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ABSTRACT
Since the link structure of the web is an important element
in ranking systems on search engines, web spammers widely
use the link structure of the web to increase the rank of
their pages. Various link-based features of web pages have
been introduced and have proven effective at identifying link
spam. One particularly successful family of features (as de-
scribed in the SpamRank algorithm), is based on examining
the sets of pages that contribute most to the PageRank of a
given vertex, called supporting sets. In a recent paper, the
current authors described an algorithm for efficiently com-
puting, for a single specified vertex, an approximation of
its supporting sets. In this paper, we describe several link-
based spam-detection features, both supervised and unsu-
pervised, that can be derived from these approximate sup-
porting sets. In particular, we examine the size of a node’s
supporting sets and the approximate l2 norm of the PageR-
ank contributions from other nodes. As a supervised feature,
we examine the composition of a node’s supporting sets. We
perform experiments on two labeled real data sets to demon-
strate the effectiveness of these features for spam detection,
and demonstrate that these features can be computed ef-
ficiently. Furthermore, we design a variation of PageRank
(called Robust PageRank) that incorporates some of these
features into its ranking, argue that this variation is more
robust against link spam engineering, and give an algorithm
for approximating Robust PageRank.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
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models; I.2.6 [Learning]: Concept learning; G.2.2 [Graph
Theory]: Graph labeling

General Terms
Theory, algorithms, performance

Keywords
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1. INTRODUCTION
Web spam refers to attempts to increase the ranking of a

web page by manipulating the content of a page and the link
structure around a page. Web spam can decrease the quality
of search results substantially, as well as increasing the cost
of crawling, indexing, and storage in the search engine. As
a result, identifying web spam is one of the top challenges
in web search engines [11].

There are numerous approaches for detecting web spam,
which may be based on web page content, link structure,
or a combination of these. Successful techniques include the
application of machine learning techniques to link-based fea-
tures [2], the analysis of page content [14, 13], TrustRank [9]
and Anti-TrustRank [15], statistical analysis of various page
features [6], and transductive link spam detection [18]. One
successful technique for spam detection has been to identify
the sets of nodes that contribute the most to the PageRank
of a node. Intuitively, this information is useful because a
spam page may receive fairly large contributions from a rel-
atively small number of pages in an engineered link farm,
without receiving the same number of small contributions
as a legitimate popular page. The analysis of supporting
sets and PageRank contributions has been used as a tool for
spam detection in the SpamRank algorithm of Benczur et
al. [3], in the Spam Mass algorithm of Gyongyi et al. [8], and
in recent work by Zhou [17].

The notion of supporting sets can be made precise by rig-
orously defining the contribution that a node u makes to the
PageRank of a vertex v in terms of personalized PageRank.
For a webgraph G = (V,E) and a teleportation constant
α (sometimes called the restart probability), let PRMα be
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the matrix whose uth row is the personalized PageRank vec-
tor of u. The PageRank contribution of u to v, written
prα(u → v), is defined to be the entry (u, v) of this ma-
trix. The PageRank of a vertex v is the sum of the vth

column of the matrix PRMα, and thus the PageRank of a
vertex can be viewed as the sum of the contributions from
all other vertices. The contribution vector of v is defined
to be the vth column of the matrix PRMα, whose entries
are the contributions of every vertex to the PageRank of
v. The δ-supporting set of a vertex is defined to be the set
of vertices that contribute to v at least a δ-fraction of the
PageRank of the vertex v.

In a recent paper, the current authors introduced an al-
gorithm for approximating the contribution vector and sup-
porting sets for a single specified vertex [1]. This algorithm
can produce a reasonable approximation of the contribu-
tion vector for a specified vertex, while adaptively examin-
ing only a small number of vertices near the vertex. This is
analogous to the way that a single personalized PageRank
vector can be approximated efficiently by examining only a
small portion of the input graph (see for example [7, 12,
4, 16]). This is different from the methods used to compute
contribution vectors in existing spam detection algorithms
(for example [3]), where one computes an approximation
of each personalized PageRank vector in the graph, makes
these vectors the columns of an approximate PageRank ma-
trix, and then takes the approximate contribution vectors to
be the columns of the transposed matrix.

