
STAR: An Efficient Coding Scheme for
Correcting Triple Storage Node Failures

Cheng Huang, Member, IEEE, and Lihao Xu, Senior Member, IEEE

Abstract—Proper data placement schemes based on erasure correcting codes are one of the most important components for a highly

available data storage system. For such schemes, low decoding complexity for correcting (or recovering) storage node failures is

essential for practical systems. In this paper, we describe a new coding scheme, which we call the STAR code, for correcting triple

storage node failures (erasures). The STAR code is an extension of the double-erasure-correcting EVENODD code and a modification

of the generalized triple-erasure-correcting EVENODD code. The STAR code is an Maximum Distance Separable (MDS) code and

thus is optimal in terms of node failure recovery capability for a given data redundancy. We provide detailed STAR code decoding

algorithms for correcting various triple node failures. We show that the decoding complexity of the STAR code is much lower than

those of existing comparable codes; thus, the STAR code is practically very meaningful for storage systems that need higher reliability.

Index Terms—Fault tolerance, high availability, error control codes, storage systems.

Ç

1 INTRODUCTION

IN virtually all information systems, it is essential to have a
reliable data storage system that supports data avail-

ability, persistence, and integrity. Here, we refer to a storage
system in the general sense: It can be a disk array, a network
of storage nodes in a clustered environment (SAN or NAS),
or a wide area large scale P2P network. In fact, many research
and development efforts have been made to address various
issues of building reliable data storage systems to ensure data
survivability, reliability, availability, and integrity, including
disk arrays such as RAID [14], clustered systems such as
NOW [2] and RAIN [12], distributed file systems such as the
Network File System (NFS) [39], HA-NFS [4], xFS [3], AFS
[36], Zebra [24], CODA [37], Sprite [29], Scotch [21], and BFS
[13], storage systems such as NASD [20], Petal [26], and PASIS
[41], and large-scale data distribution and archival networks
such as Intermemory [22], OceanStore [25], and Logistical
Network [32].

As already indicated by these efforts, proper data
redundancy is the key to providing high reliability,
availability, and survivability. Evolving from simple data
replication or data striping in early clustered data storage
systems such as the RAID system [14], people have realized
that it is more economical and efficient to use the so-called
threshold schemes to distribute data over multiple nodes in
distributed storage systems [41], [40], [22], [25] than naive
(multicopy) replications. The basic idea is to employ
n storage nodes to hold k nodes worth of data. The data
is broken up into k equal-sized pieces and then expanded to

n pieces. The entire n pieces are stored on the n nodes in the
system in such a way that the original data can be retrieved
from at least m pieces (naturally, m � k). Such threshold
schemes are called ðn; kÞ-threshold schemes.

From the error control code point of view, an
ðn; kÞ-threshold scheme with equal-sized pieces is equiva-
lent to an ðn; kÞ block code and, especially, most
ðn; kÞ-threshold schemes are equivalent to ðn; kÞ Maximum
Distance Separable (MDS) codes [28], [27]. An ðn; kÞ error
control code uses mathematical means to transform a
k-symbol data block to an n-symbol codeword block such
that any m symbols of the codeword block can recover all of
the k symbols of the original data block, where k � m � n.
All of the data symbols are of the same size in bits.
Obviously, by the simple pigeonhole principle, k � m. When
m ¼ k, such an ðn; kÞ code is called an MDS code or meets
the Singleton Bound [27]. Hereafter, we simply use ðn; kÞ to
refer to any data distribution scheme using an ðn; kÞ MDS
code. Using coding terminology, each share of ðn; kÞ is
called a data symbol. The process of creating n data symbols
from the original data whose size is of k symbols is called
encoding and the corresponding process of retrieving the
original data from at least arbitrary k data symbols stored in
the system is called decoding.

It is not hard to see that an ðn; kÞ scheme can tolerate up
to ðn� kÞ node failures at the same time and thus achieve
data reliability or data survivability in case the system is
under attack where some nodes cannot function normally.
The ðn; kÞ scheme can also ensure the integrity of the data
distributed in the system since an ðn; kÞ code can be used to
detect data modifications on up to ðn� kÞ nodes. r ¼ n� k
is a parameter that can describe the reliability degree of an
ðn; kÞ scheme.

While the concept of ðn; kÞ codes has been well under-
stood and suggested in various data storage projects,
virtually all practical systems use the Reed-Solomon (RS)
code [35] as an MDS code. (The so-called information
dispersal algorithm [34] used in some schemes or systems

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008 889

. C. Huang is with Microsoft Research, One Microsoft Way, Redmond, WA
98052. E-mail: cheng.huang@microsoft.com.

. L. Xu is with the Department of Computer Science, Wayne State
University, 5143 Cass Avenue, 431 State Hall, Detroit, MI 48202.
E-mail: lihao@cs.wayne.edu.

Manuscript received 5 Oct. 2006; revised 30 June 2007; accepted 31 Aug.
2007; published online 26 Sept. 2007.
Recommended for acceptance by B. Bose.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0394-1006.
Digital Object Identifier no. 10.1107/TC.2007.70830.

0018-9340/08/$25.00 � 2008 IEEE Published by the IEEE Computer Society

[1] is indeed just an RS code.) The computation overhead of
using the RS code, however, is large, as demonstrated in
several projects such as OceanStore [25]. Therefore, most
commonly adopted schemes in practical systems are still
full replication (which is ðn; 1Þ), stripping without redun-
dancy (corresponding to ðn; nÞ), or single parity (which is
ðn; n� 1Þ), rather than general ðn; kÞ MDS codes, especially
the RS code.

It is hence very important and useful to design general
ðn; kÞ codes with both MDS property and simple encoding
and decoding operations. MDS array codes are such a class of
codes with both properties.

Array codes have been studied extensively [17], [23], [8],
[5], [7], [42], [43], [6], [15]. A common property of these
codes is that their encoding and decoding procedures use
only simple binary XOR (exclusive OR) operations, which can
be easily and most efficiently implemented in hardware
and/or software; thus, these codes are more efficient than
the RS code in terms of computational complexity.

In an array code, each of the n (information or parity)
symbols contain l elements. The code can be arranged in an
array of size l� n, that is, l rows and n columns. (When
there is no ambiguity, we also refer to array elements as
symbols for representation convenience.) Mapping to a
storage system, all of the symbols in the same column are
stored in the same storage node. If a storage node fails, then
the corresponding column of the code is considered to be an
erasure. (Here, we adopt a commonly used storage failure
model, as discussed in [5], [15], where all of the symbols are
lost if the host storage node fails.)

A few classes of MDS array codes have been successfully
designed to recover double (simultaneous) storage node
failures, that is, in coding terminology, codes of distance 3
that can correct two erasures [27]. The recent ones include
the EVENODD code [5] and its variations, such as the RDP
scheme [15], the X-Code [42], and the B-Code [43].

As storage systems expand, it becomes increasingly
important to have MDS array codes of distance 4, which can
correct three erasures, that is, codes that can recover from
triple (simultaneous) node failures. (There have been
parallel efforts to design near-optimal codes, that is, non-
MDS codes, to tolerate triple failures, for example, recent
results in [31].) Such codes will be very desirable in large
storage systems, such as the Google File System [19]. To the
best of our knowledge, there exist only a few classes of MDS
array codes of distance 4: the generalized EVENODD code
[7], [6], the Blaum-Roth code [9], and, more recently, Feng
et al.’s code [18]. The Blaum-Roth code is nonsystematic,
which requires decoding operations in any data retrieval
even without node failures and thus probably is not
desirable in storage systems. The generalized EVENODD
code and Feng et al.’s code are already much more efficient
than the RS code in both encoding and decoding operations.
However, a natural question we ask is can its decoding
complexity be further reduced? In this paper, we provide a
positive answer with a new coding scheme, which we call
the STAR code.

The STAR code is an alternative extension of the
EVENODD code, a ðkþ 3; kÞ MDS code that can recover
triple node failures (erasures). The structure of the code is

very similar to the generalized EVENODD code and their
encoding complexities are also the same. Our key contribu-
tion, however, is to exploit the geometric property of the
EVENODD code and provide a new construction for an
additional parity column. The difference in construction of
the third parity column leads to a more efficient decoding
algorithm than the generalized EVENODD code for triple-
erasure recovery. Our analysis shows the decoding com-
plexity of the STAR code is very close to three XORs per
symbol, the theoretical lower bound, even when k is small,
whereas the generalized EVENODD could need up to
10 XORs (Section 7) per symbol. Thus, the STAR code is
perhaps the most efficient existing code in terms of
decoding complexity when recovering from triple erasures.

