

Synchronous Gestures for Multiple Persons and Computers

Ken Hinckley
Microsoft Research, One Microsoft Way, Redmond, WA 98052

{kenh}@microsoft.com

ABSTRACT
This research explores distributed sensing techniques for
mobile devices using synchronous gestures. These are
patterns of activity, contributed by multiple users (or one
user with multiple devices), which take on a new meaning
when they occur together in time, or in a specific sequence
in time. To explore this new area of inquiry, this work uses
tablet computers augmented with touch sensors and two-
axis linear accelerometers (tilt sensors). The devices are
connected via an 802.11 wireless network and synchronize
their time-stamped sensor data. This paper describes a few
practical examples of interaction techniques using
synchronous gestures such as dynamically tiling together
displays by physically bumping them together, discusses
implementation issues, and speculates on further
possibilities for synchronous gestures.

Keywords
Distributed sensor systems, context awareness, ubiquitous
computing, multi-user interfaces, input devices, sensors

INTRODUCTION
Humans have evolved to function within a fabric of social
connections and collaboration. People work on problems in
groups, and indeed the entire field of computer-supported
collaborative work (CSCW) is devoted to technological
support of such groups. Many user tasks and activities
revolve around communication, which inherently involves
at least two persons. Furthermore, with the burgeoning use
of the internet, and research trends in ubiquitous computing
and distributed systems, human-computer interaction often
involves more than one computer. Yet the literature offers
few examples of real-time interaction techniques that
leverage the simultaneous data streams generated by
multiple users and multiple computers.

This research introduces the general concept of
synchronous gestures, which as defined above are patterns
of activity spanning a distributed system that take on a new
meaning when they occur together in time. These patterns
could literally occur in parallel and in exact synchrony, or
they just might be partially overlapped or even occur in a
particular sequence. The key is that complementary
portions of a signal are contributed by different devices or
participants, and that the signal can only be recognized
when these portions are brought together.

(b)(b)(b)(b)(b)(b)(b)(b)

Fig. 1 (a) A user can bump a tablet into another
one resting on a desk. The software recognizes the
gesture by synchronizing the two accelerometers
across a wireless network. (b) The tablet moved by
the user annexes the display of the stationary tablet,
allowing a panoramic image to span both displays.

Sensor fusion is a related concept, but generally sensor
fusion refers to the use of multiple sensors in a single
system to robustly detect properties of the physical
environment. Synchronous gestures also involve multiple
sensors, but the sensors come from multiple devices which
are physically disaggregated, and may belong to different
persons and thus compromise a unitary system only in the
sense that they can communicate via a wireless network.

To demonstrate the practical utility of synchronous gestures
this work proposes dynamic display tiling, a new technique
which enables users to tile together the displays of multiple
tablets just by physically bumping a tablet into another one
lying flat on a desk (Fig. 1). Bumping generates equal and
opposite hard contact forces that are simultaneously sensed
by the accelerometer on each tablet. The two orthogonal
sensing axes of each accelerometer provide enough
information to determine which edges of the tablets have
collided, allowing tiling of displays along any edge (left,
right, top, or bottom). Picking up a tablet removes it from
the shared display. Users can also exchange information by

 To appear in:

 UIST 2003 Symposium on User
Interface Software & Technology

(a)

bumping tablets together just as people at a dinner table
might clink glasses together for a toast. This is
distinguished from display tiling by sensing that both
tablets are held (as opposed to one being stationary on a
desk). Finally, one user can “pour” data from his tablet into
that of another user by angling the tablet down when the
users bump their tablets together.

Synchronous gestures represent a little-explored area that
may offer much promise. This paper contributes an
articulation and discussion of the general concept of
synchronous gestures that has not appeared in the literature.
We also contribute implementation issues and novel
techniques which may spur further interest in and
development of real-time distributed sensing techniques.

RELATED WORK
There are few previous examples of synchronous gestures.
One example of a real-time interaction technique based on
multi-device synchrony is the “Smart-Its Friends”
technique [18], which allows a user to connect a pair of
accelerometer-augmented handheld devices by holding the
two devices together and shaking them. The device shares
the data with other devices within range of its radio
frequency transmitter, and looks for an identical pattern on
the accelerometers to infer a shared context and establish a
privileged connection between the two shaken devices.

There have been several efforts to sense social interactions
between people. The Sociometer [7] is a wearable
computing platform that uses post-hoc data analysis to
sense when face-to-face interactions have occurred; for
example, the system can sense that two people talked to one
another using the mutual information of the voice streams.

Instant messaging and videoconferencing systems (such as
the Portholes system [10]) often benefit from sensing user
presence and making this available to other users. The
Notification Platform [19] coordinates sensor information
(mouse and keyboard activity, microphones, and cameras)
from multiple devices to optimize delivery of messages.
Distributed simulations and networked games must
synchronize and serialize events from multiple computers.
Chen et al. [6] use microphones from multiple wirelessly
connected PDA’s to perform sound localization via time
difference of arrival. Synchronous gestures require
synchronization and serialization for correct
implementation, but go beyond these mechanisms to
support new interaction techniques.

ConnecTables [25] are wheeled tables with mounted LCD
displays that can be rolled together so that the top edges of
two LCD’s meet. The devices then recognize one another
through an RFID tag and RFID reader mounted on each
device. The Triangles system [12] employs special
connectors along edges of triangular elements to achieve
communication between discrete objects. Connecting
Triangles allows the user to construct a storyline or express
a series of operations.

