ Hyb2,ϕ,7,ρ: In order to generate the ϕth key, use

KeyGen(PP,MSK, yϕ; (h
(ϕ)
1 , . . . ,h

(ϕ)
ρ−1,h

′ · h̃zρ ,h(ϕ)
ρ+1 · h̃

zρ+1 , . . . ,h(ϕ)
m2,ϕ
· h̃zm2,ϕ )),

where zj ← Samp(j, x, y,N) for j ∈ [ρ,m2,ϕ].

• Hyb2,ϕ,8,ρ ≈ Hyb2,ϕ,9,ρ: In order to generate the ϕth key, use

KeyGen(PP,MSK, yϕ; (h
(ϕ)
1 , . . . ,h

(ϕ)
ρ−1,h

′,h
(ϕ)
ρ+1 · h̃

zρ+1 , . . . ,h(ϕ)
m2,ϕ
· h̃zm2,ϕ )),

where zj ← Samp(j, x, y,N) for j ∈ [ρ+ 1,m2,ϕ].

Lemma 14. Hyb2,ξ,9,m2,ξ
∼= Hyb3.
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Proof. The only difference between the hybrids Hyb2,ξ,9,m2,ξ
and Hyb3 is that in the former case the

message mb is encrypted, while in the latter case a random message is encrypted; all the keys as well
as the ciphertext in both the cases are in the semi-functional space. The following line of argument is
very similar to the one in [CW14a] for the corresponding lemma.

We can assume that MSK and MSK are sampled as follows: first pick MSK ←R H and then set
MSK := MSK · h̃β , where β ←R ZN . Observe that

µ(MSK) = µ(MSK · h̃β) = µ(MSK) · µ(h̃)β = µ(MSK) (21)

due to the linearity of µ and the orthogonality property (µ(h̃) = 1). Further, for any public parameters
PP and coin tosses σ,

e(SampG0(PP;σ), h̃) = SampGT(µ(h̃);σ) = SampGT(1;σ) = e(SampG0(PP;σ), 1) = 1 (22)

due to the projective and orthogonality properties.
We now show that the view of any adversaryA in both the hybrids can be simulated given PP and

G·Ĝ only. First pick MSK and MSK as described above. Output (PP, µ(MSK)) as the master public key
MPK; using (21), this is identically distributed to (PP, µ(MSK)). WhenA issues a key query y, respond
with KeyGen(PP,MSK, y; (h1, . . . ,hm2)), where h1, . . . ,hm2 ← SampH(PP). When A sends a pair
of messages (m0,m1) and an x, wherem0,m1 ∈ GT , output CT := Encrypt(PP, x,mb;G ·Ĝ,MSK).
It is clear that the view of A in this experiment is identically distributed to its view in Hyb2,ξ,9,m2,ξ

.
In order to prove that this view is also identically distributed to the view in Hyb3, we only need to
show that CT is the encryption of a random message.

We know that CT has w1 + 1 components. The first w1 components depend on PP, x and G · Ĝ,
while the last one, CTw1+1 := mb · e(g0,0 · ĝ0,0,MSK), depends on mb and MSK (see Section 5). Now,

e(g0,0 · ĝ0,0,MSK) = e(g0,0 · ĝ0,0,MSK · h̃β)

= e(g0,0 · ĝ0,0,MSK) · e(ĝ0,0, h̃
β) · e(g0,0, h̃

β)

= e(g0,0 · ĝ0,0,MSK) · e(ĝ0,0, h̃
β) (due to (22))

= e(g0,0 · ĝ0,0,MSK) · e(ĝ0,0, h̃)β.

Observe that MPK, the keys and other parts of the ciphertext do not depend on β, which is chosen
uniformly from ZN . Therefore, e(ĝ0,0, h̃)β is uniformly distributed over GT from the non-degeneracy
property. This implies that CT is identically distributed to the encryption of a random message.

D Ciphertext-Policy ABE

Correctness: If (A, π) accepts S, then we know that there exists constants {εi}i∈Υ such that
∑

i∈Υ

εi
∑

j∈[1,n2] ai,jvj = v1 = α, where Υ = {i | i ∈ [1, n1], π(i) ∈ S}. Below we show how to
combine the polynomials generated by EncC and EncK using {εi}i∈Υ in order to recover αs (this
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implicitly defines the output of Pair((A, π), S,N)):

c2

(∑
i∈Υ

εik1,i

)
− c1

∑
i∈Υ

εi

 ∑
j∈[1,n2]

ai,jk2,i,j +
∑

`∈[1,n1],` 6=i
j∈[1,n2]

a`,jk3,i,`,j

+ k4,i,π(i) +
∑

`∈[1,n1],` 6=i
t∈[0,T ]