It is worth noting that, for practical storage systems, just
as the generalized EVENODD code does, the STAR code
extends from the EVENODD code by simply adding one
more parity column (or storage node). Thus, any function-
ing system using the EVENODD code for tolerating double
node failures can later easily add one more node to tolerate
triple node failures, with no need to modify any existing
data. This property of the STAR code makes a practical
storage system much easier to expand. (The EVENODD
code itself has a similar property with respect to the single-
parity code, the one used in RAID-5-type systems.)

It should be noted that the original generalized
EVENODD papers [7], [6] only provide generic erasure
decoding algorithms for multiple erasures. It might be
possible to design a specific triple-erasure decoding algo-
rithm to reduce the decoding complexity of the generalized
EVENODD. It is, however, not clear whether such a
decoding algorithm for the generalized EVENODD code
can achieve the same complexity as the STAR code.
Interested readers thus are welcome and encouraged to
design an optimized triple-erasure decoding algorithm for
the generalized EVENODD code and compare its perfor-
mance with our decoding algorithm for the STAR code.

This paper is organized as follows: We first briefly
describe the EVENODD code in Section 2, on which the
STAR code is derived in Section 3. In Section 4, we
constructively prove that the STAR code can correct any
triple erasures by providing detailed decoding algorithms.
We also provide an algebraic description of the STAR code
and show that the STAR code’s distance is 4 in Section 5.
We then analyze and discuss the STAR decoding complex-
ity in Section 6 and make comparisons with related codes in
Section 7. We further share our implementation and
performance tests of the STAR code in Section 8 and
conclude in Section 9.

2 EVENODD CODE: DOUBLE-ERASURE

RECOVERY

2.1 EVENODD Code and Encoding

We first briefly describe the EVENODD code [5], which was
initially proposed to address disk failures in disk array
systems. Data from multiple disks form a two-dimensional
array, with one disk corresponding to one column of the
array. A disk failure is equivalent to a column erasure. The
EVENODD code uses two parity columns together with

890 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

p information columns, where p is a prime number (see

Table 1 for a list of notations used in this paper). As already

observed [5], [15], p being prime in practice does not limit

the k parameter in a real system configuration with a simple

technique called codeword shortening [27]. The code ensures

that all information columns are fully recoverable when any

two disks fail. In this sense, it is an optimal two-erasure

correcting code, that is, it is a ðpþ 2; p; 3ÞMDS code. Besides

this MDS property, the EVENODD code is computationally

efficient in both encoding and decoding, which needs only

XOR operations.
The encoding process considers a ðp� 1Þ � ðpþ 2Þ array,

where the first p columns are information columns and the

last two are parity columns. Symbol ai;j ð0 � i � p� 2; 0 �
j � pþ 1Þ represents symbol i in column j. A parity symbol

in column p is computed as the XOR sum of all information

symbols in the same row. The computation of column ðpþ
1Þ takes the following steps: First, the array is augmented

with an imaginary row p� 1, where all symbols are

assigned zero values (note that all of the symbols are

binary). The XOR sum of all information symbols along the

same diagonal (indeed a diagonal of slope 1) is then

computed and assigned to their corresponding parity

symbol, as marked by different shapes in Fig. 1. Symbol

ap�1;pþ1 now becomes nonzero and is called the EVENODD

adjuster. To remove this symbol from the array, adjuster

complement is performed, which adds (XOR addition) the

adjuster to all symbols in column pþ 1.
The encoding operation can be algebraically described as

follows ð0 � i � p� 2Þ:

ai;p ¼
Mp�1

j¼0

ai;j;

ai;pþ1 ¼S1 �
Mp�1

j¼0

ahi�jip;j

 !
;

where S1 ¼
Mp�1

j¼0

ahp�1�jip;j:

Here, S1 is the EVENODD adjuster and hxip denotes

xmod p. Refer to [5] for more details.

2.2 EVENODD Erasure Decoding

The EVENODD code is a double-erasure correcting MDS
code and any two column erasures in a coded block can be
fully recovered. With regard to the locations of the erasures,
the work in [5] divides decoding into four cases. Here, we
only summarize the most common and interesting one,
where neither of the erasures is a parity column. Note that
the other three cases are special ones and can be dealt with
easily. A decoder first computes horizontal and diagonal
syndromes as the XOR sum of all available symbols along
those directions. Then, a starting point of decoding can be
found which is guaranteed to be the only erasure symbol in
its diagonal. The decoder recovers this symbol and then
moves horizontally to recover the symbol in the other
erasure column. It then moves diagonally to the next
erasure symbol and horizontally again. Upon completing
this zigzag process, all erasure symbols are fully recovered.
In the example shown in Fig. 2 ðp ¼ 5Þ, the starting point is
symbol a2;2 and the decoder moves from a2;2 to
a2;0; a0;2; a0;0 � � � and finally completes at a1;0.

3 STAR CODE ENCODING: GEOMETRIC

DESCRIPTION

Extending from the EVENODD code, the STAR code
consists of pþ 3 columns, where the first p columns contain
information data and the last three columns contain parity
data. The STAR code uses the exact same encoding rules of
the EVENODD code for the first two parity columns, that is,
without the third parity column, the STAR code is just the
EVENODD code. The extension lies in the last parity
column, column pþ 2. This column is computed very
similarly to column pþ 1 but along diagonals of slope �1
instead of slope 1 as in column pþ 1. (The original

HUANG AND XU: STAR: AN EFFICIENT CODING SCHEME FOR CORRECTING TRIPLE STORAGE NODE FAILURES 891

TABLE 1
Notations

Fig. 1. EVENODD code encoding. (a) Horizontal redundancy.

(b) Diagonal redundancy.

Fig. 2. EVENODD code decoding.

generalized EVENODD code [7], [6] uses slope 2 for the last

parity column. That is the only difference between the

STAR code and the generalized EVENODD code. However,

as will be seen from the following section, it is this

difference that makes it much easier to design a much

more efficient decoding algorithm for correcting triple

erasures.) For simplicity, we call this antidiagonal parity.

The procedure is depicted in Fig. 3, where symbol ap�1;pþ2

in parity column pþ 2 is also an adjuster, similar to the

EVENODD code. The adjuster is then removed from the

final code block by the similar adjuster complement

operation. Algebraically, the encoding of parity column pþ
2 can be represented as ð0 � i � p� 2Þ:

ai;pþ2 ¼ S2 �
Mp�1

j¼0

ahiþjip;j

 !
; where S2 ¼

Mp�1

j¼0

ahj�1ip;j:

4 STAR CODE ERASURE DECODING

The essential part of the STAR code is the erasure decoding

algorithm. As will be presented in this section, the decoding

algorithm involves pure XOR operations, which allows

efficient implementation and thus is very desirable for

virtually all related applications. The MDS property of the

STAR code, which guarantees the recovery from arbitrary

triple erasures, is explained along with the description of

the decoding algorithm. A mathematical proof of this

property will be given in a later section.
STAR code decoding can be divided into two cases based

on different erasure patterns: 1) decoding without parity

erasures, where all erasures are information columns, and

2) decoding with parity erasures, where at least one erasure

is a parity column. The former case is harder to decode and

is the focus of this section. This case in turn can be divided

into two subcases, symmetric and asymmetric, based on

whether the erasure columns are evenly spaced. The latter

case, on the other hand, handles several special situations. It

is much simpler and will be discussed in Section 4.4.

4.1 Decoding without Parity Erasures: Symmetric
Case

We consider the recovery of triple information column

erasures at position er, es, and et ð0 � er; es; et � p� 1Þ,
among the total pþ 3 columns. Without loss of generality,

assume that er < es < et. Let u ¼ es � er and v ¼ et � es. The
symmetric case deals with erasure patterns satisfying u ¼ v.

Example 1. The decoding algorithm can be visualized with
a concrete example, where er ¼ 0, es ¼ 1, et ¼ 2, and
p ¼ 5, as shown in Fig. 4a, where empty columns are
erasures.

The decoding procedure consists of the following four
steps.

4.1.1 Recover Adjusters and Calculate Syndromes

Given the definitions of the adjusters S1 and S2, it is easy to
see that they can be computed as the XOR sums of all of the
symbols in parity columns 5 and 6 and parity columns 5
and 7, respectively. Assign the adjusters to symbols a4;6 and
a4;7 and then apply them through XOR additions to all of the
rest of the parity symbols in columns 6 and 7. This process
reverses the adjuster complement. Still use ai;jþp ð0 � j � 2Þ
to denote symbols in the parity columns.