The ConnecTables technique allows a pair of displays to be
shared along one edge only. Triangles can be connected
along any edge, but require multiple electrical elements
along each edge. Dynamic display tiling allows multiple
tablets to be connected along any edge using a single
inexpensive accelerometer and touch sensors on each tablet.
These sensors are not dedicated to this purpose, and have
other compelling single-user applications, such as using tilt
to scroll documents or automatically change the screen
orientation (e.g. [14][16]). Note also that neither
ConnecTables nor Triangles explore synchronous gesture
detection. On ConnecTables, for example, each table’s
RFID reader alone can determine all the information
necessary to know which display to communicate with.

Grudin reports typical use and design issues for multi-
monitor display systems [13]. Interaction techniques that
tile multiple tablets together might benefit from some of
these design insights.

Several techniques have been proposed to share
information between devices. Pick and Drop [23] uses a
stylus with a unique ID to perform copy and paste
operations between computers. The HyperPalette [2] uses a
tilting motion to drop data from a PDA onto a work surface.

A number of technologies and techniques for discovering
and using nearby devices have been proposed. Proximal
selection [24] allows the user to choose from nearby
devices to perform an action (e.g. print on a nearby printer).
Wireless connection standards such as Bluetooth include
discovery mechanisms. The RADAR technique senses
location via triangulation of 802.11 wireless network RF
signal strengths [3]. Synchronous gestures such as bumping
tablets together or shaking devices (Smart-Its Friends [18])
represent an additional indication of user intent, beyond
mere proximity, to form a privileged connection. By the
same token, proximity sensing or other mechanisms to limit
the scope of potential pair wise synchronies that must be
computed may form an important building block for
practical implementation of synchronous gestures.

SYSTEM COMPONENTS AND SENSING HARDWARE
The system is implemented on Toshiba Portege Tablet PC’s
with built-in 802.11 wireless networking. The techniques
described in this paper use the tablets exclusively in the
slate mode. The sensing hardware uses a custom sensor
board (evolved from [16]) with an Analog Devices
ADXL202 two-axis linear accelerometer [1] to sense left-
right and forward-back tilting of the tablet relative to
gravity. This sensor registers sharp spikes when two tablets
are bumped together. To reliably sense the direction and
magnitude of such spikes, the system maintains a sampling
rate of 120Hz, and sets the accelerometer’s bandwidth to
10Hz. The system also uses a pair of touch sensors [4][17]
to determine when a user is holding the tablet. These are
simply strips of conductive material on the left and right
sides of the tablet.

BUMPING AS A SYNCHRONOUS GESTURE
To understand the possibilities for and limitations of
interaction techniques based on bumping, it is helpful to see
what types of signals are generated, as well as to consider
undesired signals that may potentially look like bumping.

Fig. 2 shows example data from a user holding one tablet
(“local device”) and bumping it into another tablet lying on
a desk (“remote device”). Each tablet experiences a roughly
equal but opposite pattern of forces. Note that striking the
left side of a tablet versus striking the right side results in a
similar sensor pattern, but with spikes in the opposite
direction. This allows the system software to determine
which side of each tablet has made contact.

Fig. 2 Accelerometer signatures for bumping two
tablets together, with forward-back and left-right
accelerometer axes for the local and remote
devices. Left: Bumping the left side of a device flat
on the table with a held device. The left-right
accelerometer axes exhibit characteristic spikes
resulting from equal and opposite contact forces.
Note the forward-back axes exhibit no significant
response. Right: Bumping the right side of the
device flat on the table. The spikes are in the
opposite direction of a left-side bump.

Because the tablets are rectangular, bumping an edge of the
tablet will primarily excite only one axis of the
accelerometers. The second orthogonal forward-back
sensing axis is also plotted in Fig. 2, but it has almost no
response to the left-right impacts shown in the figure.
Hence, the sensing axis with the largest response to the
bump distinguishes top and bottom bumps from left and
right side bumps.

With the current prototypes, it is awkward to bump the
bottom edge of one tablet into the top edge of another,
because of the protruding sensor board (on top) and USB
connector (on bottom). However, bumping along this edge
is still possible by bringing together those portions of the
top and bottom edges without any protrusions. In future
refinements we plan to eliminate these protrusions.

As a practical matter for gesture recognition, the signatures
may not always be as clean as those shown in the plots of
Fig. 2. For example, if the tablets are angled slightly as they
bump together, there may be one impact from one corner of

a tablet making contact, followed very quickly by a second
impact from the other corner striking the same edge of the
tablet. Or, if a user is a bit over-zealous and bumps the
tablets together forcefully, there can be a significant bounce
back in the opposite direction as well.

Another potential set of problems results from unintentional
signals that may resemble intentional bumping together of
tablets (Fig. 3). For example, spikes, peaks, or humps in the
accelerometer data can occur if the user bumps into a desk
surface that both tablets are resting on, or if two users move
their tablets at the same time. Requiring spikes that are
tightly synchronized in time filters out many such signals.
Another simple criterion the software uses to reject
undesired signals is to ignore any spikes that occur when
neither of the pair of tablets is being held (as detected by
the touch sensors). Further details of the recognition
algorithm appear later in this paper.

Fig. 3 Example accelerometer patterns for some
non-bumping signals. Left: Banging on a desk
causes multiple spikes exciting both axes of both
accelerometers. Right: Handling both tablets at the
same time produces waves or peaks on both
sensing axes.

