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Abstract
A similarity network is a tool for constructing belief
networks for the diagnosis of a single fault. In this
paper, we examine modifications to the similarity-
network representation that facilitate the construc-
tion of belief networks for the diagnosis of multiple
coexisting faults.

1 Introduction
A similarity network is a graphical extension of the
belief-network representation [4, 5]. The represen-
tation is a tool for constructing large and complex
belief networks of the form shown in Figure 1. In
this belief network, the chance node FAULT contains
many mutually exclusive and exhaustive instances.
This node conditions many other nodes, but is itself
not conditioned by any nodes. Belief networks of
this form are seen commonly in problems of diagno-
sis in which a single fault is present.

The similarity-network representation was instru-
mental in the construction of the belief network for
Pathfinder, a normative expert system for the diag-
nosis of lymph-node diseases [6, 7]. In Pathfinder’s
domain, the assumption that faults—the diseases—
are mutually exclusive is appropriate, because co-
occurring diseases almost always appear in differ-
ent lymph nodes or in different regions of the same
lymph node. In many domains, however, such an
assumption is invalid. Patients admitted to the
internal-medicine ward of a hospital, for example,
often present with four to five coexisting diseases.
In this paper, we examine how we can use the
similarity-network representations to facilitate the
construction of belief networks for the diagnosis of
multiple faults.
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Figure 1: A belief network for the diagnosis of a
single fault.

2 Similarity Networks

In this section, we use the similarity-network repre-
sentation to construct a belief network for a small
problem in medical diagnosis. The purpose of this
exercise is to illustrate the basic concepts and tech-
niques underlying this representation, and to demon-
strate some of the advantages of its use. Because
the example is small, however, the full power of this
representation for simplifying knowledge acquisition
cannot be demonstrated. In [5], I describe highlights
of this approach to knowledge acquisition applied to
Pathfinder. There, the power of these representa-
tions is illustrated more fully.

The medical example that we examine is real, but
it has been simplified for purposes of presentation.
Dr. Harold Lehmann served as the expert for the do-
main. The figures in the example were generated by
SimNet, an implementation on the Macintosh com-
puter of the similarity-network and partition repre-
sentations. Readers interested in the details of Sim-
Net’s operation should consult [5].



Figure 2: A belief network for sore throat.

Throughout the example, I will distinguish be-
tween the construction of a belief network, similarity
network, or partition by a person and the construc-
tion of these representations by an algorithm. Con-
sequently, the terms to compose and to construct will
refer to situations where a person and an algorithm
generate a representation, respectively.

Suppose a patient between 5 and 18 years of age
comes to an emergency room complaining of severe
sore throat. A belief network for this situation is il-
lustrated in Figure 2. The chance node DISEASE rep-
resents the causes of sore throat: VIRAL PHARYNGI-

TIS, STREP THROAT, MONONUCLEOSIS, TONSILLAR

CELLULITIS, and PERITONSILLAR ABSCESS. Here,
we assume that these diseases are mutually exclu-
sive and exhaustive. The remaining nodes represent
evidence relevant to the diagnosis of the patient’s
disease. We now discuss how to construct this belief
network using a similarity network.

The focus for the composition of the similarity
network is the distinguished node or distinguished
variable. For medical domains, the distinguished
variable represents a set of mutually exclusive and
exhaustive diseases. In general, we refer to the mu-
tually exclusive exhaustive instances of this variable
as faults.

A similarity network consists of a similarity graph
and a collection of local belief networks. To compose
a similarity graph, we first compose the similarity
graph. The nodes in the similarity graph correspond
to individual faults. Informally, the edges in the
similarity graph connect faults that are similar. We
shall discuss soon the precise meaning of edges in
a similarity graph. The similarity graph for sore
throat is shown in Figure 3.

