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ABSTRACT 
This research explores distributed sensing techniques for 
mobile devices using synchronous gestures. These are 
patterns of activity, contributed by multiple users (or one 
user with multiple devices), which take on a new meaning 
when they occur together in time, or in a specific sequence 
in time. To explore this new area of inquiry, this work uses 
tablet computers augmented with touch sensors and two-
axis linear accelerometers (tilt sensors). The devices are  
connected via an 802.11 wireless network and synchronize 
their time-stamped sensor data. This paper describes a few 
practical examples of interaction techniques using 
synchronous gestures such as dynamically tiling together 
displays by physically bumping them together, discusses 
implementation issues, and speculates on further 
possibilities for synchronous gestures. 
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INTRODUCTION 
Humans have evolved to function within a fabric of social 
connections and collaboration. People work on problems in 
groups, and indeed the entire field of computer-supported 
collaborative work (CSCW) is devoted to technological 
support of such groups. Many user tasks and activities 
revolve around communication, which inherently involves 
at least two persons. Furthermore, with the burgeoning use 
of the internet, and research trends in ubiquitous computing 
and distributed systems, human-computer interaction often 
involves more than one computer. Yet the literature offers 
few examples of real-time interaction techniques that 
leverage the simultaneous data streams generated by 
multiple users and multiple computers.  

This research introduces the general concept of 
synchronous gestures, which as defined above are patterns 
of activity spanning a distributed system that take on a new 
meaning when they occur together in time. These patterns 
could literally occur in parallel and in exact synchrony, or 
they just might be partially overlapped or even occur in a 
particular sequence. The key is that complementary 
portions of a signal are contributed by different devices or 
participants, and that the signal can only be recognized 
when these portions are brought together. 
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Fig. 1 (a) A user can bump a tablet into another 
one resting on a desk. The software recognizes the 
gesture by synchronizing the two accelerometers 
across a wireless network. (b) The tablet moved by 
the user annexes the display of the stationary tablet, 
allowing a panoramic image to span both displays.  

 
Sensor fusion is a related concept, but generally sensor 
fusion refers to the use of multiple sensors in a single 
system to robustly detect properties of the physical 
environment. Synchronous gestures also involve multiple 
sensors, but the sensors come from multiple devices which 
are physically disaggregated, and may belong to different 
persons and thus compromise a unitary system only in the 
sense that they can communicate via a wireless network.  

To demonstrate the practical utility of synchronous gestures 
this work proposes dynamic display tiling, a new technique 
which enables users to tile together the displays of multiple 
tablets just by physically bumping a tablet into another one 
lying flat on a desk (Fig. 1). Bumping generates equal and 
opposite hard contact forces that are simultaneously sensed 
by the accelerometer on each tablet. The two orthogonal 
sensing axes of each accelerometer provide enough 
information to determine which edges of the tablets have 
collided, allowing tiling of displays along any edge (left, 
right, top, or bottom). Picking up a tablet removes it from 
the shared display. Users can also exchange information by 
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bumping tablets together just as people at a dinner table 
might clink glasses together for a toast. This is 
distinguished from display tiling by sensing that both 
tablets are held (as opposed to one being stationary on a 
desk). Finally, one user can “pour” data from his tablet into 
that of another user by angling the tablet down when the 
users bump their tablets together. 

Synchronous gestures represent a little-explored area that 
may offer much promise. This paper contributes an 
articulation and discussion of the general concept of 
synchronous gestures that has not appeared in the literature. 
We also contribute implementation issues and novel 
techniques which may spur further interest in and 
development of real-time distributed sensing techniques.  

RELATED WORK 
There are few previous examples of synchronous gestures. 
One example of a real-time interaction technique based on 
multi-device synchrony is the “Smart-Its Friends” 
technique [18], which allows a user to connect a pair of 
accelerometer-augmented handheld devices by holding the 
two devices together and shaking them. The device shares 
the data with other devices within range of its radio 
frequency transmitter, and looks for an identical pattern on 
the accelerometers to infer a shared context and establish a 
privileged connection between the two shaken devices.  

There have been several efforts to sense social interactions 
between people. The Sociometer [7] is a wearable 
computing platform that uses post-hoc data analysis to 
sense when face-to-face interactions have occurred; for 
example, the system can sense that two people talked to one 
another using the mutual information of the voice streams.  

Instant messaging and videoconferencing systems (such as 
the Portholes system [10]) often benefit from sensing user 
presence and making this available to other users. The 
Notification Platform [19] coordinates sensor information 
(mouse and keyboard activity, microphones, and cameras) 
from multiple devices to optimize delivery of messages. 
Distributed simulations and networked games must 
synchronize and serialize events from multiple computers. 
Chen et al. [6] use microphones from multiple wirelessly 
connected PDA’s to perform sound localization via time 
difference of arrival. Synchronous gestures require 
synchronization and serialization for correct 
implementation, but go beyond these mechanisms to 
support new interaction techniques.  