DYNAMIC DISPLAY TILING VIA BUMPING
Interaction with mobile devices is often constrained by the
available screen real estate. Dynamic display tiling is a new
interaction technique that enables multiple users (or one
user with multiple devices) to combine independent devices
to create a temporary larger display. This can be done
horizontally (Fig. 4) or vertically (Fig. 5). Users can tile
tablets together by bumping one tablet against another one
resting on a desk or in a user’s lap. Dynamic display tiling
offers a promising application area for the synchronous
gesture of bumping two devices together. Users can easily
break the connection by removing one of the tablets.

For dynamic display tiling, one tablet (the base tablet) rests
flat on a desk surface, and a second tablet (the connecting
tablet) is held by a user and bumped into the base tablet
along one of the four edges of its screen bezel. Note that
this creates a hierarchy in the connection. The interaction
metaphor is that the connecting tablet temporarily annexes
the screen real estate of the base tablet; if either tablet is
removed, the base tablet reverts to its previous state. The
system distinguishes the base tablet from the connecting
tablet using the touch sensors, since there is no need to hold

the tablet resting flat on the desk. If both tablets are being
held, the system instead uses bumping to support sharing
information between the tablets (described later).

Fig. 4 Time sequence for tiling two displays.
Top Row: One display contains a panoramic image
that does not fit the screen well, while the other is
displaying a document. Middle: When the user
bumps the displays together, the connecting tablet
temporarily appropriates the screen real estate of
the base tablet. Bottom: When the user removes
one of the tablets, the connection is broken and the
base tablet reverts to its previous state.

The combined information from the accelerometers allows
the system to sense the command (tile the displays) as well
as its parameters: the edge to tile along (left, right, top,
bottom) and, in combination with the touch sensors, the
direction (which computer “sends” and which “receives”
information, using the connecting vs. base tablet
distinction). Bumping naturally phrases together all of these
parameters in a simple physical act that seems like a single
cognitive chunk from the user’s perspective [5].

When the system recognizes the docking of the tablets, the
tablet which recognizes the synchronous gesture makes a
short metallic clicking sound suggestive of a connection
snapping together. It also displays an arrow pointing to the
edge of the screen that the other tablet will dock to (Fig. 6,
left). It then sends a message to its remote partner telling it

to dock along the corresponding edge of its display. When
the remote partner receives this message, it makes a
different popping sound to indicate the completion of the
connection. It also displays a smaller arrow pointing at the
edge that the other display will dock to; both arrows
automatically disappear after about two seconds. The size
disparity of the arrows is meant to convey the hierarchy of
the connection (connecting tablet vs. base tablet), although
in informal demonstrations thus far this size difference
seems to be a subtle cue that users can easily miss. We are
experimenting with an animated arrow that appears to slide
across the boundary between the two displays as a
potentially more salient alternative.

Fig. 5 Docking two displays vertically (before on
left, after on right). The bottom tablet is the
connecting tablet.

Note that it is important for the remote device to provide its
own feedback to let the user(s) know when both devices
have agreed to the connection. The feedback often may
appear to be simultaneous and redundant, but when there is
a brief wireless networking drop-out the confirming
feedback from the other device may appear a second or two
later. If it does not appear then the user(s) know that the
connection may have been lost. It also seems important to
provide audio feedback in addition to visual feedback.
Because the technique can involve more than one user, one
user’s attention may not be on the tablets when docking
occurs. Also, if a user is handling a tablet and a false
positive recognition of docking were to occur, it seems
important for the user to know about this so that the
connection can be broken if desired.

As stated previously the user can break the connection by
removing one of the tablets. In practice this means each
tablet looks for the connection to be broken by monitoring
its local tilt and touch sensor data. If significant movement

(sensed by comparing a time-decaying measure of changes
to the tilt values to a simple threshold) occurs while the
user is holding the tablet, the local system infers that the
tablet has been moved away. If, however, the user releases
the tablet before motion stops, this indicates that the user
may simply be letting go of the tablet after docking, so the
docking state is maintained in this case. Furthermore a short
time-out is used after docking to ensure that the movement
required to dock the tablets does not trigger an immediate
(false positive) recognition of undocking.

Fig. 6 Feedback for docking and undocking
displays. Left: An arrow at the docking edge of each
tablet shows that a connection has been
recognized. The connecting tablet has a larger
arrow than the base tablet to show the hierarchy in
the connection. Right: When a tablet is moved
away, a “shattered” arrow is shown on each tablet
to give the user feedback that the association has
been broken.

Once a tablet recognizes undocking, it sends a message
telling its remote partner to also undock. The local tablet
immediately plays a short and distinct breaking sound and
shows a broken arrow on the screen (Fig. 6, right). The
remote tablet provides the same feedback when it receives
the message telling it to undock.

Applications and Metaphors for Connecting Displays
The author has implemented a photo viewer application that
displays a small version of a photo on a single display.
When docked to a second tablet, if the aspect ratio of the
image is such that it can take advantage of the second
display, the image expands to encompass the other display
(covering whatever was previously on the screen there). If
the image cannot make use of the additional screen real
estate (e.g., the user docks another display horizontally to
the left, but the photo viewer is currently displaying a
vertical-format picture) the same image is shown on the
other display for the other user to see more clearly. As
another example, if a Microsoft Word document is
displayed on the connecting tablet, upon docking the
network path name to the document is sent to the base
tablet. The base tablet displays the document and scrolls it
to show the next page. Finally, another fun demo shows a
ball that bounces off the edges of the screen; if two tablets
are docked, the ball passes under the screen bezel and
eventually appears on the screen of the other tablet.

