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Abstract 

We describe how we selectively reformulate 
portions of a belief network that pose difficul­
ties for solution with a stochastic-simulation 
algorithm. With employ the selective con· 
ditioning approach to target specific nodes 
in a belief network for decomposition, based 
on the contribution the nodes make to the 
tractability of stochastic simulation. We re­
view previous work on BNRAS algorithms­
randomized approximation algorithms for 
probabilistic inference. We show how selec­
tive conditioning can be employed to refor­
mulate a single BNRAS problem into multiple 
tractable BNRAS simulation problems. We 
discuss how we can use another simulation 
algorithm-logic sampling-to solve a com­
ponent of the inference problem that provides 
a means for knitting the solutions of individ­
ual subproblems into a final result. Finally, 
we analyze tradeoffs among the computa­
tional subtasks associated with the selective­
conditioning approach to reformulation. 

. 1 INTRODUCTION 

We have developed a method for identifying and refor­
mulating variables in a belief network to maximize the 
efficiency of probablistic inference with a stochastic­
simulation algorithm. The approach is based on the se­
lection of nodes for decomposition through condition­
ing by considering how the decomposition will affect 
inference efficiency. Although we focus on simulation­
based inference with belief networks, we believe our 
approach has application to the solution of other diffi­
cult computational problems by providing a method­
ology for intelligently decomposing the most difficult 
components of a problem instance, and for directing 
subproblems to the most suitable solution procedures. 

We shall first describe BNRAS algorithms for proba­
bilistic inference. These include the BNRAS algorithm 
by Chavez and Cooper [3, 2], 'D-BNRAS by Dagum and 

Chavez [6], and CS-BNRAS by Dagum et al. [9]. We 
shall discuss how we can parameterize the runtime of 
these algorithms in terms of a parameter 'D, a func­
tion of the dependency structure and the conditional 
probabilities of a belief network. We shall then show 
how we can decrease the maximal V associated with 
a belief network by targeting nodes of a network that 
contribute significantly to the value of 'D for decompo­
sition through conditioning. 

Selective conditioning decomposes complex portions 
of a belief network into subproblems that can be 
solved efficiently with BNRAS algorithms. Solving the 
global inference problem requires taking a weighted 
sum of the results of the subproblem inferences. Thus, 
the final solution requires a method for computing 
the weights on each subproblem. Although infer­
ence within subproblems is amenable to approxima­
tion with BNRAS, the algorithm cannot be used to effi­
ciently compute the weights on subproblems. We show 
that the weights are ideally suited for efficient approx­
imation by a different simulation algorithm: we apply 
a modification of Henrion's logic sampling [15) for this 
task. Our modification of logic sampling employs a 
Dirichlet stopping rule [8] that allows us to generate 
the needed probability distribution over conditioned 
nodes in optimal time . 

2 RELATED WORK 

The method of conditioning was introduced by Pearl 
for decomposing multiply connected belief networks 
into a set of singly connected belief network problems 
through identification of the cutset [20). In our work, 
we do not seek to identify and instantiate a cutset to 
completely decompose a multiply connected network. 
Rather we employ selective conditioning to identify 
portions of a belief network which pose the most diffi­
cult problems to solution with a simulation algorithm. 
Through selective conditioning, we compose a refor­
mulation search space of subsets of multiply connected 
nodes, and seek to choose a set of nodes to decompose 
the network most effectively. 

In related work on reformulation, Cooper and Chin 
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have examined the reformulation of a belief network 
through Bayesian arc-reversal in an attempt to eradi­
cate small-valued conditional probabilities in the net­
work (4]. Breese and Horvitz examined the ideal trade­
off in reformulation versus solution-execution effort in 
searching for cutsets for application of the method of 
conditioning [1]. In other work, Horvitz posed the 
use of selective conditioning as a. means for topologi­
cally editing belief network-problem instances into sets 
of singly and multiply connected belief-network sub­
problems for analysis by combinations of algorithms, 
each best suited to the alternative subproblems [16]. 
Horvitz et al. employed the principles of cutset condi­
tioning to develop a flexible inference algorithm that 
allows for varying amounts of incompleteness in con­
ditioning [17]. Suermondt et al. describe the value of 
combining conditioning with the clique-tree method­
ology of Lauritzen and Spiegelhalter [18] for solving 
problems with special nodes (e.g., disease nodes in 
medical belief networks) that play a role of primary 
causation, as ancestor to almost all other nodes in the 
belief network [22]. 

