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ABSTRACT
We consider the problem of partitioning n integers chosen
randomly between 1 and 2m into two subsets such that the
discrepancy, the absolute value of the difference of their
sums, is minimized. A partition is called perfect if the opti-
mum discrepancy is 0 when the sum of all n integers in the
original set is even, or 1 when the sum is odd. Parameteriz-
ing the random problem in terms of κ = m/n, we prove that
the problem has a sharp threshold at κ = 1, in the sense that
for κ < 1, there are many perfect partitions with probability
tending to 1 as n →∞, while for κ > 1, there are no perfect
partitions with probability tending to 1. Moreover, we show
that the derivative of the so-called entropy is discontinuous
at κ = 1.

We also determine the scaling window about the transi-
tion point: κn = 1− (2n)−1 log2 n + λn/n, by showing that
the probability of a perfect partition tends to 0, 1, or some
explicitly computable p(λ) ∈ (0, 1), depending on whether
λn tends to −∞, ∞, or λ ∈ (−∞,∞), respectively. For
λn → −∞ fast enough, we show that the number of perfect
partitions is Gaussian in the limit. For λn → ∞, we prove
that with high probability the optimum partition is unique,
and that the optimum discrepancy is Θ(λn). Within the
window, i.e., if |λn| is bounded, we prove that the optimum
discrepancy is bounded. Both for λn → ∞ and within the
window, the limiting distribution of the (scaled) discrepancy
is found.

1. INTRODUCTION
There has recently been much interest in the study of

phase transitions in random combinatorial problems. A
combinatorial phase transition is an abrupt change in the
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qualitative behavior of the problem as an appropriately de-
fined parameter is varied. The classic combinatorial phase
transition occurs in the random graph model of Erdös and
Rényi [8, 9]. There one considers a graph on n vertices
with edge occupation probability α/n. As the parameter α
passes through 1, the model undergoes a phase transition in
the sense that the size of the largest connected component
changes from order log n to order n. More recently, there
has been much study of the phase transition in the random
k-SAT model, both by heuristic and rigorous methods; see
[3] and references therein. Here, the relevant parameter is
α = m/n, where m is the number of clauses and n is the
number of variables. For fixed k ≥ 2, the model undergoes a
sharp transition from solvability to insolvability as α passes
through a particular k-dependent value [13].

Phase transitions occur only in the limit of infinite sys-
tems. Finite-size scaling describes the “broadening” of the
transition point into a “scaling window” in a finite system,
and the behavior of the relevant functions in the scaling
window. Finite-size scaling results are known for both the
random graph model [2, 19, 16] and the 2-SAT problem [3];

in both cases, the window is of width n−1/3. But the ques-
tion of finite-size scaling is still open for k-SAT with k ≥ 3.

The integer partitioning problem is a classic NP-complete
problem of combinatorial optimization. In the random ver-
sion considered here, an instance is a given a set of n m-
bit integers drawn uniformly at random from the set [M ] =
{1, 2, . . . , M} with M = 2m. The problem is to partition the
given set into two subsets in order to minimize the absolute
value of the difference between the sum of the integers in the
two subsets, the so-called discrepancy. Clearly, the smallest
possible discrepancy is 0 when the sum of all of the integers
is even, and 1 when the sum is odd; a partition with this
discrepancy is called perfect. In this work, we prove that the
optimum partitioning problem undergoes a sharp transition
as a function of the parameter κ = m/n, characterized by
a dramatic change in the probability of a perfect partition.
For m and n tending to infinity in the limiting ratio κ, the
probability of a perfect partition tends to 0 for κ < 1, while
the probability tends to 1 for κ > 1.

