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ABSTRACT 

 Synchronous gestures are patterns of sensed user or users’ activity, spanning a 

distributed system that take on a new meaning when they occur together in time. 

Synchronous gestures draw inspiration from real-world social rituals such as toasting by 

tapping two drinking glasses together. In this paper, we explore several interactions based 

on synchronous gestures, including bumping devices together, drawing corresponding 

pen gestures on touch-sensitive displays, simultaneously pressing a button on multiple 

smart-phones, or placing one or more devices on the sensing surface of a tabletop 

computer. These interactions focus on wireless composition of physically co-located 

devices, where users perceive one another and coordinate their actions through social 

protocol. We demonstrate how synchronous gestures may be phrased together with 

surrounding interactions. Such connection-action phrases afford a rich syntax of cross-

device commands, operands, and one-to-one or one-to-many associations with a flexible 

physical arrangement of devices. 

 Synchronous gestures enable co-located users to combine multiple devices into a 

heterogeneous display environment, where the users may establish a transient network 

connection with other select co-located users to facilitate the pooling of input capabilities, 

display resources, and the digital contents of each device. For example, participants at a 

meeting may bring mobile devices including tablet computers, personal digital assistants 

(PDA’s), and smart-phones, and the meeting room infrastructure may include fixed 

interactive displays, such as a tabletop computer. Our techniques facilitate creation of an 

ad-hoc display environment for tasks such as viewing a large document across multiple 

devices, presenting information to another user, or offering files to others. The 
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interactions necessary to establish such ad-hoc display environments must be rapid and 

minimally demanding of attention: during face-to-face communication, a pause of even 

five seconds is socially awkward and disrupts collaboration. 

Current devices may associate using a direct transport such as Infrared Data 

Association (IRDA) ports, or the emerging Near-Field Communication (NFC) standard. 

However, such transports can only support one-to-one associations between devices, and 

require close physical proximity as well as a specific relative orientation in order to 

connect the devices (e.g., the devices may be linked when touching head-to-head, but not 

side-to-side). By contrast, sociology research in proxemics (the study of how people use 

the “personal space” surrounding their bodies) demonstrates that people carefully select 

physical distance as well as relative body orientation to suit the task, mood, and social 

relationship with other persons. Wireless networking can free device-to-device 

connections from the limitations of direct transports, but results in a potentially large 

number of candidate devices. Synchronous gestures address these problems by allowing 

users to express naturally a spontaneous wireless connection between specific proximal 

(collocated) interactive displays. 
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1. INTRODUCTION 

The world of technology is a rapidly evolving ecology of devices. This ecology of 

ubiquitous devices is changing how we employ computing (Weiser, 1991). It includes 

tabletop and wall displays, tablet computers, handheld devices, cell phones, cameras, 

music players, wristwatches, and ear buds. Wireless networks have the potential to unite 

these ubiquitous computational pieces into temporary composite devices that suit a 

particular task, or that serve a brief collaborative encounter between users, and then 

dissipate when a task is complete. To realize this potential, users need interaction 

techniques to marshal spontaneous combinations of the desired devices, input 

capabilities, and display resources.  

For example, people at a meeting could connect their mobile devices to one another 

or to existing infrastructure, such as an interactive tabletop computer, to form an ad-hoc 

heterogeneous multi-display environment. Such an environment facilitates collaborative 

sharing of files and resources with other devices of the user’s choosing, and enables new 

functionality emerging from the combined capabilities of multiple devices. The demands 

of casual gatherings of heterogeneous multi-device environments differ from traditional 

single-user desktop computer scenarios in that input, display, and device resources are 

transient and may fluctuate in their roles with respect to one another. Because of their ad-

hoc nature, such multi-device environments cannot a priori determine the participating 

devices’ position, orientation, availability throughout time, or the role each device is to 

play in a given user task. These are all subject to a user’s changing whims as he or she 

collaborates with multiple persons, or with a single person on multiple aspects of a 

collaborative task. 
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A dynamic multi-device environment must respect the underlying social fabric of 

collaborative interaction by providing flexible means for co-located users to work 

together across a range of physical proximity and relative body orientation. For example, 

users may wish to (1) view content side-by-side with a co-worker on a shared display, (2) 

negotiate terms in a face-to-face meeting with a rival seated at the opposite side of a 

table, or (3) share information with some colleagues on the other side of a crowded 

meeting room – but not with rivals at the meeting. A technique that requires the devices 

to rest in close physical proximity at a head-to-head relative orientation might support 

scenario (2) – provided the table is narrow enough to reach across – but cannot 

effectively support scenarios (1) or (3). Yet the emerging Near Field Communication 

(NFC) standard (http://en.wikipedia.org/wiki/Near_Field_Communication), for example, 

suffers exactly these limitations. (NFC is a low-bandwidth magnetic field induction 

technique, with a communication range limited to about 20 cm).  

The connection mechanism for a dynamic multi-device environment should operate 

within the context of the users’ task workflow, rather than addressing the connection step 

in isolation. We present techniques that phrase together the connection of specific devices 

with actions such as selecting the operands and targets of an operation (who copies what 

to where?), specifying the relative spatial orientation of the devices, and choosing from 

multiple types of cross-device tasks to perform. Even a few seconds of silence during a 

social exchange quickly becomes awkward and uncomfortable, so it is essential that co-

located users can perform the desired interactions quickly and with minimal distraction 

from the primary task of human-human communication. 
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Co-located users share physical space. Below, we argue that designs for spontaneous 

multi-device environments must carefully consider the sociological issues of shared 

space. Later in this paper, we present specific points we have explored in the design 

space of ad-hoc formation of multi-device environments. Our designs succeed in 

addressing some of these issues, but sometimes also fail with respect to others, and 

thereby teach us the design tradeoffs inherent to the approaches we have explored. 

1.1. Proxemics - How People Share Physical Space 

Proxemics is the study of how people use the invisible bubble of space that surrounds 

an individual (Hall, E. T., 1966; Sommer, R., 1969; Altman, I., 1975). For example, the 

next time you are at an airport terminal, sit next to a stranger when it is not necessary to 

do so. It will likely make you and the person next to you extremely uncomfortable. To 

amplify the tension, choose a person of the opposite gender, a different culture, or 

someone who is dressed very differently than you are. Time how long it is before the 

other person starts to show signs of tension or anxiety, and ultimately gets up and leaves. 

Sociologists have conducted many such “spatial invasion” studies (Sommer, R., 1969). In 

our example, your intrusion at the airport greatly increases the probability that the other 

person will relocate to a different area of the terminal within the next few minutes. The 

bubbles of space surrounding individuals may be imaginary, but social responses to 

violations of these spaces are real and deeply ingrained in people. 

Thus, even when modern technologies and devices are involved, users still apply the 

social grammars of interpersonal distance to co-located collaboration. For example, social 

issues influence the role of technology in face-to-face consultations (Rodden, Rogers, 

Halloran, & Taylor, 2003). As another example, Scott proposes  territory-based 
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techniques for tabletop interaction (Scott, 2003; Scott, Grant, & Mandryk, 2003). In our 

research, we have found that proxemic serves as an organizing principle for the different 

systems and approaches that we have explored.  

Hall classifies proxemic distances between people (Hall, E. T., 1966), with intimate 

and personal distances within arm’s reach, and social and public distances beyond arm’s 

reach (Figure 1). Factors such as how well people know one another, or the presence of 

intervening obstacles such as a table or physical object, influence the selection of a social 

distance that feels comfortable to both people. Touching is particularly unwelcome in 

non-contact cultures (Altman, I., 1975). When close proximity or contact is necessary, 

people avoid continuous close contact and seek to synchronize their actions. For example, 

during a purchase from a cashier, each person’s hand simultaneously moves towards the 

other to exchange monies, followed by relaxation of the increasing social tension by 

quickly exiting the personal space of the other
1
. Territorial behavior can extend to 

personal property and even to temporary possessions such as a parking space, or a chair 

in a waiting room (Deasy, C., & Lasswell, T., 1985). Personal space may extend to 

inanimate objects such as mobile devices; users may view them as an extension of their 

body while holding them.  

Figure 1 ABOUT HERE 

The lesson of proxemics is not to simply “avoid contact” or to discourage close 

proximity between users. No one distance between persons is “best” in all situations, and 

there may be situations where near or actual contact between users and devices is 

                                                 
1
 Personal communication, Geoffrey T. Raymond, Assistant Professor of Sociology, University of 

California Santa Barbara. 
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necessary or desired. Users who know each other well may want to work closely 

together, but strangers may want to exchange files while maintaining social distance. As 

Hall writes, “what is desirable is flexibility...so that there is a variety of spaces, and 

people can be involved or not, as the occasion and mood demand” (Hall, E. T., 1966, p. 

110). While Hall wrote this in the 1960s, when personal mobile computers were certainly 

far from his thoughts, the lesson still applies when contemplating foundational principles 

for technology supported co-located collaboration.  

Furthermore, communication patterns vary depending on relative body orientation 

(Sommer, R., 1969; Deasy, C. & Lasswell, T., 1985). Sommer shows that preference for 

face-to-face, shoulder-to-shoulder, or corner-to-corner seating arrangements depend on 

the task context. The collaboration literature emphasizes face-to-face interaction, but 

Sommer notes that corner seating preserves closeness while avoiding excessive eye 

contact, whereas students studying together strongly prefer side-to-side seating. When 

asked to choose a seating arrangement, the choice depends on the scenario (e.g., meeting 

with a rival, cooperation with a student, or casual conversation with an acquaintance). 

This suggests that system design for co-located collaboration should offer flexibility in 

terms of relative body orientation (and by proxy, device orientation), as well as 

functionality suited to different categories of interpersonal distance (intimate, personal, 

social, and public).  

The proxemics issues summarized above underscore the evolution of our designs for 

addressing the problem of spontaneous connection of mobile devices. The role of an ad-

hoc multi-display environment is not to assume or force a particular arrangement, but 

rather to support a variety of spatial and social relationships between users. 
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1.2. Synchronous Gestures 

Our high-level approach to the ad-hoc multi-display environment problem has been to 

leverage synchronous gestures sensed across multiple distributed devices, possibly 

performed by multiple users, as a way to identify which of a potentially large set of 

candidate devices to connect for cross-device interaction. Synchronous gestures are 

patterns of activity that occur across a distributed system and assume a new meaning 

when they occur together in time. These patterns may occur in parallel, may be partially 

overlapped, or may even occur in a particular sequence.  

Early examples of synchronous gestures in the literature include holding two devices 

together and shaking them (Holmquist et al., 2001), bumping a pair of devices together 

(Hinckley, 2003), or simultaneously pressing a Sync button on each device (Rekimoto, 

2004). Different devices or participants contribute complementary portions of a signal, 

and the distributed system recognizes this composite signal only when it brings these 

portions together. Synchronous gestures require that the signal is unlikely to co-occur 

accidentally for nearby devices. The distance over which devices are considered “nearby” 

may be limited implicitly by short-range wireless radio communication, or through 

coarse-grained location sensing via wireless signal strengths (Bahl, P., & Padmanabhan, 

V., 2000;  Krumm, J., & Hinckley, K., 2004). Synchronous gestures thus enable users to 

“name” the devices involved without knowing either device’s IP address or network 

name. Synchronous gestures maintain some of the tangible feedback of establishing a 

wired or physical connection, while allowing suitable devices to find each other 

automatically. Yet users remain firmly in control of when and how to connect or 

disconnect the devices.  
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Synchronous gestures offer a compelling approach to the ad-hoc multi-display 

environment problem for several reasons. First, synchronous gestures do not require 

instrumenting the interaction environment or tagging each mobile device. Sensors and 

inputs that already exist on devices for single-user interaction can support collaborative 

interaction by identifying distinctive input patterns that occur across multiple devices. 

The participating devices act as an implicit sensor network; when a synchronous gesture 

pattern is recognized, it identifies the specific devices involved in an interaction without 

forcing the user to match symbolic names to the devices. However, this does require the 

devices involved to broadcast messages over a common network transport, or to 

exchange messages through an arbiter, in order to aggregate the necessary interaction 

events. One consequence of this sensor-agnostic nature is that the synchronous gesture 

approach is broadly applicable to different inputs and devices, as demonstrated by the 

projects we discuss in this paper. 

Second, the user remains in control of his personal device at all times and can be 

certain that his device is not accessible to others unless he performs, or allows another 

person to perform, a synchronous gesture on his device. Since the device is not tagged, 

the user also knows that the device is not identifiable by a sensing system when the 

device is turned off.  

Third, synchronous gestures offer the possibility to relax the constraints of intimate 

physical proximity and fixed relative orientation. Physical transport mechanisms such as 

RFID sensors, Infrared Data Association (IRDA) port connections, Near Field 

Communication (NFC), and other approaches that physically juxtapose devices (e.g. 