ConnecTables [25] are wheeled tables with mounted LCD 
displays that can be rolled together so that the top edges of 
two LCD’s meet. The devices then recognize one another 
through an RFID tag and RFID reader mounted on each 
device. The Triangles system [12] employs special 
connectors along edges of triangular elements to achieve 
communication between discrete objects. Connecting 
Triangles allows the user to construct a storyline or express 
a series of operations.  

The ConnecTables technique allows a pair of displays to be 
shared along one edge only. Triangles can be connected 
along any edge, but require multiple electrical elements 
along each edge. Dynamic display tiling allows multiple 
tablets to be connected along any edge using a single 
inexpensive accelerometer and touch sensors on each tablet. 
These sensors are not dedicated to this purpose, and have 
other compelling single-user applications, such as using tilt 
to scroll documents or automatically change the screen 
orientation (e.g. [14][16]). Note also that neither 
ConnecTables nor Triangles explore synchronous gesture 
detection. On ConnecTables, for example, each table’s 
RFID reader alone can determine all the information 
necessary to know which display to communicate with. 

Grudin reports typical use and design issues for multi-
monitor display systems [13]. Interaction techniques that 
tile multiple tablets together might benefit from some of 
these design insights.  

Several techniques have been proposed to share 
information between devices. Pick and Drop [23] uses a 
stylus with a unique ID to perform copy and paste 
operations between computers. The HyperPalette [2] uses a 
tilting motion to drop data from a PDA onto a work surface. 

A number of technologies and techniques for discovering 
and using nearby devices have been proposed. Proximal 
selection [24] allows the user to choose from nearby 
devices to perform an action (e.g. print on a nearby printer). 
Wireless connection standards such as Bluetooth include 
discovery mechanisms. The RADAR technique senses 
location via triangulation of 802.11 wireless network RF 
signal strengths [3]. Synchronous gestures such as bumping 
tablets together or shaking devices (Smart-Its Friends [18]) 
represent an additional indication of user intent, beyond 
mere proximity, to form a privileged connection. By the 
same token, proximity sensing or other mechanisms to limit 
the scope of potential pair wise synchronies that must be 
computed may form an important building block for 
practical implementation of synchronous gestures. 

SYSTEM COMPONENTS AND SENSING HARDWARE  
The system is implemented on Toshiba Portege Tablet PC’s 
with built-in 802.11 wireless networking. The techniques 
described in this paper use the tablets exclusively in the 
slate mode. The sensing hardware uses a custom sensor 
board (evolved from [16]) with an Analog Devices 
ADXL202 two-axis linear accelerometer [1] to sense left-
right and forward-back tilting of the tablet relative to 
gravity. This sensor registers sharp spikes when two tablets 
are bumped together. To reliably sense the direction and 
magnitude of such spikes, the system maintains a sampling 
rate of 120Hz, and sets the accelerometer’s bandwidth to 
10Hz. The system also uses a pair of touch sensors [4][17] 
to determine when a user is holding the tablet. These are 
simply strips of conductive material on the left and right 
sides of the tablet. 



 

BUMPING AS A SYNCHRONOUS GESTURE 
To understand the possibilities for and limitations of 
interaction techniques based on bumping, it is helpful to see 
what types of signals are generated, as well as to consider 
undesired signals that may potentially look like bumping.  

Fig. 2 shows example data from a user holding one tablet 
(“local device”) and bumping it into another tablet lying on 
a desk (“remote device”). Each tablet experiences a roughly 
equal but opposite pattern of forces. Note that striking the 
left side of a tablet versus striking the right side results in a 
similar sensor pattern, but with spikes in the opposite 
direction. This allows the system software to determine 
which side of each tablet has made contact.  

 
Fig. 2 Accelerometer signatures for bumping two 
tablets together, with forward-back and left-right 
accelerometer axes for the local and remote 
devices. Left: Bumping the left side of a device flat 
on the table with a held device. The left-right 
accelerometer axes exhibit characteristic spikes 
resulting from equal and opposite contact forces. 
Note the forward-back axes exhibit no significant 
response. Right: Bumping the right side of the 
device flat on the table. The spikes are in the 
opposite direction of a left-side bump. 
 

Because the tablets are rectangular, bumping an edge of the 
tablet will primarily excite only one axis of the 
accelerometers. The second orthogonal forward-back 
sensing axis is also plotted in Fig. 2, but it has almost no 
response to the left-right impacts shown in the figure. 
Hence, the sensing axis with the largest response to the 
bump distinguishes top and bottom bumps from left and 
right side bumps.  

With the current prototypes, it is awkward to bump the 
bottom edge of one tablet into the top edge of another, 
because of the protruding sensor board (on top) and USB 
connector (on bottom). However, bumping along this edge 
is still possible by bringing together those portions of the 
top and bottom edges without any protrusions. In future 
refinements we plan to eliminate these protrusions. 

