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Abstract

We address the problem of simulating pair-interaction Hamiltonians in n node quan-
tum networks where the subsystems have arbitrary, possibly different, dimensions. We
show that any pair-interaction can be used to simulate any other by applying sequences
of appropriate local control sequences. Efficient schemes for decoupling and time rever-
sal can be constructed from orthogonal arrays. Conditions on time optimal simulation
are formulated in terms of spectral majorization of matrices characterizing the cou-
pling parameters. Moreover, we consider a specific system of n harmonic oscillators
with bilinear interaction. In this case, decoupling can efficiently be achieved using the
combinatorial concept of difference schemes. For this type of interactions we present
optimal schemes for inversion.

1 Introduction

The conjecture that quantum computers might be able to simulate the time evolution
of quantum systems better than classical computers has already been stated in [8].
Various schemes for constructing gate sequences which simulate the unitary evolution
corresponding to a given Hamiltonian have been suggested (see e. g. [18, 23]). More
recently, a quite different approach to this problem has become popular: considering
the quantum computer as a quantum system with Hamiltonian evolution as well, a
simulation is a sequence of control operations acting on the quantum computer in such
a way that the net effect is a time evolution analogous to the evolution of the system
we want to simulate [6, 27, 12, 1, 25, 20]. In the setting described in the following the
simulation problem can be stated in a control-theoretical fashion. Assume that the
total quantum system is a quantum network, i. e., a system consisting of n subsystems.
The Hilbert space is the tensor product

H := H1 ⊗H2 ⊗ · · · ⊗ Hn ,
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1

http://arXiv.org/abs/quant-ph/0109088v1


where1 Hj := C
d for j = 1, . . . , n and d ∈ N. Let {σα | α = 1, . . . , d2 − 1 =: m} be

an orthogonal basis of the R-vector space su(d) of traceless Hermitian operators on
C

d. We assume that both the Hamiltonian to be simulated and the Hamiltonian H
of the system are sum of pair-interactions between nodes and free evolutions on each
individual node. Hence the system Hamiltonian is given by

H :=
∑

kl;αβ

Jkl;αβσ
k
ασ

l
β +

∑

k;α

rk;ασ
k
α , (1)

where J is a real symmetric mn×mn-matrix and r is an mn-dimensional real vector.
Furthermore, we assume that the only transformations which can be implemented
directly by external control interactions are local transformations of the form

U := V1 ⊗ V2 ⊗ · · · ⊗ Vn , (2)

where each Vj for j = 1, . . . , n is an element of the special unitary group SU(d). As-
suming that the implementations of Vj are fast compared to the natural evolution given
by H (“fast control limit”), the time evolution according to U †HU can be simulated
by alternating the natural time evolution with implementations of U † and U . Here we
make use of the identity

U † exp(−iHt)U = exp(−iU †HUt) .

Concatenating the unitary transformations exp(−iU †
jHUjτj) we obtain an approxima-

tion of the time evolution corresponding to the “average Hamiltonian”

H̃ :=
1

∑

j τj

∑

j

τjU
†
jHUj ,

if the times τj are assumed to be sufficiently small (for details see [7])2. In this sense,
the set of Hamiltonians which can be simulated with no time overhead is exactly the
convex span of the set S := {U †HU}, where U is as in eq. (2). For a formal definition of
the notion of time overhead of a simulation see [27, 1]. Intuitively, if the only possibility
to write a Hamiltonian as a positive linear combination of elements of the form UHU †

is to do it in such a way that the sum of the coefficients is greater than one, then the
sum of these coefficients is precisely the time overhead of the simulation. A suitably
rescaled Hamiltonian is then in the convex span of S. As noted in [27, 1], the minimal
overhead for simulating a Hamiltonian H̃ by the physical Hamiltonian H is the smallest
positive τ such that H̃/τ is in the convex span of S.

Note that convex problems of this kind are closely related to the method for obtain-
ing pseudopure states by averaging over random unitary transformations [16]. Pseu-
dopure states are states that can be written as convex combination of the maximally
mixed state (with density matrix 1/d) and a pure state |ψ〉〈ψ|. Writing a general state
as ρ = 1/d+A, where A is the traceless part, we have that ρ can be transformed into
the pseudopure state (1 − λ)1/d + λ|ψ〉〈ψ| by averaging over unitary transformations

1For reasons of convenience of notation we assume that the subsystems have equal dimensions. However,
note that our results on universal simulations generalize straightforwardly to arbitrary dimensions.

2Note that an approach of this kind is generally accepted for describing Nuclear Magnetic Resonance
experiments.
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if and only if A can be transformed (without time overhead) into the traceless opera-
tor −λ1/d + λ|ψ〉〈ψ|. Determining the optimal signal-to-noise ratio of the attainable
pseudopure state is hence directly related to determining minimal time overhead of
simulation schemes.

For an arbitrary interaction between two qubits, minimization of the time overhead
has been carried out in [1]. In case of n qubits and pair-interaction Hamiltonians H
and H̃ the situation is more complicated: the problem of optimal simulation of H̃ by H
cannot be reduced to the two-qubit case. The difficulty arising here is that the required
operations on qubit k for simulating an interaction between qubit k and l might not
coincide with the required operations on k for simulating another interaction between
k and m. The fact that the control operations for simulating interactions between
non-disjoint qubit pairs must be consistent on the common qubit seems to be a highly
non-trivial combinatorial problem. Some upper and lower bounds for the time overhead
are given in [12, 27].