We also derive the finite-size scaling of the system about
the transition point κ = 1. Namely, in terms of the more
detailed parameterization m = κnn with

κn = 1− log2 n

2n
+

λn

n
, (1)



the probability of a perfect partition tends to 1, 0, or a
computable λ-dependent constant strictly between 0 and 1,
depending on whether λn tends to −∞, ∞, or λ ∈ (−∞,∞),
respectively. To our knowledge, this is the first rigorous
analysis of finite-size scaling in an NP-complete problem.
Equation (1) is the analogue of the scaling αn = 1+λn/n1/3

in the random graph problem [2, 19] and the 2-SAT problem
[3]. Here the scaling window is much smaller than it is in
the random graph or 2-SAT, namely it is of width Θ(1/n)

rather than Θ(1/n1/3). Also, in contrast to the random
graph and 2-SAT, the center of the scaling window here is
shifted from its limiting value by an amount which is larger
than the width of the window itself, namely (2n)−1 log2 n
versus Θ(1/n).

Finally, we derive the limiting distributions of some of
the fundamental quantities in the system. For λn → −∞,
we get the distribution of the number of perfect partitions,
which gives us the entropy. Both for λn →∞ and within the
window, we get the detailed asymptotics of the distribution
of the minimum discrepancy.

The random optimum partitioning problem has been stud-
ied previously by both rigorous and nonrigorous methods. A
great deal of rigorous work has been done for the partition-
ing problem with random numbers drawn from a compact
interval in R, which is analogous to the integer partition-
ing problem with m � n. Karmarkar and Karp [17] gave
a linear time algorithm for a suboptimal solution with a
typical discrepancy of order O(n−c log n) for some constant
c > 0. The optimum solution was studied by Karmarkar,
Karp, Lueker and Odlyzko [18] who proved that the typ-
ical minimum discrepancy is much smaller, namely of or-
der O(2−n√n). More recently, Lueker [20] proved similar
bounds for the expected minimum discrepancy. Note that
all of these results correspond to m � n, and hence κ →∞,
well above the phase transition studied here.

There have also been (nonrigorous) studies of optimum
partitioning in the theoretical physics and artificial intelli-
gence communities, where the possibility of a phase transi-
tion was studied. Fu [14] noted that the minimum discrep-
ancy is analogous to the ground state energy of an infinite-
range, random antiferromagnetic spin model, but concluded
incorrectly that the model did not have a phase transition.
Gent and Walsh [15] examined the problem numerically, in-
troduced the parameter κ = m/n, and estimated that a
transition occurs at κ = 0.96. Ferreira and Fontanari studied
the random spin model of Fu, and used statistical mechani-
cal methods to get estimates of the optimum partition [10]
and to evaluate the average performance of simple heuris-
tics [11]. Our work was motivated by the paper of Mertens
[21], who used statistical mechanical methods and the pa-
rameterization of [15] to derive a compelling argument for a
phase transition. In a later work, Mertens [22] analyzed Fu’s
model by mapping it into Derrida’s random energy model
[7], and heuristically obtained the distribution of the dis-
crepancy. Here we give a rigorous analogue of this result.

It is worth noting that the optimum partitioning problem
is closely related to several other classic problems of combi-
natorial optimization. The first is the “multi-way” partition
problem in which a set of “weights” is to be partitioned into
N ≥ 3 subsets (parts), so that the sums of the weights in
the N parts are as close to equal as possible. Graham devel-
oped a linear-time 4

3
-approximation algorithm for a version

of this problem in which the goal is to minimize the weight of

the heaviest part [R. Graham, private communication]. The
multi-way problem was also considered by Karmarkar, Karp,
Lueker and Odlyzko [18], who noted that their analysis of
the minimum discrepancy would extend in a natural way
to this case also. A second related problem is the so-called
subset sum problem, in which one tries to find subsets of a
given set of integers which sum to (or near to) a prescribed
target number. This problem reduces to a study of solutions
of linear equations of the form

∑
i siXi = T , where Xi are

the numbers in the given set, si ∈ {0, 1} represents whether
or not Xi is included in a particular subset, and T is the
target number. A key idea is to express the total number
of solutions to these equations via a Fourier-type inversion
integral, a paradigm championed by Freiman [12]; see also
Alon and Freiman [1], Chaimovich and Freiman [6]. We will
use an analogous integral representation in our study of the
integer partitioning problem. Some of the methods and re-
sults presented here can be used to obtain stronger results
for the subset sum problem, but we will not pursue this here.

