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Abstract—Safe control of dynamical systems that satisfy tem-
poral invariants expressing various safety properties is a challeng-
ing problem that has drawn the attention of many researchers.
However, making the assumption that such temporal properties
are deterministic is far from the reality. For example, a robotic
system might employ a camera sensor and a machine learned
system to identify obstacles. Consequently, the safety properties
the controller has to satisfy, will be a function of the sensor
data and the associated classifier. We propose a framework for
achieving safe control. At the heart of our approach is the
new Probabilistic Signal Temporal Logic (PrSTL), an expressive
language to define stochastic properties, and enforce probabilistic
guarantees on them. We also present an efficient algorithm to
reason about safe controllers given the constraints derived from
the PrSTL specification. One of the key distinguishing features
of PrSTL is that the encoded logic is adaptive and changes as the
system encounters additional data and updates its beliefs about
the latent random variables that define the safety properties. We
demonstrate our approach by deriving safe control of quadrotors
and autonomous vehicles in dynamic environments.

I. INTRODUCTION

Achieving safe control for robotics and cyber-physical
systems (CPS) is a challenging problem, due to various
factors including uncertainty arising from the environment.
For example, any safe control strategy for quadcopters need
to incorporate predictive information about wind gusts and
any associated uncertainty in such predictions. Similarly, in
the case of autonomous driving, the controller needs a prob-
abilistic predictive model about the other vehicles on the
road to avoid collisions. Without a model of uncertainty that
characterizes all possible outcomes, there is no hope in giving
guarantees about the safety of the synthesized controller.

The field of Machine Learning (ML) has a rich set of
tools that can characterize uncertainties. Specifically, Bayesian
graphical models [19] have been popular in modeling uncer-
tainties arising in scenarios common to robotics. For example,
one of the common strategies is to build classifiers or predic-
tors based on acquired sensor data. It is appealing to consider
such predictors in achieving safe control of dynamical systems.
However, it is almost impossible to guarantee a prediction
system that works perfectly at all times. Consequently, we
need to devise control methodologies aware of such limitations
imposed by the ML systems. Specifically, we need to build a
framework that is capable of achieving safe control by being
aware of when the prediction system would work or fail.
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In this paper, we propose a framework for achieving safe
control, when ML models are employed to make predictions
based on sensed signals. The heart of our framework is the
novel Probabilistic Signal Temporal Logic (PrSTL) that allows
us to express safety constraints by considering the predictive
models and their associated uncertainties. This logic allows
specifications that embed Bayesian classification methods via
probabilistic predicates that take random variables as parame-
ters, thereby resulting in a powerful framework that can reason
about safety under uncertainty. One of the main advantages
of using Bayesian classification models is the fact that the
predictions provided are full distributions associated with the
quantity of interest as opposed to a point estimate. For exam-
ple, a classical machine learning method might just provide a
value for wind speed; however, under the Bayesian paradigm
we would be recovering an entire probability distribution
over all possible wind profiles. Finally, another distinguishing
aspect of our framework is that these probabilistic predicates
are adaptive: as the system sees more and more data, the
inferred distribution over the latent variables of interest can
change leading to change in the predicates themselves.

Previous efforts for achieving safe control either operate
under deterministic environments or model uncertainty only as
part of the dynamics of the system [16]. These approaches lack
clear connections to various sources of uncertainty present in
the environment. Specifically, there is no clear understanding
of how uncertainty arising due to sensing and classification
could be incorporated while reasoning about safe controllers.

In this paper we aim to alleviate these issues by defining
a probabilistic logical specification framework that has the
capacity to reason about safe control strategies by embedding
various predictions and their associated uncertainty. Specifi-
cally, our contributions in this paper are:

• Framework for safe control under uncertainty.
• Formally define PrSTL, a logic for expressing probabilis-

tic properties that can embed Bayesian graphical models.
• Solve a receding horizon control problem to satisfy

PrSTL specifications using Mixed Integer SDPs.
• A toolbox implementing the framework and experiments

in autonomous driving and control of quadrotors.