Ullmer, B., Ishii, H., & Glas, D., 1998; Tandler, P. et al., 1998; Rekimoto, J., et al., 2003) 
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require such constraints. Cooperative stitching, which we will discuss in detail later in 

this paper, is one example of a synchronous gesture for pen-operated devices that does 

not require close proximity of devices. One user draws a pen stroke and holds his pen at 

the top of the screen to “offer” a document, and a second user then pulls down from the 

top of his screen to “accept” the document. A different user on a different device 

performs each half of the gesture. The technique thus supports a variety of proxemic 

distances and relative orientations between devices and their users. 

Finally, synchronous gestures leverage natural metaphors for synchronizing social 

activity, such as clinking glasses together for a toast, handing a document to another 

person, or placing a document on a meeting table to make it available to others. 

Furthermore, several of the synchronous gestures that we explore naturally offer rich 

information about how the devices are being connected. This is not the case with RFID 

sensing, for example, which detects that devices are in range of one another, but cannot 

determine which device “initiated” the encounter. This means that the user must perform 

additional steps to tell the computer whether information is to be sent or received across a 

given connection. In general, this observation led us to an approach that considers not just 

the connection step, but also the overall connection-action phrase that specifies how the 

connection fits into the larger workflow of the user’s task. For example, when users join 

devices, they not only specify the devices to connect, but may also indicate the type 

(task-specific purpose) of the connection, the information that is to be shared, whether the 

information is to be sent or received, as well as the relative spatial orientation between 

the devices. Offering synchronous gestures in the context of connection-action phrases 
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enables the quick and facile creation of rich and flexible device associations that better 

suit the higher-level collaborative goals of the user. 

2. RELATED WORK 

Facilitating interactions distributed across multiple devices or multiple users, as well 

as techniques to combine two or more devices in an ad-hoc fashion, have been the subject 

of a number of related research efforts.  

2.1. Related Research for Synchronous Gestures  

Early examples of synchronous gestures (Hinckley, K., 2003b) in the literature 

include Smart-Its Friends (Holmquist et al., 2001) and SyncTap (Rekimoto, 2004). 

Smart-Its Friends associates a pair of devices when a user holds them together and shakes 

them. An accelerometer on each device senses the corresponding shaking patterns. When 

such “friend” devices enter the range of each other’s low-power radio, they beep to notify 

users of the other’s presence. A related approach displays a sequence of motions that a 

user must match by gesturing with an accelerometer-equipped device (Patel, S., Pierce, J., 

& Abowd, G., 2004). Researchers have also explored the possibility of using 

accelerometers to determine if the same person is carrying two devices (Lester, J., 

Hannaford, B. & Borriello, G., 2004). 

SyncTap (Rekimoto, 2004) connects a pair of devices when one user presses a “sync” 

button on both devices at the same time (within about 30 milliseconds). If more than one 

sync operation occurs at the same time, SyncTap treats it as a “collision” and the user 

must repeat the operation. SyncTap’s strength is that it offers a lowest common 

denominator solution, since nearly any device could include a suitable button. However, 
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a simultaneous button press provides little information about how to connect the devices, 

so the user must take additional steps to indicate the purpose of the connection. For 

example, to establish cursor migration between a laptop and a desktop display, a user 

performs a SyncTap gesture, and then switches to the mouse on the desktop computer to 

indicate which the edge of the screen to link to the mobile device. The BlueRendezvous 

project that we describe later in this paper demonstrates how current Bluetooth-enabled 

phones can build on the synchronous button press concept, by leveraging our approach of 

offering connection in the context of selection-action phrases. 

Cooperative gestures are multi-person gestures for interaction on a single touch-

sensitive tabletop device (Morris, Huang, Paepcke, & Winograd, 2006). A single-user 

gesture (such as deleting an object) may take on new meaning when performed by 

multiple users (e.g., delete all the contents on the table). More than one user may perform 

some of the synchronous gestures that we explore in this paper, but we emphasize cross-

device collaboration rather than multi-user interaction with a device.  

2.2. Physical Transports & Tagging 

Users can employ physical objects to connect or transport information between 

devices. The mediaBlocks project (Ullmer, B., Ishii, H., & Glas, D., 1998) uses RFID-

tagged physical blocks as tangible containers for data. The system uses a tag’s ID to 

retrieve the “contained” information from the network cloud when the user docks the 

block to a different device. Physical objects with embedded RFID tags can also enable 

novel combinations of devices and functionality (Want, R., et al., 1999). In the tranSticks 

system (Ayatsuka & Rekimoto, 2005), a user can bind a pair of memory flash drives and 

then later plug them into two separate devices to create a connection. Although physical 
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transports are effective for some operations, physical constraints of real-world objects can 

limit the approach. A physical object cannot attach to more than one device at a time, nor 

can it move beyond arm’s length without passing it to others, or walking across the room 

with it. The user must also switch their hands and attention back and forth between 

interacting with digital content on the screen, and handling the physical transport 

containers. 

Cameras can sense visually coded tags on mobile devices and thereby identify the 

position and orientation of each device in an augmented meeting room (Rekimoto, J., 

Saitoh, M., 1999). A projector enables the environment to project graphical feedback 

showing an augmented working surface superimposed on the space occupied by the 

devices. Alternatively, this type of information enables pointing to identify desired 

devices (Swindells et al., 2002). Many mobile devices now contain cameras, so tagging 

the environment offers another approach. For example, a wall display can show a visual 

pattern that the user captures with their camera phone; decoding the pattern allows the 

phone to access a network service on the display (Scott et al., 2005).  

2.3. Proximity and Near Field Communication 

A system can provide some multi-device services by discovering nearby devices.  

Proximal selection (Schilit, R., Adams, N., & Want, R., 1994) allows a user to perform 

actions based on proximity, such as printing a document on a nearby printer. Wireless 

connection standards such as Bluetooth include mechanisms to discover other devices 

that are within range. The RADAR technique senses location via triangulation of wireless 

network signal strengths (Bahl, P., & Padmanabhan, V., 2000), but requires extensive 

calibration data. The NearMe system senses proximity of devices, rather than absolute 
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location, and thus removes the need for calibration (Krumm, J., & Hinckley, K., 2004). 

The Relate system (Hazas et al., 2005) allows for devices to discover their relative 

position and orientation to one another using a peer-to-peer infrastructure. In order to 

function, every participating device requires a Relate hardware dongle, which uses 

ultrasound technology to detect its location relative to other dongles.  

Although these approaches enumerate nearby devices, they lack any direct means to 

identify a specific device; the user must perform additional operations to choose a device 

from a list of candidate devices. Even if a list uses names that people can understand, as 

the list grows longer, it becomes unclear which physical devices correspond to the names 

in the list.  

Proximity sensing plays an important role for synchronous gestures because it limits 

the scope of devices that a distributed system must consider. For example, later in this 

paper we describe our BlueRendezvous application for smart-phones, which combines 

Bluetooth’s automatic device discovery protocol with a synchronous button press. This 

enables connection to a specific proximal device. Our implementations of the Stitching 

(and Collaborative Stitching) techniques, also discussed later in this paper, employ 

802.11 wireless networking, and use the NearMe system to limit synchronous partners to 

proximal devices (within about 20 meters).  

Near field communication (NFC) techniques can support device association if each 

device is equipped with RF tags (Tandler, P. et al., 1998; Rekimoto, J., et al., 2003). 

Typically this entails the use of short range (0 to 3 inches) RFID readers that require 

placing a tagged device on a small reading surface. Long-range RFID readers present the 



 - 20 - 

opposite problem: it is difficult for a user to judge whether a given tag lies within reading 

range. This uncertainty leads to breakdowns in interaction, as well as privacy and security 

concerns.  

The Infrared Data Association (IrDA) standard avoids these problems by employing 

infrared sensor/transmitters to transfer data between devices. However, this can be 

cumbersome to use during a meeting because the users must place their devices close to 

one another and carefully align them in order for the infrared sensors to communicate.  

2.4. Pick and Drop  

Pick and Drop (Rekimoto, 1997) allows users to pick (copy) an item from one 

interactive display and drop (paste) it onto the display of another device nearby. Pick and 

Drop requires a pen embedded with a unique ID in order to detect when the pen from one 

device enters the range of another device. Identification codes are available on some 

pens, such as desktop display tablets from Wacom that sense 64-bit “pen-ID” codes, but 

pen-ID is presently not supported by any Tablet PC’s or other mobile devices.  

Because Pick and Drop relies on a unique ID bound to the pen, one user must employ 

the same pen for both the Pick and the Drop portions of the interaction. Short of 

physically handing the pen to another person, Pick and Drop cannot support a division of 

labor of the connection gesture across two separate users. This makes it difficult to form a 

one-to-many connection, or to form a beyond-arms-length connection. Furthermore, Pick 

and Drop does not coexist well with some natural uses of the pen: it becomes ambiguous 

as to whether the user intended to perform a cross-device operation, or if the user merely 

intended to point at or interact with the other screen. 
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Our research also moves beyond Pick and Drop by contributing the notion of a 

connection-action phrase. Pick and Drop provides a natural means to connect two devices 

that both offer a suitable pen-ID capability, but it does not integrate secondary 

information such as the relative spatial orientation of the devices, or a means to specify 

the purpose of the connection. Both of these additional pieces are necessary for a scenario 

where users wish to link their displays together to enable joint viewing of a large 

document or image that spans the displays, for example. The Pick and Drop work also 

does not consider the sociological implications of users collaborating in close quarters. 

3. BUMPING AS A SYNCHRONOUS GESTURE 

Our first foray into ad-hoc multi-display environments explored bumping together a 

pair of accelerometer-augmented tablet computers (Hinckley, 2003). We constructed a 

custom sensing module to provide a two-axis linear accelerometer as well as secondary 

supporting sensor data, such as touch and proximity sensors, that we used to help 

disambiguate which (if any) device was being held by a user. Accelerometers are now 

commonplace on devices such as Apple Computer’s iPhone, the OQO Model 02, and the 

Toshiba Portege series Tablet PC’s. The bumping interaction arose from our research into 

sensor-based interactions for mobile devices (Hinckley, K., Pierce, J., Sinclair, M., & 

Horvitz, E., 2000). Some of the interactions we envisioned appear on the iPhone device, 

for example, which uses an accelerometer to sense changes in the viewing orientation of 

the screen, as well as a proximity sensor to detect when the user is listening to the device. 

In short, sensor-enhanced mobile devices are likely here to stay. Interactions such as 

bumping devices together no longer seem as fanciful as they did just a few years ago. 
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In our system, bumping primarily supports dynamic display tiling, a technique that 

allows users to tile together the displays of multiple Tablet PC’s by bumping a tablet into 

another one lying flat on a desk surface (Figure 2). This technique allows the “held” 

tablet to annex the screen real estate of the “stationary” tablet resting on the desk surface. 

For example, if the held tablet displays a large image when it bumps into a stationary 

tablet, the image expands to encompass both screens. Note that the system must be able 

to sense which tablets have been brought together, as well as which edges of those tablets 

are involved, in order for each tablet to display the correct portion of the image at the 

correct orientation. 

Figure 2 ABOUT HERE 

3.1. Detection of Bumping 

With the two-axis accelerometer mounted in the plane of the device’s screen, hitting 

one edge of a tablet excites one axis of the accelerometer much more than the other. This 

fact allows us to distinguish not only the edge struck, but also the direction of a bump, by 

observing the sensing axis with the largest response. Figure 3 shows a plot of the 

characteristic “equal and opposite” forces that are generated when a user bumps the left 

side of a held tablet (“local device”) into the right side of another tablet (“remote device”) 

resting on a table.  

Figure 3 ABOUT HERE 

Synchronous gestures require an arbiter that collates the distributed sensor data and 

determines when a complete synchronous gesture has occurred. The arbiter is an 

independent process that other applications must subscribe to if they wish to send or 
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receive synchronous gesture events. The implementation issues and challenges 

surrounding the arbiter are discussed in further detail in section 3.2.  

Figure 4 illustrates the components and steps involved in detecting a bumping 

synchronous gesture (step 1). In our system, a synchronous gesture server at a well-

known network address receives time-stamped events that mobile devices in the 

environment stream to it (2). The server synchronizes the time stamps and looks for 

matching sensor events such as complementary spikes in the accelerometer data (3). 

When the server finds a match, it sends a synchronous gesture event that informs the 

participating devices of each other’s address (4) as well as the edge and direction of the 

bump so that the displays can be linked correctly (step 5).  

Figure 4 ABOUT HERE 

The system displays animated graphical feedback that shows an arrow sliding from 

the screen that initiated the connection onto the screen of the other device, with 

associated “snap-together” audio cues. Auditory feedback is important for multi-user 

interaction since the system cannot assume that both users are looking at their mobile 

devices when the interaction occurs. Even if one user is fully aware of the interaction, it 

is important to draw the attention of the other user to it as well. 