Next, we compose a local belief network for each
pair of faults that is connected in the similarity

Figure 3: A similarity graph for sore throat. Al-
though the graph is a tree (i.e., there is exactly one
path between any two nodes in the graph), in gen-
eral, similarity graphs can contain cycles.

graph. To compose a local belief network for the
fault pair fi and fj ,1 we imagine that one of these
two faults has occurred. Given this supposition, we
compose a belief network consisting of the distin-
guished node—whose instances are restricted to fi

and fj—and those nondistinguished nodes that are
relevant to the discrimination of these faults. For-
mally, we omit a node from the local belief network
if and only if the node would be disconnected from
the distinguished node (i.e., there would be no path
between the node and the distinguished node) if we
included it in the network. The distinguished node
must have no predecessors in a local belief network.

Figure 4(a) shows the local belief network for the
edge between PERITONSILLAR ABSCESS and TON-

SILLAR CELLULITIS in the similarity graph. The
small oval at the top of the belief network represents
the distinguished node whose instances are restricted
to these two diseases. The remaining nodes in the
local belief network represent the features or dis-
ease manifestations that are relevant to the discrim-
ination the diseases PERITONSILLAR ABSCESS and
TONSILLAR CELLULITIS. Notice that there are no
arcs among the nondistinguished nodes. The miss-
ing arcs represent the assertion that, given that the
patient has either PERITONSILLAR ABSCESS or TON-

SILLAR CELLULITIS, all manifestations in the belief
network are independent. Also note that there are
fewer manifestations in this local belief network than
in the belief network for the entire domain (Fig-
ure 2). This observation tends to be true, in general,
because the diseases associated with local belief net-
works are similar.

1In this paper we use lowercase letters to denote variables
and uppercase letters to denote sets of variables. We subscript
a variable (e.g., xi) to denote an instance of that variable.
Similarly, we subscript a set of variables (e.g., Xi) to denote
an instance of that set.
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Figure 4: Two local belief networks. The small oval at the top of the belief network represents the distin-
guished node.

Figure 4(b) shows the local belief network for the
edge between STREP THROAT and VIRAL PHARYN-

GITIS in the similarity graph. Again, the belief
network contains fewer features than does the be-
lief network for the sore-throat domain as a whole.
Now, however, some of the disease manifestations
are conditionally dependent. The arc from TONSILS

INVOLVED to TONSILLAR PUS reflects the expert’s
assertion that the probability of seeing pus on a pa-
tient’s tonsils depends on whether the disease in-
volves one tonsil, both tonsils, or neither tonsil. The
arcs from FEVER and ABDOMINAL PAIN to TOXIC

APPEARANCE reflect the observation that a patient
is more likely to present with a toxic appearance if
the patient has abdominal pain or a high fever. Al-
though FEVER is relevant to the discrimination of
STREP THROAT and VIRAL PHARYNGITIS indirectly
through its effect on TOXIC APPEARANCE, the miss-
ing arc from the disease node to FEVER represents
the belief that temperature alone is not relevant to
the discrimination of the two diseases.

Given the similarity network that we have com-
posed, we can now construct the belief network for
the full sore-throat problem, called the global belief
network. Specifically, we construct the global be-
lief network by forming the graph union of the local

belief networks in the similarity network. The oper-
ation of graph union is straightforward. The nodes
in the graph union of a set of graphs is the simple
union of the nodes in the individual graphs. Simi-
larly, the arcs in the graph union of a set of graph is
the simple union of the arcs in the individual graphs.
That is, a node (or arc) appears in the graph union,
if and only if there is such a node (or arc) in at least
one of the individual graphs.

The global belief network for sore throat was
shown in Figure 2. The node QUALITY OF VOICE,
for example, appears in the global belief network be-
cause it appears in the local belief network for PERI-

TONSILLAR ABSCESS and TONSILLAR CELLULITIS.
The arc from DISEASE to ABDOMINAL PAIN appears
in the global belief network because it is present in
the local belief network for STREP THROAT and VI-

RAL PHARYNGITIS.
If (1) the global belief network contains no di-

rected cycles, (2) the joint probability distribution
for the distinguished and nondistinguished variables
is strictly positive (i.e., there are no probabilities in
the distribution that are equal to zero), and (3) the
similarity graph is connected (i.e., there is a path
between any two nodes in the graph), then the con-
struction of the global belief network from a simi-



larity network is sound [5]. That is, any joint dis-
tribution that satisfies the assertions of conditional
independence implied by the local belief networks
also satisfies the assertions of conditional indepen-
dence implied by the global belief network.