Next we discuss the related work and preliminaries, we then
define the problem statement along with PrSTL, and show our
solution with some experimental results, and then conclude.



II. RELATED WORK

Over the years researchers have proposed different ap-
proaches for safe control of dynamical systems. Design-
ing controllers under reachability analysis and safe learning
are well-studied methods that allow specifying safety and
reachability properties, while learning the optimal strategy
online [32, 33, 15, 3, 1]. However, finding the reachable set
is computationally expensive, which makes these approaches
impractical for most interesting tasks. Controller synthesis
under temporal specifications such as Linear Temporal Logic
(LTL) allows expressing interesting properties of the system
and environment, e. g., safety, liveness, response, stability, and
has shown promising results [35, 25, 22, 49, 20, 36]. However,
synthesis for LTL requires time and space discretization,
which suffers from the curse of dimensionality. Also, while
such approaches are effective at high level planning, they
are unsuitable for lower level control of dynamical systems.
Recently, synthesis for Signal Temporal Logic (STL), which
allows real-valued, dense-time properties have been studied
in receding horizon settings [39, 21, 14]. One downside of
specifying properties in STL or LTL is that the properties
of the system and environment have to be expressed de-
terministically. Full knowledge of the exact parameters and
bounds of the specification is an unrealistic assumption for
most robotics applications, where the system interacts with
uncertain environments. Related to our work is the paradigms
of Markov Logic Networks [40] that aim to induce probability
distributions over possible worlds by considering weighted
logical formulae. However, it is not clear how such networks
can be used for controller synthesis. The proposed frame-
work instead considers formulae parameterized by random
variables, thereby inducing probability distribution over the
set of possible formulae. Further, we also show how such
formalism can be embedded in a receding horizon MPC for
controller synthesis. In robust control, uncertainty is modeled
as part of the dynamics, and the optimal strategy is found
for the worst case disturbance, which can be a conservative
assumption [24, 47]. More recently, the uncertainty is modeled
in a chance constrained framework showing promising results
for urban autonomous driving [28, 46, 6, 8]. Considering
uncertainties while satisfying temporal logic requirements has
recently been explored for controller synthesis and verifica-
tion [42, 43, 12, 11, 37]. Leahy et al. maximize information
gain in a distributed setting to reduce the uncertainty over
belief of every state; however, the uncertainty is not considered
as part of the specification [26]. Defining a formalism for mod-
eling uncertainty as part of the requirement is also explored
subsequent to our paper [41, 9]. To best of our knowledge,
none of the previous studies consider scenarios, where the
uncertainty and confidence in properties are originated from
sensors, predictors and classifiers, and are formalized as part of
the property. We propose a natural framework for safe control,
by first defining a probabilistic temporal specification that
allows us to express safety constraints over different sources of
uncertainty, and then providing an efficient algorithm to solve

for control inputs that would preserve the safety invariants.

III. PRELIMINARIES

Hybrid Dynamical System: Lets consider a continuous time
hybrid dynamical system:

ẋt = f(xt, ut), yt = g(xt, ut). (1)

Here, xt ∈ X ⊆ (Rnc × {0, 1}nd) is a signal representing
the continuous and discrete mode of the system at time t,
ut ∈ U ⊆ (Rmc×{0, 1}md) is the control input and yt ∈ Y ⊆
(Rpc × {0, 1}pd) is the output of the system at time t. This
continuous system can be discretized using time intervals dt >
0, and every discrete time step is k = bt/dtc. The discrete time
hybrid dynamical system is formalized as:

xk+1 = fd(xk, uk), yk = gd(xk, uk). (2)

We let x0 ∈ X denote the initial state, and express an infinite
run of the system as: ξ = (x0, u0), (x1, u1), . . . . Given x0,
and a finite length input sequence: uH = u0, u1, . . . , uH−1,
the finite horizon run or trajectory of the system fol-
lowing the dynamics in equation (2) is ξH(x0,u

H) =
(x0, u0), (x1, u1), . . . , (xH , uH). Furthermore, we let ξ(t) =
(xt, ut) be a signal consisting of the state and input of the
system at time t; ξx(t) = xt is the state, and ξu(t) = ut is the
input at time t. A cost function is defined for the finite horizon
trajectory, denoted by J(ξH), and maps ξH ∈ Ξ, the set of all
trajectories to positive real valued costs in R+. The goal then
is to determine the trajectory that has the lowest cost. However,
not all the trajectories might be safe. The safety constraints on
these trajectories are often described as logical specification.
Safe Control via Signal Temporal Logic: Signal Temporal
Logic (STL) is an expressive framework for reasoning about
real-valued dense-time functions, and has been used in defin-
ing robustness measures [30, 10].

