
Selective Inference for Group-Sparse Linear Models

Fan Yang1, Rina Foygel Barber1, Prateek Jain2, and John Lafferty3

1Dept. of Statistics, University of Chicago
2Microsoft Research, Bangalore, India

3Depts. of Statistics and Computer Science, University of Chicago

July 27, 2016

Abstract

We develop tools for selective inference in the setting of group sparsity, including the
construction of confidence intervals and p-values for testing selected groups of variables. Our
main technical result gives the precise distribution of the magnitude of the projection of the
data onto a given subspace, and enables us to develop inference procedures for a broad class
of group-sparse selection methods, including the group lasso, iterative hard thresholding, and
forward stepwise regression. We give numerical results to illustrate these tools on simulated
data and on health record data.

1 Introduction

Significant progress has been recently made on developing inference tools to complement the
feature selection methods that have been intensively studied in the past decade [6, 7, 8]. The goal
of selective inference is to make accurate uncertainty assessments for the parameters estimated
using a feature selection algorithm, such as the lasso [11]. The fundamental challenge is that
after the data have been used to select a set of coefficients to be studied, this selection event
must then be accounted for when performing inference, using the same data. A specific goal of
selective inference is to provide p-values and confidence intervals for the fitted coefficients. As the
sparsity pattern is chosen using nonlinear estimators, the distribution of the estimated coefficients
is typically non-Gaussian and can have multiple modes, even under a standard Gaussian noise
model, making classical techniques unusable for accurate inference. It is of particular interest to
develop finite-sample, non-asymptotic results.

In this paper, we present new results for selective inference in the setting of group sparsity
[14, 4, 9]. We consider the linear model Y = Xβ +N (0, σ2In) where X ∈ Rn×p is a fixed design
matrix. In many applications, the p columns or features of X are naturally grouped into blocks
C1, . . . , CG ⊆ {1, . . . , p}. In the high dimensional setting, the working assumption is that only a
few of the corresponding blocks of the coefficients β contain nonzero elements; that is, βCg = 0
for most groups g. This group-sparse model can be viewed as an extension of the standard
sparse regression model. Algorithms for fitting this model, such as the group lasso [14], extend
well-studied methods for sparse linear regression to this grouped setting.

In the group-sparse setting, recent results of Loftus and Taylor [8] give a selective inference
method for computing p-values for each group chosen by a model selection method such as forward
stepwise regression. More generally, the inference technique of [8] applies to any model selection

1

ar
X

iv
:1

60
7.

08
21

1v
1 

 [
st

at
.M

E
] 

 2
7 

Ju
l 2

01
6



method whose outcome can be described in terms of quadratic conditions on Y . However, their
technique cannot be used to construct confidence intervals for the selected coefficients or for the
size of the effects of the selected groups.

Our main contribution in this work is to provide a tool for constructing confidence intervals
as well as p-values for testing selected groups. In contrast to the (non-grouped) sparse regression
setting, the confidence interval construction does not follow immediately from the p-value
calculation, and requires a careful analysis of non-centered multivariate normal distributions.
Our key technical result precisely characterizes the density of ‖PLY ‖2 (the magnitude of the
projection of Y onto a given subspace L), conditioned on a particular selection event. This
“truncated projection lemma” is the group-wise analogue of the “polyhedral lemma” of Lee et al.
[7] for the lasso. This technical result enables us to develop inference tools for a broad class of
model selection methods, including the group lasso [14], iterative hard thresholding [1, 5], and
forward stepwise group selection [12].

In the following section we frame the problem of group-sparse inference more precisely, and
present previous results in this direction. We then state our main technical results; the proofs
of the results are given in the appendix. In Section 3 we show how these results can be used
to develop inferential tools for three different model selection algorithms for group sparsity. In
Section 4 we give numerical results to illustrate these tools on simulated data, as well as on the
California county health data used in previous work [8]. We conclude with a brief discussion of
our work.

2 Main results: selective inference over subspaces

To establish some notation, we will write PL for the projection to any linear subspace L ⊆ Rn,
and P⊥L for the projection to its orthogonal complement. For y ∈ Rn, dirL(y) = PLy

‖PLy‖2 ∈ L∩S
n−1

is the unit vector in the direction of PLy. This direction is not defined if PLy = 0.
We focus on the linear model Y = Xβ +N (0, σ2In), where X ∈ Rn×p is fixed and σ2 > 0 is

assumed to be known. More generally, our model is Y ∼ N (µ, σ2In) with µ ∈ Rn unknown and
σ2 known. For a given block of variables Cg ⊆ [p], we write Xg to denote the n×|Cg| submatrix of
X consisting of all features of this block. For a set S ⊆ [G] of blocks, XS consists of all features
that lie in any of the blocks in S.

When we refer to “selective inference,” we are generally interested in the distribution of subsets
of parameters that have been chosen by some model selection procedure. After choosing a set of
groups S ⊆ [G], we would like to test whether the true mean µ is correlated with a group Xg for
each g ∈ S after controlling for the remaining selected groups, i.e. after regressing out all the
other groups, indexed by S\g. Thus, the following question is central to selective inference:

Questiong,S : What is the magnitude of the projection of µ onto the span of P⊥XS\gXg? (1)

In particular, we are interested in a hypothesis test to determine if µ is orthogonal to this span,
that is, whether block g should be removed from the model with group-sparse support determined
by S; this is the question studied by Loftus and Taylor [8] for which they compute p-values.
Alternatively, we may be interested in a confidence interval on ‖PLµ‖2, where L = span(P⊥XS\gXg).
Since S and g are themselves determined by the data Y , any inference on these questions must
be performed “post-selection,” by conditioning on the event that S is the selected set of groups.
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2.1 Background: The polyhedral lemma

In the more standard sparse regression setting without grouped variables, after selecting a set
S ⊆ [p] of features corresponding to columns of X, we might be interested in testing whether the
column Xj should be included in the model obtained by regressing Y onto XS\j . We may want
to test the null hypothesis that X>j P⊥XS\jµ is zero, or to construct a confidence interval for this
inner product.