In this paper, we define several spam-detection features
based on locally computed approximate supporting sets. We
use these features for both supervised and unsupervised learn-
ing approaches for spam detection. For supervised learning,
we use some prelabeled data to discover the labels of the un-
labeled nodes. In particular, we examine the composition of
labels of a node’s supporting sets to predict its spam score.
For unsupervised learning, we define several features based
on characteristics of a node’s supporting set. For example,
we examine the size of a node’s supporting sets, and the ap-
proximate l2 norm of the PageRank contributions from other
nodes. We perform experiments on a benchmark spam de-
tection data set that demonstrate the effectiveness of these
features for spam detection, and perform experiments on a
larger domain graph dataset to study the computational cost
of computing these features.

Finally, we define a variation of PageRank called Robust
PageRank, which we argue is more robust against link spam
engineering. In Robust PageRank, each vertex is allowed
to contribute at most a certain amount to the PageRank of
another node. We show that Robust PageRank can be ap-
proximated efficiently by combining PageRank with several
of the features we consider. This ranking system is related to
the Truncated PageRank algorithm studied by [2], in which
the contribution from nodes of distance less than d is ig-
nored. Since a node at a larger distance may contribute
more to the PageRank of a given node than a nearby node,
robust PageRank can be viewed as a refinement of Trun-
cated PageRank.

Organization.
This paper will be organized as follows. In Section 2, we

review necessary background, including PageRank, person-
alized PageRank, PageRank contribution vectors, and the
algorithm for computing the supporting sets of a specified

vertex that was given in [1]. In Section 4, we define several
locally computable spam detection features. In Section 5,
we present experimental results on two real data sets. In
Section 6, we define a refined notion of PageRank that we
call the Robust PageRank. We describe an algorithm for ap-
proximating Robust PageRank, and give some experimental
results to justify the use of Robust PageRank.

2. PRELIMINARIES
In this section we explain the algorithmic tools used in our

experiments. In particular, we describe as briefly as possible
(without proofs or analysis) the algorithm for approximating
PageRank contribution vectors that appeared in [1].

The web can be modeled by a directed graph G = (V,E)
where V are web pages and a directed edge (u → v) ∈ E
represents a hyperlink in u that references v. To deal with
the problem of dangling nodes with no out-edges, we assume
an artificial node with a single self-loop has been added to
the graph, and an edge has been added from each dangling
node to this artificial node. Let A denote the adjacency
matrix of G. For each u ∈ V , let dout(u) denote the out-
degree of u and let din(u) denote the in-degree of u. Let
Dout be the diagonal matrix of out-degrees.

We will now define PageRank vectors and contribution
vectors. For convenience, we will view all vectors as row
vectors, unless explicitly stated otherwise.

For a teleportation constant α, the PageRank vector prα
defined by Brin and Page [5] satisfies the following equation:

prα = α · 1 + (1− α) · prα ·M, (1)

where M is the random walk transition matrix given by
M = D−1

outA and 1 is the row vector of all 1’s (always of
proper size). The PageRank of a page u is then prα(u).
When there is no danger of confusion, we may drop the
subscript α. Note that the above definition corresponds to
the normalization

∑
u prα(u) = |V |.

Similarly, the personalized PageRank vector ppr(α, u) of
a page u ∈ V , defined by Haveliwala [10], satisfies the fol-
lowing equation.

ppr(α, u) = α · eu + (1− α) · ppr(α, u) ·M, (2)

where eu is the row vector whose uth entry is equal to 1.
Let PRMα denote the matrix whose uth row is the per-

sonalized PageRank vector ppr(α, u). The (global) PageR-
ank vector prα is then 1 · PRMα, the sum of all the per-
sonalized PageRank vectors. The PageRank contribution of
u to v is defined to be the (u, v)th entry of PRMα, and will
be written pprα(u→ v). The contribution vector cpr(α, v)
for the vertex v is defined to be the row vector whose trans-
pose is the vth column of PRMα. If c = cpr(α, v) is the
contribution vector for v, then we denote by c(S) the total
contribution of the vertices in S to the PageRank of v. In
particular, we have c(V ) = prα(v) and c(u) = pprα(u→ v).