All of these examples create one large display space, with
the connecting tablet acting as the “boss” that tells the base
tablet what to display. Other metaphors for creating a

shared display are possible, and selecting the best one may
depend on the particular application or type of devices
involved.

Face-to-face Collaboration
In the ConnecTables system, the displays can only be
connected along the top edge. Since each display faces its
user, the displays must start out rotated 180° from one
another when they are connected. When joined, the
ConnecTables create a shared workspace in which users
can pass objects back and forth.

In ongoing work we are exploring adding support for face-
to-face collaboration metaphors [15] such as that suggested
by ConnecTables, but with a pair of mobile Tablet PC’s
(the ConnecTables displays are fixed in place and cannot
easily be picked up or moved around). When users bump
the tops of two tablets together, instead of dynamic tiling, a
shared whiteboard application for face-to-face collaboration
is brought up on both tablets. With a pair of moveable
tablets, it is possible to support fluid transitions between
public, shared work when the tablets both rest on a desk,
versus personal work when one or both users pick up their
tablets to work with them separately. In this case, moving
one tablet away does not break the connection; rather, it is
maintained until a user explicitly disconnects, or walks out
of the room.

Another possible metaphor for collaboration is to share a
document on the screen with another user when two tablets
are bumped together. In the case where the “the same
image is shown on the other display,” the photo viewer
application used this metaphor. However, it does not
explore this metaphor in depth, nor does it implement
collaboration techniques to really take advantage of it.

MUTUAL AND ONE-WAY SHARING OF INFORMATION
Recall that dynamic display tiling uses the touch sensors to
detect when one display is not being held, but is just resting
on a flat surface. But what if both tablets are being held?
The system uses this distinction to support a couple of
techniques for sharing information between devices.

Two held tablets can be bumped together to indicate a
mutual desire to share information. Here, the metaphor is
that of clinking glasses together for a toast. The technique
supports a digital version of exchanging business cards.
When both users bump their tablets together, each device
passes the user’s home page to the other device and brings
up that page in a web browser (Fig. 7). In informal
demonstrations of this technique thus far, I have observed
that users tend to just bump the corners of the two tablets
together. When holding a tablet in midair users typically
support it with both hands; thus for users standing side-by-
side, bumping an entire edge together may not be practical
because one or both users’ hands may be in the way. It is
hard to see how a system that relies on physical electro-
mechanical links (such as Triangles [12]) could support
virtual connection of devices with this kind of casual
“clinking” gesture.

Fig. 7 Mutual sharing of information. If two users
holding their tablets bump them together, the tablets
perform a mutual exchange of information. Each
device sends its owner’s home page address to the
other tablet. The image shows the screens of the
two tablets after bringing up the web page for the
other user.

Upon recognizing the synchronous gesture, the system
makes a brief sound suggestive of teleporting information
to the other device. The system currently uses visual
feedback similar to that for docking two tablets together
(Fig. 6), but instead draws both arrows at the same size.
However, in this case there is no hierarchy to the
connection, and the edge used to bump the tablets together
does not matter, so the system probably should show more
clearly distinct feedback in this case.

A variation of this technique allows one-way sharing of
information suitable for copy/paste operations. A user can
“pour” information from his tablet into another user’s tablet
by tilting his tablet up when bumping with the other user’s
tablet. If the tablet is tilted more than 15 degrees relative to
the other tablet when the users bump tablets, the software
sends the clipboard information to the other device. The
tablet receiving the clipboard data makes the sound of
water dripping in a pool to suggest the pouring metaphor.
The system does not yet implement sending the actual
clipboard contents to the other device; currently a web page
showing hypothetical clipboard contents is brought up on
the receiving device to demonstrate the technique.

SOFTWARE IMPLEMENTATION ISSUES
The current system implementation is limited to a pair of
devices. Synchronous gesture recognition only needs to
occur on one of the two devices. When a synchronous
bump is detected, that device informs its remote partner of
the gesture and its various parameters. Readers not
interested in the mechanics of how synchronous gestures
are implemented and recognized can safely skip ahead to
the DISCUSSION section.

Time Synchronization
Synchronous gestures must determine which samples from
a local and remote device are truly “synchronous” in the
presence of network delays. Our implementation uses a
simple message passing scheme to synchronize time to
within about 50 ms, but much better algorithms can be
implemented for wireless devices. The Reference Broadcast
Synchronization (RBS) algorithm enables synchronization
to within less than a millisecond [11]. Implementing RBS

may allow our system to more easily reject undesired
accelerometer signals that might randomly arrive from
separate machines close together in time, but which do not
actually occur at the same instant, as with intentional
bumping.

Alignment of Time Frames during Gesture Recognition
The remote device buffers its own accelerometer samples
and, every 100ms, sends whatever new samples have
accumulated to the “server” tablet which performs
synchronous gesture recognition. The server tablet buffers
several seconds worth of time stamped accelerometer data
from the remote device and compares it to time stamped
accelerometer data from the local machine. Since reception
of remote data may be subject to random network delays
and momentary drop-outs in wireless connectivity, gesture
recognition occurs by discrete event simulation rather than
in real time. That is, the software delays handling of local
samples until samples with the same synchronized time
stamp arrive from the remote machine. It then uses the time
stamps to handle individual samples in order, until there are
no more samples of the same age or older than the most
recently received remote sample.