Now, the parity check property of the code states that the
XOR sum of all symbols along any parity check direction
(horizontal, diagonal, and antidiagonal) should equal zero.
Due to erasure columns, however, the XOR sum of the
remaining symbols is nonzero, which we denote as the
syndrome for the particular parity direction. To be specific,
syndrome ~si;j denotes the XOR sum of parity symbol ai;jþp
and its corresponding nonerasure information symbols. For
example, ~s0;0 ¼ a0;5 � ða0;3 � a0;4Þ, ~s0;1 ¼ a0;6 � ða2;3 � a1;4Þ,
etc. To maintain the parity property, the XOR sum of
all erasure information symbols along any parity check
(redundancy) direction needs to match the correspond-
ing syndrome. For example, ~s0;0 ¼ a0;0 � a0;1 � a0;2,
~s0;1 ¼ a0;0 � a4;1 � a3;2, etc.

In general, this step can be summarized as

1. adjusters recovery ðj ¼ 0; 1; 2Þ,

Ŝj ¼
Mp�2

i¼0

ai;pþj;

S1 ¼ Ŝ0 � Ŝ1 and S2 ¼ Ŝ0 � Ŝ2,
2. reversion of adjuster complement ð0 � i � p� 2Þ,

ai;pþ1 ¼ ai;pþ1 � S1;

ai;pþ2 ¼ ai;pþ2 � S2;

892 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

Fig. 3. STAR code encoding.

Fig. 4. STAR code decoding (symmetric case) (erasure columns er ¼ 0,

es ¼ 1, and et ¼ 2). (a) One cross. (b) Starting point.

3. syndrome calculation,

~si;0 ¼ ai;0 �
Mp�1

j¼0

ai;j

 !
;

~si;1 ¼ ai;1 �
Mp�1

j¼0

ahpþi�jip;j

 !
;

~si;2 ¼ ai;2 �
Mp�1

j¼0

ahiþjip;j

 !
;

where 0 � i � p� 1 and j 6¼ er, es or et.

4.1.2 Finding a Starting Point

Recall that finding a starting point is the key step of
EVENODD decoding, which seeks one particular diagonal
with only one unknown symbol. This symbol is then
recovered from its corresponding syndrome, which triggers
the zigzag decoding process until all unknown symbols are
recovered. In STAR decoding, however, it is impossible to
find any parity direction (horizontal, diagonal, or antidia-
gonal) with only one unknown symbol. Hence, the
approach adopted in the EVENODD decoding does not
directly apply here and additional steps are needed to find
a starting point.

For illustration purposes, we now assume that all
syndromes are represented by the shadowed symbols in
the three parity columns, as shown in Fig. 4a. Based on the
diagonal parity property, it is clear that ~s2;1 equals the XOR

sum of three unknown symbols a2;0, a1;1, and a0;2, as marked
by “4” signs in Fig. 4a. Similarly, ~s0;2 ¼ a0;0 � a1;1 � a2;2,
which are all marked by “5” signs along an antidiagonal.

Now, we introduce a new concept of cross, which
represents the XOR sum of two syndromes (or corre-
sponding unknown erasure symbols). Precisely, cross
Ci;er ¼ ~s<i�er>p;2 � ~s<iþet>p;1. For example, Fig. 4a shows
cross C0;0, which represents the XOR sum of ~s0;2 and ~s2;1.
It also represents the XOR sum of unknown symbols a0;0,
a1;1, a2;2, a2;0, a1;1, and a0;2, which indeed shows as a cross in
Fig. 4a. Note that a1;1 is XORed twice in the cross, so its
value is canceled out. Hence, we have C0;0 ¼ a0;0 � a2;2 �
a2;0 � a0;2 (as shown in Fig. 4a). Moreover, from two
horizontal parities, we know that ~s0;0 ¼ a0;0 � a0;1 � a0;2

and ~s2;0 ¼ a2;0 � a2;1 � a2;2. XORing them with cross C0;0, we
have a0;1 � a2;1 ¼ C0;0 � ~s0;0 � ~s2;0 ¼ ~s0;2 � ~s2;1 � ~s0;0 � ~s2;0,
which is shown in Fig. 4b.

To this end, we have computed the XOR sum of a pair of
unknown symbols in column 1, that is, a0;1 � a2;1. Repeating
this process and starting crosses from different rows (for
example, C1;0, C2;0, etc.), we can obtain the XOR sum of any

unknown symbol pair with a fixed distance 2 in column 1,

that is, a1;1 � a3;1, a2;1 � a4;1, etc.

4.1.3 Recover Middle Erasure Column

In the previous step, we computed the XOR sum of arbitrary

unknown symbol pair in column es with the fixed distance 2.

Since symbol a4;1 is an imaginary symbol with zero value, it

is straightforward to recover symbol a2;1. Next, symbol a0;1

can be recovered as the XOR sum of the pair a0;1 and a2;1 is

available. Consequently, symbols a3;1 and a1;1 are recov-

ered. Indeed, in the next section, we will show that the

recovery of all the symbols in column es is guaranteed.

4.1.4 Recover Side Erasure Columns

Now that column es is known, the first pþ 2 columns

compose an EVENODD coded block with two erasures.

Thus, this reduces to an EVENODD decoding of two

erasures.

4.2 Decoding without Parity Erasures: Asymmetric
Case

In this section, we describe the decoding of asymmetric

erasure patterns, where u 6¼ v.

Example 2. Using the same STAR code as in the symmetric

case, we now focus on a different erasure pattern. Let

er ¼ 0, es ¼ 1, and et ¼ 3 (as shown in Fig. 5). Note that,

in this particular example, an asymmetric erasure pattern

can be treated as a symmetric case by rotating er, es, and

et. This point will be revisited in a later section. In this

section, the goal is to design a general solution that does

not rely on symmetry.

It turns out that the decoding process of asymmetric

erasure patterns is very similar to the symmetric case. The

only difference is in finding a starting point. As illustrated in

Fig. 5a, we examine a particular cross (cross C0;0). It now

contains six unknown symbols: a3;0, a2;1, and a0;3 (marked

by “4”) and a0;0, a1;1, and a3;3 (marked by “5”). This is

different from the four unknown symbols in the symmetric

case because the two unknown symbols in column es are no

longer canceled (due to u 6¼ v). Hence, one cross is not

sufficient and the natural mitigation is to select multiple

crosses. Indeed, the key of this step is to choose multiple

crosses such that the following two conditions are satisfied:

Condition 1.

1. Each cross is shifted vertically downward from a
previous one by v symbols (offset) and

HUANG AND XU: STAR: AN EFFICIENT CODING SCHEME FOR CORRECTING TRIPLE STORAGE NODE FAILURES 893

Fig. 5. STAR code decoding (asymmetric case) (erasure columns er ¼ 0, es ¼ 1, and et ¼ 3). (a) One cross. (b) Multiple crosses. (c) Starting point.

2. the bottom row of the last cross (after wrapping
around) steps over (coincides with) the top row of
the first cross.

In the example, two crosses are chosen (cross C0;0 and cross

C2;0), where C2;0 is v ¼ 2 symbols offset from C0;0 and

contains six erasure symbols: a0;0, a4;1, and a2;3 (marked by

“4”) and a2;0, a3;1, and a0;3 (marked by “5”), as shown in

Fig. 5b. As a reminder, the XOR sum of the two crosses

equals the XOR sum of the corresponding syndromes, that

is, C0;0 � C2;0 ¼ ~s3;1 � ~s0;2 � ~s0;1 � ~s2;2.
On the other hand, the XOR sum of C0;0 and C2;0

includes symbols a0;0 and a0;3 twice, which are thus

canceled out (the result of the bottom row of the last cross

C2;0 steps over the first cross C0; 0). Moreover, the XOR

sum includes all unknown symbols in rows 2 and 3, which

can simply be replaced by their corresponding horizontal

syndromes (marked by “�”) since ~s2;0 ¼ a2;0 � a2;1 � a2;3

and ~s3;0 ¼ a3;0 � a3;1 � a3;3. To this end, we get

a1;1 � a4;1 ¼ ~s3;1 � ~s0;2 � ~s0;1 � ~s2;2 � ~s2;0 � ~s3;0;

as are marked in Fig. 5c.
The rest of the decoding is the same as in the symmetric

case, as we can obtain the XOR sum of any unknown symbol

pair with a fixed distance 3 in column 1 by choosing

different sets of multiple crosses. In other words, we can get

a0;1 � a3;1, a2;1 � a0;1, etc. Then, the middle column can be

decoded and all other erasure symbols can be recovered.