3. LOCAL APPROXIMATION OF CONTRI-
BUTION VECTORS

In this section, we present an algorithm for computing an
approximation of the contribution vector c = cpr(α, v) of a
vertex v. We will derive spam detection features from these
approximate contribution vectors.

Definition 1. A vector c̃ is an ε-absolute-approximation of
the contribution vector c = cpr(α, v) if c̃ ≥ 0 and, for all
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vertices u,

c(u)− ε ≤ c̃(u) ≤ c(u).

The support of a non-negative vector c̃, denoted Supp(c̃),
is the set of all vertices whose entries in c̃ are strictly posi-
tive. The vector c has a canonical ε-absolute-approximation.
Let c̄ denote the vector

c̄(u) =

{
c(u) if c(u) > ε

0 otherwise .

Clearly, c̄ is the ε-absolute-approximation of c with the
smallest support. Moreover, ‖c̄‖1 ≤ ‖c‖1 and therefore
|Supp(c̄)| ≤ ‖c‖1/ε. Our local algorithm attempts to find
an approximation c̃ of c which has a similar support struc-
ture to that of c̄.

The theorem below describes ApproxContrib, our algo-
rithm for computing an ε-absolute-approximation of the con-
tribution vector of a target vertex v.

We give an upper bound on the number of vertices ex-
amined by the algorithm that depends on prα(v), ε, and
α, but is otherwise independent of the number of vertices
in the graph. The algorithm performs a sequence of oper-
ations, which we call pushback operations. Each pushback
operation is performed on a single vertex of the graph, and
requires time proportional to the in-degree of that vertex.
We place an upper bound on the number of pushback op-
erations performed by the algorithm, rather than the total
running time of the algorithm. The total running time of
the algorithm depends on the in-degrees of the sequence of
vertices on which the pushback operations were performed.
The number of pushback operations is an upper bound on
the number of vertices in the support of the resulting ap-
proximate contribution vector.

Theorem 1. The algorithm ApproxContrib(v, α, ε) has
the following properties. The input is a vertex v and two
constants α and ε in the interval (0, 1]. The algorithm com-
putes a vector c̃ such that 0 ≤ c̃ ≤ c, and c̃ is an ε-absolute
approximation of cpr(α, v). The number of pushback oper-
ations performed by the algorithm is at most 1 + prα(v)/αε.

The algorithm and its analysis are described in [1]. In
this paper, we will treat the algorithm as a black box for
efficiently computing approximate contribution vectors for
specified vertices. In the following section, we describe spam
detection features that can be derived from these approxi-
mate contribution vectors.

4. LOCALLY COMPUTABLE FEATURES
In this section, we formally define our locally computable

spam detection features. We mainly use the local algorithm
for approximating contribution vectors to compute approxi-
mate supporting sets, sets of vertices that contribute signif-
icantly to the PageRank of a target vertex. First we define
approximate contributing sets that are useful in the defini-
tion of most of our features.

4.1 Approximate contributing sets
We can use the algorithm for computing approximate con-

tribution vectors to compute an approximation of the set of
vertices that are significant contributors to the PageRank
of v. Given a vertex v, we define the following contributing
sets.

• δ-significant contributing set: The set

Sδ(v) = {u | pprα(u→ v) > δ · prα(v)}.

• ρ-supporting set: any set S of pages such that

pprα(S → v) ≥ ρ · prα(v).

4.2 Unsupervised learning features
We define several features that are only based on the link

structure and are not based on any labeled data. We show
that these features can be computed locally and show exper-
imental results for their performance. Here is a list of our
locally computable features:

1. Size of δ-significant contributing set. For a node
v, this feature is simply |Sδ(v)| = |{u | pprα(u→ v) >
δ·prα(v)}|. We expect to observe that the contribution
set of spam nodes is significantly smaller than the size
of contribution set of non-spam nodes.

2. Contribution from vertices in the δ-significant
contributing set. This feature for node v is equal to∑
u∈Sδ(v)

pprα(u→v)
prα(v)

.