The issue of optimal simulation has consequences for the problem to parallelize
operations of discrete quantum algorithms. The maximal degree of parallelization is
constrained since a given interaction may allow to implement concatenations of some
two-qubit gates even if they act on non-disjoint qubit pairs. Assume for instance that
a Hamiltonian on three qubits is given by

H := σz ⊗ σz ⊗ 1 + σz ⊗ 1 ⊗ σz + 1 ⊗ σz ⊗ σz,

where σz denotes the Pauli matrix. Then, for generic times t > 0, the unitary
exp(−iHt) is a concatenation of three two-qubit gates, which can be implemented
“simultaneously” by waiting the time t. But there is no obvious way for such a fast im-
plementation of exp(−iHt) for negative t provided that H is the system Hamiltonian.
One can even show that there exist negative values of t such that the implementation
of exp(−iHt) cannot be performed in principle within a time period of length |t|, since
H is not able to simulate −H without time overhead [12]. For n qubits with σz ⊗ σz-
interactions the minimal overhead is known to be at least n− 1. This shows that the
question of optimal parallelism of sequences of gates is rather sensitive to the form of
the underlying Hamiltonian. Hence the question of optimal implementation of com-
plex transformations on an n-partite system cannot be answered alone by resolving the
network into elementary gates: the question of maximally possible parallelism appears
already on the control-theoretic level.

The paper is organized as follows. In Section 2 we construct decoupling schemes
from orthogonal arrays. Selective decoupling can be achieved by straightforward gener-
alizations. Therefore each pair-interaction Hamiltonian on an n-partite systems can be
converted into any other provided that a sufficient set of local unitary control operations
is available (the so-called transformer groups introduced in [28]). Such a simulation has
time overhead of O(n2). Our schemes works even if the dimensions of the n subsystems
do not agree, thereby solving a problem stated in [20].

A lower bound on the time complexity of mutual simulation of different Hamilto-
nians is shown which uses the spectra of matrices describing the coupling parameters
of the interaction. Efficient schemes for switching off all the interactions (“decoupling
schemes”) are constructed. Using the combinatorial concept of orthogonal arrays de-
coupling can be achieved if local transformations of a unitary error basis are available.
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The length of the required sequence of local transformations grows linearly with the
number of nodes.

A specific form of interactions is dealt with in Section 3. There we consider harmonic
oscillators coupled by bilinear terms of creation and annihilation operators. In this case
rather simple decoupling schemes can be constructed on the basis of difference schemes,
another concept from combinatorics. Furthermore we discuss the generalization of this
problem where a given bilinear interaction is used to simulate another interaction of
this form with different coupling parameters. Finding the time optimal simulation
is equivalent to the mathematical problem of constructing vectors of minimal length
with complex entries of modulus one such that their inner products yield certain values.
This fact is used for deriving a lower bound on the simulation time. In contrast to the
general system Hamiltonian, the upper bound is O(n). An optimal scheme for time
inversion is constructed.

In Section 4 we discuss the connection between the decoupling schemes of Section 2
and the schemes presented in [17].

2 Simulating Hamiltonians in Networks

2.1 Selective Decoupling

A useful tool for simulating Hamiltonians in multi node quantum networks is given
by decoupling schemes, i. e., sequences of local operations which switch off unwanted
interactions. First we describe schemes for decoupling all the interactions. Schemes for
decoupling two interacting quantum systems—mainly in the context of a quantum reg-
ister which is coupled to a bath—have been derived in [26, 29]). Decoupling of n-partite
systems interacting with each other by two-body Hamiltonians has been considered in
[17, 24] for the case of qubits. In [20] it was noted that decoupling of bipartite systems
can be concatenated in such a way that the system is separated into suitable clusters
of subsystems without coupling between different clusters. The number of operations
involved in this scheme is O(n2 log

2
d). In this paper we present a construction based

on orthogonal arrays which uses O(n) operations provided that the dimension d of the
nodes is a prime power.

Straightforward generalizations of decoupling schemes allow to switch off all in-
teractions except the Hamiltonian of a pair of nodes (“selective recoupling”) or the
Hamiltonian of a single node. We have shown in [28] that any bipartite Hamiltonian
can simulate any other provided that it consists of non-trivial local Hamiltonians on
both nodes and a non-trivial coupling. If this criterion is met by all pairs of an n-
partite Hamiltonian then universal simulation of all pair-interaction Hamiltonians is
possible3. This result is also true if not every local operation is available, it is sufficient
that all the elements of a so-called transformer group (a concept introduced in [28])
can be implemented. The simulation time overhead is of order O(n2) since there are
n(n− 1)/2 pairs of nodes.

Rephrasing well-known results about decoupling (e. g. [26, 29]) in our language, we

3Note that the condition that all the couplings have to be non-trivial is only necessary in the average
Hamiltonian approach. If higher order terms in the time interval are considered interactions between nodes
k and l resp. k and m can be used for simulating a coupling between l and m as noted in [6, 20].
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briefly describe decoupling for bipartite systems. Remember that the Hamiltonian on a
d-dimensional quantum system can be cancelled if an appropriate sequence of unitary
control operations is applied [28].

Definition 1 (Annihilator) An annihilator A := (U1, τ1, U2, τ2, . . . , UN , τN ) of di-
mension d and length N is given by unitaries Ui ∈ SU(d) and relative times τi > 0,
∑N

i=1 τi = 1 such that

N∑

i=1

τiU
†
i aUi = 0

for all a ∈ su(d). An annihilator is called minimal if there is no shorter annihilator.

A minimal annihilator of dimension d has length d2 (as already noted in [26] and
proved in [28]) and all τi are equal. Moreover, the unitaries Ui must form a unitary
error basis of operators in C

d×d, i. e. a collection of d2 unitaries Ui that are orthogonal
with respect to the trace inner product 〈A|B〉 := tr(A†B)/d. Such unitaries can be
explicitly constructed using nice error bases [15, 14].