In the setting where S is the output of the lasso, Lee et al. [7] characterize the selection
event as a polyhedron in Rn: for any set S ⊆ [p] and any signs s ∈ {±1}S , the event that the
lasso (with a fixed regularization parameter λ) selects the given support with the given signs is
equivalent to the event Y ∈ A =

{
y : Ay < b

}
, where A is a fixed matrix and b is a fixed vector,

which are functions of X, S, s, λ. The inequalities are interpreted elementwise, yielding a convex
polyhedron A. To test the regression question described above, one then tests η>µ for a fixed
unit vector η ∝ P⊥XS\jXj . The “polyhedral lemma” [7, Theorem 5.2] proves that the distribution
of η>Y , after conditioning on {Y ∈ A} and on P⊥η Y , is given by a truncated normal distribution,
with density

f(r) ∝ exp
{
−(r − η>µ)2/2σ2

}
· 1 {a1(Y ) ≤ r ≤ a2(Y )} . (2)

The interval endpoints a1(Y ), a2(Y ) depend on Y only through P⊥η Y and are defined to include
exactly those values of r that are feasible given the event Y ∈ A. That is, the interval contains
all values r such that r · η + P⊥η Y ∈ A.

Examining (2), we see that under the null hypothesis η>µ = 0, this is a truncated zero-mean
normal density, which can be used to construct a p-value testing η>µ = 0. To construct a
confidence interval for η>µ, we can instead use (2) with nonzero η>µ, which is a truncated
noncentral normal density.

2.2 The group-sparse case

In the group-sparse regression setting, Loftus and Taylor [8] extend the work of Lee et al. [7]
to questions where we would like to test PLµ, the projection of the mean µ to some potentially
multi-dimensional subspace, rather than simply testing η>µ, which can be interpreted as a
projection to a one-dimensional subspace, L = span(η). For a fixed set A ⊆ Rn and a fixed
subspace L of dimension k, Loftus and Taylor [8, Theorem 3.1] prove that, after conditioning
on {Y ∈ A}, on dirL(Y ), and on P⊥L Y , under the null hypothesis PLµ = 0, the distribution of
‖PLY ‖2 is given by a truncated χk distribution,

‖PLY ‖2 ∼ (σ · χk truncated to RY ) where RY =
{
r : r · dirL(Y ) + P⊥L Y ∈ A

}
. (3)

In particular, this means that, if we would like to test the null hypothesis PLµ = 0, we can compute
a p-value using the truncated χk distribution as our null distribution. To better understand this
null hypothesis, suppose that we run a group-sparse model selection algorithm that chooses a
set of blocks S ⊆ [G]. We might then want to test whether some particular block g ∈ S should
be retained in this model or removed. In that case, we would set L = span(P⊥XS\gXg) and test
whether PLµ = 0.

Examining the parallels between this result and the work of Lee et al. [7], where (2) gives
either a truncated zero-mean normal or truncated noncentral normal distribution depending on
whether the null hypothesis η>µ = 0 is true or false, we might expect that the result (3) of Loftus
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and Taylor [8] can extend in a straightforward way to the case where PLµ 6= 0. More specifically,
we might expect that (3) might then be replaced by a truncated noncentral χk distribution, with
its noncentrality parameter determined by ‖PLµ‖2. However, this turns out not to be the case. To
understand why, observe that ‖PLY ‖2 and dirL(Y ) are the length and the direction of the vector
PLY ; in the inference procedure of Loftus and Taylor [8], they need to condition on the direction
dirL(Y ) in order to compute the truncation interval RY , and then they perform inference on
‖PLY ‖2, the length. These two quantities are independent for a centered multivariate normal,
and therefore if PLµ = 0 then ‖PLY ‖2 follows a χk distribution even if we have conditioned on
dirL(Y ). However, in the general case where PLµ 6= 0, we do not have independence between the
length and the direction of PLY , and so while ‖PLY ‖2 is marginally distributed as a noncentral
χk, this is no longer true after conditioning on dirL(Y ).

In this work, we consider the problem of computing the distribution of ‖PLY ‖2 after condi-
tioning on dirL(Y ), which is the setting that we require for inference. This leads to the main
contribution of this work, where we are able to perform inference on PLµ beyond simply testing
the null hypothesis that PLµ = 0.

2.3 Key lemma: Truncated projections of Gaussians

Before presenting our key lemma, we introduce some further notation. Let A ⊆ Rn be any fixed
open set and let L ⊆ Rn be a fixed subspace of dimension k. For any y ∈ A, consider the set

Ry = {r > 0 : r · dirL(y) + P⊥L y ∈ A} ⊆ R+.

Note that Ry is an open subset of R+, and its construction does not depend on ‖PLy‖2, but we
see that ‖PLy‖2 ∈ Ry by definition.

Lemma 1 (Truncated projection). Let A ⊆ Rn be a fixed open set and let L ⊆ Rn be a fixed
subspace of dimension k. Suppose that Y ∼ N (µ, σ2In). Then, conditioning on the values of
dirL(Y ) and P⊥L Y and on the event Y ∈ A, the conditional distribution of ‖PLY ‖2 has density1

f(r) ∝ rk−1 exp
{
− 1

2σ2
(
r2 − 2r · 〈dirL(Y ), µ〉

)}
· 1 {r ∈ RY } .

We pause to point out two special cases that are treated in the existing literature.