π(`)tk5,i,`,t




=
∑
i∈Υ

εi

c2k1,i − c1

 ∑
j∈[1,n2]

ai,jk2,i,j +
∑

`∈[1,n1],`6=i
j∈[1,n2]

a`,jk3,i,`,j

+ k4,i,π(i) +
∑

`∈[1,n1],` 6=i
t∈[0,T ]

π(`)tk5,i,`,t




=
∑
i∈Υ

εi

sri ∑
i′∈[1,n1]
j∈[1,n2]

ai,jbi,j + sri
∑

i′∈[1,n1]
t∈[0,T ]

π(i)tb′i,t

− sri
∑

j∈[1,n2]

ai,jbi,j + s
∑

j∈[1,n2]

ai,jvj − sri
∑

`∈[1,n1],` 6=i
j∈[1,n2]

a`,jb`,j

− sri
∑
t∈[0,T ]

π(i)tb′i,t − sri
∑

`∈[1,n1],`6=i
t∈[0,T ]

π(`)tb′`,t



= s
∑
i∈Υ

εi
∑

j∈[1,n2]

ai,jvj = αs.

E Key Policy ABE

The following pair encoding scheme Φkp-abe = (Param, EncC,EncK,Pair) for the KP-ABE predi-
cate family (which is the dual of the predicate family for CP-ABE described in the Section 7) is taken
(verbatim) from Attrapadung [Att14]. While this pair encoding scheme is not secure under the stricter
information-theoretic property of Attrapadung, we show that it satisfies our relaxed definition. Thus
we get a semi-adaptively secure KP-ABE scheme with short ciphertexts under a standard assumption,
while Attrapadung proved (full) security under q-type assumptions.
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• Param(par)→ T + 6. Let b = (b0,b1, . . . ,bT+1, φ1, φ2, φ3, η).

• EncC(S,N)→ c(s,b) := (c1, c2, c3, c4, c5, c6) where

c1 = s, c2 = sη, c3 = sφ1 + wφ2,

c4 = w, c5 = wφ3 + s̃(b0 + b1z0 + . . .+ bT+1zT ), c6 = s̃,

s = (s, w, s̃), and zi is the coefficient of xi in p(x) := Πy∈S(x− y).

• EncK((A, π), N)→ k(α, r,b) := (k1, k2, k3, {k4,i, k5,i,k6,i}i∈[1,n1]) where

k1 = α+ rφ1 + uη, k2 = u, k3 = r,

k4,i = Aiv
T + riφ3, k5,i = ri,

k6,i =
(
rib0, ri(b2 − b1π(i)), . . . , ri(bT+1 − b1π(i)T )

)
,

v = (v1, . . . , vn2), v1 = rφ2 and r = (r, u, r1, r2, . . . , rn1 , v2, . . . , vn2).

(See [Att14] for the Pair algorithm.)
Let an algorithm Samp be defined as follows. On input an i ∈ [1, n1], S, (A, π), and N , Samp

checks whether π(i) /∈ S. If yes, it picks φ̂3 ←R ZN and outputs b̂i := (0, . . . , 0, φ̂3, 0); otherwise,
a zero vector is output.

Lemma 15. Φkp-abe is relaxed perfect secure w.r.t. the algorithm Samp defined above.

Proof (sketch). It is instructive to see why this scheme is not perfectly secure. Consider (A, π) and
S such that the policy is not satisfied but there exists a j such that π(j) ∈ S. If we take a linear
combination of the terms in k6,j with (1, z1, . . . , zT ), we get rj(b0 +(b2− b1π(j))z1 + . . .+(bT+1−
b1π(j)T )zT ), which can be simplified to rj(b0 + b1z0 + . . . + bT+1zT ) since π(j) is a root of p(x).
From this and k5,j , we know b0 + b1z0 + . . .+ bT+1zT . Further, using c4 and c6, we can recover φ3

from c5. Now, using k4,i and k5,i, we get Aiv
T for every i ∈ [1, n1], revealing all the shares of the

secret v1 = rφ2. One can go further and show that this exposes α; hence perfect security is violated.
So, the problem is that even if S has only one good attribute (i.e., a j s.t. π(j) ∈ S), all the shares

of the secret are revealed. If we can somehow hide the shares corresponding to the rows for which
S does not have a valid attribute, it will be enough. The relaxed property enables us to do this by
focusing on just one ri, or one row of the access matrix A, at a time—rest of the elements in r are
set to zero. If π(i) /∈ S, then linearly combining k6,i with (1, z1, . . . , zT ) gives an additional term
rib1p(π(i)), so the above line of argument breaks down; in particular, one cannot recover φ3 that way
anymore. Therefore, we can add a random element to φ3 without changing the distribution. We can,
similarly, add fresh randomness to φ3 for every i such that π(i) /∈ S. Once noise has been added this
way, and we look at the distribution of the whole key, shares for which S doesn’t have an attribute
will remain hidden. Hence, it wouldn’t be possible to learn α.

Converting the above argument into a formal proof of relaxed perfect security using Samp is not
hard. We leave it to the reader.
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