Being a special case of equation (1) we write the general Hamiltonian of a bipartite
system as follows:

H =
∑

αβ

Jαβ σα ⊗ σβ +
∑

γ

rγ 1⊗ σγ +
∑

δ

sδ σδ ⊗ 1 . (3)

Let E1 = {Ui} and E2 = {Vi} be unitary error bases of the respective systems and
let A denote the set {1, . . . , d2}. By applying the annihilators defined by E1 and E2

independently on the nodes we can switch off the Hamiltonian, i. e.

1

|A2|
∑

(i,j)∈A2

(U †
i ⊗ V †

j )H (Ui ⊗ Vj) = 0 . (4)

We describe a decoupling scheme on n nodes by n unitary error basis E1, . . . , En

and an n × N -matrix M = (mij)i=1,... ,n,j=1,... ,N . This matrix contains elements of A
specifying the conjugation by the mth

ij unitary of Ei on a specific node i for a certain
time interval j. The N time intervals correspond to the columns and the different
nodes correspond to different rows. For instance the decoupling scheme corresponding
to (4) is given by the array

(
1 1 . . . 1 2 2 . . . 2 . . . N N . . . N
1 2 . . . N 1 2 . . . N . . . 1 2 . . . N

)

(5)

and unitary error bases E1 = {Ui} and E2 = {Vi} corresponding to the first and second
node, respectively.

The simplest approach for decoupling is to choose the columns of M as all tuples of
An. However, this scheme is not efficient in terms of the number of time intervals and
pulses since both scale exponentially as d2n because the sequence has to be repeated
d2 times for each added node.

More efficient schemes can be constructed using the combinatorial structure of
orthogonal arrays. See [2, 5, 9] for the general theory of orthogonal arrays. Orthogonal
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arrays have numerous applications e. g., in the design of experiments. Also there are
connections between orthogonal arrays and mutually orthogonal Latin squares and
transversal designs (cf. [2, Section VIII]). The following definition takes account of
the fact that for purposes of decoupling we need a special type of orthogonal arrays,
namely those of strength t = 2 (cf. [2, 5, 9] for the general case). Also the notation
used is adapted to this situation.

Definition 2 Let A be a finite alphabet and let n,N ∈ N. An n × N array M with
entries from A is an orthogonal array with |A| levels, strength t = 2, and index λ if and
only if each pair of elements of A occurs λ times in the list ((mkj ,mlj) | j = 1, . . . N) for
1 ≤ k < l ≤ n. We use the notation OAλ(n,N) to denote a corresponding orthogonal
array.4

The following theorem shows that decoupling in networks of arbitrary dimensions
can be achieved using pulse sequences obtained by orthogonal arrays.

Theorem 1 (Decoupling) Let A be the finite alphabet {1, . . . , d2}. Then any or-
thogonal array with parameters OAλ(n,N) over A can be used to decouple a quantum
network consisting of n nodes of dimension d. The number of local operations used in
this scheme is given by N .

Proof: Let M = (mij) be an n × N -matrix over A corresponding to the parameters
OA(n,N). Choose unitary error bases E1, . . . , En where Ek = {Ek

i : i = 1, . . . , d2} to
define annihilators for each node. For each row k of M let (Ek

mk,j
: j = 1, . . . , N) be

the corresponding local conjugations on node k. We now consider a pair of nodes, i. e.,
two rows k and l of M , and show that the local terms and the coupling between the
two nodes are switched off. Since each pair of elements of A occurs precisely λ times
in the list ((mkj,mlj) | j = 1, . . . , N) the averaged Hamiltonian Hk,l on the nodes k
and l is given by (setting Ui := Ek

i and Vi := El
i)

1

|A2|
∑

(i,j)∈A2

(U †
i ⊗ V †

j )Hk,l (Ui ⊗ Vj).

This sum is equal to zero since both annihilators are applied independently on both
nodes. 2

For any given number n ∈ N of nodes there are parameters λ,N such that an
orthogonal array OA(n,N) exists. However, since we are interested in efficient schemes,
N has to be a polynomial in the number n of nodes. Also it is of interest to give explicit
constructions of such schemes, i. .e, of orthogonal arrays. Whereas little is known about
the existence of efficient schemes for general n and alphabet size s := |A| the situation
is much better in the case when s is a prime power.

Corollary 1 Let an n-node quantum network with pair-interaction Hamiltonian be
given and let the dimension d of each node be a prime power. Then there exists a de-
coupling scheme using N local operations, where N ≤ cn and c is a constant depending
only on d.

4Note that in [2] the notation OAλ(n, s) is used for an orthogonal array with N = λs2 in our notation,
where s := |A|.
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Proof: Let s := d2 be the size of a minimal annihilator for a d-dimensional system.
In view of Theorem 1 we have to show that there exists an orthogonal array with
parameters OAλ(ñ,N) with n ≤ ñ and N ≤ cn as above. The result [9, Theorem 3.20]
gives an explicit construction for an OA((si − 1)/(s − 1), si) for any i ≥ 2. Hence, if
for the number of nodes n = (si − 1)/(s− 1) holds, we have found a decoupling scheme
with N = si = (s − 1)n + 1 operations, i. e., N = O(n). For general n we embed into
an OA of this form. Switching to the next number of the form (si − 1)/(s − 1) with
suitable i ≥ 1 can be achieved be multiplying n with a number less or equal s, i. e.,
ñ ≤ sn. 2

Remark 1 There are tables of OAs covering the small instances (cf. [2, 5, 9]). We

remark that there is a family of OAs with parameters OA(2si, 2si−1
s−1 − 1) [9, Theorem

6.28]. This shows that the constant c in Corollary 1 can be improved to c/2.

The following example illustrates that OAs give more efficient schemes already for
small systems.