4.3 Correctness of Decoding without Parity
Erasures

In this section, we show that the selection of multiple

crosses yields deterministic results and also guarantees the

recovery of the middle column. Note that the method works

with both symmetric and asymmetric cases, which are

hence treated the same here.
Conceptually, the first condition of choosing crosses

ensures the alignment of unknown symbols in the middle

erasure column with those in the side erasure columns.

Essentially, it groups unknown symbols together and

replaces them with known syndromes. This is one way to

cancel unknown symbols and results in a chain of crosses.

The other way to cancel unknown symbols comes from the

second condition, where unknown symbols in the head row

(the first row of the first cross) of the chain of crosses are

canceled with those in the tail row (the bottom row of the

last cross). This is analogous to “gluing” the head of the first

cross with the tail of the last one and turns the chain of

crosses into a ring. The number of crosses in the ring is

completely determined by the erasure pattern (er, es, and et)

and the STAR code parameter p. Lemma 1 ensures the

existence of such a ring for any given u ¼ es � er,
v ¼ et � es, and p.

Lemma 1. A ring satisfying Condition 1 always exists and

consists of ld ð0 � ld < pÞ crosses, where ld is determined by

the following equation:

huþ ldvip ¼ 0; ð1Þ

where 0 � u; v < p.

Proof. Since p is a prime number, integers modulo p define
a finite field GF ðpÞ. Let v�1 be the unique inverse of v in
this field. Then, ld ¼ ðp� uÞv�1 exists and is unique. tu

Given a ring, rows with three unknown symbols are
substituted with horizontal syndromes (substitution) and
symbols with even numbers are simply removed (simple

cancellation). For simplicity, we refer to both cases as
cancellations. Eventually, there are exactly two rows left
with unknown symbols, which is confirmed by Lemma 2.

Lemma 2. After cancellations, there are exactly two rows with

unknown symbols in a ring. The row numbers are u and p� u,

as offsets from the top row of the first cross.

Proof. To simplify the proof, we only examine the ring
whose first cross starts at row 0. Now, the first cross
contains two unknown symbols in column er and they
are in rows 0 and uþ v. We can represent them with a
polynomial ð1þ xuþvÞ, where power values (modulo p)
of x correspond to row entices. Similarly, the unknown
symbols in column es can be represented as ðxu þ xvÞ.
Therefore, the first cross can be completely represented
by ð1þ xuþv þ xu þ xvÞ and the l1th cross by

ð1þ xuþv þ xu þ xvÞxl1v;

where 0 � l1 < ld and the coefficients of x are binary.
Note that we do not explicitly consider unknown
symbols in column et, which are reflected by polyno-
mials representing column er. Using this representation,
the cancellation of a polynomial term includes both cases
of substitution and simple cancellation. The XOR sum of
all crosses is

Xld�1

l1¼0

ð1þ xuþv þ xu þ xvÞxl1v

¼ð1þ xuÞ
Xld�1

l1¼0

ð1þ xvÞxl1v

¼ð1þ xuÞð1þ xp�uÞ
¼ xu þ xp�u;

ð2Þ

where ld is substituted using the result from Lemma 1.
Thus, only two rows with unknown symbols are left after
cancellations and the distance between them is
d ¼ hp� 2uip. tu
It is important to point out that unknown symbols in the

remaining two rows are not necessarily in column es. For
example, if er ¼ 0, es ¼ 2, and et ¼ 3, the remaining
unknown symbols would be a2;0, a2;3, a3;0, and a3;3, which
are indeed in columns er and et. This is similar to the
symmetric case, where we can use two additional hor-
izontal syndromes and obtain the XOR sum of the
corresponding unknown symbol pair in column es.

To summarize this step, we denote lh to be the number
of rows in a ring which are canceled through substitu-
tions and define the set of corresponding row indices as
Fh ¼ fhl2 j0 � l2 < lhg. The set Fh is simply obtained by
enumerating all crosses of the ring and then counting rows
with three unknown symbols. Let ~au denote the XOR sum of

894 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

the unknown symbol pair a0;es and ahp�2uip;es . Then, the
ith pair has

~auþi ¼
Mld�1

l1¼0

~sh�erþiip;2
Mlh�1

l2¼0

~shhl2þiip;0;
Mld�1

l1¼0

~shetþiip;1; ð3Þ

where 0 � i � p� 1.
Now, we show that the middle column can be recovered

entirely by Lemma 3.

Lemma 3. Given the XOR sum of an arbitrary symbol pair with a
fixed distance d, all symbols in the column are recoverable if
there is at least one symbol available.

Proof. Since p is prime, F ¼ fhdiipj0 � i � p� 1g covers
all integers in ½0; pÞ. Therefore, a “tour” starting from
row p� 1 with the stride size d will visit all other rows
exactly once before returning to it. As the symbol in
row p� 1 is always available (zero indeed) and the
XOR sum of any pair with distance d is also known, all
symbols can then be recovered along the tour. tu

In summary, this step computes

~ahðp�1Þ�diip ¼ ~ahðp�1Þ�diip � ahðp�1Þ�dði�1Þip ; ð4Þ

where 0 � i � p� 1. Then, ai;es ¼ ~ai (where there are two
unknown symbols left in the ring after cancellations) or
ai;es ¼ ~ai � ~si;0 (where four unknown symbols are left) for
all is. Thus far, column es is completely recovered.

4.4 Decoding with Parity Erasures

In this section, we consider the situation when there are
erasures in parity columns. The decoding is divided into the
following three subcases:

4.4.1 Column pþ 2 Is an Erasure

This then reduces to EVENODD decoding of two erasures.
Note that this case also takes care of all patterns with fewer
than three erasures.

4.4.2 Column pþ 1 Is an Erasure, while pþ 2 Is Not

This is almost the same as the previous case except that,
now, the “EVENODD” coded block consists of the first
pþ 1 columns and column pþ 2. In fact, this coded block is
no longer a normal EVENODD code but rather a mirror
reflection of one over the horizontal axis. Nevertheless, it
can be decoded with a slight modification of the EVENODD
decoding, which we simply leave to interested readers.

4.4.3 Column p Is an Erasure, while pþ 1 and pþ 2 Are

Not

In this case, 0 � er < es � p� 1 and et ¼ p.
First, it is not possible to recover adjusters S1 and S2 as

symbols in column p are unknown. However, S1 � S2 is still
computable, which simply equals the XOR sum of all
symbols in columns pþ 1 and pþ 2. This is easy to see from
the definitions of S1 and S2; S0 is added twice and canceled
out. It is thus possible to reverse the adjuster complement.
The results from syndrome calculation are the XOR sums of
syndromes and their corresponding adjusters, rather than
syndromes themselves. We use ŝi;j to denote the results,
which thus satisfy

ŝi;j ¼ ~si;j � Sj; ð5Þ

where j ¼ 1 or 2 and 0 � i � p� 1. Note that ŝi;0 ¼ ~si;0 for
all is.

The next step is similar to the decoding of the symmetric
case without parity erasures as it is also the case that only
one cross is sufficient to construct a ring.

Example 3. We again use an example to illustrate this. Let
er ¼ 0, es ¼ 1, and et ¼ 5, as shown in Fig. 6. Consider
cross C0;0, which consists of unknown symbols a0;0, a1;1,
a1;0, and a0;1. From the definition of a cross, we know that
C0;0 ¼ ŝ1;1 � ŝ0;2. By substituting (5), we can get the
following:

a0;0 � a1;1 � a1;0 � a0;1 ¼ ŝ1;1 � ŝ0;2 � S1 � S2:

Hence, the XOR sum of the unknown symbols in C0;0 can
be computed. Combined with horizontal parities (fol-
lowing the same approach as in the symmetric case), the
XOR sum of two unknowns (ŝ0;0 � ŝ1;0) in the erasure
parity column can be computed (marked by “�” in
Fig. 6b). It should now be clear that any pair of
unknowns with distance 1 in erasure column et ¼ 5 can
be computed and, thus, the entire column can be
recovered. After column 5 is recovered, the first seven
columns can again be treated as an EVENODD-coded
block with two erasures at columns er ¼ 0 and es ¼ 1.
Therefore, the EVENODD decoding can be applied to
complete the recovery of all of the remaining unknown
symbols.