Formally, (ξ, t) |= ϕ denotes that a signal ξ satisfies the STL
formula ϕ at time t. An atomic predicate of an STL formula is
represented by inequalities of the form µ(ξ(t)) > 0. The truth
value of the predicate µ is equivalent to µ(ξ(t)) > 0. Note that
with slight abuse of notation, µ represents both the predicate
and a function of the trajectory ξ(t). Any STL formula consists
of Boolean and temporal operations on these predicates and
the syntax of STL formulae ϕ is defined recursively as follows:

ϕ ::= µ | ¬µ |ϕ∧ψ |ϕ∨ψ |G[a,b]ψ |ϕU[a,b]ψ |F[a,b]ψ, (3)

where ψ and ϕ are STL formulae, G denotes the globally
operator, F the eventually operator, and U is the until operator.
For instance, ξ |= G[a,b]ψ specifies that ψ must hold at all
times in the given interval, t ∈ [a, b] of signal ξ. Determining
minimum cost trajectory that satisfy STL properties is a non-
trivial task. Most promising approaches are based on Receding
Horizon Control or Model Predictive Control (MPC) [34] that
iteratively optimize the cost function J(ξH). Starting with
an initial state x0, the MPC scheme aims to determine the
optimal strategy uH given the dynamics model of the system
defined in equation (2), while satisfying the STL formula



ϕ. The constraints represented using STL allow expression
of temporal specifications on the runs of the system and
environment and limit the allowed behavior of the closed
loop system [39, 38]. Prior work shows MPC optimization
with STL constraints can be posed as a Mixed Integer Linear
Programs (MILP) [38]. Note that the STL framework is only
defined for deterministic signals. Furthermore, it is not clear
how to incorporate ML components that use sensors to make
predictions about the dynamic environment. We use Bayesian
graphical models as a way to understand the environment and
the associated uncertainty around the predictions.
Bayesian Classification to Model Uncertainty: Probability
theory provides a natural way to represent uncertainty in
the environment and recent advances in Machine Learning
have relied on Bayesian methods to infer distributions over
latent phenomenon of interest [13, 19]. We focus on Bayesian
classifiers, which unlike other optimization based methods,
provide entire distributions over the predictions. Such predic-
tive distributions characterize the uncertainty present in the
system and are crucial for achieving safe control. Formally,
given a set of training points XL = {x1, . . . ,xn}, with
observations tL = {t1, . . . , tn}, where ti ∈ {+1,−1}, we are
interested in finding a hyperplane w that separates the points
belonging to the two classes according to sgn(wTx). Under
the Bayesian paradigm, we look for the distribution:

p(w|XL, tL) = p(w) · p(tL|XL,w) =

p(w)
∏
i

p(ti|w,xi) = p(w)
∏
i

I [sgn(wTxi) = ti].
(4)

The first line in the above equation stems from the Bayes
rule, and the second line simply exploits the fact that given
the classifier w the labels for each of the points in the
dataset are independent. The expression I[·] is an indicator
function, which evaluates to 1, when the condition inside
the brackets holds. Thus, equation (4) starts from a prior
p(w) over the classifiers and eventually by incorporating the
training data points, infers a posterior distribution over the set
of all the classifiers that respect the observed labels and the
points. Given these statistical dependencies among the various
variables, Bayesian inference techniques [31, 4, 2] aim to
infer p(w|XL, tL) as a Gaussian distribution N (w; w̄,Σ).
Linear classification of a test data point wTx results in a
Gaussian distribution of the prediction with the mean wTx
and the variance xTΣx. Similarly, for the case of Bayesian
linear regression the same procedure can be followed, albeit
with continuous target variables t ∈ R. These Bayesian linear
classifiers and regressors are a fairly rich class of models,
and have similar or better representation capabilities as kernel
machines [48]. In this work, we specifically aim to incorporate
such rich family of classification models for safe control.