Special case 1: k = 1 and A is a convex polytope. Suppose A is the convex polytope {y : Ay < b}
for fixed A ∈ Rm×n and b ∈ Rm. In this case, this almost exactly yields the “polyhedral lemma”
of Lee et al. [7, Theorem 5.2]. Specifically, in their work they perform inference on η>µ for
a fixed vector η; this corresponds to taking L = span(η) in our notation. Then since k = 1,
Lemma 1 yields a truncated Gaussian distribution, coinciding with Lee et al. [7]’s result (2). The
only difference relative to [7] is that our lemma implicitly conditions on sign(η>Y ), which is not
required in [7].

Special case 2: the mean µ is orthogonal to the subspace L. In this case, without conditioning
on {Y ∈ A}, we have PLY = PL

(
µ+N (0, σ2I)

)
= PL

(
N (0, σ2I)

)
, and so ‖PLY ‖2 ∼ σ · χk.

Without conditioning on {Y ∈ A} (or equivalently, taking A = Rn), the resulting density is then

f(r) ∝ rk−1e−r2/2σ2 · 1 {r > 0}
1Here and throughout the paper, we ignore the possibility that Y ⊥ L since this has probability zero.

4



which is the density of the χk distribution (rescaled by σ), as expected. If we also condition on
{Y ∈ A} then this is a truncated χk distribution, as proved in Loftus and Taylor [8, Theorem
3.1].

2.4 Selective inference on truncated projections

We now show how the key result in Lemma 1 can be used for group-sparse inference. In
particular, we show how to compute a p-value for the null hypothesis H0 : µ ⊥ L, or equivalently,
H0 : ‖PLµ‖2 = 0. In addition, we show how to compute a one-sided confidence interval for
‖PLµ‖2, specifically, how to give a lower bound on the size of this projection.

Theorem 1 (Selective inference for projections). Under the setting and notation of Lemma 1,
define

P =

∫
r∈RY ,r>‖PLY ‖2 r

k−1e−r
2/2σ2

dr
∫
r∈RY r

k−1e−r2/2σ2 dr
. (4)

If µ ⊥ L (or, more generally, if 〈dirL(Y ), µ〉 = 0), then P ∼ Uniform[0, 1]. Furthermore, for any
desired error level α ∈ (0, 1), there is a unique value Lα ∈ R satisfying

∫
r∈RY ,r>‖PLY ‖2 r

k−1e−(r
2−2rLα)/2σ2

dr
∫
r∈RY r

k−1e−(r2−2rLα)/2σ2 dr
= α, (5)

and we have
P {‖PLµ‖2 ≥ Lα} ≥ P {〈dirL(Y ), µ〉 ≥ Lα} = 1− α.

Finally, the p-value and the confidence interval agree in the sense that P < α if and only if
Lα > 0.

From the form of Lemma 1, we see that we are actually performing inference on 〈dirL(Y ), µ〉.
Since ‖PLµ‖2 ≥ 〈dirL(Y ), µ〉, this means that any lower bound on 〈dirL(Y ), µ〉 also gives a lower
bound on ‖PLµ‖2. For the p-value, the statement 〈dirL(Y ), µ〉 = 0 is implied by the stronger
null hypothesis µ ⊥ L. We can also use Lemma 1 to give a two-sided confidence interval for
〈dirL(Y ), µ〉; specifically, 〈dirL(Y ), µ〉 lies in the interval [Lα/2, L1−α/2] with probability 1 − α.
However, in general this cannot be extended to a two-sided interval for ‖PLµ‖2.

To compare to the main results of Loftus and Taylor [8], their work produces the p-value (4)
testing the null hypothesis µ ⊥ L, but does not extend to testing PLµ beyond the null hypothesis,
which the second part (5) of our main theorem is able to do.2

3 Applications to group sparse regression methods

In this section we develop inference tools for three methods for group-sparse model selection:
forward stepwise regression (also considered by Loftus and Taylor [8] with results on hypothesis
testing), iterative hard thresholding (IHT), and the group lasso.

2Their work furthermore considers the special case where the conditioning event, Y ∈ A, is determined by a
“quadratic selection rule,” that is, A is defined by a set of quadratic constraints on y ∈ Rn. However, extending to
the general case is merely a question of computation (as we explore below for performing inference for the group
lasso) and this extension should not be viewed as a primary contribution of this work.
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3.1 General recipe

With a fixed design matrix, the outcome of any group-sparse selection method is a function of
Y . For example, a forward stepwise procedure determines a particular sequence of groups of
variables. We call such an outcome a selection event, and assume that the set of all selection
events forms a countable partition of Rn into disjoint open sets: Rn = ∪eAe.3 Each data vector
y ∈ Rn determines a selection event, denoted e(y), and thus y ∈ Ae(y).

Let S(y) ⊆ [G] be the set of feature groups that are selected for testing. This is assumed to be
a function of e(y), i.e. S(y) = Se for all y ∈ Ae. For any g ∈ Se, define Le,g = span(P⊥XSe\gXg);
this is the subspace of Rn indicating correlation with group Xg beyond what can be explained by
the other selected groups, XSe\g.

Write RY =
{
r > 0 : r · U + Y⊥ ∈ Ae(Y )

}
, where U = dirLe(Y ),g

(Y ) and Y⊥ = P⊥Le(Y ),g
Y . If

we condition on the event {Y ∈ Ae} for some e, then as soon as we have calculated the region
RY ⊆ R+, Theorem 1 will allow us to perform inference on the quantity of interest ‖PLe,gµ‖2 by
evaluating the expressions (4) and (5). In other words, we are testing whether µ is significantly
correlated with the group Xg, after controlling for all the other selected groups, S(Y )\g = Se\g.