2. STATEMENT OF RESULTS
Let us begin with a little notation. The instances of

the problem are sets of n integers X1, . . . , Xn chosen in-
dependently and uniformly from [M ] = {1, 2, . . . , M} with
M = 2m. We will generally fix m to be some function of n
(e.g., by taking m = κn). The probability measure induced
by the random variables X = {X1, . . . , Xn} will be denoted
by Pn, and expectation by En. When no confusion arises,
we will drop the subscript n. The event that “

∑n
j=1 Xj is

even” will be denoted by En, while the event that the sum
is odd will be denoted by On. As usual we will say that an

event happens with high probability (w.h.p)̇ if the probabil-
ity that it happens goes to one as n → ∞. Finally, X will
denote a generic random variable distributed uniformly on
[M ].

There are 2n ways to form an ordered partition of n inte-
gers X1, . . . , Xn into two sets. Each such partition can be
labelled by σ = (σ1, . . . σn) with σj ∈ {−1, 1}, so that,
say, the first set is {Xj : σj = −1}, and the second is
{Xj : σj = 1}. The discrepancy of the partition with la-
bel σ is |σ·X| =

∣∣∑n
j=1 σjXj

∣∣. Let dn denote the optimum
discrepancy of X over all σ:

dn = dn(X) = min
σ

|σ·X|. (2)

Clearly dn is even on En, and odd on On. A partition with
|σ·X| ≤ 1 (i.e., |σ·X| = 0 on En and |σ·X| = 1 on On)
is called perfect , and a partition with |σ·X| = dn is called
an optimum or minimum partition. Let Zn = Zn(X) and

Z̃n = Z̃n(X) denote the number of perfect and optimum

partitions of X, respectively. Of course, Zn = Z̃n iff dn = 0
or dn = 1. Note that a partition with label σ has the same
discrepancy as that with label −σ. The random variables

Zn(X) and Z̃n(X) therefore take values in the even non-
negative integers.

Our first result shows that the model has a sharp transi-
tion at κ = 1.

Theorem 1. Let m = κnn, and assume that lim
n→∞

κn = κ

exists in [−∞,∞]. Then

lim
n→∞

Pn(∃ a perfect partition) =

{
1 if κ < 1

0 if κ > 1.
(3)



Our next result uses the more sensitive parameterization
(1) to strengthen Theorem 1, and, in particular, to establish
the existence of a scaling window.

Theorem 2. Let m = κnn, with κn as in (1), and as-
sume that lim

n→∞
λn = λ exists. Then

lim
n→∞

Pn(∃ a perfect partition) =

=





1 if λ = −∞
1− 1

2
r(λ)

(
r(λ) + 1

)
if λ ∈ (−∞,∞)

0 if λ = ∞,

(4)

where r(λ) = exp
(
−
√

3
2π

2−λ
)
.

Our next result gives detailed information on the distri-
bution of the number of perfect and optimum partitions, Zn

and Z̃n, and therefore also on the entropy , defined as

Sn = log2 Z̃n. (5)

Note that Sn is well-defined and non-negative for all X,

since Z̃n ≥ 1. In contrast, an “entropy” defined as log2 Zn

can be negative infinity, which led to some apparent contra-
dictions in [21].