From the user’s perspective, however, unless there is an
abnormally long network drop-out, recognition appears to
occur in real time. The system will only miss a synchronous
gesture if the drop-out lasts longer than the available buffer
space to store local and remote samples.

Synchronous Bumping Recognition Algorithm
The system currently employs a deterministic algorithm to
recognize synchronous spikes in the accelerometer data
from a pair of devices. Given natural variations in user
performance, the algorithm requires some flexibility to
reliably sense when the user intentionally brings two tablets
together, but the algorithm cannot be too flexible or else
other naturally occurring patterns (shaking, handling, or
putting down devices) may be interpreted as “bumping.”

The algorithm operates by keeping track, for each sensing
axis on each local-remote pair of devices, of whether or not
the signal is currently above a running average by a
threshold (10 degrees) or below the running average by the
same threshold. Every time the signal passes through these
thresholds, it generates a transition. These transitions are
then used to gradually fill out the following data structure
as local and remote samples are handled in sequence.

typedef struct {
 bool rising_edge; // edge passed thresh?
 double rise_peak_t; // time of peak magnitude
 float peak_mag; // peak magnitude
 bool found_one_spike; // seen a spike?
 double spike_found_t; // time spike found
 float sync_bump_mag; // magnitude of sync bump
} BumpInfo;

BumpInfo transitions[2][2][2];

The transitions array of BumpInfo structures creates
one instance of the data structure for each of 8 cases: spikes

on the local or remote device, on the left-tight or forward-
back axis, and above or below the running average.

Once a signal transitions past the running average
threshold, the rising_edge flag is set true and the
peak_mag (peak magnitude of a spike after crossing the
threshold) and rise_peak_t (time stamp of the peak
magnitude) are initialized using the current sample. If
subsequent samples rise further beyond the threshold then
these members are both updated.

If a peak above the running average is wider than the
62.5ms timeout TOUT_TOO_LONG, it is ignored. This
restricts the algorithm to look for narrow, sharp spikes
typical of impact forces. Otherwise, as soon as the peak
drops below the running average, the found_one_spike
flag is set true and spike_found_t is set to the time that
this spike was recognized. At this point, the code checks the
BumpInfo structure to see if a spike on the other tablet has
been recorded. If so it calculates the synchronicity of the
spikes by subtracting the respective spike_found_t
members. If the synchronization of the spikes falls within a
50ms window TOUT_MAX_SYNC, the spike is recorded as a
candidate for a true “synchronous bump” with
sync_bump_mag set to the peak_mag of this spike.

Once a candidate for a synchronous bump is identified, the
algorithm continues to look at additional samples for the
following 200ms timeout TOUT_CHOOSE_BEST_SYNC. If a
candidate with a larger peak magnitude is found, it replaces
the previous candidate. This behavior allows the algorithm
to seek out the most significant spike, rather than taking the
first one which exceeds the threshold. If it did not wait to
seek further candidates, the algorithm would face a race
condition where the first sample over threshold always
“wins” even if other spikes are more representative of the
actual gesture made by the user. This is a real concern
because there may be some excitation of the orthogonal
axis of the accelerometer. If this happens to exceed the
running average threshold, it may lead the software to
incorrectly determine which edge of the tablet the user
bumped into; waiting for the best candidate in a small time
window allows most such errors to be avoided.

The algorithm introduces a couple of other criteria to weed
out false positives for synchronous bumps that may be the
result of handling two tablets at the same time. If both
sensing axes of the accelerometer observe large peaks, this
suggests the contact force is not primarily along any one
axis, so it is ignored. If a large number of candidates are
observed, this indicates a repeated vibratory signal, and is
also ignored. With an actual “synchronous bump” typically
only 3-4 viable peaks will be observed. Bumps are also
ignored if neither device is being held (touched) by a user.
Finally, to avoid responding to accidental double-strikes,
once a synchronous bump is recognized, all further bumps
are ignored for TOUT_IGNORE_AFTER_SYNC = 750ms.

A final detail is choosing when to re-initialize the data
structures. We currently completely clear out the array of
BumpInfo structures and the list of synchronous bump
candidates whenever a synchronous bump is recognized as
the best candidate within the TOUT_CHOOSE_BEST_SYNC
time window, or if no synchronous bump is detected,
whenever TOUT_INITIALIZE = 1000ms have passed since
the last observed transition.

Once a synchronous bump has been identified, the edges of
the tablets involved in the collision can be identified using
the table of Fig. 8. Here, the Device column refers to either
the connecting device held by the user, or the base device
resting on a desk (struck by the held device). Direction
refers to the direction of the spike with the highest
magnitude above or below the running average threshold.

Device Axis Direction
Result

(edge to dock)
Connecting Left-Right Above
Base Left-Right Below

Right edge

Connecting Left-Right Below
Base Left-Right Above

Left edge

Connecting Fwd-Back Below
Base Fwd-Back Above

Bottom edge

Connecting Fwd-Back Above
Base Fwd-Back Below

Top edge

Connecting Fwd-Back Above
Base Fwd-Back Above

Face-to-face
collaboration [15]

Fig. 8 Table giving mapping of observed
synchronous spikes, above or below the running
average threshold, for each device and
accelerometer sensing axis.