To evaluate these expressions accurately, ideally we would like an explicit characterization of
the region RY ⊆ R+. To gain a better intuition for this set, define zY (r) = r · U + Y⊥ ∈ Rn for
r > 0, and note that zY (r) = Y when we plug in r = ‖PLe(Y ),g

Y ‖2. Then we see that

RY =
{
r > 0 : e(zY (r)) = e(Y )

}
. (6)

In other words, we need to find the range of values of r such that, if we replace Y with zY (r),
then this does not change the output of the model selection algorithm, i.e. e(zY (r)) = e(Y ). For
the forward stepwise and IHT methods, we find that we can calculate RY explicitly. For the
group lasso, we cannot calculate RY explicitly, but we can nonetheless compute the integrals
required by Theorem 1 through numerical approximations. We now present the details for each
of these methods.

3.2 Forward stepwise regression

Forward stepwise regression [3, 12] is a simple and widely used method. We will use the following
version:4 for design matrix X and response Y = y,

1. Initialize the residual ε̂0 = y and the model S0 = ∅.

2. For t = 1, 2, . . . , T ,

(a) Let gt = argmaxg∈[G]\St−1
{‖X>g ε̂t−1‖2}.

(b) Update the model, St = {g1, . . . , gt}, and update the residual, ε̂t = P⊥XSty.

Testing all groups at time T . First we consider the inference procedure where, at time T , we
would like to test each selected group gt for t = 1, . . . , T . Our selection event e(Y ) is the ordered

3Since the distribution of Y is continuous on Rn, we ignore sets of measure zero without further comment.
4In practice, we would add some correction for the scale of the columns of Xg or for the number of features in

group g; this can be accomplished with simple modifications of the forward stepwise procedure.
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sequence g1, . . . , gT of selected groups. For a response vector Y = y, this selection event is
equivalent to

‖X>gkP
⊥
XSk−1

y‖2 > ‖X>g P⊥XSk−1
y‖2 for all k = 1, . . . , T , for all g 6∈ Sk. (7)

Now we would like to perform inference on the group g = gt, while controlling for the other
groups in S(Y ) = ST . Define U , Y⊥, and zY (r) as before. Then, to determine RY = {r > 0 :
zY (r) ∈ Ae(Y )}, we check whether all of the inequalities in (7) are satisfied with y = zY (r): for
each k = 1, . . . , T and each g 6∈ Sk, the corresponding inequality of (7) can be expressed as

r2 · ‖X>gkP
⊥
XSk−1

U‖22 + 2r · 〈X>gkP
⊥
XSk−1

U,X>gkP
⊥
XSk−1

Y⊥〉+ ‖X>gkP
⊥
XSk−1

Y⊥‖22
> r2 · ‖X>g P⊥XSk−1

U‖22 + 2r · 〈X>g P⊥XSk−1
U,X>g P⊥XSk−1

Y⊥〉+ ‖X>g P⊥XSk−1
Y⊥‖22.

Solving this quadratic inequality over r ∈ R+, we obtain a region Ik,g ⊆ R+ which is either a
single interval or a union of two disjoint intervals, whose endpoints we can calculate explicitly
with the quadratic formula. The set RY is then given by all values r that satisfy the full set of
inequalities:

RY =
⋂

k=1,...,T

⋂

g∈[G]\Sk
Ik,g.

This is a union of finitely many disjoint intervals, whose endpoints are calculated explicitly as
above.

Sequential testing. Now suppose we carry out a sequential inference procedure, testing group gt
at its time of selection, controlling only for the previously selected groups St−1. In fact, this is a
special case of the non-sequential procedure above, which shows how to test gT while controlling
for ST \gT = ST−1. Applying this method at each stage of the algorithm yields a sequential
testing procedure. (The method developed in [8] computes p-values for this problem, testing
whether µ ⊥ P⊥XSt−1

Xgt at each time t.) See Appendix B for detailed pseudo-code of our inference
algorithm for forward selection.

3.3 Iterative hard thresholding (IHT)

The iterative hard thresholding algorithm finds a k-group-sparse solution to the linear regression
problem, iterating gradient descent steps with hard thresholding to update the model choice as
needed [1, 5]. Given k ≥ 1, number of iterations T , step sizes ηt, design matrix X and response
Y = y,

1. Initialize the coefficient vector, β0 = 0 ∈ Rp (or any other desired initial point).

2. For t = 1, 2, . . . , T ,

(a) Take a gradient step, β̃t = βt−1 − ηtX>(Xβt−1 − y).
(b) Compute ‖(β̃t)Cg‖2 for each g ∈ [G] and let St ⊆ [G] index the k largest norms.

(c) Update the fitted coefficients βt via (βt)j = (β̃t)j · 1 {j ∈ ∪g∈StCg}.
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Here we are typically interested in testing Questiong,ST for each g ∈ ST . We condition on the
selection event, e(Y ), given by the sequence of k-group-sparse models S1, . . . ,ST selected at each
stage of the algorithm, which is characterized by the inequalities

‖(β̃t)Cg‖2 > ‖(β̃t)Ch‖2 for all t = 1, . . . , T , and all g ∈ St, h 6∈ St. (8)

Fixing a group g ∈ ST to test, determining RY = {r > 0 : zY (r) ∈ Ae(Y )} involves checking
whether all of the inequalities in (8) are satisfied with y = zY (r). First, with the response Y
replaced by y = zY (r), we show that we can write β̃t = r · ct + dt for each t = 1, . . . , T , where
ct, dt ∈ Rp are independent of r; in Appendix A.3, we derive ct, dt inductively as
{
c1 =

η1
n X

>U,

d1 = (I− η1
n X

>X)β0 +
η1
n X

>Y⊥,

{
ct = (Ip − ηt

nX
>X)PSt−1ct−1 +

ηt
nX

>U,

dt = (Ip − ηt
nX

>X)PSt−1dt−1 +
ηt
nX

>Y⊥
for t ≥ 2.