This procedure is summarized as follows:

S1 � S2 ¼
Mp�2

i¼0

ai;pþ1

 !
�

Mp�2

i¼0

ai;pþ2

 !

and

ŝi;0 ¼ ai;0 �
Mp�1

j¼0

ai;j

 !
;

ŝi;1 ¼ ai;1 �
Mp�1

j¼0

ahpþi�jip;j

 !
;

ŝi;2 ¼ ai;2 �
Mp�1

j¼0

ahiþjip;j

 !
;

where 0 � i � p� 1 and j 6¼ er or es. Then,

~ai ¼ ŝhesþiip;1 � ŝh�erþiip;2 � S1 � S2;

HUANG AND XU: STAR: AN EFFICIENT CODING SCHEME FOR CORRECTING TRIPLE STORAGE NODE FAILURES 895

Fig. 6. STAR code decoding (parity erasure) (erasure columns er ¼ 0,

es ¼ 1, and et ¼ 5). (a) One cross. (b) Starting point.

where 0 � i � p� 1, and

~ahðp�1Þ�uiip ¼ ~ahðp�1Þ�uiip � ahðp�1Þ�uði�1Þip ;

where 1 � i � p� 1. Next, column p is recovered as

ai;p ¼ ~ai � ŝi;0
for all is. Finally, the EVENODD decoding is applied to
recover the remaining two columns.

Putting all of the above cases together, we conclude this
section with the following theorem:

Theorem 1. The STAR code can correct any triple column
erasures and, thus, it is a ðpþ 3; pÞ MDS code.

5 ALGEBRAIC REPRESENTATION OF THE STAR
CODE

As described in [5], each column in the EVENODD code can
be regarded algebraically as an element of a polynomial
ring, which is defined with multiplication taken modulo
MpðxÞ ¼ ðxp � 1Þ=ðx� 1Þ ¼ 1þ xþ � � � þ xp�2 þ xp�1. F o r
the ring element x, it is shown that its multiplicative
order is p. Using � to denote this element, column j

ð0 � j � pþ 1Þ can be represented using the notation
ajð�Þ ¼ ap�2;j�

p�2 þ � � � þ a1;j� þ a0;j, where ai;j ð0 � i � p�
2Þ is the ith symbol in the column. Note that the
multiplicative inverse of � exists and can be denoted as
��1. Applying the same notations to the STAR code, we can
then get its parity check matrix as

H ¼
1 1 � � � 1 1 0 0
1 � � � � �p�1 0 1 0
1 ��1 � � � ��ðp�1Þ 0 0 1

2
4

3
5: ð6Þ

It is not hard to verify that, as in [7], any three columns in
the parity check matrix are linearly independent. Therefore,
the minimum distance of the STAR code is indeed 4 (each
column is regarded as a single element in the ring) and,
thus, arbitrary triple (column) erasures are recoverable. This
is an alternative way of showing its MDS property.

6 COMPLEXITY ANALYSIS

In this section, we analyze the complexity of the STAR code
erasure decoding. The complexity is dominated by XOR

operations; thus, we count the total number of XORs and
use this as a measurement of the decoding complexity.
Since decoding without parity erasures is the most
complicated case, including both asymmetric and sym-
metric erasure patterns, our analysis is focused on this case.

6.1 Erasure Decoding Complexity

It is not difficult to see that the complexity can be analyzed
individually for each of the four decoding steps. Note that a
complete STAR code consists of p information columns and
r ¼ n� k ¼ 3 parity columns. When there are only k ðk � pÞ
information columns, we can still use the same code by
resorting to the shortening technique, which simply assigns
zero value to all symbols in the last p� k information
columns. Therefore, in the analysis here, we assume that the
code block is a ðp� 1Þ � ðkþ 3Þ array.

In Step 1, the calculation of S0 takes ðp� 2Þ XOR

operations and those of S1 and S2 take ðp� 1Þ XORs each.
The reversion of adjuster complement takes 2ðp� 1Þ XORs
in total. Directly counting the XORs of the syndrome
calculations is fairly complicated and we can resort to the
following alternative approach: First, it is easy to see that
the syndrome calculations of any parity direction for a
code block without erasures (a ðp� 1Þ � ðpþ 3Þ array)
take ðp� 1Þp XORs. Then, notice that any information
column contributes ðp� 1Þ XORs to the calculations.
Therefore, for a code block with ðk� 3Þ information
columns (with triple erasures), the number of XORs
becomes ðp� 1Þp� ðp� kþ 3Þðp� 1Þ ¼ ðk� 3Þðp� 1Þ. In
total, the XORs in this step are

ðp� 2Þ þ 2ðp� 1Þ þ 2ðp� 1Þ þ 3ðk� 3Þðp� 1Þ
¼ ð3k� 4Þðp� 1Þ � 1:

ð7Þ

In Step 2, the computation of each ring takes ð2ld þ lh �
1Þ XORs and there are ðp� 1Þ rings to compute. Thus, the
number of XORs is

ð2ld þ lh � 1Þðp� 1Þ: ð8Þ

In Step 3, it is easy to see that the number of XORs is

ðp� 1Þ � 1 ¼ p� 2: ð9Þ

In Step 4, the horizontal and the diagonal syndromes need
to be updated with the recovered symbols of column es,
which takes 2ðp� 1Þ XORs. Note that there is no need to
update the antidiagonal syndromes because the decoding
hereafter deals with only double erasures. The zigzag
decoding then takes 2ðp� 1Þ � 1 XORs. Therefore, the
number of XORs in this step is

2ðp� 1Þ þ 2ðp� 1Þ � 1 ¼ 4ðp� 1Þ � 1: ð10Þ

Note that, in Step 2, the number of XORs is computed
assuming the case where only two unknown symbols are left
in a ring after cancellations. If the other case happens, where
four unknown symbols are left, additional ðp� 1Þ XOR

operations are needed to recover column es. However, this
case does not need to update the horizontal syndromes in
Step 4 and thus saves ðp� 1Þ XORs there. Therefore, it is just
a matter of moving XOR operations from Step 2 to Step 4
and the total number remains the same for both cases.

In summary, the total number of XORs required to
decode triple information column erasures can be obtained
by putting (7), (8), (9), and (10) together as

ð3k� 4Þðp� 1Þ � 1þ ð2ld þ lh � 1Þðp� 1Þ
þ ðp� 2Þ þ 4ðp� 1Þ � 1

¼ ð3kþ 2ld þ lhÞðp� 1Þ � 3

ð11Þ

	 ð3kþ 2ld þ lhÞðp� 1Þ; ð12Þ

which becomes 3þ ð2ld þ lhÞ=k per symbol after normal-
ization by the total number of information symbols ðp� 1Þk.

6.2 A Decoding Optimization

From (12), we can see that, for fixed code parameters k and
p, the decoding complexity depends on ld and lh, which are

896 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

completely determined by actual erasure patterns (er, es,
and et). In Section 4, we present an algorithm to construct a
ring of crosses, which yields a starting point for successful
decoding. Within the ring, each cross is v ¼ et � es symbols
offset from the previous one. From (2), there are exactly two
rows with unknown symbols left after cancellations. Based
on the symmetric property of the ring construction, it is not
difficult to show that using offset u ¼ es � er will also
achieve the same goal. Moreover, if choosing u as the offset
results in smaller ld and lh values (to be specific, smaller
2ld þ lh), then it is certainly better to do so.

Moreover, the aforementioned decoding algorithm as-
sumes that er < es < et. Although it helps to visualize the key
procedure of finding a starting point, such an assumption is
unnecessary. Indeed, it is easy to verify that all proofs in
Section 4 still hold without this assumption. By swapping
values among er, es, and et, it might be possible to reduce the
decoding complexity. For instance, in the previous example,
er ¼ 0, es ¼ 1, and et ¼ 3 result in ld ¼ 2 and lh ¼ 2. Instead, if
letting er ¼ 1, es ¼ 0, and et ¼ 3, then u ¼ �1 and v ¼ 3. The
corresponding single cross is shown in Fig. 7a. It is clear that
two crosses close a ring (shown in Fig. 7b) which contains
exactly two rows (rows 1 and 4) with unknown symbols after
cancellations. This choice yields the same ld ¼ 2 and lh ¼ 2.
However, if we let er ¼ 0, es ¼ 3, and et ¼ 1, we can get u ¼
es � er ¼ 3 and v ¼ et � es ¼ �2. It is easy to verify that the
unknown symbols in column es are canceled in every single
cross. Thus, the complexity is reduced by this choice, as ld ¼ 1
and lh ¼ 0 now. (As a matter of fact, this is an equivalence of
the symmetric case.) Note that, for general u and v, the
condition of symmetry now becomes hu� vip ¼ 0, instead of
simply u ¼ v.