Theorem 3. Let m = κnn, with κn as in (1), and define

cM = E

(X2

M2

)
=

1

3
+

1

2M
+

1

6M2
. (6)

i) If λn → −∞, then

(
21+|λn|

√
2πcM

)−1

Zn →
{

1 on En

2 on On

(7)

in probability and in mean,

Sn − |λn|+
1

2
log2 cM →

{
1
2

log2(2/π) on En

1
2

log2(8/π) on On

(8)

in probability, and

n−1
(
Sn − |λn|

)
→ 0 (9)

in expectation.

ii) If λn → λ ∈ (−∞,∞), then Sn is bounded in probability,
so that in particular

n−1Sn → 0 (10)

in probability. More precisely, on the event O\ the entropy
Sn converges (in distribution) to 1 + log2 P (µ) where P (µ)

is Poisson with parameter µ = 2−λ
√

6/π conditioned on
{P (µ) ≥ 1}; on the event E\ the entropy Sn converges to
1 + log2 Q(µ), where Q(µ) = P (µ/2) with probability 1 −
e−µ/2 and Q(µ) = P (µ) with probability e−µ/2.

iii) If λn →∞ with λn = O(n), then with probability tending
to 1, the optimum partition is unique up to the symmetry
σ → −σ. In particular, P(Sn = 1) → 1 as n →∞.

Corollary 1. Assume that m/n converges to some κ <
∞. Then the entropy per variable, sn = n−1Sn, converges
in probability to (the deterministic function)

s(κ) = max{0, 1− κ}, (11)

so that, in particular, the limiting entropy per variable has
a discontinuous derivative at κ = 1.

Remark 1. The reader will note that the statements be-
low the window in Theorem 1 and 2 are immediate corol-
laries of Theorem 3(i), equation (7), which strengthens the
statement Zn > 0 w.h.p. by giving a law of large numbers
for Zn.

Remark 2. If the condition of Theorem 3(i) is slightly
strengthened to λn +log2 n → −∞, we can prove even more,
namely a central limit theorem stating that, in the limit, Zn

has a Gaussian distribution with mean implicit in (7), and

standard deviation roughly equal to the mean times n−1/2;
see [4]. This allows us to show that Sn is also Gaussian in
the limit with mean implicit in (8), and standard deviation

again roughly equal to the mean times n−1/2.

Remark 3. In statistical physics, phase transitions are
characterized by non-analyticities in derivatives of thermo-
dynamic potentials. These non-analyticities may be discon-
tinuities or smoother non-analyticities. First-order phase
transitions are characterized by a discontinuity in a first
derivative of a thermodynamic potential (but not necessar-
ily in all first derivatives of all thermodynamic potentials).
By contrast, all first derivatives of thermodynamic poten-
tials are continuous at second-order phase transitions; the
corresponding second derivatives usually diverge. In the op-
timum partitioning problem, the entropy—which is a first
derivative of a thermodynamic potential—is continuous, but
its derivative is discontinuous. This is analogous to the be-
havior of the entropy of the Ising model in a magnetic field,
which has a first-order phase transition as the magnetic field
passes through zero.

Another characteristic which can be used to distinguish
first- and second-order phase transitions is the width of the
scaling window. In a first-order phase transition, such as
the Ising model in a field, the scaling window of a system of
size n is of width n−1; see [5]. By contrast, second-order
phase transitions have scaling windows of width n−b for
some b < 1, as has been established for the random graph [2,
19] and the 2-SAT problem [3]. In the optimum partition-
ing problem, the scaling window of is width n−1. Hence we
conclude that the problem has a first-order phase transition
at κ = 1.

Our final theorem gives detailed distributional estimates
of the discrepancy dn defined in (2).

Theorem 4. Let m = κnn, with κn as in (1).

i) If λn → −∞, then

dn →
{

0 in probability on En

1 in probability on On.
(12)

ii) If limn→∞ λn ∈ (−∞,∞), then dn is bounded in proba-
bility. More precisely, in the limit, dn has a geometric dis-
tribution: for ` ≥ 1,

lim
n→∞

Pn{dn ≥ `} =
1 + r

2
r`−1, (13)

with r = r(λ) as defined in Theorem 1.

iii) If λn → ∞, then dn/2λn and its inverse are bounded
in probability. If furthermore λn = O(n), then in the limit,
dn/2λn has the following exponential distribution: for a > 0,

lim
n→∞

Pn

(
dn

2λn

> a

)
= exp

(
−
√

3

2π
a

)
. (14)



The reader will notice that Theorem 2 is a corollary of
Theorem 4, and that Theorem 4(i) follows from Theorem
3(i), equation (7). The proof of Theorems 1–4 is therefore
reduced to that of Theorem 3 and Theorem 4(ii)–(iii). This
is accomplished by detailed calculations using an integral
representation to be described in the next section.