3 RANDOMIZED 
APPROXIMATION SCHEMES 

We shall use B to denote a binary-valued belief net­
work on n nodes {Xt. ... ,Xn}· For any node Xi. and 
parents ux;, a belief network specifies a conditional 
probability function Pr[X;IuxJ The full joint prob­
ability distribution specified by a belief network can 
be calculated by taking the product of the conditional 
probabilities. Thus, 

n 

Pr[Xt, ... , Xn] =II Pr[Xdux.J. 
i=l 

Probabilistic inference in belief networks refers to the 
computation of Pr[X = xlE], for some set of nodes X 
instantiated to x and conditioned on evidence E. 

Randomized approximation schemes (RAS) for prob­
abilistic inference [3, 6] are a class of stochastic­
simulation algorithms. Simulation procedures for in­
ference estimate the value of an exact result by deter­
mining the fraction of successes of a Bernoulli process. 
Let ¢ denote the value of Pr[X = xlE]. Stochastic 
simulation algorithms for probabilistic inference pro­
vide an estimate JJ of ¢. Beyond randomized approx­
imation schemes, simulation algorithms include logic 
sampling [15], straight simulation [19], and likelihood 
weighting [21, 13]. 

A simulation algorithm is a randomized approximation 
scheme if, on input parameters f and 6, the algorithm 
outputs an estimate JJ that satisfies 

(1) 

4 RAS ALGORI THMS FOR 
INFERENCE 

The BNRAS algorithms, including BNRAS, V-BNRAS, 
and cs-BNRAS, represent a family of algorithms that 
provide approximations to probabilistic inferences sat­
isfying Equation 1. The operation of BNRAS algo­
rithms can be decoupled into a trial-generation phase 
and a scoring phase. The trial-generation phase gener­
ates belief network instantiations consistent with the 
observed evidence. Thus, for unobserved nodes Z and 
evidence E, the instantiation Z = z is generated with 
probability Pr[Z = z]E]. If we desire to approximate 
the inference Pr(X = x]E], the scoring phase com­
putes the fraction of trials that produce instantiations 
consistent with the inference Pr[X = x]E]. 

Dagum and Chavez showed that the efficiency of BN­
RAS algorithms is independent of the inference query, 
but is critically dependent on the efficiency of the trial­
generation phase [6]. In addition they showed that the 
efficiency of the trial-generation phase depends on the 
dependence value, an easily computable quantity of the 
belief network. 

5 DEPENDENCE VALUE OF 
BELIEF NETWORKS 

Dagum and Chavez (6], parameterize belief networks 
by their dependence value, VE � 1. The dependence 
value of a belief network depends on the evidence E 
that has been observed. The dependence value pro­
vides a measure of the cumulative strength of the 
dependencies among nodes in a belief network that 
are encoded by the conditional probabilities associated 
with each node. 

For each node X;, we define l; and u; as the greatest 
and smallest numbers, respectively, such that, for in­
stantiation x; of X;, and for all instantiations of the 
nodes in ux, that are not evidence nodes, 

It follows that 
l; � Pr[xdux.] � u;. (2) 

(1- u; ) � Pr[x;luxJ � (1 -1; ) , (3) 
where x; denotes 1 - x;. Note that l; > 0 and u; < 1, 
since we are assuming that no complete instantiation 
of the network has zero probability. If X; is not an 
evidence node, then we define A; =max ( ¥:-• f=�·,). If 
X; is an evidence node, and X;= x;, then A; = ¥:"· If 
X; = x; then A; = t=�·, . When X; is a prior node, or 
when ux, contains only evidence nodes, then A; = 1. 

Definition For a belief network B, the dependence 
value is given by 

n 
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By definition, 'DE 2: 1. The trivial case where Ve = 1 
occurs when the variables representing the nodes of 
the belief network are all mutually independent; that 
is, the belief network does not contain any arcs. 