3. l2 norm of δ-significant contributing vector. This

feature for node v is equal to
∑
u∈Sδ(v)

(
pprα(u→v)

prα(v)

)2

.

The special case of this vector with δ = 0 is denoted

by L2Norm, and is equal to
∑
u∈V (G)

(
pprα(u→v)

prα(v)

)2

.

As a base for comparison, we also report the performance
of some simple unsupervised features as follows:

1. The indegree of each node (Indegree).

2. The ratio of the PageRank of a node and its indegree
(PRIndegree).

4.3 Approximate computation of features
We can use the algorithm for computing approximate con-

tribution vectors to compute approximations of these spam
detection features. To compute approximate versions of the
features with parameter δ, we will compute an ε-approximate
contribution vector c̃ with ε = δ · prv. We let S̃δ be the set
of vertices with value at least δ · prv in the vector c̃.

The set S̃δ can be computed using 1/αδ+ 1 pushback op-
erations, from Theorem 1. This set provides a good approxi-
mation to the set of vertices that are significant contributors
to the PageRank of v, in the sense that S2δ ⊆ S̃δ ⊆ Sδ. We
define the following approximate features.

1. (Approximate) size of the δ-significant contribut-
ing set (SuppSizeDelta). To approximate this feature
for a node v, we compute

|S̃δ| = |{u | c̃(u) > δ · prα(v)}|.

2. (Approximate) contribution from δ-significant
contributing set (ContributePercent). For a node v,
we compute ∑

u∈S̃δ

c̃(u)

prα(v)
.
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3. (Approximate) l2 norm of contribution vector
(L2NormDelta). For a node v, we compute∑

u∈V (G)

(
c̃(u)

prα(v)

)2

.

4.4 Supervised learning features
In supervised learning, we use a set of already labeled

nodes and predict the label of unlabeled nodes. As before,
we compute an approximation c̃, and let S̃δ(v) be the ap-

proximate supporting set. We let T̃δ(v) be the set of nodes

in S̃δ(v) that are labeled as spam. Here is a list of our locally
computable supervised learning features:

1. Fraction of nodes in the supporting set labeled
as spam (SupervisedUnweighted). For a node v, Then

this feature is equal to |T̃δ(v)|/|S̃δ(v)|.

2. Contribution from nodes in the supporting set
labeled as spam (SupervisedWeighted). For a node v,
this feature is equal to

∑
u∈T̃δ(v) c̃(u)/

∑
u∈S̃δ(v) c̃(u),

the (approximate) contribution from nodes in the sup-
porting set labeled as spam, divided by the (approx-
imate) contribution from all nodes in the supporting
set.

We remark that the feature (SupervisedWeighted) is es-
sentially an approximation of the feature obtained by com-
puting PageRank with the starting vector set to be 1 on the
nodes labeled as spam. Ideas similar to this feature has been
considered before as a way of propagating spam scores, for
example in the Spam Mass algorithm [8]. Here, the novelty
is that the value of the feature may be efficiently computed
for a single specified vertex.

As a base for comparison, we also report the performance
of the following simple supervised feature:

1. (SupervisedIndegree) The ratio between the number of
spam nodes in the incoming neighbors of a node and
the indegree.

5. EVALUATION OF FEATURES
In this section, we describe our experimental results along

with some observations about the two real data sets that we
used for spam detection.

5.1 Data Sets
The main data set on which we evaluate the performance

of our features is a part of th UK host graph studied by Bec-
chetti et al. [2] (UKhost). This graph has 11402 nodes and
average degree of 65. Almost half of nodes of this graph is
human-labeled for spam and non-spam nodes. As reported
by Becchetti et al. [2], 5750 of the hosts have been labeled
manually. For each host, they inspected a few pages manu-
ally and marked it as spam if they found a link farm inside
the host. As a result, 674 hosts are marked as spam, and
4947 hosts are marked as normal hosts.