Our system also uses the accelerometer to detect when the user pulls the devices 

apart. If a device senses substantial movement in any direction, it sends a notification to 

its partner device and disconnects. Alternatively, to allow users to hold or move the 

devices after connecting them, the disconnection can be delayed until the system senses 

the user walking away with a device, by using the accelerometer to sense a gait pattern 



 - 24 - 

over several seconds (Hinckley, K., 2003a). Giving users facile means to control the state 

of a connection, with strong feedback as to the connectedness, are important design 

elements of synchronous gestures that we believe can ease privacy concerns when 

creating tightly bound links between co-located devices. 

Bumping naturally phrases together several parameters of the cross-device operation, 

including the distinction of the sender from the receiver, and the desired geometrical 

arrangement of the devices, in a simple physical act that seems like a single cognitive 

chunk from the user’s perspective (Buxton, 1986). For example, bumping is a more 

expressive connection-action phrase than just placing two devices in proximity of one 

another, or even connecting them with a network cable. 

3.2. Arbiter’s Role 

There are a number of important aspects to consider that can affect the arbiter’s 

reliability or performance, which in turn affects our system’s capacity to detect and react 

to synchronous gestures events in a timely fashion. For example, the number of devices 

injecting sensor information into an arbiter is a factor that can degrade an arbiter’s 

responsiveness since:  

a) Comparing pairs of signals from a large group of devices can become 

computationally expensive; 

b) The probability of collisions (i.e., when a signal corresponds more than one 

possible set of devices) increases as the number of simultaneous interactions among the 

co-located devices grows; and 
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c) The probability of reporting false positives increases as the number of 

simultaneous interactions among the co-located devices grows. 

These issues are potentially problematic, but can be limited with careful design 

choices. The number of comparisons the arbiter needs to perform grows quadratically 

with the number of devices it monitors. For a set of a hundred devices that all are 

generating events at the same time, five thousand comparisons must be done— an 

operation that is not prohibitive for modern devices. Using a proximal arbiter that only 

considers devices within a certain distance is a straightforward way of limiting the 

number of devices that must be considered simultaneously. Ideally, if device hardware 

supports modulation of wireless radio signal transmission strength, a device could 

attenuate its signal so as to limit communication to a computationally feasible set of 

devices.  

The arbiter knows when collisions (potentially ambiguous synchronous gestures) 

occur. The arbiter may not be able to determine what the desired connections are, but it 

does know which devices are involved in the ambiguity. SyncTap addresses collisions 

(e.g, two users performing simultaneous button presses at exactly the same instant) by 

simply discarding the ambiguous events, forcing the users to rearticulate the gesture. But 

the arbiter can inform the participating devices of the collision so that users may be 

informed of the failed attempt, and prompted to try again. If collisions are infrequent, this 

is a reasonable solution.  



 - 26 - 

When communications are limited to proximal devices, another possibility is to fall 

back on social protocol.  For example, users may coordinate their activities and take turns 

when potentially ambiguous actions might occur.  

The use of a proximal synchronous gesture arbiter does raise some difficult systems 

issues that would have to be addressed for synchronous gestures to be broadly deployed.  

For example, a centralized arbiter might not be available at a particular location. 

Although we did not attempt to implement a decentralized system, we can envision an 

architecture where a set of devices essentially acts as a decentralized sensor net, where 

any node (or more than one node) can assume the role of an arbiter. Developments in 

sensor nets and mesh networking (Mir, 2006) point suggest that this should be possible, 

but we have not explored the feasibility of such approaches for sensing synchronous 

gestures.  

Another issue is that a user might not trust the arbiter’s credentials (e.g., while at a 

meeting in a rival company’s conference room). We remain mindful of trustworthiness 

issues and believe there are several ways to address them. Rekimoto describes success 

using simple cryptographic protocols to avoid “man in the middle” attacks (Rekimoto, 

2004). Also, for synchronous gestures, social protocol is a crucial part of the connection 

exchange, and constitutes an information channel that is hard to eavesdrop by entities 

outside the proxemic circle in which the interaction occurs. In our work, the arbiter 

facilitates the creation of a tunnel between devices, i.e. once the connection occurs, all 

data transmission occurs directly between the participating devices without passing 

through the arbiter (Figure 4.5). Thus, the arbiter learns only of the connection between 

the devices, but is not privy to the information passed between devices. If the arbiter 
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reports a malicious address for a “partner” device, then the users will be able observe that 

the desired devices are not connected to one another. Nonetheless, if it is not acceptable 

to rely on social protocol as a failsafe, then synchronous gestures may not be an 

appropriate technique for an untrusted environment.  

Our implementation uses a fixed arbiter at a well-known address. The arbiter  

determines which devices to synchronize based on proximity as sensed by the NearMe 

system (Krumm, J., & Hinckley, K., 2004). We employ a client/server architecture with a 

wireless network for data transport, but our emphasis is on exploring the interaction 

paradigm rather than implementing an elegant distributed sensing architecture. For 

example, our system cannot handle issues such as the sudden change of a device’s 

network addresses due to transient wireless dropouts or handoff, or migration of the 

“arbiter” to different devices or servers as various mobile devices come and go. These 

issues, and the challenges outlined above, were not resolved by the arbiter that we used to 

prototype the techniques described in this paper. These remain important systems 

problems that future work will need to resolve if synchronous gestures are to become 

commonplace.  

3.3. Social Implications of Bumping 

Bumping requires that the users’ devices are proximate enough to contact each other, 

but the users can avoid touching one another because each device acts a physical barrier 

between the users, and only the devices must touch. Bumping also leverages the socially 

acceptable custom of clinking glasses together, for example. Our dynamic display tiling 

technique supports a proxemic intimate connection between devices, where they are left 

in close proximity so as to provide a joint display that spans the screens of the two mobile 
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devices. While users may desire this level of closeness for some tasks, on other occasions 

it is not appropriate. However, even though the bumping gesture itself requires contact 

between devices, the system can discern some variations of the gesture. For example, if 

two users jointly bump their devices together while each is held in mid-air (as opposed to 

while one device is resting on a flat surface), the system offers an alternative transaction 

that by default exchanges the users’ home web pages and shows each on the screen of the 

other device. In another variation, one user can tilt their tablet at an angle while bringing 

them together, to “pour” information on the system clipboard from one device to the 

other. For these transactions, the contact is transient and facilitates a proxemic personal, 

rather than intimate, connection between the devices.  

4. ARMS-LENGTH STITCHING 

In this section, we explore the properties of drawing a pen gesture that spans multiple 

displays as a synchronous gesture to link multiple pen-operated devices (as well as touch-

sensitive devices that can sense contact from both pen and finger inputs). While 

employing a pen to link devices is arguably less direct and less tangible than bumping 

devices together, it offers an interesting approach because the pen can perform other 

operations on the device as well. With bumping, it is necessary to physically handle and 

move the mobile device, so the user’s hands are occupied by the device itself. With a pen, 

however, the user can fluidly integrate both within-device and cross-device operations. 

This enables rich connection-action phrases that would be difficult to support directly 

with the bumping technique. 
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4.1. Connection-Action Phrasing with Arms-Length Stitching 

We originally called this technique “stitching” (Hinckley et al., 2004), but here, we 

will refer to it as arms-length stitching to distinguish it from the cooperative stitching 

technique that we will discuss in a subsequent section of this paper. To perform an arms-

length stitch, a user starts moving the pen on one screen, crosses over the bezel, and 

finishes the stroke on the screen of a nearby device (Figure 5, Figure 6). The arbiter 

component of the system observes the properties of each portion of the pen stroke, 

synchronizes them via wireless network communication, and recognizes the stitching 

gesture as a unitary act performed by one user, thus binding together the devices.  

 Figure 5 ABOUT HERE 

We explore arms-length stitching in the context of a photo-sharing application known 

as StitchMaster. This application enables users to drag photos from one device to another 

nearby device in a manner analogous to drag and drop on a single screen. The application 

also offers other connection operations, such as displaying a photo across multiple 

screens, projecting the photos that one user selects in a full-screen view on the other 

user’s tablet, or establishing a persistent shared workspace across the devices.  

Arms-length stitching in StitchMaster integrates the operands of a cross-device 

operation by beginning the gesture with a lasso around the desired objects. The user can 

pause briefly, or make a sharp turn with the pen, and then continue the lasso until the pen 

hits the bezel of the screen. The initiator component of the system segments the gesture 

into a selection lasso and a first-half stitch at the resulting inflection point.  
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To continue an arms-length stitch, the user lifts the pen, places it back down at the 

closest edge of the desired device, and draws a second-half stitch in an approximately 

straight-line continuation of the first-half stitch. The user can then lift the pen, which 

indicates that a default cross-device operation with the selection should occur (in 

StitchMaster, this copies the selected photos to the other device).  

Figure 6 ABOUT HERE 

If the user holds the pen still at the end of the second-half stitch, this brings up a 

marking menu (Kurtenbach & Buxton, 1993) with different options for how to connect 

the device. Figure 7 summarizes the main cross-device commands supported by 

StitchMaster. Since the user invokes the marking menu at the end of the operation, on the 

screen of the other device, we refer to this as a postfix remote menu. We chose to 

implement cross-device menus in this manner because the arbiter component of the 

system does not know what operations a pair of devices can support until it knows which 

devices the user is connecting.  

Figure 7 ABOUT HERE 

However, as noted in our overview of proxemics, and as we observed in usability 

studies of arms-length stitching, users are hesitant to remain in the personal space of 

another user’s device any longer than is necessary. For example, we observed that a user 

receiving photos would lean away from his own screen as the other person reached onto 

it to draw the second-half stitch. The user sending the photos tended to draw very short 

second-half stitches and then quickly lift the pen. For these reasons, accessing alternative 
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connection commands by requiring the user to pause and then interact with a menu on the 

remote device was not, in retrospect, the best design decision.  

We now believe a better design would be to dispense with the notion of a “default” 

operation in lifting the pen, and present a postfix local menu on the sender’s screen to 

choose the desired operation after completing the arms-length stitch itself. This would 

enable the sender to establish the connection, but then quickly exit the space of the other 

device and relax the social tension caused by the temporary invasion of space. Another 

alternative would be to integrate prefix local menus with the first-half stitch, e.g. by 

pausing at the edge of the screen. However, since the identity of the second device is still 

unknown at this point, a prefix local menu would not be able to present commands that 

depended on the type of devices being connected. Thus, we believe postfix local menus 

offer the best design compromise.  

StitchMaster allows users to create a persistent shared workspace. In our original 

implementation, this was achieved by drawing an arms-length stitch between screens 

without lassoing any photos to share, and without waiting for the menu to appear. 

StitchMaster draws a red frame that appears to span the two screens to give users ongoing 

feedback that the two devices are in fact connected. While in this state, StichMaster 

supports a technique known as the transporter: a user can drag photos to the edge of his 

screen, and then pause. The initiator component of the system displays a short animation 

of a collapsing blue square, after which it plays a sound effect and transports the photos 

to other device. The user can back out of the operation before the animation finishes by 

continuing to drag (rather than continuing to pause). The persistent shared workspace 

with the transporter mechanism remains active until the devices move beyond wireless 
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range of each other. Either user has veto power over the connection and can close the 

workspace by choosing Disconnect from a menu. 

4.2. Recognition of Arms-Length Stitching Gestures 

Our implementation of stitching uses a synchronous gesture server similar to that 

used to detect bumping gestures (Hinckley, 2003). The stitching server recognizes a stitch 

by looking at the patterns of pen activity from each pair of participating devices. We 

define an envelope as the time interval during which the pen is in range of the screen and 

is moving at a speed above a predetermined threshold. The stitching server then looks for 

two consecutive envelopes from a pair of devices that match a specific pattern, as 

illustrated in Figure 6. The specific criteria used to recognize this pattern are: 

a) The first envelope must end near the first screen’s border and last longer than a 

timeout (250 ms). Likewise, the second envelope must start near the second screen’s 

border, and last longer than another timeout (100ms). 

b) The second envelope must start after the first envelope and no longer than 1.5s after 

the first envelope. This time interval is long enough to support stitching between 

tablets within arm’s reach. 

c) If multiple envelopes occur at the same time, our arms-length stitching 

implementation considers the connection to be ambiguous and the user must repeat 

the gesture.  

For step (c) above, we also have experimented with restricting the match between line 

segments based on the angle of incidence with the screen edges, but one drawback of this 
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approach is that some valid stitching gestures can be rejected due to incidental deviations 

in the angle at which the user draws each half of the stitching gesture.  In Section 5, 

where we discuss cooperative stitching, we address this issue by providing feedback and 

quick gestures to filter potential recipients before forming the action connection. 

We found these criteria suffice to recognize intentionally executed stitching gestures, 

but just as importantly, they help to minimize false positives. Incidental pen motions 

from two users concurrently using pens rarely satisfy these criteria.  