Example 2 We consider the case of four three-level systems. Using the exponential
scheme we need s4 = 6561 local operations to decouple all interactions. Following 1
we obtain a decoupling scheme with the same property that uses only s2 = 81 local
operations.

Selective decoupling can be achieved as follows. If the decoupling scheme is applied
to all but one or two nodes, the remaining Hamiltonian is the local Hamiltonian of the
node or the bipartite Hamiltonian of the two nodes, respectively.

The assumption that every node is coupled to all the other nodes is too strong in
many physical systems since many coupling terms might be neglected. This reduces
the overhead for decoupling and inverting the time evolution.

In general the interaction graph of a partially coupled network is a non-complete
graph. Each graph can be colored, by assigning each vertex one of a number of different
colors. Such a coloring scheme is called a proper coloring if no two connected vertices
have the same color. The chromatic number χ is the smallest number of colors required
to properly color the graph. In a complete graph (a fully coupled network) χ = n,
but in a partially coupled network the chromatic number can be much smaller. This
observation permits to derive more efficient decoupling schemes [13] since if the network
is represented by a properly colored graph, then there are no constraints on the pulse
sequences between nodes with the same color. It is sufficient to create a decoupling
scheme of a completely coupled χ-node network, and apply identical sequences to all
nodes of the same color.

Note that the selective decoupling scheme presented above generalize straightfor-
wardly to the case that the dimensions of the n subsystems do not agree. Then one
has to use so-called mixed orthogonal arrays, i. e., one has different alphabets A for
different nodes. Although little is known about constructions of efficient mixed orthog-
onal arrays, it is known that exponential ones exist (cf. [9, Section 9.3]). Furthermore,
the mutual simulation of Hamiltonians on bipartite systems is also possible for differ-
ent dimensions, since the proof in [28] does only rely on the fact that on each of the
subsystems (possibly different) transformer groups are available.

7



2.2 Lower bound on the simulation time overhead

In order to derive lower bounds on the overhead for the simulation time we neglect the
free evolution and consider the weaker problem to simulate the desired Hamiltonian on
n nodes up to local terms of each node. Note that the local terms become irrelevant
when allowing arbitrary unitary operations on the nodes.

In the following it will be convenient to represent the interaction Hamiltonian by
the so-called J-matrix

J =










0 J12 J13 · · · J1n

J21 0 J23 · · · J2n

J31 J32 0 J3n
...

...
. . .

Jn1 Jn2 Jn3 0










∈ R
mn×mn , (6)

where the matrix Jkl describes the coupling between the nodes k and l and Jlk is the
transpose of Jkl in eq. (1).

Let H and H̃ be arbitrary pair-interaction Hamiltonians. We investigate the ques-
tion whether H̃ can be simulated by H with overhead τ . This defines a quasi-order of
the pair-interaction Hamiltonians for τ = 1. A partial characterization of the quasi-
order is expressed in terms of majorization of the spectra of the corresponding matrices
J and J̃ . Note that this criterion does not coincide with the criterion given in [1] for
two qubits since the latter refers to the spectrum of the Hamiltonians and not of
the J-matrices. To make this more precise we introduce the following notation. Let
x = (x1, . . . , xd) and y = (y1, . . . , yd) be two d-dimensional real vectors. We introduce
the notation ↓ to denote the components of a vector rearranged into non-increasing
order, so x↓ = (x↓1, . . . , x

↓
d), where (x↓1 ≥ x↓2 ≥ . . . ≥ x↓d). We say that x is majorized

by y and write x ≺ y, if
k∑

j=1

x↓j ≤
k∑

j=1

y↓j ,

for k = 1, . . . , d− 1, and
∑d

j=1 x
↓
j =

∑d
j=1 y

↓
j (see [3]). The usefulness of majorization

techniques in quantum information processing has first been demonstrated in [19] in
the context of transforming states under local operations and classical communication.
In [27] majorization was used in the context of simulation of Hamiltonians in quantum
networks of qubits.

Let Spec(X) denote the spectrum of the Hermitian matrix X, i. e. the vector of
eigenvalues. Ky Fan’s maximum principle [3] gives rise to a useful constraint on the
eigenvalues of a sum C := A+B of two Hermitian matrices:

Spec(A+B) ≺ Spec(A) + Spec(B) . (7)

Based on these tools we derive the following bound, which generalizes the bounds given
in [27] from qubits to qudits. The second statement of the theorem even tightens the
bound for qubits given there.

Theorem 3 (Lower bound) Let H and H̃ be arbitrary pair-interaction Hamiltoni-
ans. A necessary condition that H̃ can be simulated with overhead τ by H is that
the spectrum of J̃ is majorized by the spectrum of τJ . Furthermore it is necessary
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that this majorization criterion is still satisfied after rescaling the couplings as follows:
J ′

kl := sklJkl and J̃ ′ := sklJ̃ , where S = (skl) is an arbitrary real symmetric n × n-
matrix.

Proof: We choose an orthonormal basis B (with respect to the trace inner product)
for su(d). Each a ∈ su(d) can be represented by |a〉 = (tr(aσ1), . . . tr(aσd2−1))

T with
σi ∈ B. Conjugation of a ∈ su(d) by a unitary u ∈ SU(d) corresponds to an element of
SO(d2 − 1) rotation of |a〉. The subgroup of SO(d2 − 1) defined by the adjoint action
of SU(d) in this way will be denoted by R.

Representing the Hamiltonians H and H̃ by their J matrices we see that H̃ can
be simulated with overhead τ if and only if there is a sequence of special orthogonal
matrices Uj = Uj1 ⊕ Uj2 ⊕ · · · ⊕ Ujn, where Uj,k ∈ R for all j, k and τi > 0 with
∑

j τj = τ such that

J̃ =
∑

j

τjUjJU
T
j . (8)

The proof now follows from Uhlmanns’s theorem [21] which implies that spectrum J̃
is majorized by the spectrum of τJ .