Now let us revisit the ring construction algorithm
described in Section 4. The key point there is to select
multiple crosses such that the bottom row of the last cross
“steps over” the top row of the first one and there are
exactly two rows left with unknown symbols after cancella-
tions. Further examination reveals that it is possible to
construct rings using alternative approaches. For instance,
the crosses can be selected in such a way that, in the middle
column, the bottom symbol of the last cross “steps over” the
top symbol of the first one. Naturally, one might wonder
whether there are other cross selections which might lead to
minimum decoding complexity.

Next, we describe a method of selecting the mini-
mum number of crosses while ensuring that there are
two rows left with unknown symbols after cancellations.
In this way, successful decoding is guaranteed and the
decoding complexity is minimized as well. Recall that a

single cross is represented by CðxÞ ¼ 1þ xu þ xv þ xuþv
and a cross of f symbol offset by CðxÞxf . Therefore, the
construction of a ring is to determine a polynomial
term RðxÞ such that CðxÞRðxÞ results in exactly two
entries. For instance, the example in Section 4 has
RðxÞ ¼ 1þ x2 and CðxÞRðxÞ ¼ xþ x4. Theorem 2 shows
that the decoding complexity is minimized if an RðxÞ
with minimum entries is chosen.

Theorem 2. The decoding complexity is nondecreasing with
respect to the number of crosses ðldÞ in a ring.

Proof. Whenever a new cross is included into the ring, two
new nonhorizontal syndromes (one diagonal and one
antidiagonal) need to be added to the XOR sum. With this
new cross, at most four rows can be canceled (simple
cancellation due to even numbers of additions), among
which two can be mapped with this cross and the other
two with an earlier cross. Thus, each cross adds two
nonhorizontal syndromes but subtracts at most two
horizontal syndromes. The complexity is thus nonde-
creasing with respect to the number of crosses. tu

Note that ld is in fact the number of entries in RðxÞ. An
optimal ring needs to find an RðxÞ with minimum entries,
which then ensures that CðxÞRðxÞ has only two terms. An
efficient approach to achieve this is to test all polynomials
with two terms. If a polynomial is divisible by CðxÞ, then
the quotient yields a valid RðxÞ. An RðxÞ with minimum
entries is then chosen to construct the ring. It is important to
point out that there is no need to worry about common
factors (always powers of x) between two terms in the
polynomial as it is not divisible by CðxÞ. Thus, the first
entry of all polynomials can be fixed as 1, which means that
only p� 1 polynomials ð1þ xi; 0 < i � p� 1Þ need to be
examined. As stated in an earlier section, polynomials are
essentially elements in the ring constructed with
MpðxÞ ¼ 1þ xþ � � � þ xp�2 þ xp�1. Based on the argument
in [8], ð1þ xuÞ and ð1þ xvÞ are invertible in the ring. Thus,
CðxÞ ¼ ð1þ xuÞð1þ xvÞ is also invertible and it is straight-
forward to compute the inverse using Euclid’s algorithm.
For instance, CðxÞ ¼ 1þ xþ x2 þ x3 as u ¼ 1 and v ¼ 2 in
the previous example. The generator polynomial MpðxÞ ¼
1þ xþ x2 þ x3 þ x4 as p ¼ 5. Applying Euclid’s algorithm
[27], it is clear that

1ð1þ xþ x2 þ x3 þ x4Þ þ xð1þ xþ x2 þ x3Þ ¼ 1: ð13Þ

Thus, the inverse of CðxÞ is invðCðxÞÞ ¼ x. When examining
the polynomial 1þ x3, we get RðxÞ ¼ invðCðxÞÞð1þ x3Þ ¼
xþ x4 or, equivalently,

ð1þ xþ x2 þ x3Þðxþ x4Þ ¼ 1þ x3 modMpðxÞ: ð14Þ

It is desirable that RðxÞ carry the entry of power 0 since the
ring always contains the original cross. Therefore, we
multiply x to both sides of (14), which now becomes

ð1þ xþ x2 þ x3Þð1þ x2Þ ¼ xþ x4 modMpðxÞ:

Thus, we have RðxÞ ¼ 1þ x2 and the ring can be con-
structed using two crosses ðld ¼ 2Þ with an offset of two
symbols. Once the ring is constructed, it is straightforward
to get lh.

HUANG AND XU: STAR: AN EFFICIENT CODING SCHEME FOR CORRECTING TRIPLE STORAGE NODE FAILURES 897

Fig. 7. Optimization of STAR decoding. (a) One cross. (b) Multiple

crosses.

Note that this optimal ring construction only needs to be
computed once in advance (offline). Thus, we do not count
the ring construction in the decoding procedure.

7 COMPARISON WITH EXISTING SCHEMES

In this section, we compare the erasure decoding complex-
ity of the STAR code to two other XOR-based codes: one
proposed by Blaum et al. [7] (Blaum code hereafter) and the
other by Blomer et al. [10].

The Blaum code is a generalization of the EVENODD
code whose horizontal (the first) and diagonal (the second)
parities are now regarded as redundancies of slope 0 and 1,
respectively. A redundancy of slope q � 1 ðq � 3Þ generates
the qth parity column. This construction is shown to
maintain the MDS property for triple parity columns when
the code parameter p is a prime number. The MDS property
continues to hold for selected p values when the number of
parities exceeds three. To make the comparison meaningful,
we focus on the triple-parity case of the Blaum code. We
compare the complexity of triple-erasure decoding in terms
of XOR operations between the Blaum code and the STAR
code. As in the previous sections, we confine all three
erasures to information columns.

The erasure decoding of the Blaum code adopts an
algorithm described in [8], which provides a general
technique to solve a set of linear equations in a polynomial
ring. Due to special properties of the code, however, ring
operations are not required during the decoding procedure,
which can be performed with pure XOR and shift opera-
tions. The algorithm consists of four steps, whose complex-
ities are summarized as follows:

1. syndrome calculation: 3ðk� 3Þðp� 1Þ � 1,
2. computation of Q̂ðx; zÞ: 1

2 rð3r� 3Þp,
3. computation of the right-hand value:

rððr� 1Þpþ ðp� 1ÞÞ, and
4. extracting the erasure values: rðr� 1Þð2ðp� 1ÞÞ.

Here, r ¼ n� k ¼ 3. Therefore, the total number of XORs is

3ðk� 3Þðp� 1Þ � 1þ 9pþ ð9p� 3Þ þ 12ðp� 1Þ
¼ ð3kþ 21Þðp� 1Þ þ 14

ð15Þ

	 ð3kþ 21Þðp� 1Þ; ð16Þ

which becomes 3þ 21=k per symbol after normalization by
the total number of information symbols ðp� 1Þk. Compar-
ison results with the STAR code are shown in Fig. 8, where
we can see that the complexity of the STAR decoding
remains fairly constant and is just slightly above 3. Note
that this complexity depends on actual erasure locations;
thus, the results reported here are average values over all
possible erasure patterns. The complexity of the Blaum
code, however, is rather high for small k values, although it
does approach 3 asymptotically. The STAR code is thus
probably more desirable than the Blaum code. Fig. 8 also
includes the complexity of the EVENODD decoding as a
reference, which is roughly constant and slightly above two
XORs per symbol. Note that, in Fig. 8, p is always taken for
each k as the next smallest prime.

Further reflection on the Blaum code and the STAR code
would reveal that the construction difference between them
lies solely on the choice of the third redundancy slope,
where the Blaum code uses slope 2 and the STAR code �1.
One might wonder whether the decoding approach
adopted here could be applied to the Blaum code as well.
Based on STAR decoding’s heavy reliance on the geometric
property of individual crosses in the step to find a starting
point, it seems difficult to achieve the same ring construc-
tion in the Blaum code when symmetry is no longer
obvious. Moreover, the intuitiveness of the decoding
process would be completely lost even if it is possible at
all. Instead, we would be more interested in investigating
whether the STAR code construction, in particular the
decoding approach, could be extended to handle more than
triple erasures, as the Blaum code already does.