In our original implementation of arms-length stitching, we allowed stitching gestures 

to be drawn either in-air (i.e. in the hover-sensing state of the Tablet PC), or via dragging 

the pen in contact with the screen. We eventually settled on using pen contact for all 

stitching gestures, as it is less likely to occur by accident, it offers a more self-

explanatory interaction for users, and it provides a consistent gesture for devices that do 

not sense a hover state (e.g. handheld devices with resistive touchscreens). We now 

disable in-air stitching by default, a choice that further decreases the possibility of 

accidental stitching gestuers. 

For example, let us assume a simple model where a stitch occurs when the arbiter 

detects a stitch when it sees a lift_pen at the edge of device A, a land_pen at the edge of 

device B within a small time-window. Then the chance of an accidental stitch is roughly: 

P(accidental_stitch) = P(lift_pen).P(pen_at_edge).P(land_pen).P(pen_at_edge) 

Because a stroke contains a lift_pen and a land_pen, P(lift_pen) = P(land_pen). 

Likewise P(pen_at_edge) should be the same regardless of the device. We analyze pen 
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data (Grossman, Hinckley, Baudisch, Agrawala, & Balakrishnan, 2006) reflecting 

people’s usage of Microsoft’s Journal application and we find that P(lift_pen) ≈ 0.12 and 

P(pen_at_edge) ≈ 0.05. These numbers yield a chance of an accidental stitch of roughly 

0.0036%.  This number is likely to be even lower if we consider the stricter conditions 

under which a stitching should occur, e.g., minimum stroke length, stroke curvature, etc. 

4.3. Determining the Geometry of Arms-Length Stitching  

An important contribution of arms-length stitching is that it uses the absolute 

geometrical information of the pen’s location on each screen to compute a transformation 

describing the approximate spatial relationship between the connecting devices (Figure 

8). This transformation enables the connected displays to present an automatically 

calibrated unified surface across them, so that graphical feedback appears to span such 

surface. StitchMaster employs this feedback to indicate as clearly as possible, exactly 

where photos are coming from or where they are being copied to (as seen in Figure 5 and 

Figure 6)  

Figure 8 ABOUT HERE 

Furthermore, our automatic calibration technique allows the participating devices to 

present a convincing illusion that StitchMaster’s workspace spans their displays. For 

example, once devices are connected, the user can drag an image so that it appears 

partially on one screen, and partially on the other screen; the other user can then “grab” 

the portion of the image on his screen to take it. Note that this offers one way for users to 

avoid reaching onto one another’s screens once the connection itself has been formed. 

Our original system only supported arms-length stitching between devices at the same 
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screen orientation, but we subsequently extended the technique to include rotational 

transformations for shoulder-to-shoulder, face-to-face, and corner-to-corner arrangements 

of devices (Figure 8). Thus, our technique for automatically computing the geometry of 

the displays is an essential element to provide users with flexibility in the relative body 

orientation (and device orientation) with which they engage other users. 

 Our geometrical transformation technique determines the relative orientation of the 

devices, but it lacks sufficient information to accurately determine how far apart the 

devices are (we did experiment with using the time delta between the two halves of the 

stitching gesture as a proxy for distance, but found the results to be unsatisfactory). 

Despite this limitation, the illusion of cross-device feedback and of cross-device 

application content remains quite convincing to users; nobody in our user tests noticed 

this quirk, even though many of the users employed the devices while separated by a foot 

or more. 

The geometric calibration uses straightforward trigonometry based on the absolute 

position of the pen trace on each screen to derive a coordinate transformation that maps 

points in a remote device’s screen space to the coordinate system of the local device’s 

screen. Since our original research, we have extended this transformation to support all 

16 possible (four different orientations for each of a device’s four edges) 90-degree 

rotations between devices. Readers uninterested in how to compute this transformation 

can browse the figures and safely skip to the next section.  

We deconstruct the general calibration problem into two simpler ones. First, we 

determine the coordinate transformation in a canonical orientation (in which both devices 
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are “facing north” and where the stitching gesture flows from left to right) while 

assuming that there is no rotation, as shown in Figure 8. Second, we apply any necessary 

rotation transformations to the canonical transformation computed in step 1 (Figure 9 

illustrates an example of this 2
nd

 step). 

Figure 9 ABOUT HERE 

Step 1 assumes the participating devices are in the canonical orientation. We then 

construct a coordinate transformation function Fi,j(x, y) that transforms coordinates from 

device i to device j. Fi,j(x, y) includes scaling factors to translate the pixel coordinates of a 

device into real-world units of distance (e.g., millimeters), thus allow stitching between 

devices with dissimilar dots-per-inch of pixel density. 

With the transformation function Fi,j in hand, all we need to solve the general 

calibration problem is to generate functions Ti(x, y) and Tj(x, y) that rotates the devices’ 

coordinates system into the canonical orientation “devices facing north, stitching left to 

right” case (Figure 9 illustrates how such pair of transforms affects an arbitrary device 

orientation). Ti(x, y) is always one of four potential rotation transformations Rk(x, y), that 

can be composed with Fi,j(x, y) to compute the actual mapping Mi,j(x, y) between the 

device i and device j ’s coordinate systems. 

 This refinement of our original geometrical calculation enabled us to implement 

stitching between any combination Tablet PC’s, Pocket PC’s (Figure 10), and a large-

format touch-sensitive SmartBoard display in our labs. All of these devices can sense 

contact from the pen of a Tablet PC.  
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Figure 10 ABOUT HERE 

4.4. Arms-Length Stitching Usability Study 

We conducted a usability study of the StitchMaster photo-sharing application to 

assess if users could effectively use stitching gestures to perform multi-device operations. 

At the same time, we wanted to observe users’ behavior and identify usability issues and 

concerns with arms-length stitching. We present some details of this study here as it 

motivates our subsequent work with cooperative stitching.  

Pairs of users, seated side-by-side at a rectangle, collaborated in a free-form photo-

sharing and sorting task. Twelve participants, six of whom had previously used pen-

operated devices, were drawn from the general public. None of the paired participants 

knew each other prior to the study. We provided each participant a Toshiba Portegé 3500 

Tablet PC running StitchMaster. Each session consisted of a brief practice session, where 

the participants learned basic pen operations such as selecting images and dragging them 

on the screen. Then the experimenter verbally explained how to use various features of 

the application, and asked participants to try them out one-by-one.  

The experimenter first asked participants to “connect the devices by making a pen 

stroke across the devices” but did not show participants how to do this. With this 

instruction, all 12 participants, on their first or second try, successfully connected the 

devices. Next, the experimenter explained how to move photos between devices.  

We did observe a few cases where arms-length stitching did not always operate as 

users expected. We also observed a few false positives triggered by the in-air style of 

stitching. These generally occurred when users failed to successfully stitch, and then 
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returned the pen to their screen (while accidentally moving in the in-air state) to try again. 

Thus, in subsequent work we abandoned the in-air approach. 

Participants sometimes started a stroke too close to the edge of the screen; the short 

stroke left the arbiter component of the system with insufficient information to determine 

the desired connection. To address this, we added a visible margin of 2 cm to serve as 

user feedback of the minimum distance from the edge of a screen that a stitch must begin.  

Participants were enthusiastic about the concept of arms-length stitching as embodied 

by StitchMaster, and overall participants strongly agreed that they would want to use 

such functionality if it were available to them. However, many participants expressed 

caveats about their control over security and privacy. For example, participants asked if 

“Once connected, can a person take my other stuff?” or if there was a “lock-out for 

security and privacy.”  

4.5. Social Implications of Arms-Length Stitching  

During our study, several participants asked almost immediately if it was necessary to 

have the two devices right next to each other. The experimenter replied that it was not 

necessary, after which these users moved their devices apart to roughly 15-40cm of 

separation. Users were uncomfortable with leaving their device in prolonged contact with 

that of another user. This observation is consistent with sociological observations that in 

non-contact cultures, temporary access into one’s personal space is sometimes permitted, 

but touching is taboo (Hall, 1966).  

Clearly, arms-length stitching must support connections without requiring close 

contact. Arms-length stitching employs a time-out of 1.5 seconds between the first-half 
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stitch and the second-half stitch; this allows sufficient time to perform a stitching gesture 

between devices within arm’s reach, up to a maximum of about 75 cm. However, it is 

still valuable for users to place their devices together. Users commented that they “liked 

the ability to split the view, so there are no two faces trying to peek at only one screen,” 

and that “the wide screen [side-by-side connection] would be nice for collaboration, like 

for two people working on the same spreadsheet.”  

We also observed that participants engaged in an “establish and relax” pattern of 

activity where they were willing to temporarily invade the space of the other person’s 

screen to establish a connection, but then they would exit the other person’s space as soon 

as possible. This partly explains the popularity of the “transporter” interaction: when a 

cross-device gesture forms a persistent connection, it enables users to amortize the social 

cost of forming the initial connection over a longer session of sharing content back and 

forth. This may be one reason why StitchMaster’s transporter interaction was a popular 

way to transfer additional photos once the users had established a persistent shared 

workspace connection via an initial arms-length stitching gesture.  

Taken together, the techniques implemented by StitchMaster complement one another 

to provide the “flexibility [where] people can be involved or not,” as advocated by Hall 

(Hall, E. T., 1966), in the ways that users digitally collaborated in a shared physical 

space: 

 Intimate spaces: Placing two devices close together and then expanding a photo to 

fill both screens, for example, supports tight collaboration between friends or co-

workers who may need to work together on a large document. 
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 Personal spaces: For a transient operation such as copying a photo to another 

device, users should not be required to keep their devices in close contact. As 

noted above, our implementation explicitly considers stitching to another device 

that is not immediately adjacent, but that still resides within arm’s length.  

 Social and public spaces: The main limitation of arm’s length stitching is that it 

cannot support the creation of connections beyond arm’s length. But it does 

enable interactions to transition from personal to social distance by supporting 

persistent connections with the transporter interaction metaphor to bridge the 

intervening physical distance. We observed that users verbally coordinate their 

actions when using the transporter; for example, one user announced “here’s a 

care package for you” as he started to drag some photos into the transporter. This 

enables social coordination – the other person can respond “OK” to signal 

willingness to accept the transport, or “wait a second, I’m trying to finish this” to 

refuse it. Thus, the transporter works well for co-located users, but might not be 

suitable once users exit a shared physical space.  

 Orientation of spaces. Our enhanced automatic calibration technique for 

determining the relative spatial orientation of devices permits consistent 

interactions that show feedback at the correct screen orientation on each user’s 

device for all side-to-side, face-to-face, and corner-to-corner seating 

arrangements. We have also experimented with associating specific functions 

with specific relative orientations of the devices, such as providing a shared 

whiteboard application when users dock their devices at the face-to-face 

orientation (Hinckley, 2003a). 
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Thus, arms-length stitching provides a flexible interaction mechanism for connecting 

mobile devices in a variety of useful ways. In the following section, we introduce 

cooperative stitching, a new variation of arms-length stitching that permits the formation 

of connections beyond arms-length, as well as the formation of one-to-many connections 

between three or more users. 

5. COOPERATIVE STITCHING 

Cooperative stitching mimics the social protocol of handing a document to another 

person, but takes advantage of the virtual nature of the transaction to make it more 

flexible than passing around a physical object. In the real world, one person offers a 

document by extending it in hand, and a partner accepts it by reaching out to grasp the 

opposite side of the document. The document serves as a physical barrier between the 

users that prevents person-to-person contact, and holding out the physical document 

grounds the shared understanding that the document is being offered, and that it is 

permissible to take it.  

Cooperative stitching distributes the two halves of a stitching gesture among a group 

of cooperating users (Figure 11), rather than requiring one user to draw both halves of the 

gesture. Cooperative stitching enables one user to offer a document by dragging it to the 

top of his screen, and holding it there with the pen. Another cooperating user can then 

drag down from the top of his screen to accept the document. The document is only 

available while the user offering it continues to hold his pen near the top of the screen. In 

contrast with the invasion of personal or even intimate space required by arms-length 

stitching, cooperative stitching can support connections between two or more devices 

beyond arm’s length. Cooperative stitching is an example of a cooperative gesture 
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(Morris et al., 2006) that is distributed across multiple distributed devices, as well as 

multiple users.  

Figure 11 ABOUT HERE 

Cooperative stitching builds on the synchronous gestures we have described so far in 

a number of dimensions: 

 It allows different users to act in concert in order to create both transient and 

permanent connections across multiple heterogeneous devices; 

 It supports one-to-many connections among devices, as well as one-to-one 

transactions that may be desired between co-located users beyond arm’s reach; 

 It provides a lightweight mechanism to characterize the attributes of a connection, 

such as the type and hierarchy of the connection – i.e., who initiates the connection 

and who receives it; 

 It takes advantage of social cues as a way to provide users with familiar engagement 

rules and to decrease the complexity of the interaction design by relying primarily on 

social arbitration rather than technical solutions to all issues; 

 It addresses some of users’ privacy concerns by providing them with feedback to see 

who accepts a connection and quick gestures to control who is (or is not) allowed to 

participate in a connection. 