For the purpose of evaluating the running time of our al-
gorithms, we also run our algorithm on a second larger data
set that is part of the domain graph created by MSN search
in May of 2006 (MSNdom). This domain graph has around
55 million nodes and around 600 million links. The largest
strongly connected component has around 13 million and

400 thousand nodes, and the largest connected component
of the underlying undirected graph has around 44 million
nodes. It is interesting to observe that among nodes that are
not in the strongly connected component 21 million nodes
have a directed path from the large strongly connected com-
ponent, and around 6 million and 500 thousand nodes have
a directed path to the large strongly connected component.
The large number of nodes that are not in the strongly con-
nected component indicate that many domains not in the
strongly connected component manage to get a link from a
node in this component.

5.2 Running Time
We run the local algorithm for finding the δ-significant

contributing set on a set of high PageRank nodes on both
of the data sets. For the UK host graph, we run the al-
gorithm for the 24% highest PageRank nodes in the graph
(i.e., around 2800 nodes). For the MSN domain graph, we
run the algorithm for 5000 nodes randomly chosen from the
10% high PageRank nodes. In Table 1, we report the av-
erage size of the δ-significant contributing sets, the average
number of pushback operations, and the average number of
total operations performed by the local algorithm for these
data sets.

For a given δ, the theoretical bound for the number of
pushback operations is O( 1

αδ
). The total running time of

the algorithm is also related to the sum of the indegree of
the nodes from which we perform a pushback operation. For
both of our data sets, we observe that the number of push-
back operations is in fact much smaller than the worst case
theoretical bound. We also note that for the larger MSN do-
main graph, the local algorithm has a better running time.

5.3 Experimental Results
In this section, we report the performance of our features

on the UK data set. Since the problem of spam detection
is more critical and important for high PageRank nodes,
we evaluate the features only on a set of nodes with high
PageRank scores. In particular, we take the 24% of the
nodes with the highest PageRank to call the“high PageRank
nodes”.

Let spam be the set of high PageRank labeled spam nodes,
and nonspam be the set of high PageRank labeled nonspam
nodes. Based on each feature f , we define a classifier that re-
ports a subset of nodes as spam and the rest of nodes as non-
spam. This classifier works based on a threshold thresholdf
as follows: all nodes v for which f(v) ≤ thresholdf are in
one class and the rest of nodes are in the other class. For
each feature f , let reportedspam be the set of high PageRank
nodes reported as spam. For each feature f , we consider the
following parameters:

1. Average value (f̄). This parameter is equal to the
average value this feature on a set of high PageRank
nodes. For the UK host graph we take the average
over the 24% high PageRank nodes.

2. Average value on spam (f̄(spam)). This parameter
is equal to the average value this feature on a set of
high PageRank spam nodes.

3. Average value on non-spam (f̄(nonspam)). This
parameter is equal to the average value this feature on
a set of high PageRank non-spam nodes.
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4. Percentage of false positives (FalsePos). This met-
ric is equal to the percentage of nonspam nodes that
are reported as spam over the whole number of non-
spam nodes, nonspam∩reportedspam

nonspam
.

5. Percentage of false negatives or Recall (Rec).
This metric is equal to the percentage of spam nodes
that are reported as spam over the whole number of
spam nodes, spam∩reportedspam

spam
.

6. Precision (Prec). This metric is equal to the per-
centage of spam nodes among the total number of
reported spam nodes over the total number of spam
and nonspam nodes that are reported as spam nodes,

spam∩reportedspam
(nonspam∪spam)∩reportedspam

.

A better feature has a smaller FalsePos and larger Rec
and Prec. In particular, as verifying if a node is spam or
not is very costly, we do not want to report many non-
spam nodes as spam. It is also clear that there is a tradeoff
among these parameters. As a result, for each feature f ,
we set the threshold thresholdf for the classifier such that
the parameter FalsePos is bounded above by 5% (or 2%).
If smaller FalsePos is desirable, we also report a percentile
chart for a subset of features by which one can figure out
the threshold thresholdf that results to a better FalsePos.
In each percentile chart, we sort the feature for nodes, and
divide all the high PageRank nodes into 10 classes with the
same number of nodes, and report the number of spam, non-
spam, and unlabeled nodes in each class. The unsupervised
learning experimental results on the UK graph are summa-
rized in table 2. We also report the performance of the base
features Indegree and PRIndegree. Percentile charts for fea-
tures SuppSizeDelta and ContributePercent for δ = 10−4, and
SuppSizeDelta and L2NormDelta for δ = 10−5 is depicted in
Figures 1,2,4, and 3. As we expect, the supervised learn-
ing features perform slightly better than the unsupervised
learning approaches. The results of all supervised learning
features are summarized in Table 3.