3. SCHEME OF THE PROOFS
Here we give a brief outline of parts of the proofs of The-

orems 1–4. The complete proofs are rather complicated; the
reader is referred to [4] for the details. Our proofs are based
on an integral representation of Zn,`, the number of parti-
tions with discrepancy `. To derive this representation, we
first write Zn,` as

Zn,` =
∑

σ

I(|σ·X| = `), (15)

where we use I(A) to denote the indicator of an event A,
and then use the identity

I(σ·X = `) =
1

2π

π∫

−π

ei(σ·X−`)xdx (16)

to sum over all 2n configurations σ. This gives the repre-
sentation

Zn,` = 2nIn,` ×
{

1 if ` = 0

2 if ` > 0,
(17)

where In,` = In,`(X) is the random integral

In,` =
1

2π

π∫

−π

cos(`x)
n∏

j=1

cos(xXj) dx. (18)

The first set of results, namely Theorem 1, Theorem 2 out-
side the window, and Theorem 3(i), follow from estimates
on the first and second moments of In,`. Below we will state
these estimates, prove the first moment estimate, and show
how the estimates imply the theorems mentioned above.
The central limit theorem, referred to in Remark 2 follow-
ing Theorem 3, is a consequence of detailed estimates on
the random integral In,`, rather than just on a few of its
moments. The reader is referred to [4] for details.

Proposition 3.1. Let M = M(n) be an arbitrary func-
tion of n, let

γn =
1

M
√

2πncM

(19)

with cM as in (6), and assume that ` and `′ are integers
between 0 and M . Then

E[In,`] = γn(1 + O(n−1)). (20)

Furthermore

E[In,`In,`′ ] =2γ2
n

(
1 + O(n−1) + O

( n−1

γn2n

))

+ 2−nγn

(
δ`+`′,0 + δ`−`′,0

) (21)

if ` and `′ are both even or both odd, while E[In,`In,`′ ] = 0 if
one of them is even and the other is odd. In (20) and (21),
the bounds implicit in the O-symbols are uniform in M .

To prove Proposition 3.1, we first use (18) and the fact
that the Xj are independent to get

E[In,`] =
1

2π

π∫

−π

cos(`x)fn(x) dx (22)

and

E
[
In,`In,`′

]
=

=
1

(2π)2

∫∫

x1,x2∈(−π,π]

cos(x1`) cos(x2`
′)fn(x1, x2) dx1dx2

(23)
where

f(x) : = E[cos(xX)] = M−1
M∑

j=1

cos(jx)

= M−1

[
sin((M + 1/2)x)

2 sin(x/2)
− 1

2

]
,

(24)

f(x1, x2) : = E
[
cos(x1X) cos(x2X)

]

=
1

2
(f(x1 + x2) + f(x1 − x2))

(25)

and fn(x) stands for [f(x)]n. In our analysis of the asymp-
totics of these integrals, we use that the major contribu-
tions come from values of the integration variables near the
maxima of |f(x)| and |f(x1, x2)|. Note, however, that the
function f depends on the parameter M , which can grow as
n →∞. Fortunately, a careful treatment of error terms will
allow us to apply a variation of the standard saddle point
method to get the desired asymptotics. Here we present this
analysis for the first moment. The (more involved) analysis
for the second moment requires a saddle point for an integral
in two variables; it can be found in [4].

Proof of Equation (20)

When M is bounded, the proof is a straightforward appli-
cation of standard saddle point methods, which we leave to
the reader. The arguments below establish (20) for M larger
than some M0, to be determined in the course of the proof.