When one user initiates a stitch, cooperative stitching allows multiple users to com-

plete the gesture to form a one-to-many connection. This is not possible with arms-length 
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stitching. Both the sender and all receivers see graphical feedback showing who the 

participants in the connection are, as well as a preview of any offered files. Either the 

sender or receiver may rescind the connection if desired (Figure 12).  

Figure 12 ABOUT HERE 

5.1 Design Space of Cooperative Stitching Gestures 

Since cooperative stitching is intended for small co-located groups, users can employ 

social protocols such as body language, eye contact, and explicit verbal cues to 

coordinate their actions. This influences the relative timing the whole system can require 

for each user’s contribution to a cooperative stitching gesture, as well as the degree of 

graphical feedback that may be necessary during a connection process.  We considered 

three different approaches to the relative timings of the actions required to perform a 

cooperative stitching gesture: 

Serial action: Arms-length stitching recognizes a pattern where a pen stroke starts on 

one screen, leaves the screen, and then finishes on a second screen. Two cooperating us-

ers could emulate this pattern by having each user draw half of the gesture in a strictly 

serial order. Arms-length stitching required both halves of the gesture to be performed 

within 1.5 seconds of one another, but this short delay might be insufficient to coordinate 

the actions of multiple users. However, using a longer time-out delays the completion of 

a connection (since the arbiter component of the system must wait until the full time-out 

expires before determining if all participants have joined the connection). Consequently 

choosing a time-out that satisfies these conflicting requirements is difficult.  
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Synchronous action: We considered following the example of SyncTap (Rekimoto, 

2004) by requiring simultaneous synchronous stitching gestures from each user. Unlike 

SyncTap, stitching gestures have a direction (the sender pushes up, and the receiver pulls 

down) so there is no ambiguity as to who is sending and who is receiving. However, it 

may be difficult or unnatural for multiple users to precisely coordinate their pen gestures, 

particularly when the natural social grammar of gift-giving is for the giver to first offer 

the gift, and then for the taker to accept it.   

Overlapped action: Cooperative stitching can allow for partially or fully overlapped 

actions on the part of the cooperating users. This avoids the requirement for precise syn-

chronization, and also can avoid the need for an arbitrary time-out by allowing the sender 

to start a stitching gesture and then “hold” open the offer to connect (by keeping the pen 

on the screen) for as long as is necessary or desired.  

We implement two variations of cooperative stitching to explore the design 

possibilities noted above, with the exception of the synchronous action approach, which 

we decided not to pursue further. The first, dubbed Stitch+Lift (Figure 11, top-left), is a 

serial action design. The sender draws a straight line (stitching gesture) to the top of the 

screen and lifts the pen. Any other user that wishes to participate then has 4 seconds to 

complete the stitch by drawing a straight line down from the top of his screen.  

The second, dubbed Stitch+Hold (Figure 11, top-right), mimics the social protocol of 

handing an object to a person, and thus follows the overlapped action design approach. 

The sender draws a stitching gesture to the top of the screen and holds the pen at the edge 
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of the screen to offer a connection. Any other users can complete the stitch as long as the 

sender continues to hold the pen down.  

Note that either of these designs can coexist with arms-length stitching, allowing the 

techniques to complement one another. The automatic calibration of the spatial 

arrangement of the screens that occurs during arms-length stitching is particularly useful 

for intimate/personal space interactions where it may be necessary to show feedback or 

images that span two displays placed close together. However, a one-to-many 

cooperative stitching gesture lacks this information (all users draw lines from the top of 

the screen, so there are no longer sufficient cues to determine the relative orientation 

between the sender and receiver), making the technique better suited to social/public 

space interactions. Furthermore, in early pilot testing we found that there was less need to 

show feedback that spans displays when displays are widely separated. We also observed 

that users sitting around a table naturally expect that “the group shared space is at the top 

[of the screen],” i.e. towards the center of the table. This is why cooperative stitching 

uses the top edge of the display as the place to offer or accept connections between 

devices.  

5.2 Graphical Feedback for Cooperative Stitching Gestures  

To make the state of the connection as clear as possible, and to address privacy and 

security issues raised by user comments in our arms-length stitching study, we augment 

cooperative stitching with graphical feedback throughout the different stages of the multi-

user gesture. Our early pilot testing made it clear that a connecting solution must consider 

the perspective of different participants:  
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The sender (the user that initiates the stitch), who wishes to be made aware of who is 

accepting his offer of a connection; and  

One or more recipients, each of whom wish to see who initiated the connection with 

what files or information.  

We provide awareness of who participates in a stitching gesture by showing a tab 

containing an icon identifying the connection partner (Figure 13). The sender sees icons 

corresponding to the devices accepting the connecting. Each receiver sees an icon 

corresponding to who proposes the connection as well as what files the sender offers. 

These icons can be provided by the user’s system, e.g. in the same way a buddy icon can 

propagate through different internet services once a user logs into a instant messaging 

system. Operating systems such as Windows XP and OSX associate such icons with a 

user’s account. 

Figure 13 ABOUT HERE 

Exchanging identification icons in this way does not preclude adversarial users from 

falsely advertising their identity, e.g. by pretending to be someone they are not. While we 

did not focus on adversarial scenarios, straightforward extensions of our techniques could 

help to address such issues in future work. For example, the true sender might use the pen 

to mark a feature of his or her icon and use social protocol to inform trusted users of how 

he had marked his icon. In this scenario, trusted users can only complete the stitching 

gesture by grabbing the right icon from the right place. A similar strategy can be used for 

scenarios where the sender wants to make sure only trusted receivers connect, i.e., 

receivers specify icon features through social protocol that must be marked in order for a 
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connection to be completed. There is a tension between security, privacy and fluidity of 

use, with fluidity of use degrading as security mechanisms increase. The interaction 

techniques presented here are no exception.  

Because of the distributed nature of the cooperative stitching interaction, we consider 

several possible designs for presentation of feedback:  

Early feedback: When the sender initiates a cooperative stitch, the arbiter component 

of the system does not yet have any way to know which cooperating users will accept the 

stitch, yet it can broadcast the offer of the connection to other nearby devices. In the early 

feedback design, this broadcast causes a tab to drop down from the top of other co-

located users’ devices showing who is offering the connection. This reduces the need for 

users to rely on social protocols to form a connection, but the drawback of this approach 

is that users may broadcast offers to unintended recipients who in turn are distracted by 

undesired offers from nearby devices. 

Intermediate feedback: The connection process can rely on the users to initiate 

cooperative stitching through social protocols, and defer feedback until recipients start 

drawing a stitch. In the intermediate feedback design, as soon as the system observes the 

first 100ms of the second half of a cooperative stitch, the system knows which user is 

accepting the connection. The receiver then reveals a drop-down tab showing who 

initiated the offer. As the accepting user continues to drag the pen, her system also shows 

a thumbnail preview (attached to the pen) of the incoming files. At this point the 

accepting user can either complete the stitch, or decide to refuse it, by dragging the files 

back to the top of the screen, or by crossing out the drop-down tab. Likewise, the sender 
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sees a drop-down tab as soon as a recipient starts accepting a cooperative gesture, and can 

cross out any undesired recipients (Figure 12).  This provides each user with feedback as 

soon as it is possible to know what is being transferred to whom, and provides interaction 

mechanisms for either user to back out of the transaction if the feedback reveals a 

connection that is not actually desired. 

Late feedback: The sender and receiver devices can wait until all users finish their 

cooperative stitching gestures to reveal feedback of who participates in a connection, and 

what files are transferred. However, we found during early pilot testing that users have a 

strong desire to see what they are accepting, and from whom, as soon as possible. Even 

though social protocol seems sufficient for users to coordinate their actions, users still 

want immediate reassurance that they are connecting only with the intended parties. 

Thus, we decided not to further pursue a late feedback design after the pilot testing stage. 

5.3. Cooperative Stitching Usability Testing 

We implemented versions of stitching, Stitch+Lift and Stitch+Hold techniques for a 

variety of platforms such as Tablet PCs, Pocket PCs and Smart™ boards, all of which 

could participate on a stitch connection – e.g., tablet to PDA, PDA to electronic 

whiteboard, etc.  However, we gathered most of all heuristic evaluation and preliminary 

user study data through our implementations running on Toshiba Portegé 3500 Tablet 

PCs.  

We conducted usability testing on the Stitch+Lift and Stitch+Hold cooperative 

stitching techniques with groups of 4 users, each equipped with a Toshiba Portegé 3500 

Tablet PC, and seated around a 1.2 x 0.76 m rectangular table (Figure 14). The 
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Stitch+Hold technique employed the early feedback design strategy, while the Stitch+Lift 

technique employed the intermediate feedback strategy. Unfortunately, we did not test 

the Stich+Hold technique with intermediate feedback. In retrospect, this was a blunder as 

our results outlined below suggest this may have been the design users would have 

preferred. 

Figure 14 ABOUT HERE 

We also included two alternatives for users to compare to: (1) arms-length stitching, 

and (2) list selection, that is, selecting the names of the desired users from a list of 

proximal devices. The experimenter briefly demonstrated each technique, after which 

users performed a number of trials where they had to transfer icons to one, two, or all 

three of the other users seated at the table. 

For the list selection condition, we systematically varied the list so that it presented 3 

names (the names of the seated paticipants, with no “distractor” names), 19 names (3 

users + 16 distractors), or 131 names (3 users + 128 distractors). This let us probe the 

scalability of the technique as the number of candidate proximal devices increases. We 

assigned each participant a fictitious name that they kept throughout the study, and the 

lists used these fictitious names plus other distractor names, rather than cryptic computer 

names. The list with only three names takes the optimistic view that proximity sensing 

technology will one day be able to identify only exactly which users are participating in a 

collocated group. The lists of 19 and 131 names represent scenarios where there are 

increasing numbers of nearby devices that might be candidates for connections. The 19-

item list was small enough to view on a single screen without scrolling.  
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Overall, users strongly preferred the cooperative stitching techniques to arms-length 

stitching technique in this task context. For the arms-length stitching technique, the 

longest edge of the table was too far to reach the device at the opposite end, but we did 

observe that users would step closer or slide their device toward the other user to reduce 

the distance. User preferences split between the Stitch+Lift and Stitch+Hold cooperative 

stitching techniques. However, we observed that users would consistently gravitate to the 

Stitch+Hold manner of performing the cooperative stitching gesture once they had been 

exposed to it. Most users who preferred Stitch+Lift to Stitch+Hold found the broadcasted 

early feedback offered by Stitch+Hold to be distracting, and senders also felt uneasy that 

this might advertise the availability of a connection to undesired participants. Thus, even 

though our pilot users had felt that early feedback might be helpful, our usability testing 

of the final implementation did not support this. These observations suggest that  

Stitch+Hold with intermediate feedback offers the most suitable combination of design 

options for cooperative stitching.  

If the connecting system knows exactly what persons are involved in a group, 

selecting participants from a list offers a very effective solution.  The list with three 

names was the overall preferred technique for 5/7 participants (one user’s ranking 

responses were lost). However, only 2/7 participants preferred the 19-item list to 

cooperative stitching, and most users found the very long 131 item list very cumbersome. 

Thus, lists are effective for a small number of candidate devices, but the solution scales 

very poorly as the number of proximal devices increases.  

Participants made extensive use of social protocol in the form of verbal and physical 

cues to facilitate cooperative stitching. Participants were mindful of privacy and security 
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issues and responded favorably to the possibility of exerting veto power over a 

connection and its participants, but gestures to perform these operations were not yet 

functional at the time of the study. Based on this positive feedback, we implemented fine-

grained connection controls for both sending and receiving devices. 

5.4. Connection Control for Security and Privacy 

In an ad-hoc connection between devices, people want to be sure that there are no 

eavesdroppers and only trusted or intended people participate. Conversely, people do not 

want to be flooded by unsolicited connection requests in a collocated environment. This 

generates a tension with our desire to offer simple and fluid connection techniques 

because adding complicated security or failsafe protocols can disrupt the interaction. 

A mechanism that makes people feel aware and in control of the connection provides 

a good compromise between simplicity, security and privacy. Cooperative stitching 

provides the following controls over connections: 

 The connection tabs that appear at the top of the screen show the sender who is 

accepting a connection, and allow the sender to select who should or should not be 

permitted to connect. By default, the system permits the connection unless the sender 

uses the pen to cross (Accot & Zhai, 2002; Apitz & Guimbretière, 2004) the 

undesired tabs (Figure 12).  

 On the receiver’s device, the connection tabs show who initiates the connection and 

what is being received. The receiver can also cross out tabs to reject a connection. 

The receive also has the option of dragging the pen back to the top of the screen to 
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rescind a stitching gesture that they have started, if the resultant feedback of the 

documents being received indicates that they are not desired. 