Limitations
The proposed recognition algorithm and system hardware is
certainly not perfect. When intentionally bumping tablets
together, the system occasionally recognizes the correct
axis of the bump, but gets the direction wrong. This can
occur if significant positive and negative spikes both result
from the impact. Since the algorithm does not respond to
the first spike, but only to the spike with the greatest
magnitude within a small time window, if the “bounce
back” from the impact has a greater magnitude than the
initial impact itself, this problem will occur. Although it
occurs very infrequently, it may be necessary to increase
the sampling rate of the hardware to completely eliminate
this problem.

Since the algorithm is based on simple crossings of a
running-average threshold, a more significant limitation is
that it is susceptible to recognition of “spikes” in signals
that are not truly representative of bumping a pair of tablets
together. One simple way to eliminate many false-positives
is to keep timeout windows such as TOUT_TOO_LONG and
TOUT_MAX_SYNC as narrow as possible, yet still wide
enough to admit variations in user performance, and to
accommodate errors in time synchronization. We expect

that implementation of RBS [11], as well as further
refinements to filter out undesired signals, will be necessary
for a more robust implementation.

DISCUSSION
Informal Demonstrations
We have not conducted careful usability studies, but in
informal demonstrations to date with research colleagues,
people readily grasp the idea and find it easy to bump two
objects together in a manner that can be sensed by the
system. People seem to like the idea of gaining more screen
real estate by combining multiple tablets. People also seem
to like the visual feedback and the brief, distinctive sounds.
Only more careful user testing can help reveal what kind of
metaphors users would expect when sharing displays, or if
usability problems might arise from the technique of one
device annexing the display of another.

A common concern people raise is that bumping might
damage the hard disk on the tablet. But hard disks on
mobile devices are designed to survive day to day handling
of the device, and a fairly gentle tap is enough for our
sensors to pick up, so great force is not necessary. The
system currently uses a 10-degree deviation in tilt as the
minimum threshold for a “bump”, which translates to an
acceleration of 0.17 units of gravity (g). A bumping
threshold as small as 2 degrees (.035g) can be sensed,
which is an almost imperceptibly light tap from the user’s
perspective. However, such a low threshold currently
causes the software to recognize too many “false”
synchronous bumping signals, so we default to a higher,
more deliberate force.

We have found that relying solely on the touch sensor to
determine the direction (the base device vs. connecting
device distinction) usually works well, but it sometimes
leads to problems. For example, if one user rests her device
on the desk, but leaves her hand in contact with it, and
another user then connects to it, this is interpreted as
sharing information (since both devices are being touched)
rather than dynamic display tiling. By looking more
carefully at the accelerometer data before and after a
synchronous bump, it should be possible to determine
which device was moving and which was stationary, which
seems to more closely match user expectations.

Extension to More Than Two Devices
At this time the software only implements synchronous
gesture detection between a pair of devices, but we are
working to support additional devices. For example, it
should be possible to bring four tablets together to form a
2x2 tiled display. One implementation hurdle is to correctly
handle sequences of connections, which we call the
“transitive bumping” problem. For example, if two devices
are tiled side by side, and then a third display is added to
make a 1x3 tiled display, the force of bumping the third
tablet may be transmitted through the middle display and
picked up by the display at the other end (which was not
physically bumped). However, it should be easy to

determine which device was actually struck by keeping
track of the topology of existing connections.

Scope of Synchronous Partners
With a large number of devices, looking for synchrony
could overload limited wireless network or mobile device
CPU resources, and also increase the possibility of false
positive recognition of “synchrony” through pure chance. If
a set of n devices attempts to synchronize with every other
device, then there are n2 one-way connections to consider.
In practice, each pair of devices only needs to compute
synchrony once, so there are n(n-1)/2 possible synchronies.
Computing synchrony seems feasible for on the order of 10
devices, but may be computationally prohibitive or subject
to increasing rates of false positive recognition if hundreds
or thousands of devices must be considered.

The current synchronous gestures implementation does not
address this problem, but clearly some way to restrict the
scope of potential partners for synchrony would be required
for a large-scale implementation of synchronous gestures.
Forcing users to explicitly select a set of connected devices
to form a “synchronous gesture group” could work, but
places responsibility for this task on the users.

Automatic techniques for restricting the scope of potential
synchronies might be as simple as limiting communication
to the set of wireless devices visible to the 802.11 wireless
network access point with the highest signal strength. This
might be further refined through location triangulation
using 802.11 signal strengths, thus limiting searches for
synchronous gestures to other proximal devices. A possible
difficulty comes from uncertainty in this data, e.g., two co-
located devices might fail to search for synchrony due to
error in location estimates.

Synchronous Bumping vs. Location/Proximity Sensing
As discussed above, synchronous gestures seem to depend
on some form of scoping or proximity detection as an
enabling technology to restrict the number of devices which
must be considered. If proximity or location sensing exists
in support of synchronous gestures, then why bother with
computing synchronicity at all? It is possible to connect
two devices if they are merely proximal to one another.
However, if a multitude of devices exists in the same
proximity, how does a user specify which devices to
connect to, and how does the system know the spatial
relationship between them?

Merely having two devices near one another does not
necessarily indicate that the users have any desire or
intention to share information. What bumping via
synchronous gestures offers on top of proximity detection is
an explicit step of intentionality that the user has control
over. Bumping removes the need for the user to select a
device from a list of numerous devices (as required by
proximal selection [24]); with the synchronous gesture of
bumping two tablets together, the selection is done in the
physical world by manipulating the actual objects of
concern. It also provides additional information: with

proximity, it is not clear which edge of a tablet should be
docked, nor is there any hierarchy in the connection.
Finally, the technology enables support for actions other
than display tiling, such as sharing or pasting information
between tablets, or establishing face-to-face collaboration
[15]. It is hard to see how proximity alone could support all
of these behaviors without burdening the user with
additional decisions and selection actions.