Now we compute the region RY . For each t = 1, . . . , T and each g ∈ St, h 6∈ St, the
corresponding inequality in (8), after writing β̃t = r · ct + dt, can be expressed as

r2 · ‖(ct)Cg‖22+2r · 〈(ct)Cg , (dt)Cg〉+‖(dt)Cg‖22 > r2 · ‖(ct)Ch‖22+2r · 〈(ct)Ch , (dt)Ch〉+‖(dt)Ch‖22.

As for the forward stepwise procedure, solving this quadratic inequality over r ∈ R+, we obtain
a region It,g,h ⊆ R+ that is either a single interval or a union of two disjoint intervals whose
endpoints we can calculate explicitly. Finally, we obtain RY =

⋂
t=1,...,T

⋂
g∈St

⋂
h∈[G]\St It,g,h.

3.4 The group lasso

The group lasso, first introduced by Yuan and Lin [14], is a convex optimization method for
linear regression where the form of the penalty is designed to encourage group-wise sparsity of the
solution. It is an extension of the lasso method [11] for linear regression. The method is given by

β̂ = argminβ

{1
2
‖y −Xβ‖22 + λ

∑
g‖βCg‖2

}
,

where λ > 0 is a penalty parameter. The penalty
∑

g‖βCg‖2 promotes sparsity at the group level.5

For this method, we perform inference on the group support S of the fitted model β̂. We
would like to test Questiong,S for each g ∈ S. In this setting, for groups of size ≥ 2, we believe
that it is not possible to analytically calculate RY , and furthermore, that there is no additional
information that we can condition on to make this computation possible, without losing all power
to do inference.

We thus propose a numerical approximation that circumvents the need for an explicit calcula-
tion of RY . Examining the calculation of the p-value P and the lower bound Lα in Theorem 1,
we see that we can write P = fY (0) and can find Lα as the unique solution to fY (Lα) = α, where

fY (t) =
Er∼σ·χk

[
ert/σ

2 · 1 {r ∈ RY , r > ‖PLY ‖2}
]

Er∼σ·χk
[
ert/σ2 · 1 {r ∈ RY }

] ,

where we treat Y as fixed in this calculation and set k = dim(L) = rank(XS\g). Both the
numerator and denominator can be approximated by taking a large number B of samples

5Our method can also be applied to a modification of group lasso designed for overlapping groups [4] with a
nearly identical procedure but we do not give details here.
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r ∼ σ · χk and taking the empirical expectations. Checking r ∈ RY is equivalent to running the
group lasso with the response replaced by y = zY (r), and checking if the resulting selected model
remains unchanged.

This may be problematic, however, if RY is in the tails of the σ ·χk distribution. We implement
an importance sampling approach by repeatedly drawing r ∼ ψ for some density ψ; we find that
ψ = ‖PLY ‖2 +N (0, σ2) works well in practice. Given samples r1, . . . , rB ∼ ψ we then estimate

fY (t) ≈ f̂Y (t) :=
∑

b
ψσ·χk (rb)
ψ(rb)

· erbt/σ2 · 1 {rb ∈ RY , rb > ‖PLY ‖2}
∑

b
ψσ·χk (rb)
ψ(rb)

· erbt/σ2 · 1 {rb ∈ RY }

where ψσ·χk is the density of the σ · χk distribution. We then estimate P ≈ P̂ = f̂Y (0). Finally,
since f̂Y (t) is continuous and strictly increasing in t, we estimate Lα by numerically solving
f̂Y (t) = α.

4 Experiments

In this section we present results from experiments on simulated and real data, performed in
R [10]. All code to reproduce these experiments is available online.6

4.1 Simulated data

We fix sample size n = 500 and G = 50 groups each of size 10. For each trial, we generate a
design matrix X with i.i.d. N (0, 1/n) entries, set β with its first 50 entries (corresponding to
first s = 5 groups) equal to τ and all other entries equal to 0, and set Y = Xβ +N (0, In).

IHT We run IHT to select k = 10 groups over T = 5 iterations, with step sizes ηt = 2 and
initial point β0 = 0. For a moderate signal strength τ = 1.5, we plot the p-values for each selected
group across 200 trials in Figure 1; each group displays p-values only for those trials in which it
was selected. The histogram of p-values for the s true signals and for the G− s nulls are also
shown. We see that, at this moderate signal strength, the the distribution of p-values for the true
signals concentrates near zero while the null p-values are roughly uniformly distributed.

Next we look at the confidence intervals given by our method, examining their empirical
coverage across different signal strengths τ in Figure 2. We fix confidence level 0.9 (i.e. α = 0.1)
and run 2,000 trials to obtain empirical coverage with respect to both ‖PLµ‖2 and 〈dirL(Y ), µ〉,
with results shown separately for true signals and for nulls. For true signals, we see that the
confidence interval for ‖PLµ‖2 is somewhat conservative while the coverage for 〈dirL(Y ), µ〉 is right
at the target level, as expected from our theory. As signal strength τ increases, the gap is reduced
for the true signals; this is because dirL(Y ) becomes an increasingly more accurate estimate of
dirL(µ), and so the gap in the inequality ‖PLµ‖2 ≥ 〈dirL(Y ), µ〉 is reduced. For the nulls, if the
set of selected groups contains the support of the true model, which is nearly always true for higher
signal levels τ in this experiment, then the two are equivalent (as ‖PLµ‖2 = 〈dirL(Y ), µ〉 = 0), and
coverage is at the target level. At low signal levels τ , however, one or more of the s true groups is
occasionally missed, in which case we again have a gap in the inequality ‖PLµ‖2 ≥ 〈dirL(Y ), µ〉.