The XOR-based code proposed in [10] uses Cauchy
matrices to construct an RS code. It replaces generator
matrix entries, information, and parity symbols with binary
representations. Then, the encoding and decoding can be
performed with primarily XOR operations. To achieve
maximum efficiency, it requires the message length to be
multiples of 32 bits. In that way, the basic XOR unit is
32 bits, or a single word, and can be performed by a single
operation. To compare with this scheme fairly, we require
the symbol size of the STAR code to be multiples of 32 bits
too. It is shown that the XOR-based decoding algorithm in
[10] involves krL2 XOR operations and r2 operations in a
finite field GF ð2LÞ, where k and r are the numbers of
information symbols and erasures, respectively. We ignore
those r2 finite-field operations (due to the inversion of a
decoding coefficient matrix), which tend to be small as the
number of erasures is limited. Then, the RS code’s normal-
ized decoding complexity (by the total information length
of kL words) is rL. As the total number of symbols n ð¼
kþ rÞ is limited by L ðn � 2LÞ, we have to increase L and,
thus, in turn, the decoding complexity when n increases
(see Table 2). Compared to Fig. 8, where the STAR code
decoding complexity is slightly more than three XORs per
symbol (multiples of 32 bits now), it is clear that the STAR
code is much more efficient than the XOR-based RS code.
However, as studied in Plank and Xu’s recent work [33],
carefully chosen RS codes can greatly improve encoding
operations. If efficient decoding operations can also be
developed adopting such methods, it will be very interesting

898 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

Fig. 8. The complexity comparisons ðr ¼ n� kÞ.

to compare them with the STAR decoding. Finally, the
complexity of the regular (finite-field-based) RS code
implementation (for example, [30]) turns out to be much
higher than the XOR-based one, so we simply skip the
comparison here.

8 IMPLEMENTATION AND PERFORMANCE

The implementation of the STAR code encoding is
straightforward and simply follows the procedure de-
scribed in Section 3. Thus, in this part, our main focus is
on the erasure decoding procedure. As stated in Section 6,
the decoding complexity is solely determined by ld and lh,
given the number of information columns k and the code
parameter p. As ld and lh vary according to actual erasure
patterns, so does the decoding complexity. To achieve the
maximum efficiency, we apply the optimization technique
as described in the earlier section.

An erasure pattern is completely determined by the
erasure columns er, es, and et (again assume that
er < es < et) or, further, by the distances u and v between
these columns, as the actual position of er does not affect ld
or lh. Therefore, it is possible to set up a mapping from ðu; vÞ
to ðld; lhÞ. To be specific, given u and v, the mapping returns
the positions of horizontal, diagonal, and antidiagonal
syndromes which would otherwise be obtained via ring
constructions. The mapping can be implemented as a
lookup table and the syndrome positions using bit vectors.
Since the lookup table can be built in advance of the actual
decoding procedure, it essentially shifts the complexity
from online decoding to the offline preprocess. Note that
the table lookup operation is only needed once for every
erasure pattern; thus, there is no need to keep the table in
memory (or cache). This is different from finite field-based
coding procedures, where intensive table lookups are used
to replace complicated finite field operations. For example,
an RS code implementation might use an exponential table
and a logarithm table for each multiplication/division.
Furthermore, the number of entries in the lookup table is
not large at all. For example, for code parameter p ¼ 31, u
and v are at most 30, which requires a table of at most
30� 30 ¼ 900 entries, where each entry contains three bit
vectors (32 bits each) for the ring construction, 1 byte for the
decoding pattern, and 1 byte for lh. The cost of maintaining
a few tables of this size is then negligible.

During the decoding procedure, u and v are calculated
from the actual erasure pattern. Based on these values, the
lookup table returns all syndrome positions, which essen-
tially indicates the ring construction. The calculation of the
ring is thus performed as the XOR sums of all of the

indicated syndromes. Then, the next ring is calculated by
offsetting all syndromes with one symbol and the proce-
dure continues until all rings are computed. The steps
afterward are to recover the middle column and then the
side columns, as detailed in Section 4.

We implement the STAR code erasure decoding proce-
dure and apply it to a reliable storage platform [44]. The
throughput performance is measured and compared to the
publicly available implementation of the XOR-based RS
code [11]. The results are shown in Fig. 9, where the size of a
single data block from each node is 2,880 bytes and the
number of information storage nodes ðkÞ varies from 6 to
31. Note that our focus is on decoding erasures that all
occur at information columns since, otherwise, the STAR
code just reduces to the EVENODD code (when there is one
parity column erasure) or a single parity code (when there
are two parity column erasures), so we only simulate
random information column erasures in Fig. 9. Recall that a
single data block from each node corresponds to a single
column in the STAR code and is divided into p� 1 symbols,
so the block size needs to be a multiple of p� 1. For
comparison purposes, we use 2,880 here since it is a
common multiple of p� 1 for most p values in the range. In
real applications, we are free to choose the block size to be
any multiple of p� 1 once p, as a system parameter, is
determined. These results are obtained from experiments
on a Pentium 3 450 MHz Linux machine with 128 Mbytes of
memory running Redhat 7.1. It is clear that the STAR code
achieves throughput that is about twice that of the RS code.
Note that there are jigsaw effects in the throughputs of both
the EVENODD and the STAR code. This happens mainly
due to the shortening technique. When the number of
storage nodes is not prime, the codes are constructed using
the closest larger prime number. A larger prime number
means that each column (data block here) is divided into
more pieces, which in turn incurs additional control
overhead. As the number of information nodes increases,
the overhead is then amortized, reflected by the perfor-
mance ramping up after each dip. (Similarly, the perfor-
mance of the RS code shows jigsaw effects too, which
happens at the change of L due to the increment of total
storage nodes n.) Moreover, note that the throughputs are
not directly comparable between r ð¼ n� kÞ ¼ 2 and r ð¼
n� kÞ ¼ 3 (for example, the EVENODD and the STAR

HUANG AND XU: STAR: AN EFFICIENT CODING SCHEME FOR CORRECTING TRIPLE STORAGE NODE FAILURES 899

TABLE 2
Complexity of the RS Code (per 32 Bits)

Fig. 9. Throughput performance (r ¼ n� k erasures are randomly

generated among information nodes).

code) as they correspond to different reliability degrees. The
results of codes with r ¼ 2 are depicted only for reference
purposes.

9 CONCLUSIONS

In this paper, we present the STAR code, a new coding
scheme that can correct triple erasures. The STAR code
extends from the EVENODD code and requires only XOR

operations in its encoding and decoding operations. We
prove that the STAR code is an MDS code of distance 4 and
thus is optimal in terms of erasure correction capability
versus data redundancy. An efficient erasure decoding
algorithm for the STAR code is presented as the focus of this
paper. Detailed analysis shows that the STAR code has the
lowest decoding complexity among existing comparable
codes. We hence believe that the STAR code is very suitable
for achieving high availability in practical data storage
systems.

ACKNOWLEDGMENTS

A preliminary version of this work was presented at the
Fourth Usenix Conference on File and Storage Technologies
(FAST) in 2005. This work was supported in part by US
National Science Foundation Grant IIS-0541527.

REFERENCES

[1] G.A. Alvarez, W.A. Burkhard, and F. Christian, “Tolerating
Multiple Failures in RAID Architectures with Optimal Storage
and Uniform Declustering,” Proc. 24th Ann. Int’l Symp. Computer
Architecture, pp. 62-72, 1997.

[2] T.E. Anderson, D.E. Culler, and D.A. Patterson, “A Case for NOW
(Networks of Workstations),” IEEE Micro, vol. 15, no. 1, pp. 54-64,
1995.

[3] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R.
Wang, “Serverless Network File Systems,” ACM Trans. Computer
Systems, pp. 41-79, Feb. 1996.

[4] A. Bhide, E. Elnozahy, and S. Morgan, “A Highly Available
Network File Server,” Proc. Usenix Winter Technical Conf., pp. 199-
205, Jan. 1991.

[5] M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An
Efficient Scheme for Tolerating Double Disk Failures in RAID
Architectures,” IEEE Trans. Computers, vol. 44, no. 2, pp. 192-202,
Feb. 1995.

[6] M. Blaum, J. Brady, J. Bruck, J. Menon, and A. Vardy, “The
EVENODD Code and Its Generalization,” High Performance Mass
Storage and Parallel I/O, pp. 187-208, John Wiley & Sons, 2002.

[7] M. Blaum, J. Bruck, and A. Vardy, “MDS Array Codes with
Independent Parity Symbols,” IEEE Trans. Information Theory,
vol. 42, no. 2, pp. 529-542, Mar. 1996.

[8] M. Blaum and R.M. Roth, “New Array Codes for Multiple Phased
Burst Correction,” IEEE Trans. Information Theory, vol. 39, no. 1,
pp. 66-77, Jan. 1993.

[9] M. Blaum and R.M. Roth, “On Lowest-Density MDS Codes,” IEEE
Trans. Information Theory, vol. 45, no. 1, pp. 46-59, Jan. 1999.

[10] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D.
Zuckerman, “An XOR-Based Erasure-Resilient Coding Scheme,”
Technical Report TR-95-048, ICSI, Berkeley, Calif., Aug. 1995.

[11] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and D.
Zuckerman, http://www.icsi.berkeley.edu/~luby/cauchy.tar.
uu, 2007.