As a practical matter for gesture recognition, the signatures 
may not always be as clean as those shown in the plots of 
Fig. 2. For example, if the tablets are angled slightly as they 
bump together, there may be one impact from one corner of 

a tablet making contact, followed very quickly by a second 
impact from the other corner striking the same edge of the 
tablet. Or, if a user is a bit over-zealous and bumps the 
tablets together forcefully, there can be a significant bounce 
back in the opposite direction as well.  

Another potential set of problems results from unintentional 
signals that may resemble intentional bumping together of 
tablets (Fig. 3). For example, spikes, peaks, or humps in the 
accelerometer data can occur if the user bumps into a desk 
surface that both tablets are resting on, or if two users move 
their tablets at the same time. Requiring spikes that are 
tightly synchronized in time filters out many such signals. 
Another simple criterion the software uses to reject 
undesired signals is to ignore any spikes that occur when 
neither of the pair of tablets is being held (as detected by 
the touch sensors). Further details of the recognition 
algorithm appear later in this paper. 

 
Fig. 3 Example accelerometer patterns for some 
non-bumping signals. Left: Banging on a desk 
causes multiple spikes exciting both axes of both 
accelerometers. Right: Handling both tablets at the 
same time produces waves or peaks on both 
sensing axes. 
 

DYNAMIC DISPLAY TILING VIA BUMPING 
Interaction with mobile devices is often constrained by the 
available screen real estate. Dynamic display tiling is a new 
interaction technique that enables multiple users (or one 
user with multiple devices) to combine independent devices 
to create a temporary larger display. This can be done 
horizontally (Fig. 4) or vertically (Fig. 5). Users can tile 
tablets together by bumping one tablet against another one 
resting on a desk or in a user’s lap. Dynamic display tiling 
offers a promising application area for the synchronous 
gesture of bumping two devices together. Users can easily 
break the connection by removing one of the tablets.  

For dynamic display tiling, one tablet (the base tablet) rests 
flat on a desk surface, and a second tablet (the connecting 
tablet) is held by a user and bumped into the base tablet 
along one of the four edges of its screen bezel. Note that 
this creates a hierarchy in the connection. The interaction 
metaphor is that the connecting tablet temporarily annexes 
the screen real estate of the base tablet; if either tablet is 
removed, the base tablet reverts to its previous state. The 
system distinguishes the base tablet from the connecting 
tablet using the touch sensors, since there is no need to hold 



 

the tablet resting flat on the desk. If both tablets are being 
held, the system instead uses bumping to support sharing 
information between the tablets (described later).  

 

 

 
Fig. 4 Time sequence for tiling two displays.  
Top Row: One display contains a panoramic image 
that does not fit the screen well, while the other is 
displaying a document. Middle: When the user 
bumps the displays together, the connecting tablet 
temporarily appropriates the screen real estate of 
the base tablet.  Bottom: When the user removes 
one of the tablets, the connection is broken and the 
base tablet reverts to its previous state. 
 

The combined information from the accelerometers allows 
the system to sense the command (tile the displays) as well 
as its parameters: the edge to tile along (left, right, top, 
bottom) and, in combination with the touch sensors, the 
direction (which computer “sends” and which “receives” 
information, using the connecting vs. base tablet 
distinction). Bumping naturally phrases together all of these 
parameters in a simple physical act that seems like a single 
cognitive chunk from the user’s perspective [5].  

When the system recognizes the docking of the tablets, the 
tablet which recognizes the synchronous gesture makes a 
short metallic clicking sound suggestive of a connection 
snapping together. It also displays an arrow pointing to the 
edge of the screen that the other tablet will dock to (Fig. 6, 
left). It then sends a message to its remote partner telling it 

to dock along the corresponding edge of its display. When 
the remote partner receives this message, it makes a 
different popping sound to indicate the completion of the 
connection. It also displays a smaller arrow pointing at the 
edge that the other display will dock to; both arrows 
automatically disappear after about two seconds. The size 
disparity of the arrows is meant to convey the hierarchy of 
the connection (connecting tablet vs. base tablet), although 
in informal demonstrations thus far this size difference 
seems to be a subtle cue that users can easily miss. We are 
experimenting with an animated arrow that appears to slide 
across the boundary between the two displays as a 
potentially more salient alternative.  

  

Fig. 5 Docking two displays vertically (before on 
left, after on right). The bottom tablet is the 
connecting tablet. 
 

Note that it is important for the remote device to provide its 
own feedback to let the user(s) know when both devices 
have agreed to the connection. The feedback often may 
appear to be simultaneous and redundant, but when there is 
a brief wireless networking drop-out the confirming 
feedback from the other device may appear a second or two 
later. If it does not appear then the user(s) know that the 
connection may have been lost. It also seems important to 
provide audio feedback in addition to visual feedback. 
Because the technique can involve more than one user, one 
user’s attention may not be on the tablets when docking 
occurs. Also, if a user is handling a tablet and a false 
positive recognition of docking were to occur, it seems 
important for the user to know about this so that the 
connection can be broken if desired.  