6Available at https://www.stat.uchicago.edu/~rina/group_inf.html.
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Figure 1: Iterative hard thresholding (IHT). For each group, we plot its p-value for each trial in
which that group was selected, for 200 trials. Histograms of the p-values for true signals (left,
red) and for nulls (right, gray) are attached.
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Figure 2: Iterative hard thresholding (IHT). Empirical coverage over 200 trials with signal strength
τ . “Norm” and “inner product” refer to coverage of ‖PLµ‖2 and 〈dirL(Y ), µ〉, respectively.

Group lasso The group lasso is run with penalty parameter λ = 4. The group lasso algorithm
is run via the R package gglasso [13]. Figure 3 shows the p-values obtained with the group lasso,
while Figure 4 displays the coverage for the norms ‖PLµ‖2 and the inner products 〈dirL(Y ), µ〉;
these plots are produced exactly as Figures 1 and 2 for IHT, except that only 200 trials are shown
for the coverage plot due to the slower run time of this method. We observe very similar trends
for this method as for IHT.

Forward stepwise The forward stepwise method is implemented with T = 10 many steps, and
p-values and confidence intervals are computed by considering all 10 selected groups simultaneously
at the end of the procedure (rather than sequentially) so that the results are more comparable to
the other two methods. Figure 5 shows the p-values obtained with the forward stepwise method,
while Figure 6 displays the coverage for the norms ‖PLµ‖2 and the inner products 〈dirL(Y ), µ〉;
these plots are produced exactly as Figures 1 and 2 for IHT. We again observe similar trends in
the results.
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Figure 3: Group lasso. For each group, we plot its p-value for each trial in which that group was
selected, for 200 trials. Histograms of the p-values for true signals (left, red) and for nulls (right,
gray) are attached.
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Figure 4: Group lasso. Empirical coverage over 200 trials with signal strength τ . “Norm” and
“inner product” refer to coverage of ‖PLµ‖2 and 〈dirL(Y ), µ〉, respectively.

4.2 California health data

We examine the 2015 California county health data7 which was also studied by Loftus and
Taylor [8]. We fit a linear model where the response is the log-years of potential life lost and the
covariates are the 34 predictors in this data set. We first let each predictor be its own group
(i.e., group size 1) and obtain p-values by running each of the three algorithms considered in
Section 3. Next, we form a grouped model by expanding each predictor into a group of size three
using the first three non-constant Legendre polynomials, thus expanding predictor Xj to the
group (Xj ,

1
2(3X

2
j − 1), 12(5X

3
j − 3Xj)). In each case we set parameters so that 8 groups are

selected. The selected groups and their corresponding p-values are given in Table 1; interestingly,
even when the same predictor is selected by multiple methods, its p-value can differ substantially
across the different methods.

5 Conclusion

We develop selective inference tools for group-sparse linear regression methods, where for a
data-dependent selected set of groups S, we are able to both test each group g ∈ S for inclusion in

7Available at http://www.countyhealthrankings.org
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Figure 5: Forward stepwise regression. For each group, we plot its p-value for each trial in which
that group was selected, for 200 trials. Histograms of the p-values for true signals (left, red) and
for nulls (right, gray) are attached.
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Figure 6: Forward stepwise regression. Empirical coverage over 2000 trials with signal strength τ .
“Norm” and “inner product” refer to coverage of ‖PLµ‖2 and 〈dirL(Y ), µ〉, respectively.

the model defined by S, and form a confidence interval for the effect size of group g in the model.
Our theoretical results can be easily applied to a range of commonly used group-sparse regression
methods, thus providing an efficient tool for finite-sample inference that correctly accounts for
data-dependent model selection in the group-sparse setting.
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A Proofs

A.1 Proof of Theorem 1

For any y ∈ A, define a function fy : R→ [0, 1] as

fy(t) =

∫
r∈Ry ,r>‖PLy‖2 r

k−1e−(r
2−2rt)/2σ2

dr
∫
r∈Ry r

k−1e−(r2−2rt)/2σ2 dr
.
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Group size Forward stepwise p-value / seq. p-value Iterative hard thresholding p-value Group lasso p-value

1

80th percentile income 0.116 / 0.000 80th percentile income 0.000 80th percentile income 0.000
Injury death rate 0.000 / 0.000 Injury death rate 0.000 % Obese 0.007
Violent crime rate 0.016 / 0.000 % Smokers 0.004 % Physically inactive 0.040
% Receiving HbA1c 0.591 / 0.839 % Single-parent household 0.009 Violent crime rate 0.055

% Obese 0.481 / 0.464 % Children in poverty 0.332 % Single-parent household 0.075
Chlamydia rate 0.944 / 0.975 Physically unhealthy days 0.716 Injury death rate 0.235

% Physically inactive 0.654 / 0.812 Food environment index 0.807 % Smokers 0.701
% Alcohol-impaired 0.104 / 0.104 Mentally unhealthy days 0.957 Preventable hospital stays rate 0.932

3

80th percentile income 0.001 / 0.000 Injury death rate 0.000 80th percentile income 0.000
Injury death rate 0.044 / 0.000 80th percentile income 0.000 Injury death rate 0.000
Violent crime rate 0.793 / 0.617 % Smokers 0.000 % Single-parent household 0.038

% Physically inactive 0.507 / 0.249 % Single-parent household 0.005 % Physically inactive 0.043
% Alcohol-impaired 0.892 / 0.933 Food environment index 0.057 % Obese 0.339

% Severe housing problems 0.119 / 0.496 % Children in poverty 0.388 % Alcohol-impaired 0.366
Chlamydia rate 0.188 / 0.099 Physically unhealthy days 0.713 % Smokers 0.372

Preventable hospital stays rate 0.421 / 0.421 Mentally unhealthy days 0.977 Violent crime rate 0.629

Table 1: Selective p-values for selected groups in the California county health data experiment.
The predictors obtained with forward stepwise are tested both simultaneously at the end of the
procedure (first p-value shown), and also tested sequentially (second p-value shown), and are
displayed in the selected order. For IHT and group lasso the predictors are shown in order of
increasing selective p-value.