6 DEPENDENCE VALUE AND 
TRACTABILI TY 

The time required to approximate an inference with V­
BNRAS, or with CS-BNRAS, is the product of V� and a 
polynomial in the number of nodes in the belief net­
work. Thus, the dependence value is a measure of the 
tractability of approximation, where increases in Ve 
render approximations more intractable. The depen­
dence value of a belief network is dominated by bounds 
on the conditional probabilities, given by Equations 2 
and 3, that are close to 0 and 1. When the number of 
observed nodes E increases, the bounds on the condi­
tional probabilities move away from 0 and 1. Thus, 
with increasing evidence, the dependence value V E 
decreases, and approximations that are otherwise in­
tractable are rendered tractable. 

7 PROBLEM REFORMULATION 

We show how approximation of probabilistic inference 
for belief network problem instances with large depen­
dence values can be reformulated into the approxima­
tion of a set of inference problems with small depen­
dence values. 

In the preceding section we observed that large evi­
dence sets resulted typically in small dependence val­
ues. We achieve the greatest reduction of the depen­
dence value when we instantiate selectively the par­
ents of the nodes with the largest AiS. However, when 
we instantiate nodes, we change the inference that is 
approximated by the BNRAS algorithm. For example, 
suppose we wish to approximate Pr[XIEJ, but, because 
the value of V E is too large for tractable approxima­
tion, we are led to instantiate nodes B'. The resultant 
dependence value, V E ,'il, allows tractable approxima­
tion, but of the inference Pr[XIE, <;.$]. We can recover 
the correct inference Pr[XIE] if we observe that 

Pr[XIE] = 2: Pr[XIE,<;S] Pr[<;SIE], (4) 

where the summation is over all instantiations of<;.$. 

The problem reformulation by conditioning requires 
that we pose the inference problem Pr[XIE] as the two 
inference problems Pr[X, E] and Pr[E]. From Bayes' 
Rule we can express 

P [X IE]= 
Pr[X, E] 

r 
Pr[E] 

Furthermore, a property of RAS algorithms is that the 
ratio of estimates that satisfy Equation 1 for Pr[X, E] 
and for Pr(E], is an estimate of P�(J£jl that also sat­
isfies Equation 1 � and is, therefore, an estimate of 

Pr[X IEJ. We can approximate Pr[X, E] - and simi­
larly, Pr[E] - if we observe that 

Pr[X, E ] = I: Pr(X, E!B'] Pr(<;S]. (5) 
'il 

The choice of the nodes in <;)< guarantees that the in­
ferences Pr[X, EI<;SJ are approximated readily using a 
BNRAS algorithm. However, use of Equation 5 poses 
two problems. First, to evaluate the sum requires us 
to approximate 21131 inferences, where PI denotes the 
number of nodes in <;.$. Thus, crucial to the success 
of problem reformulation is the existence of small sets 
B' that, when instantiated, effectively reduce the de­
pendence value. The second challenge we encounter in 
Equation 4 is the efficient approximation of inferences 
Pr[<;S]. We cannot use a BNRAS algorithm because the 
dependence value for the case of no evidence is at least 
as large as VE, and by assumption, the size of 'DE pro­
hibits tractable approximations. 

8 DIRICHLET DISTRIBUTIONS 

In other work [7, 8}, we exploited the conjugate rela­
tion between multinomial distributions and Dirichlet 
distributions to derive stopping rules for multinomial 
stochastic processes that appear in stochastic simula­
tion algorithms. We give a brief review of the material 
in [8], and we explore how the stopping rules can be 
employed to generate approximations to the probabil­
ity distribution Pr[<;S]. 

We simulate the belief network using logic sampling. 
The output of each trial is a complete instantiation 
x1, .. . , Xn of the nodes generated with probability dis­
tribution Pr[x1, .• . , xn]· Let I; denote the ith instanti­
ation of the nodes in <;)< and let cPi = Pr[I;]. Consider 
the stochastic process generated by the random vari­
able ( = ((Ii) whose outcome must belong to one of 
the I< = 21131 mutually exclusive and exhaustive cate­
gories that label all possible instantiations of <;.$. The 
probability that the outcome belongs to the ith cate­
gory is given by c/J; i = 1, ... , K. Assume we observe N 
outcomes of (. Let ni, i = 1, ... , K, denote the num­
ber of these outcomes that belong to the ith category. 
The random vector ii = ( n1, .. . , nK) has a multinomial 
distribution with parameters N and ¢ = {cPb ... , cPK ), 
that is, 

For a random vector with a multinomial distribution, 
the conjugate distribution is provided by a Dirichlet 
distribution. Thus, for the preceding example, let Jli = 

1f, i = 1, .. . , I<, and j1 = (J.tl, ... , JLK). The distribution 
of¢, having observed j1 and N, is given by the Dirichlet 
distribution with parameters j1 and N, 

6(¢li1, N) 
(N- 1)! 