This “veto power” has different consequences for the sending and receiving devices. 

While a veto on the sender severs a connection to a distrusted or unwanted device, on a 

receiver a veto could reject either a sender or just the information being sent. Such a 

distinction between levels of rejection can be important depending on the type of 

connection established. Figure 12 illustrates the case where a sender rejects an non-

trusted receiver. 

6. BLUERENDEZVOUS 

This section discusses synchronous gestures in a SmartPhone application known as 

BlueRendezvous. Mobile phones are quickly becoming the predominant computing 

platform in many regions of the world. Consequently, a large community of people could 

benefit from direct ways to connect their phones to exchange information, collaborate, or 

leverage the functionalities of each other’s devices. We have deployed BlueRendezvous 

to a small set of users’ SmartPhones that were equipped with Bluetooth radios and Wi-Fi 

wireless networking. 

6.1. Connection-Action Phrasing in BlueRendezvous 

Stitching interactions are not possible on mobile phones that lack touch screens. 

BlueRendezvous is based on the simultaneous button press approach of SyncTap 

(Rekimoto, 2004), but requires users to press the same number on the keypad of their 

phones at the same time while running the connection screen of the BlueRendezvous 
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application. Hence, spurious connections would not occur while dialing a phone number, 

for example.  

We designed our gesture recognition module to be flexible so that two cooperating 

users can press the same numeric key on their own phones at approximately the same 

time. This is in direct contrast to SyncTap’s behavior, which requires one user to press a 

button on both devices in very tight synchrony. While straightforward, requiring one user 

to touch both devices at the same time to accomplish such a gesture stands in contrast to a 

phone’s private nature, and its location in the intimate category of its owner’s proxemic 

space.  

BlueRendezvous also moves beyond SyncTap by demonstrating how devices with 

limited input capabilities can support richer connection-action phrases. Blue Rendezvous 

supports connections formed for the purpose of sending images captured from the camera 

phone to another user, sending a specific contact to another user, exchanging files, or 

performing a mutual business contact swap.    

We treat the ubiquitous 12-key numeric keypad of a mobile phone as a very low-

resolution touchpad. For example, ZoneZoom (Robbins, Cutrell, Sarin, & Horvitz, 2004) 

uses a smartphone’s keypad as an input surface to pan and zoom through maps. Fathumb 

(Karlson, Robertson, Robbins, Czerwinski, & Smith, 2006), enables the navigation of 

hierarchical metadata with a similar approach. BlueRendezvous employs the cooperative 

style of synchronous gestures where each user performs their own part of the gesture. 

Thus, no violation of the other user’s personal space is necessary to perform the gesture. 
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To link two devices using BlueRendezvous, each user runs the application on their 

phone. The BlueRendezvous application automatically activates the Bluetooth radio for 

the user. A BlueRendezvous connection is established through the following steps: 

1. Initiate. One user initiates the connection by pressing the Find Partner soft key. This 

identifies the initiating device as the sender. 

2. Synchronize. Each user then must press the same numeric key (0-9) at about the same 

time (Figure 15). Social protocol takes an important part of this step, as users need to 

coordinate (i.e., agree) which key(s) to press, and when. This makes it less likely that 

collisions with other devices will occur, since there is not a single “sync” button, but 

rather the equivalent of a 9-channel walkie-talkie. It would be straightforward to 

extend BlueRendezvous to allow multi-digit codes, analogous to a PIN code for 

personal banking, but we have not yet implemented this.  

3. Connect. After the synchronization, the sender uses the Bluetooth discovery protocol 

to identify other devices providing the BlueRendezvous service. Only a 

BlueRendezvous service that corresponds to the numeric key press selected in step 2 

will be discovered. In our present implementation, all communication occurs over 

Bluetooth, but as Wi-Fi enabled phones become more common, Bluetooth could be 

used to synchronize devices and then hand off the connection to the Wi-Fi channel. 

4. Act. Once the devices have established a connection, an action screen (Figure 15) that 

assigns a connection task to each numeric key on the keypad appears. Either user may 

now initiate any of the actions.  
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5. Right of Refusal: If one user initiates an action, then the other user is offered the 

opportunity to accept or refuse the results of that action. For example, when 

transferring images, the receiver sees a thumbnail of the image and is asked, “Do you 

want to receive this image?” before the entire image is downloaded. 

6. Disconnect. Users can exit the action screen to close the connection. This 

automatically restores the Bluetooth radio to its previous state. This behavior saves 

power and ensures that the user’s device is not accidentally left in the “discoverable” 

state. 

Figure 15 ABOUT HERE 

6.2. Details of the Synchronization / Connection Process 

During the synchronization phase (step 2), the Bluetooth devices transmit signals to 

discover each other. During this discovery process, one device must transmit that it is 

‘discoverable’ while the other device must listen for discoverable devices. A limitation of 

Bluetooth is that a device cannot perform both of these input/output functions at the same 

time. Because Bluetooth discovery typically takes 10 seconds to occur, the connection 

step is not as rapid as we would like. In our implementation, the initiating user can press 

the Find Partner softkey to identify his device as the discoverer and speed up this 

process. Alternatively, if users can forego this speedup action, each device randomly 

alternates between transmitting and listening until the devices find one another, but this 

may take up to a minute to occur. Another mechanism to disambiguate the roles of client 

and server devices is the use of a tap-and-hold gesture, which a user performs instead of a 

single tap on the device that she wants to assign the server role (Figure 16). 
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BlueRendezvous only requires the numeric key press on each device to be close enough 

in time so that one device has the opportunity to discover the other device before it stops 

transmitting.  

Figure 16 ABOUT HERE 

The synchronous gesture that defines a BlueRendezvous connection allows for a 

straightforward discovery and connection of smart phones. An important feature of this 

discovery and connection process is that even though the synchronous button presses 

provides minimal information about how to connect the devices, we structure the 

interaction in such a way that the initiation, connection, and action selection are all 

provided and incorporated into the task workflow. BlueRendezvous currently does not 

include any mechanism to specify the relative spatial locations of the devices. For 

operations where this information could be used to augment interactions across the 

connection, this could be provided via the numeric keypad, but this feature has not yet 

been added to the system.  

6.3. Social Implications of BlueRendezvous 

Unlike SyncTap (Rekimoto, 2004), BlueRendezvous does not require a carefully 

timed synchronous  button press because a number of design properties filter out "false 

positive" connections. Firstly, the BlueRendezvous application does not monitor 

incidental keypresses: users must activate the BlueRendezvous application to signal that 

they desire to participate in a connection. Secondly, users must press the same key from 

among 10 possibilities. Thirdly, the limited range of the Bluetooth radio automatically 

limits the interaction to nearby discoverable devices, which in turn must offer the 



 - 57 - 

BlueRendezvous service. Finally, users can fall back on social protocols such as verbal 

communication to verify that their devices have correctly connected as expected.  

BlueRendezvous provides a direct solution for interactions in the social-to-public 

range of proxemic distance, as it naturally lends itself to forming connections without 

having to touch or even look at the screen of another person’s device. In principle, since 

BlueRendezvous is an example of a cooperative synchronous gesture, the interaction 

could also support one-to-many connections, but this is not easy to implement using the 

current capabilities of Bluetooth devices. BlueRendezvous’ reliance on social protocol 

implicitly enhances the security of the technique, since communication of when to 

synchronize, and what key to press, occurs on a different communication channel. 

Establishing a secure communications channel is not the focus of our efforts, although 

this issue is discussed in more depth by others (Rekimoto, J., 2004; Rekimoto, J., et al., 

2003). This is one area where NFC or physical transport strategies ("Near Field 

Communications," 2008; Want, Fishkin, Gujar, & Harrison, 1999; Zimmerman, 1995) 

have a distinct advantage, because a cryptographic key can be exchanged in this manner 

with limited possibility of eavesdropping by another person or device. 

Because BlueRendezvous facilitates one-to-one connections, once a connection is 

established, the feedback on the screens makes it clear whether or not the intended 

devices were actually connected. A “man in the middle” device would not be able to 

connect at the same time as the intended device.  The right of refusal option also gives 

users the opportunity to back out of an unwanted connection or to cancel the reception of 

undesired information. We have considered supporting an option to make refusals silent 

to the partner device, so as to ease social tensions if a user decides that they really don’t 
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want to accept a file or connection that another user offers – without causing the other 

user to lose face. 

7. BLUETABLE 

BlueTable (Wilson & Sarin, 2007) is an integration of BlueRendezvous with the 

PlayAnywhere system (Wilson, 2005) that demonstrates how an interactive horizontal 

display with an integrated sensing system can enable novel interactions between a 

collaborative horizontal display and mobile devices that users bring to a meeting. The 

recently announced Microsoft Surface Computer (Figure 17) demonstrates similar 

interactions, based on BlueTable, to allow transfer and interactive manipulation of tracks 

between Zune music player devices with wireless networking capabilities. 

Figure 17 ABOUT HERE 

BlueTable integrates a short-throw projector and a vision-based sensing module in a 

compact footprint. This enables interactive applications on a horizontal surfaces of up to 

40 inches diagonal (Figure 18). The sensing module uses an infrared technology that can 

perceive hand gestures on the surface as well as the placement of physical objects on the 

surface. The overall system is capable of juxtaposing graphics with the sensed objects on 

the surface. With this hardware configuration, BlueTable offers a rich connection 

infrastructure between Bluetooth-enabled mobile devices that are placed on the table, and 

the large horizontal display itself, while adding rich multi-touch hand gesture capabilities. 

Figure 18 ABOUT HERE 
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BlueTable facilitates the connection of mobile devices through the following series of 

steps. When the system detects a phone-like shape over its display surface (Figure 19.1), 

it tells in-rage Bluetooth devices (Figure 19.2) to generate a signal in the visible or IR 

spectrum (Figure 19.3); if the table’s vision system sees the signal from the detected 

device’s location, a connection is established. Thus, the synchrony of signals across 

multiple devices again serves to establish communication between devices. 

Immediately after the connection is established, information such as recent photos 

taken on a camera phone “spill” out of the mobile device (Figure 19.4). Because of the 

interactive nature of the BlueTable, users can interact with this information by touching 

table’s surface (Figure 19.5). Users can inspect, manipulate, modify or share the photos 

with other devices already on the table, by taking advantage of a rich multi-touch, high-

resolution interactive surface, instead of restricting all interactions to the limited set of 

mobile phone inputs.  

Figure 19 ABOUT HERE 

The connection metaphor for BlueTable is simple and has powerful interaction 

affordances. The act of physically resting one’s device on a surface to establish a 

connection is an unmistakable physical act that users immediately understand. This 

physical act also is immediately visible to all co-located users in a manner that 

synchronous button presses or pen gestures may not be. The horizontal form factor of the 

table is crucial to this metaphor. Gravity holds the devices on the surface and keeps a 

connection live. The user can remove the devices from the surface to pull away from the 

connection. Other users can add their devices to the surface to participate or bring new 
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content into the interaction. Putting one’s mobile on the surface transitions the device 

from a personal, private role to a public, shared role in a rapid and intuitive manner, yet 

picking the device back up immediately reverts it to a private display.  

BlueTable provides a lucid example of how combinations of devices with dissimilar 

roles and capabilities can lead to novel interaction possibilities. The table, by itself, is not 

good for presenting private information, and the phone, by itself, offers very limited 

inputs and does not afford collaborative interactions. Together, the devices provide a rich 

set of possibilities with fluid transitions between private and public roles for information 

and interaction. 

8. DISCUSSION 

While different in their implementation and form, the projects and interactions we 

have presented in this article share the same common vision of linking multiple devices 

into a heterogeneous sensing/display environment using synchronous gestures. These 

projects led us to understand the importance of considering proxemics as a guiding 

principle for the design of cross-device interactions. Furthermore, our prototypes, studies, 

and observations suggest important lessons for desirable design properties of multi-

device and multi-user connection phrases. 

8.1. Support for Actions at Different Proxemic Distances  

Because of the nature of ad-hoc, multi-display and device environments, one should 

allow for interaction designs supporting different device and body orientations. 

Considering the social expectations of proxemics can reveal important functional 

requirements, which help designers shape effective solutions during interaction design 
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processes. For example, even at intimate settings, physical contact between devices is 

likely to be acceptable, but one cannot make the same assumption for interaction at 

further distances. 

Figure 20 illustrates how our different projects relate in terms of the proxemic 

distances in which they can occur. The appropriateness of a connection-action interaction 

is not only dependent of the range of proxemic distances in which it occurs, since other 

factors can influence its suitability for a task or scenario. The amount of information 

encoded in the connection phrase is important as well. For example, bumping provides a 

straightforward mechanism to create shared workspaces at intimate distances, yet the 

geometry information this connection mechanism carries is coarse. Stitching allows for 

the specification of more precise geometry data, yet it does not provide a disconnection 

metaphor with a strong affordance as bumping does. The BlueTable project seems to 

address both these issues: the support of intimate distances and a reversible connection / 

disconnection metaphor, still this solution does not scale well for purely mobile 

scenarios. 