The second statement is a direct consequence from the first one since the same
simulation procedure can be used for the rescaled problem. 2

Note that for d > 2 not every rotation in SO(d2 − 1) corresponds to a conjugation
by a unitary in SU(d). Therefore this condition seems to be the weaker the greater
d gets. A necessary condition for the fact that H can simulate H̃ with overhead τ
is that Spec(H̃) ≺ τSpec(H), i. e. a condition based on majorization of the spectra
of the Hamiltonians. Clearly the size of the matrices representing the Hamiltonians
grows exponentially with n, whereas the size of their J-matrices grows only linearly
with n. This makes the J-representation useful for calculations. Furthermore, in some
important cases it permits to derive tight bounds (see Section 3 and [12]).

2.3 Inverting

We now consider the problem to invert an arbitrary, possibly unknown Hamiltonian in
a quantum network, i. e. to simulate −H when H is present. It is well-known that this
question is closely related to the construction of decoupling schemes (e. g. [22, 26, 17]).
Lower bounds on the time overhead for time-reversal in n-qubit systems were given in
[12]. In the case of a single node we can invert the time evolution by summing over
all elements of the unitary error basis but the identity. This trick can be generalized
to the case of multiple nodes. For that we introduce the notion of normal form for
decoupling schemes.

Definition 3 (Normal form) Let O be an OAλ(n,N). Assume in addition that the
alphabet A consists of the elements of a finite group G. We say that O is in normal
form if each entry in the first column of O is the identity element of G.

Lemma 1 Let O be an OAλ(n,N). Then there is an orthogonal array with the same
parameters which is in normal form.

9



Proof: We identify the underlying alphabet A with an arbitrary finite group G of
order |A|. Consider two rows (g1, . . . , gN ) and (h1, . . . , hN ) of O. Multiplying the
elements of the rows by g−1

1 and h−1
1 respectively preserves the property that all pairs

occur with frequency λ since G×G is invariant under multiplication by fixed elements.
2

Based on the normal form of OAs we now give an inversion scheme for a general,
possibly unknown pair-interaction Hamiltionian.

Theorem 4 (Inverting) Any OA(n,N) can be used to invert the time evolution of a
quantum network consisting of n nodes. The number of local operations used is N − 1
and the time overhead is N − 1.

Proof: By Lemma 1 we assume that the orthogonal array O is in normal form and
M is the corresponding n ×N matrix over the alphabet A which in turn is identified
with the elements of a finite group G. Furthermore, we choose unitary error bases
E1, . . . , En where Ek = {Ek

i : i = 1, . . . , d2} and identify the identity element of G with
the corresponding identity matrices. For any pair k, l of nodes we obtain the following
identity for the averaged interaction Hk,l between k and l:

−Hk,l =

N∑

j=2

(Ek
mkj

⊗ El
mlj

)†Hk,l(E
k
mkj

⊗ El
mlj

).

Since the interactions between all nodes are inverted it follows that H is inverted. 2

Similar to the results given in [12] we derive a lower bound for the time overhead
for inverting a dynamical evolution as follows.

Lemma 2 (Lower bound on inverting) Let r be the greatest eigenvalue and q the
smallest eigenvalue of the J-matrix representing H. Then µ ≥ r

−q is a lower bound on
the overhead for simulating −H by H.

Proof: Denote the smallest eigenvalue of a matrix A by λmin(A). Then we have

−r = λmin(−J) = λmin

( ∑

j

τjUjJU
T
j

)

≥ τλmin(J) = τq .

The inequality is due to λmin(A+B) ≥ λmin(A)+λmin(B) for the sum of two Hermitian
matrices A and B (see [3], Theorem III.2). Since q is negative (J is traceless) we have
τ ≥ −r/q. 2

Consider a fully coupled quantum network, where each pair-interaction is of the
form σα ⊗ σα. Then the greatest and smallest eigenvalues of J are n − 1 and −1.
Lemma 2 gives n− 1 as lower bound on the time overhead for inversion.

3 Harmonic oscillators with bilinear couplings

We consider a quantum network, where the n nodes are harmonic oscillators, i. e., their
energy values are given by E = 0, 1, 2, . . . . Here we restrict our attention to the case
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of energy values less than d and obtain as an approximation a d-dimensional Hilbert
space for each oscillator. The Hamiltonian of the uncoupled system is given by

H0 :=
n∑

k=1

hk , (9)

where each hk is the diagonal matrix diag(0, 1, . . . , d − 1) on the node k. Assume in
addition that there is a couplingHC between the individual harmonic oscillators having
the form

HC :=
∑

k,l

cklaka
†
l (10)

Here C = (ckl) is a real symmetric n×n-matrix with zeros on the diagonal determining

the couplings and ak and a†l are the annihilation and creation operators on the kth and
lth oscillator, respectively. The annihilation operator a is defined by

a|0〉 = 0 , a|E〉 =
√
E|E − 1〉 , E = 1, 2, . . . , d− 1 , (11)

where {|E〉 | E = 0, 1, . . . , d− 1} is an eigenvector basis of the free Hamiltonian of an
harmonic oscillator.

Interactions of the form (10) often appear if higher order terms in creation and
annihilation operators are neglected and only that part of the total interaction term is
considered which commutes with the uncoupled evolution corresponding to H0.

3.1 Decoupling with difference schemes

The decoupling schemes presented in Section 2 can be used to decouple general pair-
interaction Hamiltonians. In this section we consider a specific interaction which allows
a more efficient decoupling method using the combinatorial concept of difference ma-
trices (cf. [2, Section VIII]).