(JLlN -1)!· · · (JLKN -1)! 

X A.,IJ.IN-1 A,IJ.KN-1 
'1'1 . . "'f'K · (6) 
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For i = 1, . .. , K, the Dirichlet distribution mean of tPi 
is J.li, and the variance of tPi is, 

1 
V6(tPi) = 

N + 1J.li(1- J.li). 

The Dirichlet distribution tells us how $is distributed 
as a function of the sample size N and the estimate j1. 
If the prior distribution of$ is given by a Dirichlet dis­
tribution then, because the Dirichlet is conjugate with 
respect to sampling from a multinomial distribution, 
the posterior distribution of $after sampling is also a 
Dirichlet distribution (e.g., see [11]). 

9 DIRICHLET STOPPING RULES 

The distribution j1 is computed from the outcomes of 
N instantiations generated by logic sampling. For ex­
ample, J.li is the fraction of outcomes which instantiate 
the nodes �to It. The Law of Large Numbers guar­
antees that in the limit of infinite N, j1 converges to $ 
- or equivalently, to Pr[�]. For finite N, j1 is only an 
approximation of the distribution of i, We consider 
j1 to be a satisfactory approximation of $ if, for all 
i, J.li and tPi satisfy Equation 1. We use the Dirichlet 
distribution to establish a stopping rule for the num­
ber of outcomes N required for j1 to be a satisfactory 
approximation of $. 

Given $, the distribution of j1 after observing N out­
comes of (is given by multinomial distribution. How­
ever, since we do not know J and we do know ji, we 
would like to have a distribution for $given j1 after ob­
serving N outcomes. We assume that the distribution 
of $prior to making any observations on the outcome 
of ( has a Dirichlet distribution-we consider the im­
plications of this assumption in Section 10. Then, by 
the conjugate nature of the Dirichlet distribution, the 
distribution of J after observing an outcome of ( is 
also a Dirichlet distribution. In particular, using the 
unbiased-Dirichlet prior 6( $10, 0) to represent the prior 
distribution on $, $has distribution 6( ilfi, N) after N 
experiments. 
Equation 1 is equivalent to 

Pr(ji(1 + t:)-1 � $ � jt(1 +c)]> 1-6. (7) 
Because $is described by a Dirichlet distribution, the 
probability term in Equation 7 is given by the cumula­
tive mass of 6( $1;1, N) that lies inside the convex poly­
tope defined by the following set of equations: 

i !:: ;1(1 + t:')-1 (8) 

J � ji(1 + /). (9) 
Conversely, the failure probability 6 is given by the 
cumulative mass that lies outside the convex polytope, 

{ 6( $1;1, N)d$ 
Jo'5.i<ii(1+e')-• 

(10) 

Equation 10 allows us to formulate a general prob­
abilistic stopping rule for stochastic simulation alg� 
rithms. To achieve an estimate jt of J that satisfies 
Equation 1, the stochastic simulation algorithm stops 
when the left side of Equation 10, evaluated at the 
current N and ji, is less than or equal to the input 6. 
Details of this analysis can be found in [8]. 

10 STRUCTURE AND EFFECTS 
OF PRIOR PROBABILITIES 

Let us consider the knowledge that an agent has about 
J prior to observing the outcome. Possible values 
of $ must lie in the K -cube [0, 1]K. Before experi­
mentation, an agent might believe that all values in 
[0, l]K are equiprobable. Such a prior distribution 
is given by a uniform distribution, or, equivalently, 
by 6(¢!(-k, . . .  ,k),K). In the discipline of Bayesian 
statistics, the distribution 6( ¢15', 0) is considered to be 
the unbiased prior (see, e.g., [14, 12]). The unbiased­
Dirichlet prior effectively partitions its mass equally at 
the vertices of the /{-cube, reflecting complete uncer-
tainty in¢. 
Analyses of a preferred prior distribution are ren­
dered immaterial by noting the general insensitiv­
ity of results to these alternative prior distributions. 
The information necessary to update an agent's prior 
distribution on ¢ from complete uncertainty-that 
is, 6(¢!0, 0)-to the uniform distribution-that is, 
6(¢1Ck, . .. , :k ) , K)-is provided by the first I< out­
comes. Thus, for large samples, the rate of conver­
gence of the estimate to the mean is insensitive to the 
choice of an informationless prior distribution on ¢. 