Figure 20 ABOUT HERE 

The ability to gather geometry and location information during a connection phrase is 

important at close distances where it can assist in providing strong and meaningful 

feedback for shared workspaces or information exchanges. Techniques such as bumping, 

stitching and systems such as the BlueTable provide examples of the use of this geometry 

information. Cooperative stitching does not capture precise geometry information in the 

case of one-to-many connections, thus precluding us exploring the use of this type 
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information. Still, cooperative stitching can be used at a variety of proxemic distances 

and physical orientations, making it a flexible connection mechanism. This breath is due 

in great part to a balance between social protocol, which allows for coordination at-a-

distance, and adequate graphical feedback, which brings awareness to the participating 

users. 

8.2. Workflow 

One should consider designs that fit into or that become part of a task’s workflow. 

For example if part of the process of sharing a document involves getting physically close 

to a co-worker, it would be advantageous to use the act of approaching two devices 

together as part of the connection mechanism. Similarly, one can model a connection 

phrase using a gift-giving metaphor, where one offers copies of a document to a group of 

colleagues by holding the documents on one’s hand. These two examples correspond to 

the Bumping and Stitch+Hold techniques. BlueTable provides a similar workflow 

integration by letting users perform straightforward and tangible direct manipulations that 

match users’ expectations. 

The structure of an interaction phrase plays a role in fitting a technique into a task’s 

workflow. An examination of an interaction phrase’s syntax can help not only designing 

a better interaction technique, but also discovering problems with existing ones. For 

example, the “establish and relax” pattern of activity we observed during intimate 

distances offers an argument against the use of post command menus, (Figure 5, lower-

right). A lesson from this observation is to consider command specification options 

occurring on the initiating stitching device – e.g. prefix menus or postfix menus where a 

user returns to his local device.  
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The integration of an interaction technique into a task’s workflow is one of the main 

differences between the projects we presented and the related work. For example, Pick 

and Drop focuses on the connection step and a default action, while stitching, supports 

the user's overall workflow, which permits several operations. The BlueTable is an 

interesting example of integration where the device is the medium where task occurs, 

thus making it a defining part of the workflow. BlueRendezvous requires a series of 

discrete steps to complete a useful operation, but while this process is less fluid than 

interactions such as stitching, it is technique that constitutes a step in the right direction 

and an improvement over current mobile phones discovery and connection mechanisms. 

8.3. Privacy and Security 

One should provide people participating in an ad-hoc connections with privacy and 

security mechanisms that let them exercise control over incoming and outgoing 

connections and data. This is an important principle that must be balanced against the 

previous principles of workflow and proxemic distance – i.e., a control mechanism 

should integrate into a task’s workflow and be applicable at the appropriate proxemic 

distance. Cooperative stitching explicitly includes in its design features that have these 

properties, e.g., in the form of crossing widget interactions. Other connection techniques 

include security features that correspond to the metaphor that inspires them. In the case of 

bumping, separating device is a straightforward phrase for breaking a connection. 

BlueTable provides a similar privacy control mechanism – i.e., withdrawing a device 

from the table breaks its connection. These last two privacy mechanisms integrate 

gracefully into their respective connection phrases; yet they provide a coarse, absolute 

control over a connection and the information passing through it. We envision security 
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mechanisms, similar to the ones illustrated by Wu (Wu & Balakrishnan, 2003) in the 

context of tabletop displays, that does not require completely severing a connection. 

Our observations revealed that people’s sense of property and ownership could play 

an important factor in the design of connection phrases and metaphors. For example, an 

intermediary device that provides a “neutral territory” can alleviate concerns about close 

proximity to strangers – e.g., portal or candy-dish metaphors (Hinckley, Ramos, 

Guimbretiere, Baudisch, & Smith, 2004).  If not dedicated, personal devices may need a 

“media container” mode. However, the owner of such a device may not feel comfortable 

having co-workers grab a device that might contain personal information. We received 

this type of comments from users during our early cooperative stitching design sessions. 

Some devices have no owners, e.g., BlueTable is an active surface that mediates between 

the devices people put over it and acts as an intermediary, neutral entity that lessens 

property concerns for interactions at close distances. BlueRendezvous mode of 

interaction is at the other end of the spectrum, where users keep their respective devices 

to themselves, and using social protocol to mediate a connection. 

8.4. Eight Design Questions for Ad-Hoc Multi Device Environments 

The previous discourse prompts us to view and consider connection mechanisms not 

only in the context of proxemics, but also on fundamental interaction issues. We 

summarize these issues in eight design questions for connection-action phrases for ad-hoc 

multi-device environments. 

1. Connection: How is a connection established?  

2. Command:  What type of connection is required? What is the connection used for? 
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3. Operands: What information is shared?  

4. Geometry: What is the spatial relationship and orientation between devices?  

5. Coexistence: How does a connection mechanism coexist with traditional interactions 

or naturally occurring user behaviors?  

6. Proxemics: Does a connection mechanism take into consideration or affect users’ 

share of the physical space? 

7. Privacy: How does a user avoid undesired connections? Can the user control what 

content is shared? How does either user back out of an operation at any point, or veto 

a connection that is no longer desired? 

8. One vs. Many Partners: As made apparent by our explorations of various 

synchronous gestures, a given ad-hoc connection technique may not support the 

requirements of one-to-one and one-to-many connections equally well. The designer 

must decide which types of collaborations are most important to support in a given 

application or user task scenario.  

We have explored a number of point designs that offer several ways to address these 

questions, but many additional approaches or creative hybrid solutions that combine the 

properties of different approaches remain to be explored. We believe that the concept of 

connection-action phrases can help to encourage novel cross-device connection 

mechanisms that fit into the flow of other user interactions. 
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9. FUTURE WORK 

Our research represents a step towards post-WIMP user interfaces in the context of 

ad-hoc gatherings of potentially connected displays and devices. Still there is much yet to 

explore. For example, while we had the opportunity to test important aspects of our 

cooperative designs, there are still areas that require quantitative evaluations. In future 

studies we would like to explore the different stitching techniques, particularly to 

quantitatively analyze Stitch+Lift and Stitch+Hold gestures with intermediate feedback. 

While users received well the privacy mechanisms we have introduced, we also need to 

formally observe and evaluate them. 

Future work also includes supporting users that may not want to have to respond to 

every incoming connection they receive within the time-span of a particular synchronous 

gesture. An asynchronous stitching interaction that combines broadcasting with a 

mailbox metaphor is a design that could address this issue (Figure 21). For example, 

messages or incoming connections from a sender device could accumulate on an inbox 

space at the receiving devices. Later, users can consider if and how they wish to handle 

these requests. This idea relates to the Sharing Palette file-sharing system (Voida, 

Edwards, Newman, Grinter, & Ducheneaut, 2006), which allows for an elegant way of 

specifying user groups, permissions and sharing styles. Stitching is a connection 

mechanism that could assist in rapidly populating the palette’s list of available users. 

Figure 21 ABOUT HERE 

There are interesting aspects of BlueRendezvous that we plan to explore. 

BlueRendezvous provides users with the means to establish a connection between 
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devices only requiring a keypad and a compatible wireless link. These requirements 

could make this connection technique suitable for a number of devices beyond mobile 

phones. For example, richer devices such as tablets or large interactive displays can 

provide users with access to virtual keypads, if necessary. 

Connecting to a nearby device is only part of a BlueRendezvous session, which also 

requires the use of action screens in order for a particular activity to take place. We 

envision action screens reflecting the idiosyncrasies of the devices on which they appear 

– e.g., mobile phones, digital whiteboards, etc. Action screens provide us with the 

opportunity to explore additional functionality that we did not implement on the deployed 

BlueRendezvous system. For example, we can use action screens to provide geometry 

information about a connection so that a user could annex a nearby device’s display. 

Figure 22 shows a mockup design of an action screen with keys that allow a user to 

specify the relative orientation of the pairing device and show a shared image across two 

screens.  

Figure 22 ABOUT HERE 

In this example, a user selecting the share option for a particular photo can 

immediately add a geometry operand; in this case, the user presses the “6” key. The 

receiving device notifies its user of an incoming share operation and provides the option 

to add geometry information to it; in this case, the receiving user presses the “4” key. 

Lead by social protocol, users can establish a side-by-side connection, which allows the 

devices to share the image across their screens, similarly to what bumping and stitching 

permit. 
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10. CONCLUSION 

In this article, we focus on the following research question: how can users 

dynamically forge a purposeful connection between two or more target devices that do 

not know a priori one another's information? This question reveals pressing research 

problems for system architecture, interaction design, as well as social and behavioral 

observation studies. We explore ways of combining two or more devices into a 

heterogeneous display environment in an interactive, ad-hoc fashion, such as during a 

meeting. In particular, we focus on the use of synchronous gestures to achieve 

spontaneous connections between collocated displays and devices.  

We present a number of recent and novel technologies, interaction designs and 

implementations that leverage the concept of synchronous gestures. At the same time, we 

present a design approach that considers cross-device operations in general, including the 

system, interaction, and social issues that arise. The related literature presently lacks such 

a discussion of general requirements, making our discourse a concrete contribution of our 

research. 

It is currently difficult to grasp what it will mean for everything and everyone to be 

wirelessly connected. What we are sure of is that some of the most exciting examples of 

post-WIMP user interfaces might arise from this primordial mix of wireless networking, 

heterogeneous mobile devices with disparate capabilities and ubiquitous interactive 

displays. The research we present in this article is an initial attempt to explore what might 

be possible and constitute a step towards this exiting research direction. 
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production. During the review process, it is okay to just have footnotes at the bottom of pages.) 

1 Personal communication, Geoffrey T. Raymond, Assistant Professor of 

Sociology, University of California Santa Barbara. 
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FIGURE CAPTIONS 

Figure 1: The four proxemic distances. 

Figure 2: (Left) A user can bump a tablet into another one resting on a desk. The 

software recognizes the gesture by synchronizing the two accelerometers across a 

wireless network. (Right) The tablet moved by the user annexes the display of the 

stationary tablet, allowing a panoramic image to span both displays. 

Figure 3: Top/down and left/right accelerometer signatures for bumping a left side 

of tablet onto the right side of another. Each tablet experiences a roughly equal but 

opposite pattern of forces. The left/right accelerometer axes exhibit characteristic 

spikes resulting from equal and opposite contact forces. Note the top/down axes 

exhibit no significant response. 

Figure 4: Bumping as a synchronous gesture step-by-step. 1- A user bumps a tablet 

against another.  2- Registered devices stream sensor data to a synchronous server. 

3- Server determines that the signals from devices A and B form a synchronous 

gesture (device C does not participate). 4- Server transmits to devices A and B 

information pertaining to whom they should connect. 5- Devices can communicate 

with each other and can continue exchanging additional information such as 

operation, commands, etc. 

Figure 5: Connecting two tablets into a gallery configuration. (Top-Left) A user 

selects a photo thumbnail and performs a stitching gesture across two interactive 

screens (the red arrow is superimposed to illustrate the path the pen will follow). 
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(Top-Right) Once the pen reaches the neighboring screen, a post-gesture menu 

appears after a predetermined time-out. The user selects the “gallery option” by 

selecting/marking the adequate menu item (the red arrow illustrates the path the 

pen will follow to select the menu item). (Lower-Left) After the gallery configuration 

becomes active, the device on the left will “project” photos onto the device on the 

right. (Lower-Right) Detail of the post-gesture menu. The shadow-beams from a 

thumbnail to a menu or full-size photo take advantage of geometry calibration 

information and reinforce the notion of a united screen space. 

Figure 6: (Left) Conceptual diagram of stitching recognition showing two envelopes 

occurring within a certain time threshold. (Right) Corresponding stitching gesture, 

used to move some photos from one device to another. The trajectory the pen 

follows not only serves to establish a connection, it also allows to provide geometry 

information that allows screens to be aligned if desired. The shadow trail spanning 

both screens takes advantage of this information in order to provide visual 

feedback. 
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Figure 7: Functionality enabled by stitching operations within the context of our 

photo-sharing prototype: StitchMaster 

Figure 8: Device calibration through stitching. Stitching approximates the pen’s 

path that traverses both devices by a straight line. This approximation not only fits 

real trajectories well, but also greatly simplifies the calibration process. First, the 

system estimates the intersection of the stitching gesture with the edges of each 

screen, yielding the points PA and p1 with incidence angles α0 and α1, respectively. 