The coupling HC between the harmonic oscillators can be removed by transfor-
mations of the form exp(ihkt) with t ∈ R. If the time evolution according to HC is
conjugated by transformations exp(ihkt) and exp(ihls) on oscillator k and l, respec-
tively, one part of the coupling term between k and l is multiplied with the factor
exp(i(s − t)) and the adjoint part with exp(i(t− s)) since

exp(ihkt) exp(ihls) aka
†
l (exp(−ihkt) exp(−ihls)) = exp(i(s − t)) aka

†
l , (12)

and a similar expression holds for the adjoint term.
We now characterize n ×N matrices M having complex numbers of modulus one

as entries which are suitable for decoupling HC . Such a matrix M defines a sequence
of operations on the n oscillators as follows. If (eit1 , eit2 , . . . , eitn) denotes the jth

column, this means that during the jth time interval the natural time evolution of the
n oscillators is conjugated by the local transformation

n∏

k=1

exp(ihktk) . (13)

11



The total effect of this scheme is that the term aka
†
l obtains the factor 〈ml|mk〉,

where mk is the kth row of M and 〈·|·〉 is the usual inner product in C
N . This gives

the following decoupling criterion: all couplings are removed if and only if the rows
are orthogonal in the usual sense. There is a canonical way of finding n vectors having
this property by taking the Fourier transform of the standard basis of C

n. However,
the rotations exp(2πihj/n) required to be implemented are very close to the identity
for large n.

An alternative way of constructing such a matrix is given by difference schemes
[2, 9]. We choose the numbers tk in each row to be of the form 2πr/u where u ≥ 2 is a
natural number and r is an element of the cyclic group Zu = {0, 1, . . . , u− 1} of order
u.

Definition 4 An n×N array D(n,N) with entries in Zu is called a difference scheme
based on Zu if the difference vector of any two rows has the property that each element
of Zu occurs equally often.

Let D(n,N) be a difference scheme based on Zu. We construct an n×N complex
matrix M from D by replacing each entry r by e2πir/u. The rows of M are vectors in
C

N and since D is a difference scheme they are orthogonal, i. e.,

MM † = N 1N . (14)

Therefore, M satisfies the decoupling criterion. In view of (14), a difference scheme
D(n,N) in which n = N is also called a generalized Hadamard matrix [2, Section VIII]
of order n over Zu. In particularly, any (ordinary) Hadamard matrix of order n is a
difference scheme D(n, n) over Z2.

3.2 Recoupling disjoint cliques

The scheme presented above does not only allow to remove all interactions but also to
achieve the following selective recoupling without time overhead. Partition the set of
nodes into n′ disjoint subsets (called “cliques”) and remove only the couplings between
nodes in different cliques. This can be achieved by applying the same sequences of
transformations on all nodes in the same clique, since this does not affect the interac-
tions among them. Then it is sufficient to construct a difference scheme with only n′

rows since each row refers to one of the cliques. Note that an analogous way of “clique
decoupling” is also possible for the following kind of n-qubit interaction. Assume that
all qubits are coupled by the interaction σx⊗σx +σy ⊗σy +σz ⊗σz. Then the interact-
ing is invariant with respect to simultaneous unitary rotations on both qubits. Hence
decoupling schemes for n′ qubits define a “clique decoupling” scheme for n′ cliques.

3.3 Simulation of different coupling strengths

An interesting problem arises if we want to switch off interactions between arbitrary
pairs or, even more general, to weaken the interaction between some of the oscilla-
tors. These goals are special instances of the general problem to simulate a coupling
Hamiltonian HC̃ using HC where C̃ is an arbitrary real symmetric coupling matrix.

12



Now we define a matrix T in such a way that the entry-wise product (Schur-product)
of T and C is C̃. Of course this is not possible if an entry of C is equal to zero and
the corresponding entry of C̃ does not vanish. This corresponds to the fact that one
cannot simulate a coupling between nodes which are not coupled. We choose the vectors
mk introduced in Subsection 3.1 with complex numbers of modulus one such that the
corresponding Gram matrix G = (〈mk|ml〉)k,l=1,... ,n coincides with T on all off-diagonal
entries. Note that the diagonal entries of G always give the number of time steps of
the simulation. One can generalize this by choosing time steps of different length and
define the vectors mk as mappings from the interval [0, t] to the complex numbers of
modulus one. By taking the inner product

〈mk|ml〉 :=

∫ t

0
mk(t

′)ml(t
′)dt′

we obtain the same statement as above: the time overhead t is determined by the
diagonal entries of G. Note that in our formulation a weak interaction can be used to
simulate a strong one since we allow time overhead for the simulation.

A lower bound for this overhead is given by the absolute value of the least eigenvalue
of T since G being a Gram matrix is positive. This coincides with the eigenvalue
criterions stated in [27] derived for n spin 1/2 systems. The lower bound for simulating
its own inverse has been shown to be n − 1 for the spin-spin interaction of the form
σz ⊗ σz [27, 12]. In strong analogy, we obtain the same bound n − 1 for simulating
−HC = H−C by HC when C has vanishing terms only on the diagonal, since in
this case the corresponding matrix T has only entries −1 except for the diagonal
entries which are zero. This proves the bound since the absolute value of the least
eigenvalue of T is n− 1. Note that lower bounds based on the T -matrix do only refer
to simulations using unitary transformations of the form exp(ihjt) with t ∈ R. The
following theorem shows that the lower bound n − 1 for time reversal is even valid if
general unitary transformations on each oscillator and presents an inversion scheme
attaining this bound.

Theorem 5 (Optimal inversion) A time optimal scheme for inverting a coupling
of the form HC as in equation (10) is given by the vectors

mk := (e2πik/n, e2πi2k/n, . . . , e2πi(n−1)/n).