(As always we ignore the case PLy = 0 to avoid degeneracy.) By examining the integrals, we
can immediately see that, for any fixed y, fy(t) is strictly increasing as a function of t, with
limt→−∞ fy(t) = 0 and limt→∞ fy(t) = 1. These properties guarantee that, for any fixed y and
any fixed α ∈ (0, 1), there is a unique t ∈ R with fy(t) = α, i.e. this proves the existence and
uniqueness of Lα as required.

Furthermore, Lemma 1 immediately implies that, after conditioning on the event Y ∈ A, and
on the values of dirL(Y ) and P⊥L Y , the conditional density of ‖PLY ‖2 is

∝ rk−1e−(r2−2rtY )/2σ2 · 1 {r ∈ RY }

for tY := 〈dirL(Y ), µ〉, and therefore, fY (tY ) ∼ Uniform[0, 1]. In the case that µ ⊥ L, we have
tY = 0 always and therefore P = fY (0) ∼ Uniform[0, 1], as desired. In the general case, by
definition of Lα, we have fY (Lα) = α and so, again using the fact that fY (·) is strictly increasing,

fY (tY ) ≤ α = fY (Lα) ⇔ tY ≤ Lα,

and so by definition of tY ,

P {〈dirL(Y ), µ〉 < Lα} = P {tY < Lα} = P {fY (tY ) < α} = α.

Furthermore, we know that ‖PLµ‖2 ≥ 〈dirL(Y ), µ〉 = tY , and so

P {‖PLµ‖2 < Lα} ≤ P {〈dirL(Y ), µ〉 < Lα} = α.

Finally, we see that since P = fY (0) while α = fY (Lα), P < α if and only if 0 < Lα.

A.2 Proof of Lemma 1

We begin with the following elementary calculation (for completeness the proof is given below):
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Lemma 2. Suppose that Ỹ ∼ N (µ̃, σ2Ik). Let R = ‖Ỹ ‖2 ∈ R+ and U = dir(Ỹ ) ∈ Sk−1 be the
radius and direction of the random vector Ỹ . Then the joint distribution of (R,U) has density

f(r, u) ∝ rk−1 exp
{
− 1

2σ2
(
r2 − 2r · 〈u, µ̃〉

)}
for (r, u) ∈ R+ × Sk−1.

Next, let V ∈ Rn×k be an orthonormal basis for L and let

Ỹ = V>Y ∼ N (µ̃, σ2Ik) where µ̃ = V>µ.

Now let R = ‖Ỹ ‖2 = ‖PLY ‖2 and let U = dir(Ỹ ) = V> dirL(Y ); note that dirL(Y ) = VU .
Defining W = P⊥L Y , we see that Y = r · Vu + w, and that Ỹ ⊥⊥ W by properties of the

normal distribution. Combining this with the result of Lemma 2, we see that the joint density of
(R,U,W ) is given by

fR,U,W (r, u, w) ∝ rk−1 exp
{
− 1

2σ2
(
r2 − 2r · 〈u, µ̃〉

)}
· exp

{
− 1

2σ2
‖w − P⊥L µ‖22

}

for (r, u, w) ∈ R+ × Sk−1 × L⊥. After conditioning on the event {Y ∈ A}, this density becomes

∝ rk−1 exp
{
− 1

2σ2
(
r2 − 2r · 〈u, µ̃〉

)}
· exp

{
− 1

2σ2
‖w − P⊥L µ‖22

}
· 1 {r ·Vu+ w ∈ A} .

Next note that the event {Y ∈ A} is equivalent to {R ∈ RY } where RY = {r > 0 : r ·VU +W ∈
A}, and so the conditional density of R, after conditioning on U , W , and on the event Y ∈ A, is

∝ rk−1 exp
{
− 1

2σ2
(
r2 − 2r · 〈U, µ̃〉

)}
· 1 {R ∈ RY } ,

as desired. Now we prove our supporting result, Lemma 2.

Proof of Lemma 2. It’s easier to work with the parametrization (Z,U) where Z = log(R). By a
simple change of variables calculation, the claim in the lemma is equivalent to showing that

fZ,U (z, u) ∝ ekz exp
{
− 1

2σ2
(
e2z − 2ez · 〈u, µ̃〉

)}
for (z, u) ∈ R× Sk−1.

Fix any ε ∈ (0, 1) and, for each (z, u) ∈ R×Sk−1, consider the region (z−ε, z+ε)×Cεu ⊆ R×Sk−1,
where Cεu is a spherical cap, Cεu := {v ∈ Sk−1 : ‖v − u‖2 < ε}. Let sε be the surface area of
Cεu ⊆ Sk−1 (note that this surface area does not depend on u since it’s rotation invariant).

To check that our density is correct, it is sufficient to check that

P {(Z,U) ∈ (z − ε, z + ε)× Cεu} ∝

Volume ((z − ε, z + ε)× Cεu) · ekz · exp
{
− 1

2σ2
(
e2z − 2ez · 〈u, µ̃〉

)}
· (1 + o(1)),

where the o(1) term is with respect to the limit ε→ 0 while (z, u) is held fixed, and where the con-
stant of proportionality is independent of ε and of z, u. We can also calculate Volume ((z − ε, z + ε)× Cεu) =
2ε · sε.
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Now consider

Yεz,u =

{
y ∈ Rn :

y

‖y‖2
∈ Cεu, log(‖y‖2) ∈ (z − ε, z + ε)

}
⊆ Rn.