5.4 Observations
In this section, we summarize some of our observations

about the experimental results. For each locally computable
feature with a parameter δ, the running time of the algo-
rithm depends on the number of pushback operations or
the size of the δ-significant contribution set. For the UK
host graph, the size of δ-significant contribution set for δ =
10−2, 10−3, 10−4, and 10−5 are around 4, 25, 305, and 5700,
respectively, for high PageRank nodes. Among the stud-
ied unsupervised learning features the size of supporting set
SuppSizeDelta and ContributePercent perform the best. The
performance of L2NormDelta feature is reasonable but signif-
icantly worse than the former two features. These features
outperform the base unsupervised learning features Indegree,
and PRIndegree significantly. For δ = 10−4 for which the
size of the supporting set is very small (around 300), the
best unsupervised learning feature is ContributePercent. In-
terestingly, the performance of these unsupervised learning
features is slightly better than the base supervised learn-
ing feature SupervisedIndegree. As expected, the supervised
learning feature SupervisedUnweighted perform slightly bet-
ter than all of the unsupervised learning features. Finally,
we note that for all the above features, the performance of
the feature increase as the parameter δ decreases.

Finally, we observe that the unsupervised link spam de-
tection methods developed here are only useful for spam
detection over high PageRank nodes. In fact, we performed
some experiments for all nodes of the graph, and the results
are much worse than the results presented in this paper for
high PageRank nodes. For example, by setting the param-
eter FalsePos to 0.02 and 0.05 respectively, the parameter
Rec changes from 0.10 to 0.23, and from 0.05 to 0.15. As
a result, we do not report these numbers, and emphasize
that the application of these features are in detecting spam-
miness of high PageRank nodes. Note that the link spam
detection problem is more crucial for high PageRank nodes
as they may appear in the top positions in answering queries.
The intuition behind the bad performance of these features
for low PageRank nodes is that the link structure around
many low PageRank nodes is not rich enough to imply any
information about the spamminess of these nodes.

6. ROBUST PAGERANK
In this section, using the ideas of contribution sets, we

design a ranking system, called the Robust PageRank, as a
refinement to the PageRank algorithm. This system is more
reliable against link spam in that the link spammers should
invest more in buying new domains to increase the rank of
a node in this system. We will support this claim by some
experimental results.

The PageRank of a node v can be written as the sum of
contribution of other nodes to v. Formally,

prα(v) =
∑

u∈V (G)

ppr(u, v).

The idea behind robust PageRank is to decrease the effect
of the most influential nodes on the PageRank of a node to
make the ranking system more robust against link spam en-
gineering. By decreasing the effect of a link spammer who
gets the main portion of his PageRank from a link farm
around him (and not from a variety of many nodes), we ex-
pect that the link spammer lose a large portion of his PageR-
ank. This idea leads to the following definition of Robust
PageRank. This can be done by decreasing the contribution
of nodes with a contribution more than a threshold δ to δ.
Formally, for a threshold δ, we define the robust PageRank
of a vertex v, Robustprδα(v), as follows:

Robustprδα(v) =
∑

u∈V (G)

min(ppr(u, v), δ).

Since we decrease the contribution of a few most influ-
ential nodes to the PageRank of a node, we decrease the
PageRank of spam nodes more than the nonspam nodes.
This will make the new ranking system more robust. We
next describe how to approximate the robust PageRank of
nodes by computing approximate contribution vectors, and
then give some experimental evidence on a data set to sup-
port our claim.

We compute an approximation of the Robust PageRank in
the following way. First, we can rewrite the Robust PageR-
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ank as follows.

Robustprδα(v) =
∑

u∈V (G)

min(ppr(u, v), δ)

=
∑

u∈V (G)

ppr(u, v)−
∑

u∈Sδ(v)

(ppr(u, v)− δ)

= prα(v)−
∑

u∈Sδ(v)

ppr(u, v)− δ|Sδ(v)|.