Pick 1 < a < b. If x ∈ [−π, π] is such that |2 sin(x/2)| ≥
b/M , then

|f(x)| ≤ 1

b
+

1

2M
≤ 1

a
(26)

for M large enough. We will also use

|f(x)| ≤ 1

M | sin(x/2)| ≤
C

M |x| , (27)

uniformly for |x| ∈ (0, π], a direct consequence of (24). Here
and below, C,C1, C′, etc., stand for absolute positive con-
stants. (In (27), C can be chosen as π/2.)

Notice that x ∈ (−π, π) satisfies |2 sin(x/2)| ≤ b/M iff
|x| ≤ b0/M , where b0 = b0(M) is defined for M large enough
by the condition 2 sin(b0/(2M)) = b/M with b0/(2M) ∈
(0, π/2). Clearly b0(M) → b as M →∞. By (26),

|f(x)| ≤ 1

a
if |x| ≥ b0/M. (28)

Consider now |x| ≤ b0/M , and set x = y/M , i.e., |y| ≤ b0.



Then, for y 6= 0,

f(x) = M−1

[
sin
(
y + y/(2M)

)

2 sin
(
y/(2M)

) − 1

2

]

=
sin y

2M tan
(
y/(2M)

) +
cos y − 1

2M
,

(29)

and, since tan z > z on (0, π/2),

|f(x)| ≤
∣∣∣∣
sin y

y

∣∣∣∣+
1− cos y

2M
. (30)

Hence there exist a small enough y0 ∈ (0, b0) and q ∈ (0, 1)
so that for M large enough

|f(x)| ≤
{

e−C1y2

if |y| ≤ y0,

q, if y0 ≤ |y| ≤ b0.
(31)

For |y| sufficiently small, we also have

f(x) = E
(
cos(y(X/M))

)
= E

(
1− y2

2
· X2

M2
+ O(y4)

)

= 1− cM

2
y2 + O(y4) = exp

(
− cM

2
y2 + O(y4)

)
,

(32)
with cM as in (6), so that

fn(x) = exp
(
−n

cM

2
y2
) (

1 + O(ny4)
)
. (33)

Since cos(`x) = cos(y`/M) = 1 + O(y2) for ` = O(M), we
can use (31) and (33) to get:

1

2π

∫

|x|≤b0/M

cos(`x)fn(x) dx =

=
1

2πM

∫

|y|≤
log2 n
√

n

(
1 + O(y2) + O(ny4)

)
e−

ncM

2
y2

dy

+ O

(
M−1

∫

|y|≥
log2 n
√

n

e−nC1y2

dy

)
+ O(qn/M)

=
1

M
√

2πncM

(
1 + O(n−1) + O

(
e−C′ log2

2 n))

=γn(1 + O(n−1)),
(34)

with γn as in (19). Besides, by (26) and the definition of b0,
∫

|x|∈[b0/M,π]

|f(x)|n dx ≤

≤
∫

|x|∈[b0/M,π]

[
min

{
a−1,

C

Mx

}]n

dx

≤2Ca

M
a−n +

∫

|x|≥Ca/M

(
C

Mx

)n

dx

≤4Ca

M
a−n = O(a−nM−1).

(35)

Thus, for ` = O(M) and every a > 1,

EIn,`(X) =γn(1 + O(n−1)) + O(a−nM−1)

=γn(1 + O(n−1)),
(36)

where the constant implicit in O(n−1) (and similar error
terms below) depends on a. This proves the estimate (20)
for all sufficiently large M . �

Proof of Theorem 1, Theorem 2 outside the window,

and Theorem 3(i)

To apply Proposition 3.1, we first observe that Zn,0 = Zn

on En and Zn,0 = 0 on On. Consequently

E[Zn,0] = P(En)E(Zn|En), E[Z2
n,0] = P(En)E(Z2

n|En).
(37)