Software Infrastructure Issues
Mechanisms implemented in the Context Toolkit [9] or the
Event Heap [21] to support distributed sensors might
simplify implementation of synchronous gestures. Our
system infrastructure is based on passing a message in real
time whenever a sensor changes values, but
synchronization between local and remote devices
implicitly means that the software must deal with the
history of recent sensor values, rather than just the most
recent value. In this regard, the mechanisms proposed by
DEMIS [20] for saving and accessing a history of sensor
values using time intervals seem like they would be useful.
Platforms for distributed multimedia sensing and control
such as Aura [8] may also contain useful lessons and
abstractions for synchronous gestures.

In our architecture, a Context Server resides on each
machine and handles all of the local sensor data [16], as
well as all TCP/IP network communication with remote
devices. Client applications can send messages via the
Context Server to a remote partner established through a
synchronous gesture. This makes it easy for client
applications to exchange information and insulates them
from all details of the network connection. This is useful
not only to reduce complexity in the client applications, but
also allows the Context Server to hide the identity of the
remote device, while still allowing messages to be passed.

Additional Possibilities for Synchronous Gestures
A number of future possibilities for synchronous gestures,
beyond bumping, exist:

Synchronous gestures based on human-human
communication and body language. In human-human
interaction, there are many examples of familiar, naturally
occurring synchronous or sequenced behaviors in body
language and interpersonal communication. These naturally
occurring gestures could be sensed and used as implicit
contextual cues to augment human-human or human-
computer interaction. For example, accelerometer-
augmented watches could sense when two users shake
hands, and use that information to exchange digital
business cards. Other examples include two persons bowing
to one another, people turning to face one another, or
sensing when one user’s body language imitates that of
another. It may be possible to derive measures of group
activity at meetings by sensing the activity of users carrying
sensor-augmented devices. Interpersonal behaviors might
also suggest points of departure for analogous but artificial
synchronous gestures to facilitate human-computer
interaction. The Sociometer [7] is one example of work that

senses these kinds of cues, although at present the
Sociometer system does not use them to support real-time
interaction techniques.

Synchronous Gestures from Commonly Available Devices.
This paper primarily considers synchrony between mobile
devices augmented with custom sensors, but there may be
opportunities to exploit synchronicity using ordinary input
devices. For example, two users could press and release
buttons at the same time to connect their devices, or
perhaps mice from two different computers could be
brought together until they collide, with the system
software looking for simultaneous cessation of movement
on both mice. We are also investigating the use of pen input
to enable gestures that span multiple Tablet PC’s. Such
actions might be useful to simulate our synchronous
bumping gesture on systems without any special sensors, to
implement techniques such as Pick and Drop without
requiring a unique ID on the stylus [23], or to support
completely new techniques.

CONCLUSIONS AND FUTURE WORK
This research proposes synchronous gestures as a new
interaction metaphor for distributed sensing systems. There
have been few interaction techniques exploiting synchrony
between multiple users and multiple devices, so identifying
this area and demonstrating practical applications
contributes to the literature and may spur development of
further techniques. Synchronous gestures implemented in
the current system include dynamic display tiling, sharing
information by bumping together mutually held tablets, or
pasting information from one tablet to another by angling
one tablet down while making contact. The present system
demonstrates an implementation of synchronous gestures
and suggests avenues for further development.

Although the techniques explored in this paper employ real-
time recognition strategies, if sufficient memory exists to
store all samples, synchrony could even be determined in
the absence of constant wireless connectivity by detecting
synchrony at a later time when both devices become
connected to the network again. When bumping two tablets
together to share information, for example, delayed
recognition of synchrony might be useful to users who want
to protect their privacy and explicitly give the OK to pass
the information at a later time.

Although the present system explores synchronous
bumping only for tablet computers, it should also be
applicable to bumping between mulitiple dissimilar devices
such as PDA’s, cell phones, watches, or digital cameras.
The user’s expectations and possible semantics of bumping
with dissimilar devices may be very different from
bumping homogeneous devices together. Pierce et al. are
currently exploring opportunistic annexing [22], which will
enable users to dynamically bind together multiple
input/output resources in a ubiquitous computing
environment. Bumping objects together may offer a
compelling and simple way for a mobile user to combine,

for example, a PDA, a keyboard, and a large display to
quickly enter text and view documents while away from his
or her desk.

Disparity in mass may make bumping between dissimilar
objects harder to detect, but simple tests of bumping a
PDA into our sensor-augmented tablet computer, for
example, suggest that the accelerometer on the tablet can
detect this signal even though the PDA is much less
massive. Hence there seem to exist many promising but as
yet unexplored possibilities for opportunistic annexing
using bumping or other synchronous gestures.

ACKNOWLEDGEMENTS
Thanks to Andy Wilson, Patrick Baudisch, John Krumm,
and Dimitris Achlioptas for brainstorming ideas and
discussing implementation issues. Thanks to Dave Thiel for
video production.

REFERENCES
1. Analog Devices Inc., Low-Cost +/-2g Dual-Axis

Accelerometer with Duty Cycle Output, http://
www.analog.com/UploadedFiles/Datasheets/
567227477ADXL202E_a.pdf, 2002.