The formal criteria for drawing edges in a similar-
ity graph are that we connect two diseases only if we
can compose a local belief network for the disease
pair, and the similarity graph must be connected.
There is no formal requirement that connected dis-
eases be similar. As we have seen in the medical
example, however, local belief networks for pairs of
similar diseases tend to exclude many of the features
that are relevant to the set of diseases as a whole.
Furthermore, by composing local belief networks for
pairs of similar diseases, the expert can use a similar-
ity network to focus his attention on precisely those
diagnostic subproblems with which he is familiar.
Thus, an expert can simplify greatly his task of com-
posing the local belief networks by connecting only
similar diseases in the similarity graph (provided the
graph remains connected).

We can extend the similarity-network representa-
tion to include local belief networks for fault sets of
arbitrary size. In such an extension, we replace the
similarity graph with a similarity hypergraph. A hy-
pergraph consists of nodes and hyperedges that con-
nect sets of nodes. We then compose one local be-
lief network for each hyperedge. To ensure that the
global belief network constructed from such a sim-
ilarity network is sound, we must replace only the
constraint that the similarity graph be connected,
using instead the constraint that the similarity hy-
pergraph be connected.

A similarity network derives its power from its
ability to represent assertions of conditional inde-
pendence that are not conveniently represented in
an ordinary belief network. To illustrate such an as-
sertion, let f⊆ denote a proper subset of faults. If
f and feature x are independent, given that one of
the elements of f⊆ is present, we say that x is not
relevant to f⊆. Formally, a feature x is not relevant
to the set f⊆, given background knowledge ξ, if and
only if

p (fi|xk, f⊆, ξ) = p (fi|f⊆, ξ) (1)

for all instances xk of variable x, and for all faults fi

in f⊆. In Equation 1, the set f⊆, which conditions
both probabilities, denotes the disjunction of its ele-
ments. We call the form of conditional independence
represented by Equation 1 subset independence. Us-
ing Bayes’ theorem, we can derive an equivalent cri-
terion for subset independence. In particular, we
can show that a feature x is not relevant to the set
of faults f⊆, given background knowledge ξ, if and

VAGINAL BLEEDINGPERITONITISANOREXIA

RUPTURED ECTOPICAPPI

Figure 5: A belief network for the diagnosis of mul-
tiple diseases.

only if
p(xk|fi, ξ) = p(xk|fj , ξ) (2)

for all pairs fi, fj ∈ f⊆, and for all instances xk of
feature x.

Assertions of subset independence are asymmet-
ric. In general, an assertion of conditional inde-
pendence is asymmetric if it holds for only some
instances of its variables. Assertions of subset inde-
pendence, in particular, hold for only proper subsets
of the disease variable f .

We cannot easily encode subset independence or
other forms of asymmetric conditional independence
in an ordinary belief network [5]. In contrast, such
assertions are represented naturally by local belief
networks. In particular, if we omit the feature x
from the local belief network for the faults fi and
fj , then we are asserting that x is not relevant to
the set {fi, fj}. In [5], I show how we can use these
assertions of conditional independence to facilitate
the assessment of the probability distributions asso-
ciated with nodes in a belief network.

3 Belief Networks for
Multiple-Fault Diagnosis

Let us now consider the problem of multiple-fault di-
agnosis. Figure 5 contains a small portion of a belief
network for internal medicine. In this belief network,
the node APPI represents the absence or presence of
unreturned acute appendicitis. Similarly, the node
RUPTURED ECTOPIC represents the absence or pres-
ence of acute ruptured ectopic pregnancy. Thus, this
belief network does not exclude the possibility that
both diseases can manifest in the same patient.

This example illustrates a difficulty that arises
typically in situations where multiple faults are pos-
sible. In particular, both diseases in Figure 5 con-
dition the node PERITONITIS, which represents the
absence or presence of an inflammatory response in
the peritoneum (the lining of the abdominal cav-
ity). Thus, without any additional information, we
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Figure 6: Multiple causes of the same manifestation.

would have to assess four probability distributions
for this manifestation. More generally, we can have
the situation, illustrated in Figure 6, where diseases
d1, d2, . . . dn can each cause manifestation m to ap-
pear. Here, the node m is associated with 2n prob-
ability distributions.