Observing that Pn(En) → 1/2 as n → ∞, with an error
that is exponentially small in n, it follows from (17) and the
statements of Proposition 3.1 for ` = `′ = 0 that

E(Zn|En) = 2n+1γn(1 + O(n−1)), (38)

and

E(Z2
n|En) =

(
E

2(Zn|En) + 2E(Zn|En)
)
(1 + O(n−1)). (39)

It follows from (1) that M = 2m = 2n+λn/
√

n, so that
2n+1γn = 21−λn/

√
2πcM → ∞ if λn → −∞. The sec-

ond moment method then immediately gives equation (7)
on En. In a similar way, the corresponding statements on
On follow from Proposition 3.1 for ` = `′ = 1. Equation (7)

implies in particular that w.h.p. Zn > 0, whence Zn = Z̃n

and Sn = log2 Zn. This observation and the convergence of
Zn/(2n+1γn) gives (8).

To complete the proof of Theorem 3(i), we note that by
(8), ∆sn := n−1(Sn− |λn|) goes to zero in probability. Also
|∆sn| ≤ 1, since 0 ≤ Sn ≤ n and |λn| ≤ n. So, by the
bounded convergence theorem, ∆sn → 0 in expectation as
well, completing the proof of Theorem 3(i), and hence the
statements of Theorem 1 and 2 below the window. To see
that the statements of Theorem 1 and 2 above the window
follow from Proposition 3.1 as well, we use that the proba-
bility of finding a perfect partition is equal to the probability
that Zn > 0, which in turn is bounded above by the expec-
tation of Zn. But this expectation goes to zero above the
window by (38) and its analogue on the event On. �

Moment estimates can also be used to obtain some state-
ments in probability (but not any distributional statements)
on Sn and dn, namely the “in probability” statements of
Theorems 3(ii) and 4(ii) and part of those in Theorem 4(iii).
These are summarized in the following proposition.

Proposition 3.2. (i) If λn → λ ∈ (−∞,∞), then both
dn and Sn are bounded in probability.
(ii) If λn →∞, then 2λn/dn is bounded in probability.

Proof (i) Let Zn,≤ω =
∑

`≤ω Zn,`, and let ω(n) ≤ M be

a sequence of integers which goes to infinity. Use (17) and
both the ` = `′ and the ` 6= `′ relations in Proposition 3.1
to calculate the first and second moments of the sum Zn,≤ω.
Then the second moment method implies that, inside the
window,

Zn,≤ω(n)

ω(n)γn2n+1
→ 1 (40)

in probability. (Since γn2n is bounded above, it is crucial
that ω(n) →∞ to control the error terms.) Observing that
γn2n is bounded away from zero inside the window, and



noting that Zn,≤ω(n) > 0 implies dn ≤ ω(n), the bound (40)
proves in particular that dn is bounded in probability. Since

Zn,≤ω(n) > 0 implies Z̃n ≤ Zn,≤ω(n), the bound (40) also

implies that inside the window Z̃n and hence Sn is bounded
in probability.

(ii) Let ω(n) → ∞ as n → ∞, and set kn = 2λn/ω(n).
Since kn ≤ M for all sufficiently large n, we can use (17)
and (20) to conclude that

P(dn ≤ kn) ≤
kn∑

k=0

E[Zn,k]

= (1 + 2kn)2nγn(1 + O(n−1))

= O
(
ω−1(n)

)
,

(41)

implying that dn goes to infinity at least as fast as 2λn ,
which is the desired result. �

We have not yet shown all of the “in probability” state-
ments. In particular, for Theorem 4(iii), we need the follow-
ing.

Proposition 3.3. If λn → ∞, then dn/2λn is bounded
in probability.