Proof: First note that due to the length of the vectors this simulation has time
overhead n − 1. In order to prove that this is optimal, define the following linearly
independent elements of su(d).

Xr := |r〉〈r − 1| + |r − 1〉〈r|

and

Yr := i|r〉〈r − 1| − i|r − 1〉〈r|

for r = 1, . . . , d− 1. These matrices are orthonormal with respect to the inner product
〈V |W 〉 := tr(VW )/2. One may supplement these 2d − 2 vectors to a orthonormal
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basis of su(d), but the completion is irrelevant since the interaction among each pair
of oscillators can be written as an expression in Xr and Yr.

a⊗ a† + a† ⊗ a =
∑

rs

√
rs(Xr ⊗Xs + Yr ⊗ Ys) .

The coupling matrix J (see eq. (6)) can be constructed as follows. Define a (2d− 2)×
(2d− 2)-matrix A by

A := |φ〉〈φ| + |ψ〉〈ψ| ,

with

|φ〉 := (
√

1,
√

2, . . . ,
√
d− 1, 0, . . . , 0)T

and

|ψ〉 := (0, . . . , 0,
√

1,
√

2, . . . ,
√
d− 1)T .

With respect to the basis described above, for all pairs (k, l) of oscillators the coupling
matrices Jk,l are the same and given by completing A by embedding into a (d2 − 1) ×
(d2 − 1)-matrix A′. Since the vectors |φ〉 and |ψ〉 are orthogonal, the spectrum of Jk,l

is a, a, 0, . . . , 0, where a = 〈φ|φ〉 = 〈ψ|ψ〉 > 0. The spectrum of J contains two copies
of the value (n − 1)a and n − 1 times the value −a. The other eigenvalues are zero.
This can be seen by writing J as a tensor product M ⊗A′ where M is an n×n-matrix
with entries 0 on the diagonal and 1 elsewhere. The smallest value τ > 0 such that
the spectrum of τJ majorizes −J is n− 1. This proves optimality of the time reversal
scheme. 2

An upper bound for the general simulation problem can also be derived in strong
analogy to [27] and is given by the so-called weighted chromatic index WT of the matrix
T . This concept has been introduced in [11] in a related context in order to quantify
the complexity of a general pair-interaction Hamiltonian on n qubits. For each s ≥ 0
define a graph Gs on the n nodes as vertices which has an edge (k, l) if and only if the
absolute value of the entry Tkl is greater than s. Let ns be the chromatic number of
Gs (see [4]), i. e., the number of colors required for coloring the edges of Gs in such a
way that no two edges with a common node receive the same color. Then define WT

as

WT :=

∫ ∞

0
nsds ,

which defines a generalization of the chromatic index for weighted graphs. The key
idea to prove this upper bound can easily be understood if one assumes T to have
entries of modulus one or zero. Then WT is the chromatic index of a graph indicating
which couplings should not be removed. Given an admissible coloring of this graph,
we define a simulation with WT steps as follows. Each color c defines a step in which
we remove all those interactions which are not colored by c. This step can be executed
without time overhead as explained in Subsection 3.2. Hence in each step, only the
couplings between disjoint oscillator pairs remain.

14



4 Comparison with other methods

In this section we relate the decoupling method based on orthogonal arrays which
was presented in Section 2 to the approach of [17] for the case of decoupling in qubit
networks (see also [24] for decoupling in qubit networks based on orthogonal arrays).

Accordingly, let the system Hamiltonian be written in the form

H =
∑

kl;αβ

Jkl;αβσ
k
ασ

l
β +

∑

k;α

rk;ασ
k
α , (15)

where σα are the Pauli matrices.
We explain briefly the approach of [17] to construct decoupling schemes. In each

interval, each σk
α acquires a + or − sign, which is controlled by the applied local

unitaries to be described. The coupling Jkl;αβσ
k
ασ

l
β for k 6= l is unchanged (negated) if

the signs of σk
α and σl

β agree (disagree). Note that the signs of the three Pauli matrices

σk
α acting on the same qubit k are not independent.

Conjugating with the transformations 1k, σk
x, σ

k
y , σ

l
x the acquired signs for σk

x, σ
k
y , σ

k
z

are given by (+ + +), (+ −−), (− + −), (−− +).
Following [17] a decoupling scheme for n qubits that concatenates N intervals can

be specified by three n×N sign matrices Sx, Sy, Sz, related by the entry-wise product
Sx ∗ Sy = Sz. We say that the three matrices satisfy the Schur condition since this
entry-wise product is usually called the Schur product. The (k, j) entry of Sα is the
sign of σk

α in the jth time interval. Therefore decoupling is achieved if any two rows
taken from Sx, Sy, Sz are orthogonal.

The following theorem establishes a connection between decoupling schemes con-
structed using orthogonal arrays as described in Section 2 and the decoupling schemes
specified by sign matrices Sx, Sy, Sz.

Theorem 6 A decoupling scheme constructed using an orthogonal array OA(n,N)
over the alphabet A = {1, 2, 3, 4} and the Pauli basis E = {1, σx, σy, σz} for all nodes
gives rise to sign matrices Sx, Sy, Sz satisfying the Schur and orthogonality conditions.