4 Assumption of Causal Inde-
pendence

We can reduce dramatically the number of probabil-
ity assessments for node m by making an additional
assertion of conditional independence, called causal
independence. In the context of Figure 6, let pi de-
note the probability that a patient, initially without
disease di and without manifestation m, will develop
manifestation m when getting disease di. When we
assert causal independence in this situation, we state
that probability pi does not depend on whether or
not the patient has any other diseases before he has
di, and that the manifestation m cannot disappear
when the disease di manifests in the patient.

Now let Da denote an arbitrary instance of the set
of variables D = {d1, d2, . . . , dn}. That is, let Da de-
note some assignment of absent or present to each
disease di. In addition, let D− denote the particular
instance of D where all diseases are absent. Given
the assertion of causal independence, the manifes-
tation m will be absent in a patient only if two
conditions are met: (1) the manifestation m cannot
be present in the patient initially, and (2) none of
the patient’s diseases can act to cause m to appear.
Thus, we obtain

p (m−|Da, ξ) = p (m−|D−, ξ)
Y

i∈Ia

£
1− pi

§
(3)

where m− denotes the absence of manifestation m,
and where Ia is the set of indices i such that di is
present in Da. Applying the sum rule to Equation 3,

we obtain

p (m+|Da, ξ) = 1 − [1− p (m+|D−, ξ)]
Y

i∈Ia

£
1− pi

§

(4)
where m+ denotes the presence of manifestation m.
If the patient has only disease di, Equation 4 be-
comes

p
°
m+|only di

+, ξ
¢

= 1 − [1− p (m+|D−, ξ)]
£
1− pi

§

(5)
where “only di

+” refers to the instance of D where
only di is present. Solving for pi in Equation 5, and
substituting the result in Equation 4, we obtain

p (m+|Da, ξ) = 1− [1− p (m+|D−, ξ)] (6)

·
Y

i∈Ia

"
1− p

°
m+|only di

+, ξ
¢

1− p (m+|D−, ξ)

#

Thus, with the assertion of causal independence, we
can determine all the probability distributions asso-
ciated with the node m in Figure 6, from only the
probabilities p (m+|D−, ξ) and p

°
m+|only di

+, ξ
¢
,

i = 1, 2, . . . , n.
Good and other theorists have described various

forms of the causal-independence assertion [1, 11,
10]. Pearl refers to the particular form we have dis-
cussed, where diseases and features are binary, as
a noisy OR-gate [10]. (We consider the origin of
this name in the following paragraph.) Several re-
searchers have noted that we can apply the noisy OR-
gate and more general forms of causal independence
to numerous situations within domains ranging from
medicine to motorcycle repair [2, 3, 9, 8].

The model of the noisy OR-gate, as we have exam-
ined it so far, makes reference to the appearance of
diseases over time. We can also represent the model
in a belief network, without such a reference, as il-
lustrated in Figure 7. In the figure, the node labeled
di–causes–m represents the absence or presence of
an intermediate event through which di causes man-
ifestation m to be present with certainty. As is indi-
cated by the label OR above the deterministic node
m, if any of these intermediate events occur, then
the manifestation m will appear for certain (hence
the name noisy OR-gate). The arc from di to di–
causes–m reflects the assertion that the absence or
presence of di influences the probability distribution
for the variable di–causes–m.2 In particular, we as-
sume that, if di is absent, then the disease cannot act
to cause m, whereas if di is present, then it causes m
to be present with some probability greater than 0.
This probability corresponds to pi in the temporal

2Here, we assume that the belief network is minimal.
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Figure 7: An atemporal representation of causal in-
dependence.

formulation of the model. The lack of arcs between
nodes in the upper two rows of the influence reflects
the assertion of causal independence. In particular,
the missing arcs represent the statement that the
probability distribution for the variable di–causes–
m depends neither on the absence or presence of
any other disease nor on the absence or presence of
any other event leading to the occurrence of m. We
require the node d0–causes–m to capture the pos-
sibility that manifestation m will appear when all
diseases are absent.