[12] V. Bohossian, C. Fan, P. LeMahieu, M. Riedel, L. Xu, and J. Bruck,
“Computing in the RAIN: A Reliable Array of Independent
Node,” IEEE Trans. Parallel and Distributed Systems, special issue
on dependable network computing, vol. 12, no. 2, pp. 99-114, Feb.
2001.

[13] M. Castro and B. Liskov, “Practical Byzantine Fault Tolerance,”
Operating Systems Rev., pp. 173-186, 1999.

[14] P.M. Chen, E.K. Lee, G.A. Gibson, R.H. Katz, and D.A. Patterson,
“RAID—High-Performance, Reliable Secondary Storage,” ACM
Computing Surveys, vol. 26, no. 2, pp. 145-185, 1994.

[15] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman, J. Leong,
and S. Sankar, “Row-Diagonal Parity for Double Disk Failure
Correction,” Proc. Third Usenix Conf. File and Storage Technologies,
Mar.-Apr. 2004.

[16] C. Fan and J. Bruck, “The Raincore API for Clusters of Networking
Elements,” IEEE Internet Computing, vol. 5, no. 5, pp. 70-76, Sept./
Oct. 2001.

[17] P.G. Farrell, “A Survey of Array Error Control Codes,” European
Trans. Telecomm., vol. 3, no. 5, pp. 441-454, 1992.

[18] G.-L. Feng, R.H. Deng, F. Bao, and J.-C. Shen, “New Efficient MDS
Array Codes for RAID Part I: Reed-Solomon-Like Codes for
Tolerating Three Disk Failures,” IEEE Trans. Computers, vol. 54,
no. 9, pp. 1071-1080, Sept. 2005.

[19] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File
System,” Proc. 19th ACM Symp. Operating Systems Principles,
pp. 29-43, Oct. 2003.

[20] G.A. Gibson and R. van Meter, “Network Attached Storage
Architecture,” Comm. ACM, vol. 43, no. 11, pp. 37-45, Nov. 2000.

[21] G.A. Gibson, D. Stodolsky, F.W. Chang, W.V. Courtright II, C.G.
Demetriou, E. Ginting, M. Holland, Q. Ma, L. Neal, R.H.
Patterson, J. Su, R. Youssef, and J. Zelenka, “The Scotch Parallel
Storage Systems,” Proc. 40th IEEE CS Int’l Conf., 1995.

[22] A.V. Goldberg and P.N. Yianilos, “Towards an Archival Inter-
memory,” Proc. IEEE Int’l Forum Research and Technology Advances
in Digital Libraries, Apr. 1998.

[23] R.M. Goodman, R.J. McEliece, and M. Sayano, “Phased Burst
Error Correcting Arrays Codes,” IEEE Trans. Information Theory,
vol. 39, pp. 684-693, 1993.

[24] J.H. Hartman and J.K. Ousterhout, “The Zebra Striped Network
File System,” ACM Trans. Computer Systems, vol. 13, no. 3, pp. 274-
310, 1995.

[25] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.
Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C.
Wells, and B. Zhao, “OceanStore: An Architecture for Global-Scale
Persistent Storage,” Proc. Ninth Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, Nov. 2000.

[26] E. Lee and C. Thekkath, “Petal: Distributed Virtual Disks,” Proc.
Seventh Int’l Conf. Architectural Support for Programming Languages
and Operating Systems, pp. 84-92, Oct. 1996.

[27] F.J. MacWilliams and N.J.A. Sloane, The Theory of Error Correcting
Codes. North Holland, 1977.

[28] R.J. McEliece and D. Sarwate, “On Sharing Secrets and Reed-
Solomon Codes,” Comm. ACM, vol. 24, no. 9, pp. 583-584, 1981.

[29] J. Ousterhout, A. Cherenson, F. Douglis, M. Nelson, and B. Welch,
“The Sprite Network Operating System,” Computer, vol. 21, no. 2,
pp. 23-26, Feb. 1988.

[30] J.S. Plank, “A Tutorial on Reed-Solomon Coding for Fault-
Tolerance in RAID-Like Systems,” Software: Practice and Experience,
vol. 27, no. 9, pp. 995-1012, Jan. 1999.

[31] J.S. Plank, R.L. Collins, A.L. Buchsbaum, and M.G. Thomason,
“Small Parity-Check Erasure Codes—Exploration and Observa-
tions,” Proc. Int’l Conf. Dependable Systems and Networks, June 2005.

[32] J.S. Plank, M. Beck, and T. Moore, “Logistical Networking
Research and the Network Storage Stack,” Proc. Usenix Conf. File
and Storage Technologies, work in progress report, Jan. 2002.

[33] J.S. Plank and L. Xu, “Optimizing Cauchy Reed-Solomon Codes
for Fault-Tolerant Network Storage Applications,” Proc. Fifth IEEE
Int’l Symp. Network Computing and Applications, July 2006.

[34] M. Rabin, “Efficient Dispersal of Information for Security, Load
Balancing and Fault Tolerance,” J. ACM, vol. 32, no. 4, pp. 335-348,
Apr. 1989.

[35] I.S. Reed and G. Solomon, “Polynomial Codes over Certain Finite
Fields,” J. SIAM, vol. 8, no. 10, pp. 300-304, 1960.

[36] M. Satyanarayanan, “Scalable, Secure and Highly Available
Distributed File Access,” Computer, vol. 23, no. 5, pp. 9-21, May
1990.

[37] M. Satyanarayanan, J.J. Kistler, P. Kumar, M.E. Okasaki, E.H.
Siegel, and D.C. Steere, “CODA—A Highly Available File System
for a Distributed Workstation Environment,” IEEE Trans. Compu-
ters, vol. 39, no. 4, pp. 447-459, Apr. 1990.

[38] A. Shamir, “How to Share a Secret,” Comm. ACM, pp. 612-613,
Nov. 1979.

[39] NFS: Network File System Version 3 Protocol Specification, Sun
Microsystems, Feb. 1994.

900 IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 7, JULY 2008

[40] M. Waldman, A.D. Rubin, and L.F. Cranor, “Publius: A Robust,
Tamper-Evident, Censorship-Resistant, Web Publishing System,”
Proc. Ninth Usenix Security Symp., pp. 59-72, http://
www.cs.nyu.edu/~waldman/publius/publius.pdf, Aug. 2000.

[41] J.J. Wylie, M.W. Bigrigg, J.D. Strunk, G.R. Ganger, H. Kiliccote,
and P.K. Khosla, “Survivable Information Storage Systems,”
Computer, vol. 33, no. 8, pp. 61-68, Aug. 2000.

[42] L. Xu and J. Bruck, “X-Code: MDS Array Codes with Optimal
Encoding,” IEEE Trans. Information Theory, vol. 45, no. 1, pp. 272-
276, Jan. 1999.

[43] L. Xu, V. Bohossian, J. Bruck, and D. Wagner, “Low Density MDS
Codes and Factors of Complete Graphs,” IEEE Trans. Information
Theory, vol. 45, no. 1, pp. 1817-1826, Nov. 1999.

[44] L. Xu, “Hydra: A Platform for Survivable and Secure Data Storage
Systems,” Proc. Int’l Workshop Storage Security and Survivability,
Nov. 2005.

Cheng Huang received the BS and MS degrees
in electrical engineering from Shanghai Jiao
Tong University in 1997 and 2000, respectively,
and the PhD degree in computer science from
Washington University, St. Louis, Missouri, in
2005. He is currently a member of the Commu-
nication and Collaboration Systems Group at
Microsoft Research, Redmond, Washington. His
research interests include peer-to-peer applica-
tions, distributed storage systems, erasure

correction codes, multimedia communications, networking, and data
security. He is a member of the IEEE.

Lihao Xu received the BSc and MSc degrees in
electrical engineering from Shanghai Jiao Tong
University, China, in 1988 and 1991, respec-
tively, and the PhD degree in electrical engineer-
ing from the California Institute of Technology in
1999. He has been an associate professor of
computer science at Wayne State University,
Detroit, Michigan, since August 2005. He was an
associate professor in July 2005 and an assis-
tant professor from September 1999 to June

2005 with the Department of Computer Science at Washington
University, St. Louis, Missouri. From 1991 to 1994, he was a lecturer
in the Electrical Engineering Department at Shanghai Jiao Tong
University. His current research interests include distributed computing
and storage systems, error-correcting codes, information theory, and
data security. He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

HUANG AND XU: STAR: AN EFFICIENT CODING SCHEME FOR CORRECTING TRIPLE STORAGE NODE FAILURES 901

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