As stated previously the user can break the connection by 
removing one of the tablets. In practice this means each 
tablet looks for the connection to be broken by monitoring 
its local tilt and touch sensor data. If significant movement 



 

(sensed by comparing a time-decaying measure of changes 
to the tilt values to a simple threshold) occurs while the 
user is holding the tablet, the local system infers that the 
tablet has been moved away. If, however, the user releases 
the tablet before motion stops, this indicates that the user 
may simply be letting go of the tablet after docking, so the 
docking state is maintained in this case. Furthermore a short 
time-out is used after docking to ensure that the movement 
required to dock the tablets does not trigger an immediate 
(false positive) recognition of undocking.  

                          
Fig. 6 Feedback for docking and undocking 
displays. Left: An arrow at the docking edge of each 
tablet shows that a connection has been 
recognized. The connecting tablet has a larger 
arrow than the base tablet to show the hierarchy in 
the connection. Right: When a tablet is moved 
away, a “shattered” arrow is shown on each tablet 
to give the user feedback that the association has 
been broken.  
 

Once a tablet recognizes undocking, it sends a message 
telling its remote partner to also undock. The local tablet 
immediately plays a short and distinct breaking sound and 
shows a broken arrow on the screen (Fig. 6, right). The 
remote tablet provides the same feedback when it receives 
the message telling it to undock.  

Applications and Metaphors for Connecting Displays 
The author has implemented a photo viewer application that 
displays a small version of a photo on a single display. 
When docked to a second tablet, if the aspect ratio of the 
image is such that it can take advantage of the second 
display, the image expands to encompass the other display 
(covering whatever was previously on the screen there). If 
the image cannot make use of the additional screen real 
estate (e.g., the user docks another display horizontally to 
the left, but the photo viewer is currently displaying a 
vertical-format picture) the same image is shown on the 
other display for the other user to see more clearly. As 
another example, if a Microsoft Word document is 
displayed on the connecting tablet, upon docking the 
network path name to the document is sent to the base 
tablet. The base tablet displays the document and scrolls it 
to show the next page. Finally, another fun demo shows a 
ball that bounces off the edges of the screen; if two tablets 
are docked, the ball passes under the screen bezel and 
eventually appears on the screen of the other tablet.  

All of these examples create one large display space, with 
the connecting tablet acting as the “boss” that tells the base 
tablet what to display. Other metaphors for creating a 

shared display are possible, and selecting the best one may 
depend on the particular application or type of devices 
involved.  

Face-to-face Collaboration 
In the ConnecTables system, the displays can only be 
connected along the top edge. Since each display faces its 
user, the displays must start out rotated 180° from one 
another when they are connected. When joined, the 
ConnecTables create a shared workspace in which users 
can pass objects back and forth. 

In ongoing work we are exploring adding support for face-
to-face collaboration metaphors [15] such as that suggested 
by ConnecTables, but with a pair of mobile Tablet PC’s 
(the ConnecTables displays are fixed in place and cannot 
easily be picked up or moved around). When users bump 
the tops of two tablets together, instead of dynamic tiling, a 
shared whiteboard application for face-to-face collaboration 
is brought up on both tablets. With a pair of moveable 
tablets, it is possible to support fluid transitions between 
public, shared work when the tablets both rest on a desk, 
versus personal work when one or both users pick up their 
tablets to work with them separately. In this case, moving 
one tablet away does not break the connection; rather, it is 
maintained until a user explicitly disconnects, or walks out 
of the room. 

Another possible metaphor for collaboration is to share a 
document on the screen with another user when two tablets 
are bumped together. In the case where the “the same 
image is shown on the other display,” the photo viewer 
application used this metaphor. However, it does not 
explore this metaphor in depth, nor does it implement 
collaboration techniques to really take advantage of it.  

MUTUAL AND ONE-WAY SHARING OF INFORMATION 
Recall that dynamic display tiling uses the touch sensors to 
detect when one display is not being held, but is just resting 
on a flat surface. But what if both tablets are being held? 
The system uses this distinction to support a couple of 
techniques for sharing information between devices.  

Two held tablets can be bumped together to indicate a 
mutual desire to share information. Here, the metaphor is 
that of clinking glasses together for a toast. The technique 
supports a digital version of exchanging business cards. 
When both users bump their tablets together, each device 
passes the user’s home page to the other device and brings 
up that page in a web browser (Fig. 7). In informal 
demonstrations of this technique thus far, I have observed 
that users tend to just bump the corners of the two tablets 
together. When holding a tablet in midair users typically 
support it with both hands; thus for users standing side-by-
side, bumping an entire edge together may not be practical 
because one or both users’ hands may be in the way. It is 
hard to see how a system that relies on physical electro-
mechanical links (such as Triangles [12]) could support 
virtual connection of devices with this kind of casual 
“clinking” gesture. 