To make this model more concrete, let us consider
the simple medical example in Figure 5. In this ex-
ample, acute ruptured ectopic pregnancy can cause
peritonitis, because blood from the rupture of a fal-
lopian tube can collect in the peritoneal cavity, and
thereby irritate the peritoneum. In contrast, the
presence of unreturned acute appendicitis is associ-
ated with the release of substances that mediate the
inflammatory response within the appendix. These
substances can leak out of the appendix, and thereby
cause an inflammatory response in the nearby peri-
toneum. Thus, the variable RUPTURED ECTOPIC–
causes–PERITONITIS refers to the absence or pres-
ence of blood in the peritoneal cavity, whereas the
variable APPI–causes–PERITONITIS refers to the ab-
sence or presence of inflammatory triggers of appen-
diceal origin in the peritoneum. To a good approxi-
mation, the probability that blood will collect in the
peritoneal cavity is influenced neither by the pres-
ence of an unreturned acute appendicitis nor by the
presence of inflammatory triggers of appendiceal ori-
gin in the peritoneum. Conversely, the probability
that inflammatory triggers from the appendix will
reach the peritoneum is influenced neither by the
presence of an acute ruptured ectopic pregnancy nor
by the presence of blood in the peritoneal cavity.
Thus, we can assert causal independence for the in-
teraction among these variables.

We can derive Equation 7 from both the tempo-
ral and atemporal models for causal independence.
The atemporal model is somewhat problematic, be-
cause we often cannot define events of the form di–
causes–m precisely. Nonetheless, most people find
this model easy to understand. In addition, we can
use the framework to extend causal independence to
situations where diseases and manifestations are not
binary [3, 8].

5 Construction of a Multiple-
Fault Belief Network

Now let us examine how we can use assump-
tions of causal independence in conjunction with
an assessed similarity network to construct a be-
lief network for the diagnosis of multiple diseases
(or faults). The construction derives from Equa-
tion 7, which states that the only probability as-
sessments we need to define the interaction illus-
trated in Figure 6 are those probabilities of the form
p

°
m+|only di

+, ξ
¢
, i = 1, 2, . . . , n and the probabil-

ity assessment p (m+|D−, ξ). These probabilities are
exactly those assessments that we can derive from a
similarity network where we represent each disease
as an instance of the distinguished node, and where
we include NORMAL to represent the instance D−.

With this observation in mind, let us consider the
similarity network shown in Figure 8(a). From this
similarity network, we can construct the multiple-
disease belief network shown in Figure 5, in the
following steps. First, we construct the global be-
lief network from the similarity network, and trans-
fer the manifestations ANOREXIA, PERITONITIS, and
VAGINAL BLEEDING in the global belief network to
the multiple-disease belief network. Also, if there
were any arcs between these manifestations, we
would transfer those arcs to the multiple-disease be-
lief network. Second, for each node in the similar-
ity graph, except NORMAL, we construct a binary
chance node in the multiple-disease belief network.
In particular, we construct the binary nodes APPI

and RUPTURED ECTOPIC. Third, in the multiple-
disease belief network, we draw an arc from APPI

to ANOREXIA, and from APPI to PERITONITIS. Con-
versely, we do not draw an arc from APPI to VAGI-

NAL BLEEDING. We can omit this arc because the lo-
cal belief network for APPI and NORMAL states that
the probability distribution for VAGINAL BLEEDING

given APPI is equal to the distribution for VAGINAL

BLEEDING given NORMAL, and because we assert
causal independence. Similarly, we draw arcs from
RUPTURED ECTOPIC to PERITONITIS and to VAGI-



NAL BLEEDING, but we do not draw an arc from
RUPTURED ECTOPIC to ANOREXIA. Fourth, we use
the probability assessments associated with the simi-
larity network in conjunction with the noisy-OR-gate
model (Equation 7) to compute the probability dis-
tributions for each manifestation. Finally, we assert
that APPI and RUPTURED ECTOPIC are marginally
independent, and assess the prior probabilities for
these variables.