Proof: We identify the operators of E with the elements of A according to 1 7→ 1,
2 7→ σx, 3 7→ σy, and 4 7→ σz. Conjugating with the operators of E the Pauli matrices
acquire the following signs:

1 2 3 4

σx + + − −
σy + − + −
σz + − − +

(16)

Starting from the given orthogonal array we now construct the three sign matrices
Sx, Sy, and Sz. Pick any two rows k and l of the OA. We may assume that the two
rows have the following form (or else we apply a suitable permutation of the columns)

(
1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 · · ·
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 · · ·

︸ ︷︷ ︸

λ times

)

(17)
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since all pairs appear equally often (λ times) in the OA. Let ~λ = (+ + · · ·+) be the
vector of length λ = N/16 containing only +. By substituting the entries of the rows
k and the l of the OA by the corresponding sign assignments in Table (16) we define
the following six rows of Sx, Sy, Sz, respectively:

Sx;k := ~λ⊗ (+ + −−) ⊗ (+ + ++)

Sy;k := ~λ⊗ (+ − +−) ⊗ (+ + ++)

Sz;k := ~λ⊗ (+ −−+) ⊗ (+ + ++)

Sx;l := ~λ⊗ (+ + ++) ⊗ (+ + −−)

Sy;l := ~λ⊗ (+ + ++) ⊗ (+ − +−)

Sz;l := ~λ⊗ (+ + ++) ⊗ (+ −−+) .

Obviously, Sx, Sy, and Sz are orthogonal and satisfy the Schur condition Sx ∗Sy = Sz.
2

Finally, we give an alternative proof for the existence of a decoupling scheme for
n = (22m − 1)/3 qubits using N = 22m time intervals. A decoupling scheme with these
parameters can be constructed using orthogonal arrays [24] and Hadamard matrices
[17].

Let V be the vector space F
m
4 , wherem ≥ 1 and let F4 = {0, 1, ω, ω2 = 1+ω}, where

ω3 = 1, be the Galois field with 4 elements. Recall that the number of d-dimensional
subspaces of an m-dimensional vector space over Fq is given by

[
m
d

]

q

:=
(qm − 1)(qm−1 − 1) · · · (qm−d+1 − 1)

(qd − 1)(qd−1 − 1) · · · (q − 1)
(18)

(cf. [2, Lemma 2.14, Section I]). For the special case q = 4 and d = 1 formula (18)
shows that there are (4m − 1)/(4 − 1) = (22m − 1)/3 lines in F

m
4 . Note that different

lines intersect in the point {0} only. Hence by taking the set of all one-dimensional
subspaces of F

m
4 we obtain a maximal spread in F

m
4 , i. e. a collection of subspaces Ui

partitioning F
m
4 with the additional property that

Ui ∩ Uj = {0} .
We define a map ϕ from F4 onto {−1,+1}4 as follows:

ϕ(0) = (+1,+1,+1,+1)

ϕ(ω) = (+1,−1,+1,−1)

ϕ(ω2) = (+1,+1,−1,−1)

ϕ(1) = (+1,−1,−1,+1)

This is the Hadamard matrix H4 = H2 ⊗H2 where H2 is the usual Hadamard matrix
of size 2. Therefore all rows are orthogonal.5 Note that the last three rows satisfy the
Schur condition.

5The fact that this matrix is indeed the Hadamard matrix can also be derived with the help of group
characters. More precisely, we consider F4 as a two-dimensional vector space over F2 and let tr denote the
trace map of this field extension [10, Section 4.15]. For all z ∈ F4 the map ϕ(z) : x 7→ (−1)tr(zx) is an
irreducible character of the additive group (F4,+) (which is isomorphic to Z2 × Z2). Hence, orthogonality
of the rows follows from the orthogonality of the characters.
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We extend the map ϕ to vectors ~v = (v1, . . . , vm) ∈ F
m
4 by defining the map

φ(~v) := ϕ(v1) ⊗ · · · ⊗ ϕ(vm) ∈ {−1, 1}4m . (19)

The image of φ is the set of all rows of the Hadamard matrix H⊗2m
2 . Let Uk = 〈~vk〉 be

a maximal spread of F
m
4 . By evaluating φ on the three elements of Uk (except for the

zero vector ~0) we get three orthogonal vectors satisfying the Schur condition. We can
take them as rows of Sx, Sy, Sz:

Sx;k = φ(ω · ~vk)

Sy;k = φ(ω2 · ~vk)

Sz;k = φ(1 · ~vk)

This shows that the second through the last rows of the Hadamard matrix H⊗2m
2 can

be divided into (22m − 1)/3 disjoint 3-subsets, each with rows that satisfy the Schur
condition. The rows in a 3-subset can be chosen as rows of Sx,Sy and Sz, respectively.

5 Conclusions

We have shown that pair-interactions between the subsystems of a multipartite quan-
tum system can be decoupled efficiently if a sufficiently large set of local control op-
erations on the subsystems is available. Such decoupling schemes can be constructed
using orthogonal arrays (a concept of combinatorics). The rows of these arrays de-
fine pulse sequences of local operations taken from a unitary error basis. We discuss
the connection between the decoupling method based on orthogonal arrays and those
introduced in [17].

We have shown that mutual simulation of pair-interaction Hamiltonians in multi
node systems is possible provided that a so-called transformer group of transformations
is available.6 The upper bound O(n2) on the simulation time is a consequence of
the existence of selective decoupling schemes. The construction of a time-optimal
simulation leads to a non-trivial convex optimization problem. We have derived a
lower bound on the time overhead in terms of the spectrum of the matrix describing the
coupling parameters. For some interactions simpler decoupling schemes can be devised:
for bilinear coupling of harmonic oscillators selective decoupling can be achieved using
so-called difference schemes. The condition for time optimality of mutual simulation of
different bilinear couplings can concisely be expressed in terms of linear algebra. Based
on this we have constructed time optimal schemes for time reversal.

From the results shown in this paper it follows that the time optimal implementa-
tion of unitary transformations turns out not to be a matter of optimal factorization
into parallelized bilocal quantum gates alone. The transformation has rather to be
written as the solution of a time-dependent Schrödinger equation where the occurring
Hamiltonians are those which can be simulated with small time overhead. This leads
to another definition of quantum complexity different from the discrete one measured
by counting the number of elementary gates.

6Note that similar results have been developed in [20], independently.
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