We have
P {(Z,U) ∈ (z − ε, z + ε)× Cεu} = P

{
Ỹ ∈ Yεz,u

}
.

Since Yεz,u = ∪t∈(ez−ε,ez+ε)(t · Cεu), and the surface area of t · Cεu ⊆ t · Sk−1 is equal to sεtk−1, we
can also calculate

Volume(Yεz,u) =
∫ ez+ε

t=ez−ε
sεt

k−1 dt =
1

k
sεt

k
∣∣∣
ez+ε

t=ez−ε
=

1

k
sε ·(ek(z+ε)−ek(z−ε)) = 2ε·sε ·ekz ·(1+o(1)),

since ek(z+ε) − ek(z−ε) = ekz · 2kε · (1 + o(1)). And, since maxy∈Yεz,u‖y − ez · u‖2 → 0 as ε → 0,
then for any y ∈ Yεz,u, the density of Ỹ at this point is given by

f
Ỹ
(y) =

1√
(2πσ2)n

e−
1

2σ2
‖y−µ̃‖22 =

1√
(2πσ2)n

e−
1

2σ2
‖ez ·u−µ̃‖22 · (1 + o(1)),

where again the o(1) term is with respect to the limit ε→ 0 while (z, u) is held fixed. So, we have

P {(Z,U) ∈ (z − ε, z + ε)× Cεu} = P
{
Ỹ ∈ Yεz,u

}
=

∫

y∈Yεz,u
f
Ỹ
(y) dy

= Volume(Yεz,u) ·
1√

(2πσ2)n
e−

1
2σ2
‖ez ·u−µ̃‖22 · (1 + o(1))

= 2ε · sε · ekz · (1 + o(1)) · 1√
(2πσ2)n

e−
1

2σ2
‖ez ·u−µ̃‖22 · (1 + o(1))

= 2ε · sε · ekz · exp
{
− 1

2σ2
(
e2z − 2ez · 〈u, µ̃〉

)}
·
[

1√
(2πσ2)n

e−
1

2σ2
‖µ̃‖22

]
· (1 + o(1)),

which gives the desired result since the term in square brackets is constant with respect to
z, u, ε.

A.3 Derivations for IHT inference

Here we derive the formulas for the coefficients ct, dt used in the inference procedure for group-
sparse IHT. First, at time t = 1,

β̃1 = b0 − η1∇f(b0) = b0 − η1
(
1

n
X>(Xb0 − zY (r))

)

= r ·
[η1
n
X>U

]
+
[
(I− η1

n
X>X)b0 +

η1
n
X>Y⊥

]
=: r · c1 + d1.

Next, at each time t = 2, . . . , T , assume that β̃t−1 = ct−1r + dt−1. Then, writing PSt−1 as the
matrix in Rp×p which acts as the identity on groups in St−1 and sets all other groups to zero, we
have bt−1 = PSt−1 β̃t−1 = PSt−1ct−1r + PSt−1dt−1, and so

β̃t = bt−1 − ηt∇f(bt−1) = bt−1 − ηt
(
1

n
X>(Xbt−1 − zY (r))

)

= r·
[
(Ip −

ηt
n
X>X)PSt−1ct−1 +

ηt
n
X>U

]
+
[
(Ip −

ηt
n
X>X)PSt−1dt−1 +

ηt
n
X>Y⊥

]
=: r·ct+dt.
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Algorithm 1 Post-selection Inference for Forward Selection
1: Input : Response Y , design matrix X, groups C1, . . . , CG ⊆ {1, . . . , p}, maximum number of

selected groups T , desired accuracy α
2: Initialize : S0 = ∅, residual ε̂0 = Y , RY = R+

3: for t = 1, 2, . . . , T do
4: gt = argmaxg∈[G]\St−1

{‖X>g ε̂t−1‖2}
5: Update the model, St = {g1, . . . , gt}, and the residual, ε̂t = P⊥XStY
6: Lt ← span(P⊥XSt−1

Xgt), Ut ←
PLtY
‖PLtY ‖2

, Y t
⊥ ← P⊥LtY

7: for g 6∈ St do
8: at,g ← ‖X>gtP⊥XSt−1

Ut‖22 − ‖X>g P⊥XSt−1
Ut‖22

9: bt,g ← 〈X>gtP⊥XSt−1
Ut,X

>
gtP⊥XSt−1

Y t
⊥〉 − 〈X>g P⊥XSt−1

Ut,X
>
g P⊥XSt−1

Y t
⊥〉

10: ct,g ← ‖X>gtP⊥XSt−1
Y t
⊥‖22 − ‖X>g P⊥XSt−1

Y t
⊥‖22

11: It,g ← {r ∈ R+ : at,gr
2 + 2bt,gr + ct,g ≥ 0}

12: RY ← RY ∩ It,g
13: end for

14: Pt =

∫
r∈RY ,r>‖PLtY ‖2

rk−1e−r
2/2σ2 dr

∫
r∈RY

rk−1e−r2/2σ2 dr

15: Ltα = β s.t.
∫
r∈RY ,r>‖PLtY ‖2

rk−1e−(r2−2rβ)/2σ2 dr
∫
r∈RY

rk−1e−(r2−2rβ)/2σ2 dr
= α

16: end for
17: Output : Selected groups {g1, . . . , gT }, p-values {P1, . . . , PT }, confidence interval lower

bounds {L1
α, . . . , L

T
α}

B Pseudo-code: post-selection inference for forward selection

In Algorithm 1 we provide a detailed pseudo-code of our inference method for forward selection
(described in Section 3.2). Here, we compute the P value as well as confidence interval for each
selected group conditioned on our previous selections. The algorithm is efficient and only overhead
above the Forward Selection method is computation of the integral of a one-dimensional density
over different intervals (see Step 15).
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