2. Ayatsuka, Y., Matsushita, N., Rekimoto, J., HyperPalette: a
Hybrid Computing Environment for Small Computing
Devices, CHI 2000 Extended Abstracts, 2000, 133-134.

3. Bahl, P., Padmanabhan, V., RADAR: An In-Building RF-
Based User Location and Tracking System, IEEE 19th
Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2000), 775-784.

4. Baxter, L.K., Capacitive Sensors: Design and Applications.
IEEE Press Series on Electronics Technology, ed. R.J.
Herrick. 1997, New York: The Institute of Electrical and
Electronics Engineers.

5. Buxton, W., Chunking and Phrasing and the Design of
Human-Computer Dialogues, Information Processing `86,
Proc. of the IFIP 10th World Computer Congress, 1986:
Amsterdam: North Holland Publishers, 475-480.

6. Chen, J.C., Yip, L., Wang, H., Maniezzo, D., Hudson, R.E.,
Elson, J., Yao, K., Estrin, D., DSP Implementation of a
Distributed Acoustical Beamformer on a Wireless Sensor
Platform, Proc. IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP 2003), 2003, Hong
Kong, China.

7. Choudhury, T., Pentland, A., The Sociometer: A Wearable
Device for Understanding Human Networks, Conference on
Computer Supported Cooperative Work (Workshop: Ad hoc
Communications and Collaboratin in Ubiquitous Computing
Environments), 2002.

8. Dannenberg, R., Aura as a Platform for Distributed Sensing
and Control, Symposium on Sensing and Input for Media-
Centric Systems (SIMS 02), 2002, University of Santa
Barbara: Center for Research in Electronic Art Technology.

9. Dey, A., Abowd, G., Salber, D., A Conceptual Framework
and a Toolkit for Supporting the Rapid Prototyping of
Context-Aware Applications. Journal of Human-Computer
Interaction, 2001. 16(2-4): p. 97-166.

10. Dourish, P., Bly, S., Portholes: Supporting Awareness in a
Distributed Work Group, Proc. CHI'92, 1992, 541-547.

11. Elson, J., Girod, L., Estrin, D., Fine-Grained Network Time
Synchronization using Reference Broadcasts, Proc. Fifth
Symposium on Operating Systems Design and
Implementation (OSDI 2002),, 2002, Boston, MA.

12. Gorbet, M., Orth, M., Ishii, H., Triangles: Tangible Interface
for Manipulation and Exploration of Digital Information
Topography, Proc. CHI'98 Conference on Human Factors in
Computing Systems, 1998, 49-56.

13. Grudin, J., Partitioning Digital Worlds: Focal and
Peripheral Awareness in Multiple Monitor Use, CHI 2001,
2001, 458-465.

14. Harrison, B., Fishkin, K., Gujar, A., Mochon, C., Want, R.,
Squeeze Me, Hold Me, Tilt Me! An Exploration of
Manipulative User Interfaces, Proc. ACM CHI'98 Conf. on
Human Factors in Computing Systems, 1998, 17-24.

15. Hinckley, K., Distributed and Local Sensing Techniques for
Face-to-Face Collaboration, ICMI-PUI'03 Fifth
International Conference on Multimodal Interfaces, 2003,
Vancouver B.C., Canada.

16. Hinckley, K., Pierce, J., Sinclair, M., Horvitz, E., Sensing
Techniques for Mobile Interaction, ACM UIST 2000 Symp.
on User Interface Software & Technology, 2000, 91-100.

17. Hinckley, K., Sinclair, M., Touch-Sensing Input Devices,
ACM CHI'99 Conf. on Human Factors in Computing
Systems, 1999, 223-230.

18. Holmquist, L., Mattern, F., Schiele, B., Alahuhta, P., Beigl,
M., Gellersen, H., Smart-Its Friends: A Technique for Users
to Easily Establish Connections between Smart Artefacts,
Ubicomp 2001, 2001: Springer-Verlag, 116-122.

19. Horvitz, E., Kadie, C., Paek, T., Hovel, D., Models of
Attention in Computing and Communications: From
Principles to Applications. Comm. of the ACM, 2003. 46(3).

20. Jiang, H., Kessler, D., Nonnemaker, J., DEMIS: A Dynamic
Event Model for Interactive Systems, Proc. ACM Symposium
on Virtual Reality Software and Technology (VRST 2002).

21. Johanson, B., Fox, A., The Event Heap: A Coordination
Infrastructure for Interactive Workspaces, Proc. of the 4th
IEEE Workshop on Mobile Computer Systems and
Applications (WMCSA-2002), 2002, Callicoon, New York.

22. Pierce, J., Mahaney, H., Abowd, G., Opportunistic Annexing
for Handheld Devices: Opportunities and Challenges, Tech
Report #GIT-GVU-03-31, 2003. http://www.cc.gatech.edu/
gvu/research/techreports.html.

23. Rekimoto, J., Pick-and-Drop: A Direct Manipulation
Technique for Multiple Computer Environments, UIST'97
Symp. on User Interface Software & Technology, 31-39.

24. Schilit, B.N., Adams, N.I., Want, R., Context-Aware
Computing Applications, Proc. IEEE Workshop on Mobile
Computing Systems and Applications, 1994, Santa Cruz, CA:
IEEE Computer Society, 85-90.

25. Tandler, P., Prante, T., Müller-Tomfelde, C., Streitz, N.,
Steinmetz, R., Connectables: dynamic coupling of displays
for the flexible creation of shared workspaces, UIST 2001,
11-20.