In transforming the similarity network to a
multiple-disease belief network, we added several as-
sertions of conditional independence. In particular,
the similarity network implies only that the mani-
festations are conditionally independent given NOR-

MAL, APPI alone, and RUPTURED ECTOPIC alone.
The multiple-disease belief network, however, also
encodes the assertion that the manifestations are
independent given that both APPI and RUPTURED

ECTOPIC are present in a patient. In general, when
we apply the transformation described in the previ-
ous paragraph, we must verify that these additional
assertions are valid.

Also, in transforming the similarity network to a
multiple-disease belief network, we used the fact that
NORMAL was connected to each of the remaining dis-
eases in the similarity graph. That is, we used the
fact that the similarity graph had a star topology,
with NORMAL as its center. To understand this ob-
servation, let us consider the similarity network in
Figure 8(b). Here, APPI and NORMAL are not con-
nected, and thus we cannot identify those manifes-
tations that are influenced by the chance node APPI

in the multiple-disease belief network. Of course,
we could add an arc from APPI to every manifesta-
tion in the multiple-disease belief network, but, in so
doing, we would loose the assertions of conditional
independence implied by the absence of the arc from
APPI to ANOREXIA.

Although the transformation is facilitated by a
similarity graph with a star topology, we should not
require an expert to compose such graphs. Indeed,
an expert might not be able to compose a local be-
lief network for discriminating a particular disease
from NORMAL. Fortunately, however, we can trans-
form any similarity network to one whose similarity
graph has a star topology. Specifically, given any
similarity network, we first construct and assess the
global belief network associated with that similarity
network. Then, for each fault in the similarity graph
(other than NORMAL), we construct a local belief
network for discriminating that fault with NORMAL,
using the probability distributions from the global
belief network, and any ordering over the nondistin-
guished variables that is consistent with the global

belief network (see [5, Chapter 3]). Once we ob-
tain this new similarity network, we can construct
the multiple-fault belief network from that similar-
ity network as described previously.

6 General Algorithm
Let us now consider a general algorithm for trans-
forming a similarity network S into a multiple-fault
belief network M. Let f0, f1, f2, . . . , fn denote the
instances of the distinguished variable f in S, where
f0 is NORMAL. In addition, let f i, i = 1, 2, . . . , n,
denote the binary variable in M that corresponds
to fault fi in S. Also, let x and y denote arbitrary
nondistinguished variables in S. Finally, let S 0 de-
note a similarity network constructed from S such
that the similarity graph of S 0 has a star topology
with center f0, and let GS0 denote the global belief
network constructed from S 0. We transform S into
M as follows (x −→ y denotes an arc from x to y):

Construct S 0 from S
Construct GS0 from S 0
For all x in GS0 , place x in M
For all x −→ y in GS0 , place x −→ y in M
For fi in S 0, i = 1, 2, . . . , n, place f i in M
For local belief network f0i in S 0, i = 1, 2, . . . , n,

For all x in GS0 , if x is in f0i, then place
hi −→ x in M

For all x,
Determine the probability distributions for x
in M from the distributions for x in
GS0 , using assertions of causal independence

Assess dependencies among the f i in M
For f i in M, i = 1, 2, . . . , n, assess the
probability distributions for f i

In this transformation, the nondistinguished vari-
ables do not need to be binary, provided we gener-
alize beyond the noisy OR-gate model expressed by
Equation 7. In addition, we can generalize this al-
gorithm to include situations where f i is nonbinary,
by representing each instance of f i in the similarity
graph, and by identifying forms of causal indepen-
dence that can account for the interaction between
f i and each nondistinguished node.

Finally, note that we can use this algorithm to
transform a belief network of the form shown in Fig-
ure 1 to a belief network for the diagnosis of mul-
tiple faults. As mentioned in the previous section,
we construct S 0 from the global belief network de-
rived from S; we do not construct S 0 from S directly.
Consequently, we do not require an original similar-
ity network S for the transformation.
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Figure 8: Two similarity networks for APPI and RUPTURED ECTOPIC.

7 Summary

The similarity-network representation was designed
for the construction of belief networks for the diag-
nosis of a single fault. Nonetheless, in this paper,
we have seen that we can also use this representa-
tion to facilitate the construction of belief networks
for multiple faults.
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