 

 

Fig. 7 Mutual sharing of information. If two users 
holding their tablets bump them together, the tablets 
perform a mutual exchange of information. Each 
device sends its owner’s home page address to the 
other tablet.  The image shows the screens of the 
two tablets after bringing up the web page for the 
other user. 
 

Upon recognizing the synchronous gesture, the system 
makes a brief sound suggestive of teleporting information 
to the other device. The system currently uses visual 
feedback similar to that for docking two tablets together 
(Fig. 6), but instead draws both arrows at the same size. 
However, in this case there is no hierarchy to the 
connection, and the edge used to bump the tablets together 
does not matter, so the system probably should show more 
clearly distinct feedback in this case.  

A variation of this technique allows one-way sharing of 
information suitable for copy/paste operations. A user can 
“pour” information from his tablet into another user’s tablet 
by tilting his tablet up when bumping with the other user’s 
tablet. If the tablet is tilted more than 15 degrees relative to 
the other tablet when the users bump tablets, the software 
sends the clipboard information to the other device. The 
tablet receiving the clipboard data makes the sound of 
water dripping in a pool to suggest the pouring metaphor. 
The system does not yet implement sending the actual 
clipboard contents to the other device; currently a web page 
showing hypothetical clipboard contents is brought up on 
the receiving device to demonstrate the technique.  

SOFTWARE IMPLEMENTATION ISSUES 
The current system implementation is limited to a pair of 
devices. Synchronous gesture recognition only needs to 
occur on one of the two devices. When a synchronous 
bump is detected, that device informs its remote partner of 
the gesture and its various parameters. Readers not 
interested in the mechanics of how synchronous gestures 
are implemented and recognized can safely skip ahead to 
the DISCUSSION section.  

Time Synchronization 
Synchronous gestures must determine which samples from 
a local and remote device are truly “synchronous” in the 
presence of network delays. Our implementation uses a 
simple message passing scheme to synchronize time to 
within about 50 ms, but much better algorithms can be 
implemented for wireless devices. The Reference Broadcast 
Synchronization (RBS) algorithm enables synchronization 
to  within less than a millisecond [11]. Implementing RBS 

may allow our system to more easily reject undesired 
accelerometer signals that might randomly arrive from 
separate machines close together in time, but which do not 
actually occur at the same instant, as with intentional 
bumping.  

Alignment of Time Frames during Gesture Recognition 
The remote device buffers its own accelerometer samples 
and, every 100ms, sends whatever new samples have 
accumulated to the “server” tablet which performs 
synchronous gesture recognition. The server tablet buffers 
several seconds worth of time stamped accelerometer data 
from the remote device and compares it to time stamped 
accelerometer data from the local machine. Since reception 
of remote data may be subject to random network delays 
and momentary drop-outs in wireless connectivity, gesture 
recognition occurs by discrete event simulation rather than 
in real time. That is, the software delays handling of local 
samples until samples with the same synchronized time 
stamp arrive from the remote machine. It then uses the time 
stamps to handle individual samples in order, until there are 
no more samples of the same age or older than the most 
recently received remote sample. 

From the user’s perspective, however, unless there is an 
abnormally long network drop-out, recognition appears to 
occur in real time. The system will only miss a synchronous 
gesture if the drop-out lasts longer than the available buffer 
space to store local and remote samples. 

Synchronous Bumping Recognition Algorithm 
The system currently employs a deterministic algorithm to 
recognize synchronous spikes in the accelerometer data 
from a pair of devices. Given natural variations in user 
performance, the algorithm requires some flexibility to 
reliably sense when the user intentionally brings two tablets 
together, but the algorithm cannot be too flexible or else 
other naturally occurring patterns (shaking, handling, or 
putting down devices) may be interpreted as “bumping.” 

The algorithm operates by keeping track, for each sensing 
axis on each local-remote pair of devices, of whether or not 
the signal is currently above a running average by a 
threshold (10 degrees) or below the running average by the 
same threshold. Every time the signal passes through these 
thresholds, it generates a transition. These transitions are 
then used to gradually fill out the following data structure 
as local and remote samples are handled in sequence.  

typedef struct { 
   bool rising_edge;   // edge passed thresh? 
   double rise_peak_t; // time of peak magnitude 
   float peak_mag; // peak magnitude  
   bool found_one_spike; // seen a spike? 
   double spike_found_t; // time spike found 
   float sync_bump_mag;  // magnitude of sync bump 
} BumpInfo; 

BumpInfo transitions[2][2][2]; 

The transitions array of BumpInfo structures creates 
one instance of the data structure for each of 8 cases: spikes 



 

on the local or remote device, on the left-tight or forward-
back axis, and above or below the running average. 

Once a signal transitions past the running average 
threshold, the rising_edge flag is set true and the 
peak_mag (peak magnitude of a spike after crossing the 
threshold) and rise_peak_t (time stamp of the peak 
magnitude) are initialized using the current sample. If 
subsequent samples rise further beyond the threshold then 
these members are both updated.  