To compute an approximation of the Robust PageRank
for a given vertex v, we compute an approximate contri-
bution vector c̃ for v with error ε = δprα(v), and replace
the PageRank contributions ppr(u, v) by the approximate
contributions c̃(u). We then define the following approxi-
mate notion of Robust PageRank, ApproxRobustprδα(v) =

prα(v)−
∑
u∈S̃δ(v) c̃(u)− δ|S̃δ(v)|.

6.1 Experiments with Robust PageRank
Figures 7 and 8 depict the percentile chart of PageRank

and robust PageRank of the 24% highest PageRank nodes of
the UK host graph ordered in the decreasing order of their
PageRank. By comparing these two percentile charts, it is
clear that a big portion of spam nodes are pushed to lower
ranks in the robust PageRank system.

In order to complement the above charts and give more
quantitative evidence to support our claim about the effec-
tiveness of robust PageRank compared to the PageRank vec-
tor, we also evaluate the ratio between the robust PageRank
and PageRank of nodes and use it as a feature, denoted by
NormalizedRobustPR. For a node v this feature is formally

NormalizedRobustPR =
ApproxRobustprδα(v)

prα(v)
.

As an evidence for the performance of robust PageRank,
we show that this feature results in a good classifier for spam
detection. The metrics for this classifier is reported in Ta-
ble 4. The results show that that the decrease in robust
PageRank compared to PageRank is significantly more for
spam nodes. Despite the other studied features, the quality
of this feature does not increase as we decrease δ. In par-
ticular, the quality of this feature is the best for δ = 10−3.
For this δ = 10−3, this feature outperforms all the previous
unsupervised and supervised learning approaches.

7. CONCLUSIONS
In this paper, we explore a set of features for link spam

detection that can be computed locally by approximating
PageRank contribution vectors. Most of the features have
a parameter δ for the desired approximation factor of the
contribution set. In order to find an appropriate tradeoff
between the running time of the algorithm and the perfor-
mance of the spam detection features, a suitable parameter
δ should be computed based on the data set. Among the un-
supervised learning features, the features ContributePercent,
NormalizedRobustPR, and SuppSizeDelta perform quite well
for spam detection. For the UK host graph, among unsu-
pervised features, the feature NormalizedRobustPR performs
the best for δ = 10−3, and the feature ContributePercent
performs the best for δ = 10−4. In particular, these fea-
tures perform even better than the supervised learning fea-
ture SupervisedIndegree. The supervised learning feature

SupervisedUnweighted has the best performance among all
features.
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Data Set δ Size of δ-Supp Set #Operations #Pushbacks Theory Bound

UKhost 10−2 4.08 2589 61 1.3× 104

UKhost 10−3 25.89 32665 576 1.3× 105

UKhost 10−4 305.87 1071449 11115 1.3× 106

UKhost 10−5 5737.99 29800925 313649 1.3× 107

MSNdom 10−2 5.15 618 25 1.3× 104

MSNdom 10−3 28.54 6714 190 1.3× 105

MSNdom 10−4 197.75 67715 1682 1.3× 106

MSNdom 10−5 1747.38 692614 17410 1.3× 107

MSNdom 10−6 18672.24 9141900 241879 1.3× 108

Table 1: Running Time for two data sets.

Feature Rec1 Prec1 Rec2 Prec2 f̄ f̄(spam) f̄(nonspam)
Indegree 0.23 0.51 0.56 0.50 197.98 34.07 251.86