The offset between the two screens is then tan(α) times the combined bezels width 

(B1+B2), where α stands for the average of α0 and α1. This angle is a good 

estimator of the incidence angle of the line between PA and p1. Using the previous 

information the system can compute PB as the displacement of p1 along the edge of 

Device #2’s screen by offset pixels. With this information, the system can transform 

points from one device’s coordinate system to the other, thus allowing the 

presentation of graphics that appear to span both devices. These transformation 

functions Fi,j: R2 
→

 R2 from the i to the j device’s coordinate systems are F1,2(x,y) = 

( - (B1 + B2 + screen_width1) + x, offset + y) and F2,1(x,y) =(B1 + B2 + screen_width1 

+ x, offset + y). In order for the calibration to occur, parameters such a device’s 

bezel width and screen size (such as screen_width) are well-know magnitudes that 

the stitching arbiter receives when the devices connects to the arbiter for the first 

time. 

Figure 9: In the general case, stitching occurs between devices positioned in one of 

16 possible configurations. Using rotation transforms Ti: R
2
→ R

2
, we can change the 
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devices’ coordinate system such that it seems that a stitching operation always 

occurs from a leftmost device to a rightmost device. This transformation allows us to 

consider only one calibration case. (Left) Two tablets are touching through their top 

edge and a stitching gesture is running from device #1 to device #2. (Right) Rotating 

device #1’s coordinate system 90 degrees and device #2’s coordinate system -90 

degrees allows us to consider these devices as if they were in a well-know 

configuration for which there is a well-know calibration solution. 

Figure 10: Our stitching implementation on a pocket PC. (Left) A user drags a 

thumbnail from the device on the left until the stylus reaches the edge of the screen. 

Then the user resumes the (dragging) stroke from the edge of the device on the 

right. (Right) after the stitching gesture, the system provides visual feedback of the 

operation. 

Figure 11: (Top Left) Stitch+Lift. The sender initiates the connection, and each 

recipient must accept the offer within a short time window. (Top Right) 

Stitch+Hold. The sender initiates the connection and holds the pen at the top of the 

screen until all desired recipients have accepted the connection. In this figure, marks 

with the same shade of gray are done by the same person. A multi-shaded stitch is 

done by two people, e.g. black-light gray. (Bottom) Stitching. To connect to two 

other devices, a sender (A) draws a stitch onto each device (B,C). 

Figure 12: Either user (here, the sender on the right) can rescind a connection by 

simply crossing out the undesired user’s icon. This action cancels the file transfer 

between these users. 
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Figure 13: Three users’ devices arranged around a table. One user (A) initiates a 

transfer by dragging files to screen edge. Other co-located users (B, C) can receive 

them by pulling down from the top of their screens. As users B and C start 

dragging, intermediate feedback identifies the sender and previews the files IT 

offers. The sender (A) then sees feedback showing who has accepted the proposed 

connection. 

Figure 14: Arrangement of devices used in our study. 

Figure 15: (Left) A diagram depicting a BlueRendezvous gesture – i.e., two users 

touching an agreed upon keypad button. (Right) The Actions screen, a ZoneZoom 

screen that allows either user to choose a cross-device operation. The available 

operations depend on the capabilities and user-controlled configuration of each 

device. 

Figure 16: Tap-and-hold serves as a mechanism to distinguish between the client 

and server devices. The shaded area around the “release” event indicates that there 

is a time tolerance – i.e., keys do not have to be release exactly at the same time for a 

connection to occur. 

Figure 17: (Left) The Microsoft's Surface computer. (Right) An example of a 

surface computer application displaying information "bleeding out" from a mobile 

device once put over the interactive surface. 

Figure 18: (Left) PlayAnywhere system consists of a NEC WT600 projector on a 

short pedestal, a camera with infrared pass filter and infrared LED illuminant.  
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(Upper right) Input image with phone; (Lower right) Binarized image of a cell 

phone with ellipse fitted over it. 

Figure 19: (Left) Steps leading to a connection between a mobile device and the 

BlueTable. (1) A user puts a device on the table. (2) The table’s vision system detects 

a phone-like object on its surface and broadcasts Bluetooth signals to nearby devices 

instructing them to blink a certain way. (3) The device blinks on the predetermined 

pattern and gets detected/seen by the table. (4) A connection is established and a 

default interface “spills out” of the device on the table. (5) After that, the user can 

interact with the presented interface. (Right) Mockup of a complex user interface 

(calendar application) that spills out of a mobile device onto the BlueTable’s 

surface. 

Figure 20: Our different connection mechanisms and the proxemic distances at 

which they can be performed. 

Figure 21: Mockup diagram of a stitching solution that follows a mailbox metaphor. 

Figure 22: Mockup of an action screen to specify geometry information. The 

combination of keys pressed may indicate spatial operations as well as the type of 

function. The system does not sense the relative spatial location of the devices: users 

hit the arrow keys to specify this. 
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Figure 1: The four proxemic distances. 
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Figure 2: (Left) A user can bump a tablet into another one resting on a desk. The 

software recognizes the gesture by synchronizing the two accelerometers across a 

wireless network. (Right) The tablet moved by the user annexes the display of the 

stationary tablet, allowing a panoramic image to span both displays. 
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Figure 3: Top/down and left/right accelerometer signatures for bumping a left side 

of tablet onto the right side of another. Each tablet experiences a roughly equal but 

opposite pattern of forces. The left/right accelerometer axes exhibit characteristic 

spikes resulting from equal and opposite contact forces. Note the top/down axes 

exhibit no significant response. 
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Figure 4: Bumping as a synchronous gesture step-by-step. 1- A user bumps a tablet 

against another.  2- Registered devices stream sensor data to a synchronous server. 

3- Server determines that the signals from devices A and B form a synchronous 

gesture (device C does not participate). 4- Server transmits to devices A and B 

information pertaining to whom they should connect. 5- Devices can communicate 

with each other and can continue exchanging additional information such as 

operation, commands, etc. 
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Figure 5: Connecting two tablets into a gallery configuration. (Top-Left) A user 

selects a photo thumbnail and performs a stitching gesture across two interactive 

screens (the red arrow is superimposed to illustrate the path the pen will follow). 

(Top-Right) Once the pen reaches the neighboring screen, a post-gesture menu 

appears after a predetermined time-out. The user selects the “gallery option” by 

selecting/marking the adequate menu item (the red arrow illustrates the path the 

pen will follow to select the menu item). (Lower-Left) After the gallery configuration 

becomes active, the device on the left will “project” photos onto the device on the 

right. (Lower-Right) Detail of the post-gesture menu. The shadow-beams from a 

thumbnail to a menu or full-size photo take advantage of geometry calibration 

information and reinforce the notion of a united screen space. 
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Figure 6: (Left) Conceptual diagram of stitching recognition showing two envelopes 

occurring within a certain time threshold. (Right) Corresponding stitching gesture, 

used to move some photos from one device to another. The trajectory the pen 

follows not only serves to establish a connection, it also allows to provide geometry 

information that allows screens to be aligned if desired. The shadow trail spanning 

both screens takes advantage of this information in order to provide visual 

feedback. 
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Figure 7: Functionality enabled by stitching operations within the context of our 

photo-sharing prototype: StitchMaster 

 

Configuration 

/Action 
Description Stroke Starts @ ... 

Post-

Command 

Move Moves photo(s) from one device to the other. Selected photo(s) 
(default 

action) 

Copy Copies photo(s) from one device to the other. Selected photo(s) Yes 

Gallery 

The device where the stroke starts becomes a 

control and the device where the stroke ends 

acts as a photo display area. Selecting a 

thumbnail on the control device causes the 

display device to show it at full size.  

Selected photo(s)  

/ empty region 
Yes 

Expansion 

A photo is maximized to occupy the expanded 

display region defined by tiling both 

participating devices. 

Selected photo Yes 

Persistent 

Shared 

Workspace 

The participating devices’ screen are combined 

into a shared area with “transporter portals” 

that let users pass thumbnails without having to 

reach into another device’s space. 

Empty region 
(default 

action) 
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Figure 8: Device calibration through stitching. Stitching approximates the pen’s 

path that traverses both devices by a straight line. This approximation not only fits 

real trajectories well, but also greatly simplifies the calibration process. First, the 

system estimates the intersection of the stitching gesture with the edges of each 

screen, yielding the points PA and p1 with incidence angles α0 and α1, respectively. 

The offset between the two screens is then tan(α) times the combined bezels width 

(B1+B2), where α stands for the average of α0 and α1. This angle is a good estimator 

of the incidence angle of the line between PA and p1. Using the previous information 

the system can compute PB as the displacement of p1 along the edge of Device #2’s 

screen by offset pixels. With this information, the system can transform points from 

one device’s coordinate system to the other, thus allowing the presentation of 

graphics that appear to span both devices. These transformation functions Fi,j: R
2
 → 

R
2 

from the i to the j device’s coordinate systems are F1,2(x,y) = ( - (B1 + B2 + 

screen_width1) + x, offset + y) and F2,1(x,y) =(B1 + B2 + screen_width1 + x, offset + y). 

In order for the calibration to occur, parameters such a device’s bezel width and 

screen size (such as screen_width) are well-know magnitudes that the stitching 

arbiter receives when the devices connects to the arbiter for the first time. 
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Figure 9: In the general case, stitching occurs between devices positioned in one of 

16 possible configurations. Using rotation transforms Ti: R
2
→ R

2
, we can change the 

devices’ coordinate system such that it seems that a stitching operation always 

occurs from a leftmost device to a rightmost device. This transformation allows us to 

consider only one calibration case. (Left) Two tablets are touching through their top 

edge and a stitching gesture is running from device #1 to device #2. (Right) Rotating 

device #1’s coordinate system 90 degrees and device #2’s coordinate system -90 

degrees allows us to consider these devices as if they were in a well-know 

configuration for which there is a well-know calibration solution. 

 

 

 

 
 

T1(x, y), T2(x, y) 
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Figure 10: Our stitching implementation on a pocket PC. (Left) A user drags a 

thumbnail from the device on the left until the stylus reaches the edge of the screen. 

Then the user resumes the (dragging) stroke from the edge of the device on the 

right. (Right) after the stitching gesture, the system provides visual feedback of the 

operation. 
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Figure 11: (Top Left) Stitch+Lift. The sender initiates the connection, and each 

recipient must accept the offer within a short time window. (Top Right) 

Stitch+Hold. The sender initiates the connection and holds the pen at the top of the 

screen until all desired recipients have accepted the connection. In this figure, marks 

with the same shade of gray are done by the same person. A multi-shaded stitch is 

done by two people, e.g. black-light gray. (Bottom) Stitching. To connect to two 

other devices, a sender (A) draws a stitch onto each device (B,C). 
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Figure 12: Either user (here, the sender on the right) can rescind a connection by 

simply crossing out the undesired user’s icon. This action cancels the file transfer 

between these users. 
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Figure 13: Three users’ devices arranged around a table. One user (A) initiates a 

transfer by dragging files to screen edge. Other co-located users (B, C) can receive 

them by pulling down from the top of their screens. As users B and C start 

dragging, intermediate feedback identifies the sender and previews the files IT 

offers. The sender (A) then sees feedback showing who has accepted the proposed 

connection. 
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Figure 14: Arrangement of devices used in our study. 
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Figure 15: (Left) A diagram depicting a BlueRendezvous gesture – i.e., two users 

touching an agreed upon keypad button. (Right) The Actions screen, a ZoneZoom 

screen that allows either user to choose a cross-device operation. The available 

operations depend on the capabilities and user-controlled configuration of each 

device. 
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Figure 16: Tap-and-hold serves as a mechanism to distinguish between the client 

and server devices. The shaded area around the “release” event indicates that there 

is a time tolerance – i.e., keys do not have to be release exactly at the same time for a 

connection to occur. 
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Figure 17: (Left) The Microsoft's Surface computer. (Right) An example of a 

surface computer application displaying information "bleeding out" from a mobile 

device once put over the interactive surface. 
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Figure 18: (Left) PlayAnywhere system consists of a NEC WT600 projector on a 

short pedestal, a camera with infrared pass filter and infrared LED illuminant.  

(Upper right) Input image with phone; (Lower right) Binarized image of a cell 

phone with ellipse fitted over it. 
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Figure 19: (Left) Steps leading to a connection between a mobile device and the 

BlueTable. (1) A user puts a device on the table. (2) The table’s vision system detects 

a phone-like object on its surface and broadcasts Bluetooth signals to nearby devices 

instructing them to blink a certain way. (3) The device blinks on the predetermined 

pattern and gets detected/seen by the table. (4) A connection is established and a 

default interface “spills out” of the device on the table. (5) After that, the user can 

interact with the presented interface. (Right) Mockup of a complex user interface 

(calendar application) that spills out of a mobile device onto the BlueTable’s 

surface. 
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Figure 20: Our different connection mechanisms and the proxemic distances at 

which they can be performed. 
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Figure 21: Mockup diagram of a stitching solution that follows a mailbox metaphor. 
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Figure 22: Mockup of an action screen to specify geometry information. The 

combination of keys pressed may indicate spatial operations as well as the type of 

function. The system does not sense the relative spatial location of the devices: users 

hit the arrow keys to specify this.  

   

 

 