In order to prove Proposition 3.3, by analogy to the proof
of Proposition 3.2(ii), we would like to show that (40) holds
for some ω(n) of the form ω(n) = 2λnrn with both λn and
rn going to infinity. Unfortunately, our bounds in Propo-
sition 3.1 are not strong enough to prove such a statement
using the second moment method. Instead we use a very
different technique, inspired both by [18] and by the Gibbs
distribution on integer partitions used in [21]. The key idea
is to replace Zn,≤ω(n) by

Zn,≤ω(n)(β) =
∑

σ:|σ·X|≤ω(n)

e−β|σ·X| (42)

and then to choose β appropriately. In physics language, this
amounts to replacing the “ground state partition function”
by a partition function at positive temperature β−1. Math-
ematically, this amounts to a smoothing technique which
regularizes the sum Zn,≤ω(n). Using this idea, we can now
outline the proof of Proposition 3.3.

Sketch of Proof of Proposition 3.3

Let us choose β = βn in (42) so that βω(n) → 0 as n →∞.
Then

Zn,≤ω(n) = Zn,≤ω(n)(β)
(

1 + O(βω(n))
)
, (43)

so it is enough to prove the analogue of (40) for Zn,≤ω(n)(β).
We will sketch how this is done on the event En. On En, σ·X

is necessarily even, implying that

Zn,≤ω(n)(β) =

µn−1∑

µ=−(µn−1)

e−2βµ
∑

σ

I(σ·X = 2µ) (44)

where µn = min{µ : 2µ > ω(n)}. Using once more that
σ·X is even, which implies that the indicator function in
(44) can now be rewritten as an integral over the smaller

interval [−π/2, π/2], we get

Zn,≤ω(n)(β) =

=
2n

π

π/2∫

−π/2



∑

|µ|<µn

e−β|2µ|ei2µx




n∏

j=1

cos(xXj) dx

=
2n

π

π/2∫

−π/2

gn(x)
n∏

j=1

cos(xXj) dx, (45)

where gn(x) is an explicitly computable function.
To estimate the random integral in (45), we split it into

two parts: the integral over |x| ≤ b/M , where b < π is
chosen in the course of the proof, and the integral over |x| ≥
b/M . While the latter can be estimated by a bound on its
second moment involving more saddle point estimates, the
former requires precise estimates of a random integral. The
main idea is to replace the product

∏n
j=1 cos(xXj) in the

integrand by

exp
(
− x2

2

n∑

i=1

X2
i

)
= exp

(
− y2

2

n∑

i=1

X2
i

M2

)
, (46)

where, as before, y = xM . While the error terms cannot be
controlled in general, it turns out that they can be controlled
when the sum

∑n
i=1 X2

i /M2 is near to its expectation. Let
An be the event that the ratio between

∑n
i=1 X2

i /M2 and
its expectation is between 1/2 and 3/2. Since, by the law
of large numbers, the sum converges to its expectation, the
probability of An tends to one. Therefore, statements about
convergence in probability can safely be made by restricting
the random integers {Xj} to the event En ∩ An. On this
event, we finally do a saddle point analysis which requires
careful tuning of several constants, including the constant b
and the n-dependence of β, thus completing the estimate of
the random integral. The proof is quite involved, and the
interested reader is encouraged to consult [4] for details. Of
course, an analogous proof applies on the event On. �

We are left with proving the statement that the optimum
partition is unique above the scaling window (see Theo-
rem 3(iii)) and the distributional statements on dn and Sn

in Theorem 3(ii) and Theorems 4(ii) and 4(iii). To estab-
lish the statements above the window, we prove that the
continuous-time process (Ẑn(t)), where Ẑn(t) = 1

2
Zn,≤tbn

with bn = 2λn+1, converges to a Poisson process with param-
eter

√
6/π. The statements inside the window are proved

by showing that the random variables Ẑn,` = 1
2
Zn,` are in-

dependent Poisson random variables in the limit. These
proofs entail estimates on the factorial moments of the rel-
evant random variables. At the core of our argument is a
version of the multidimensional local limit theorem for non-
identically distributed vector-summands. Once more, the
reader is referred to [4] for details.
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