11 ANALYSIS OF 
REFORMULATION 
TRADEOFFS 

Without reformulation of the inference problem 
Pr[XIE], BNRAS-algorithms have a runtime propor­
tional to Vi; [6, 9]. Reformulation requires us to in­
dependently approximate Pr[X, E} and Pr[E]. The 
time required to approximate these inferences is pr� 
portional to 

(11) 
The first term in Equation 11 is the time required 
to approximate the 29 inferences Pr[X, El�] of Equa­
tion 5. The second term is the number of instantia­
tions dictated by the stopping rule that guarantees jj 
is a satisfactory approximation of i = Pr[�]. 
Let <PM denote the minimum probability Pr[J,:] over all 
instantiations I;. Using results in [7] it is straightfor-



Reformulating Inference Problems Through Selective Conditioning 53 

ward to show that 

29 2 N < £24JM log 6" (12) 

Equations 11 and 12 imply that the time required for 
approximation is proportional to 

(13) 

The choice of nodes 9 that minimizes the time given 
in Equation 13 requires searching over the space of all 
possible sets �- However, even suboptimal selections 
can be useful; inference based on suboptimal reformu­
lations can be significantly faster than inference on the 
original problem instance. 

We outline a greedy search algorithm that highlights 
the optimization constraints present in Equation 13. 
Initially, 9 is empty and the first term in Equa­
tion 13 dominates the runtime. Assume that for some 
nonempty set 9, the first term in Equation 13 contin­
ues to dominate. We add ux; to� only if 

and if, for all j #; i, 

>.� ..\� 
--·- > __ 1_ 
2IUx1l 2IUxi1· 

(14) 

(15) 

Equation 14 guarantees that, if we add ux to�. the 
computation time, given by the term 2!l'D! in Equa­
tion 13, is decreased. Equation 15 guarantees that 
adding ux 1 achieves the best reduction of the compu­
tation time. The overall computation time in Equa­
tion 13 is also decreased because, by assumption, the 
first term in Equation 13 dominates the running time. 
The behavior of 'D� and i/J/./ is complementary in the 
sense that, augmenting � decreases 'D� and increases 
ijJ }} • Thus, a minimal runtime is reached when the two 
terms in Equation 13 are of comparable magnitude. 

12 SUMMARY AND 
CONCLUSIONS 

Cooper [5] shows that exact computation of inference 
probabilities is NP-hard. Thus, for large belief net­
works, probabilistic inference is intractable if exact re­
sults are required. It is equally surprising that the 
approximation of probabilistic inference is NP-hard. 
Dagum and Luby [10] show that even crude approxi­
mations of inference probabilities can be intractable in 
certain contexts. Such complexity analyses are sober­
ing with regard to our inability to avoid worst-case 
intractability. However, the worst-case intractability 
of exact and approximate inference does not invali­
date research on techniques for minimizing inference 
runtime. Although we cannot avoid worst-case in­
tractability, we can apply methods to refine an initial 
problem instance by removing unnecessary complexity. 

We have described a means of decomposing belief net­
works by selectively reformulating topologies and con­
ditional probabilities which pose difficult challenges to 
a stochastic simulation algorithm. Perhaps the most 
significant aspect of our method is the recruitment of 
a parameter, developed in a formal analysis of the run­
time of an inference approximation algorithm, to serve 
as an intelligent sentry in targeting the most difficult 
components of a problem instance for decomposition. 

There are opportunities for extending selective condi­
tioning for use in simulation-based inference. For ex­
ample, we ca.n introduce additional flexibility by inte­
grating bounded conditioning [17] with selective condi­
tioning. With bounded conditioning, we focus the at­
tention of a system on the solution of the most relevant 
set of subproblems, and consider additional subprob­
lems as time allows. Beyond refining the details of 
our work with stochastic-simulation-based inference, 
the general approach of identifying and reformulat­
ing troublesome regions of a problem instance holds 
promise for solving other inference problems, and, per­
haps, for tackling difficult computational problems be­
yond inference. 
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