PRIndegree 0.19 0.48 0.50 0.47 0.03 0.08 0.02

SuppSizeDelta,δ = 10−2 0.61 0.72 0.70 0.55 4.08 11.13 2.18

SuppSizeDelta,δ = 10−3 0.20 0.46 0.21 0.27 25.89 29.55 21.98

SuppSizeDelta,δ = 10−4 0.30 0.56 0.92 0.62 305.87 82.86 364.29

SuppSizeDelta,δ = 10−5 0.22 0.49 0.97 0.63 5737.99 281.27 7321.71

ContributePercent,δ = 10−2 0.20 0.47 0.7 0.58 0.20 0.50 0.11

ContributePercent,δ = 10−3 0.32 0.58 0.95 0.63 0.29 0.69 0.17

ContributePercent,δ = 10−4 0.27 0.54 0.94 0.62 0.37 0.72 0.26

ContributePercent,δ = 10−5 0.32 0.58 0.97 0.63 0.70 0.73 0.69

L2NormDelta,δ = 10−2 0.18 0.44 0.64 0.05 0.02 0.05 0.01

L2NormDelta,δ = 10−3 0.17 0.43 0.72 0.56 0.02 0.06 0.01

L2NormDelta,δ = 10−4 0.17 0.43 0.72 0.56 0.02 0.06 0.01

L2NormDelta,δ = 10−5 0.17 0.43 0.72 0.564 0.02 0.06 0.01

L2Norm 0.17 0.43 0.72 0.56 0.11 0.22 0.08

Table 2: Performance of unsupervised learning features. Rec1 and Prec1 correspond to FalsePos = 0.02, and Rec2

and Prec2 correspond to FalsePos = 0.05.

Feature Rec1 Prec1 Rec2 Prec2 f f̄(spam) f̄(nonspam)
SupervisedIndegree 0.670 0.745 0.927 0.623 0.097 0.280 0.051

SupervisedUnweighted,δ = 10−2 0.090 0.275 0.110 0.164 0.051 0.318 0.009

SupervisedUnweighted,δ = 10−3 0.802 0.792 0.899 0.616 0.067 0.305 0.019

SupervisedUnweighted,δ = 10−4 0.841 0.811 0.963 0.633 0.069 0.233 0.025

SupervisedUnweighted,δ = 10−5 0.852 0.826 0.991 0.639 0.078 0.211 0.044

SupervisedWeighted,δ = 10−2 0.083 0.265 0.110 0.164 0.049 0.417 0.005

SupervisedWeighted,δ = 10−3 0.771 0.771 0.826 0.596 0.054 0.409 0.010

SupervisedWeighted,δ = 10−4 0.807 0.779 0.862 0.606 0.050 0.243 0.015

SupervisedWeighted,δ = 10−5 0.853 0.788 0.881 0.611 0.057 0.243 0.024

Table 3: Performance of supervised learning features. Rec1 and Prec1 correspond to FalsePos = 0.02, and Rec2

and Prec2 correspond to FalsePos = 0.05.

Feature Rec1 Prec1 Rec2 Prec2 f f̄(spam) f̄(nonspam)

NormalizedRobustPR, δ = 10−2 0.438 0.375 0.743 0.570 0.839 0.605 0.908

NormalizedRobustPR, δ = 10−3 0.853 0.695 0.963 0.633 0.730 0.333 0.851

NormalizedRobustPR, δ = 10−4 0.819 0.510 0.954 0.630 0.655 0.280 0.774

NormalizedRobustPR, δ = 10−5 0.789 0.510 0.945 0.628 0.352 0.265 0.376

Table 4: Performance of the feature NormalizedRobustPR. Rec1 and Prec1 correspond to FalsePos = 0.02, and Rec2

and Prec2 correspond to FalsePos = 0.05.
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Figure 1: The percentile chart of feature
SuppSizeDelta with δ = 10−4 ordered in the increas-
ing order.
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Figure 2: The percentile chart of feature
ContributePercent with δ = 10−4 ordered in the in-
creasing order.
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Figure 3: The percentile chart of the base fea-
ture ContributePercent with δ = 10−5 ordered in the
increasing order.
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Figure 4: The percentile chart of feature
L2NormDelta with δ = 10−4 ordered in the increas-
ing order.
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Figure 5: The percentile chart of
SupervisedUnweighted with δ = 10−4.
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Figure 6: The percentile chart of SupervisedIndegree
with δ = 10−4.
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Figure 7: The percentile chart of PageRank vec-
tor ordered in the decreasing order.
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Figure 8: The percentile chart of robust PageR-
ank vector with δ = 10−5 ordered in the decreasing
order.
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