If a peak above the running average is wider than the 
62.5ms timeout TOUT_TOO_LONG, it is ignored. This 
restricts the algorithm to look for narrow, sharp spikes 
typical of impact forces. Otherwise, as soon as the peak 
drops below the running average, the found_one_spike 
flag is set true and spike_found_t is set to the time that 
this spike was recognized. At this point, the code checks the 
BumpInfo structure to see if a spike on the other tablet has 
been recorded. If so it calculates the synchronicity of the 
spikes by subtracting the respective spike_found_t 
members. If the synchronization of the spikes falls within a 
50ms window TOUT_MAX_SYNC, the spike is recorded as a 
candidate for a true “synchronous bump” with 
sync_bump_mag set to the peak_mag of this spike.  

Once a candidate for a synchronous bump is identified, the 
algorithm continues to look at additional samples for the 
following 200ms timeout TOUT_CHOOSE_BEST_SYNC. If a 
candidate with a larger peak magnitude is found, it replaces 
the previous candidate. This behavior allows the algorithm 
to seek out the most significant spike, rather than taking the 
first one which exceeds the threshold. If it did not wait to 
seek further candidates, the algorithm would face a race 
condition where the first sample over threshold always 
“wins” even if other spikes are more representative of the 
actual gesture made by the user. This is a real concern 
because there may be some excitation of the orthogonal 
axis of the accelerometer. If this happens to exceed the 
running average threshold, it may lead the software to 
incorrectly determine which edge of the tablet the user 
bumped into; waiting for the best candidate in a small time 
window allows most such errors to be avoided. 

The algorithm introduces a couple of other criteria to weed 
out false positives for synchronous bumps that may be the 
result of handling two tablets at the same time. If both 
sensing axes of the accelerometer observe large peaks, this 
suggests the contact force is not primarily along any one 
axis, so it is ignored. If a large number of candidates are 
observed, this indicates a repeated vibratory signal, and is 
also ignored. With an actual “synchronous bump” typically 
only 3-4 viable peaks will be observed. Bumps are also 
ignored if neither device is being held (touched) by a user. 
Finally, to avoid responding to accidental double-strikes, 
once a synchronous bump is recognized, all further bumps 
are ignored for TOUT_IGNORE_AFTER_SYNC = 750ms. 

A final detail is choosing when to re-initialize the data 
structures. We currently completely clear out the array of 
BumpInfo structures and the list of synchronous bump 
candidates whenever a synchronous bump is recognized as 
the best candidate within the TOUT_CHOOSE_BEST_SYNC 
time window, or if no synchronous bump is detected, 
whenever TOUT_INITIALIZE = 1000ms have passed since 
the last observed transition.  

Once a synchronous bump has been identified, the edges of 
the tablets involved in the collision can be identified using 
the table of Fig. 8. Here, the Device column refers to either 
the connecting device held by the user, or the base device 
resting on a desk (struck by the held device). Direction 
refers to the direction of the spike with the highest 
magnitude above or below the running average threshold. 

Device Axis Direction 
Result  

(edge to dock) 
Connecting Left-Right Above 
Base Left-Right Below 

Right edge 

Connecting Left-Right Below 
Base Left-Right Above 

Left edge 

Connecting Fwd-Back Below 
Base Fwd-Back Above 

Bottom edge 

Connecting Fwd-Back Above 
Base Fwd-Back Below 

Top edge 

Connecting Fwd-Back Above 
Base Fwd-Back Above 

Face-to-face 
collaboration [15] 

 
Fig. 8 Table giving mapping of observed 
synchronous spikes, above or below the running 
average threshold, for each device and 
accelerometer sensing axis.  
 

Limitations 
The proposed recognition algorithm and system hardware is 
certainly not perfect. When intentionally bumping tablets 
together, the system occasionally recognizes the correct 
axis of the bump, but gets the direction wrong. This can 
occur if significant positive and negative spikes both result 
from the impact. Since the algorithm does not respond to 
the first spike, but only to the spike with the greatest 
magnitude within a small time window, if the “bounce 
back” from the impact has a greater magnitude than the 
initial impact itself, this problem will occur. Although it 
occurs very infrequently, it may be necessary to increase 
the sampling rate of the hardware to completely eliminate 
this problem.  

Since the algorithm is based on simple crossings of a 
running-average threshold, a more significant limitation is 
that it is susceptible to recognition of “spikes” in signals 
that are not truly representative of bumping a pair of tablets 
together. One simple way to eliminate many false-positives 
is to keep timeout windows such as TOUT_TOO_LONG and 
TOUT_MAX_SYNC as narrow as possible, yet still wide 
enough to admit variations in user performance, and to 
accommodate errors in time synchronization. We expect 



 

that implementation of RBS [11], as well as further 
refinements to filter out undesired signals, will be necessary 
for a more robust implementation.  

DISCUSSION 
Informal Demonstrations 
We have not conducted careful usability studies, but in 
informal demonstrations to date with research colleagues, 
people readily grasp the idea and find it easy to bump two 
objects together in a manner that can be sensed by the 
system. People seem to like the idea of gaining more screen 
real estate by combining multiple tablets. People also seem 
to like the visual feedback and the brief, distinctive sounds.  
Only more careful user testing can help reveal what kind of 
metaphors users would expect when sharing displays, or if 
usability problems might arise from the technique of one 
device annexing the display of another. 

A common concern people raise is that bumping might 
damage the hard disk on the tablet. But hard disks on 
mobile devices are designed to survive day to day handling 
of the device, and a fairly gentle tap is enough for our 
sensors to pick up, so great force is not necessary. The 
system currently uses a 10-degree deviation in tilt as the 
minimum threshold for a “bump”, which translates to an 
acceleration of 0.17 units of gravity (g). A bumping 
threshold as small as 2 degrees (.035g) can be sensed, 
which is an almost imperceptibly light tap from the user’s 
perspective. However, such a low threshold currently 
causes the software to recognize too many “false” 
synchronous bumping signals, so we default to a higher, 
more deliberate force.  

We have found that relying solely on the touch sensor to 
determine the direction (the base device vs. connecting 
device distinction) usually works well, but it sometimes 
leads to problems. For example, if one user rests her device 
on the desk, but leaves her hand in contact with it, and 
another user then connects to it, this is interpreted as 
sharing information (since both devices are being touched) 
rather than dynamic display tiling. By looking more 
carefully at the accelerometer data before and after a 
synchronous bump, it should be possible to determine 
which device was moving and which was stationary, which 
seems to more closely match user expectations. 

Extension to More Than Two Devices 
At this time the software only implements synchronous 
gesture detection between a pair of devices, but we are 
working to support additional devices. For example, it 
should be possible to bring four tablets together to form a 
2x2 tiled display. One implementation hurdle is to correctly 
handle sequences of connections, which we call the 
“transitive bumping” problem. For example, if two devices 
are tiled side by side, and then a third display is added to 
make a 1x3 tiled display, the force of bumping the third 
tablet may be transmitted through the middle display and 
picked up by the display at the other end (which was not 
physically bumped). However, it should be easy to 

determine which device was actually struck by keeping 
track of the topology of existing connections. 

Scope of Synchronous Partners 
With a large number of devices, looking for synchrony 
could overload limited wireless network or mobile device 
CPU resources, and also increase the possibility of false 
positive recognition of “synchrony” through pure chance. If 
a set of n devices attempts to synchronize with every other 
device, then there are n2 one-way connections to consider. 
In practice, each pair of devices only needs to compute 
synchrony once, so there are n(n-1)/2 possible synchronies. 
Computing synchrony seems feasible for on the order of 10 
devices, but may be computationally prohibitive or subject 
to increasing rates of false positive recognition if hundreds 
or thousands of devices must be considered.  

The current synchronous gestures implementation does not 
address this problem, but clearly some way to restrict the 
scope of potential partners for synchrony would be required 
for a large-scale implementation of synchronous gestures. 
Forcing users to explicitly select a set of connected devices 
to form a “synchronous gesture group” could work, but 
places responsibility for this task on the users.  

Automatic techniques for restricting the scope of potential 
synchronies might be as simple as limiting communication 
to the set of wireless devices visible to the 802.11 wireless 
network access point with the highest signal strength. This 
might be further refined through location triangulation 
using 802.11 signal strengths, thus limiting searches for 
synchronous gestures to other proximal devices. A possible 
difficulty comes from uncertainty in this data, e.g., two co-
located devices might fail to search for synchrony due to 
error in location estimates.  

Synchronous Bumping vs. Location/Proximity Sensing 
As discussed above, synchronous gestures seem to depend 
on some form of scoping or proximity detection as an 
enabling technology to restrict the number of devices which 
must be considered. If proximity or location sensing exists 
in support of synchronous gestures, then why bother with 
computing synchronicity at all? It is possible to connect 
two devices if they are merely proximal to one another. 
However, if a multitude of devices exists in the same 
proximity, how does a user specify which devices to 
connect to, and how does the system know the spatial 
relationship between them?  

Merely having two devices near one another does not 
necessarily indicate that the users have any desire or 
intention to share information. What bumping via 
synchronous gestures offers on top of proximity detection is 
an explicit step of intentionality that the user has control 
over. Bumping removes the need for the user to select a 
device from a list of numerous devices (as required by 
proximal selection [24]); with the synchronous gesture of 
bumping two tablets together, the selection is done in the 
physical world by manipulating the actual objects of 
concern. It also provides additional information: with 



 

proximity, it is not clear which edge of a tablet should be 
docked, nor is there any hierarchy in the connection. 
Finally, the technology enables support for actions other 
than display tiling, such as sharing or pasting information 
between tablets, or establishing face-to-face collaboration 
[15]. It is hard to see how proximity alone could support all 
of these behaviors without burdening the user with 
additional decisions and selection actions.  

Software Infrastructure Issues 
Mechanisms implemented in the Context Toolkit [9] or the 
Event Heap [21] to support distributed sensors might 
simplify implementation of synchronous gestures. Our 
system infrastructure is based on passing a message in real 
time whenever a sensor changes values, but 
synchronization between local and remote devices 
implicitly means that the software must deal with the 
history of recent sensor values, rather than just the most 
recent value. In this regard, the mechanisms proposed by 
DEMIS [20] for saving and accessing a history of sensor 
values using time intervals seem like they would be useful. 
Platforms for distributed multimedia sensing and control 
such as Aura [8] may also contain useful lessons and 
abstractions for synchronous gestures.  

In our architecture, a Context Server resides on each 
machine and handles all of the local sensor data [16], as 
well as all TCP/IP network communication with remote 
devices. Client applications can send messages via the 
Context Server to a remote partner established through a 
synchronous gesture. This makes it easy for client 
applications to exchange information and insulates them 
from all details of the network connection. This is useful 
not only to reduce complexity in the client applications, but 
also allows the Context Server to hide the identity of the 
remote device, while still allowing messages to be passed.  

Additional Possibilities for Synchronous Gestures 
A number of future possibilities for synchronous gestures, 
beyond bumping, exist: 

Synchronous gestures based on human-human 
communication and body language. In human-human 
interaction, there are many examples of familiar, naturally 
occurring synchronous or sequenced behaviors in body 
language and interpersonal communication. These naturally 
occurring gestures could be sensed and used as implicit 
contextual cues to augment human-human or human-
computer interaction. For example, accelerometer-
augmented watches could sense when two users shake 
hands, and use that information to exchange digital 
business cards. Other examples include two persons bowing 
to one another, people turning to face one another, or 
sensing when one user’s body language imitates that of 
another. It may be possible to derive measures of group 
activity at meetings by sensing the activity of users carrying 
sensor-augmented devices. Interpersonal behaviors might 
also suggest points of departure for analogous but artificial 
synchronous gestures to facilitate human-computer 
interaction. The Sociometer [7] is one example of work that 

senses these kinds of cues, although at present the 
Sociometer system does not use them to support real-time 
interaction techniques.  

Synchronous Gestures from Commonly Available Devices. 
This paper primarily considers synchrony between mobile 
devices augmented with custom sensors, but there may be 
opportunities to exploit synchronicity using ordinary input 
devices. For example, two users could press and release 
buttons at the same time to connect their devices, or 
perhaps mice from two different computers could be 
brought together until they collide, with the system 
software looking for simultaneous cessation of movement 
on both mice. We are also investigating the use of pen input 
to enable gestures that span multiple Tablet PC’s. Such 
actions might be useful to simulate our synchronous 
bumping gesture on systems without any special sensors, to 
implement techniques such as Pick and Drop without 
requiring a unique ID on the stylus [23], or to support 
completely new techniques.  

CONCLUSIONS AND FUTURE WORK 
This research proposes synchronous gestures as a new 
interaction metaphor for distributed sensing systems. There 
have been few interaction techniques exploiting synchrony 
between multiple users and multiple devices, so identifying 
this area and demonstrating practical applications 
contributes to the literature and may spur development of 
further techniques. Synchronous gestures implemented in 
the current system include dynamic display tiling, sharing 
information by bumping together mutually held tablets, or 
pasting information from one tablet to another by angling 
one tablet down while making contact. The present system 
demonstrates an implementation of synchronous gestures 
and suggests avenues for further development. 

Although the techniques explored in this paper employ real-
time recognition strategies, if sufficient memory exists to 
store all samples, synchrony could even be determined in 
the absence of constant wireless connectivity by detecting 
synchrony at a later time when both devices become 
connected to the network again. When bumping two tablets 
together to share information, for example, delayed 
recognition of synchrony might be useful to users who want 
to protect their privacy and explicitly give the OK to pass 
the information at a later time.  

Although the present system explores synchronous 
bumping only for tablet computers, it should also be 
applicable to bumping between mulitiple dissimilar devices 
such as PDA’s, cell phones, watches, or digital cameras. 
The user’s expectations and possible semantics of bumping 
with dissimilar devices may be very different from 
bumping homogeneous devices together. Pierce et al. are 
currently exploring opportunistic annexing [22], which will 
enable users to dynamically bind together multiple 
input/output resources in a ubiquitous computing 
environment. Bumping objects together may offer a 
compelling and simple way for a mobile user to combine, 



 

for example, a PDA, a keyboard, and a large display to 
quickly enter text and view documents while away from his 
or her desk.  

Disparity in mass may make bumping between dissimilar 
objects harder to detect, but simple tests of bumping a  
PDA into our sensor-augmented tablet computer, for 
example, suggest that the accelerometer on the tablet can 
detect this signal even though the PDA is much less 
massive. Hence there seem to exist many promising but as 
yet unexplored possibilities for opportunistic annexing 
using bumping or other synchronous gestures. 
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