IV. PROBLEM STATEMENT

We propose Probabilistic Signal Temporal Logic (PrSTL)
that allows expression of uncertainty over the latent variables
via probabilistic specifications. The key idea is to incorporate
random variables in predicates, and then express temporal and

Boolean operations on such predicates. The proposed logic
provides an expressive framework for defining safety condi-
tions under a wide variety of uncertainties, including ones that
arise from application of Machine Learning classifiers.

The core ingredient in this work is the insight that when
the uncertainty over the random variable is reasoned out
in a Bayesian framework, we can use the inferred proba-
bility distributions to efficiently derive constraints from the
PrSTL specifications. We provide a novel solution for syn-
thesizing controllers for dynamical systems given different
PrSTL properties. An interesting aspect of this framework is
that the PrSTL formulae can evolve at every step. For example,
a classifier associated with the dynamical system can continue
to learn with time, thereby changing the inferred probability
distributions on the latent random variables.

A. Probabilistic Signal Temporal Logic

PrSTL supports probabilistic temporal properties on real-
valued, dense-time signals. Specifically, (ξ, t) |= ϕ denotes
the signal ξ satisfies the PrSTL formula ϕ at time t. We
introduce the notion of a probabilistic atomic predicate λεtαt
of a PrSTL formula that is parameterized with a time-varying
random variable αt drawn from a distribution p(αt):

(ξ, t) |= λεtαt ⇐⇒ P (λαt(ξ(t)) < 0) > 1− εt. (5)

Similar to STL, with a slight abuse of notation, we let λεtαt de-
note the probabilistic atomic predicate, and λαt be a function
of the signal ξ(t). Here, P (·) represents the probability of the
event, and 1 − εt defines the tolerance level in satisfaction
of the probabilistic properties. The parameter εt ∈ [0, 0.5]
is a small time-varying positive number and represents the
threshold on satisfaction probability of λαt(ξ(t)) < 0. Small
values of εt favors high tolerance satisfaction of formulas,
which also facilitates solving the controller synthesis problem
as discussed later in this section. A signal ξ(t) satisfies the
PrSTL predicate λεtαt with confidence 1− εt if and only if:∫

αt

I[λαt(ξ(t)) < 0] p(αt) dαt > 1− εt. (6)

Here, I[·] is an indicator function, and the equation marginal-
izes out the random variable αt with the probability density
p(αt). The truth value of the PrSTL predicate λεtαt is equivalent
to satisfaction of the probabilistic constraint in equation (5).
Computing such integrals as in equation (6) for general distri-
butions is computationally difficult; however, there are many
parameterized distributions (e.g., Gaussian and other members
of the exponential family) for which there exists either a closed
form solution or efficient numerical procedures.

Note that λαt(ξ(t)) is a stochastic function of the signal ξ at
time t and expresses a model of the uncertainty in environment
based on the observed signals. As the system evolves and ob-
serves more data about the environment, the distribution over
the random variable αt changes over time, thereby leading
to an adaptive PrSTL predicate. The PrSTL formula consists
of Boolean and temporal operations over their predicates. We



recursively define the syntax of PrSTL as:

ϕ ::= λεtαt | ¬̃λ
εt
αt |ϕ∧ψ |ϕ∨ψ |G[a,b]ψ |ϕU[a,b]ψ |F[a,b]ψ.

Here, ϕ is a PrSTL formula, which is built upon predicates λεtαt
defined in equation (5), propositional formulae ϕ composed
of the predicates and Boolean operators such as ∧ (and), ¬̃
(negation), and temporal operators on ϕ such as G (globally),
F (eventually) and U (until). Note, that in these operations
the PrSTL predicates can have different probabilistic parame-
ters, i. e., αt and εt. In addition, satisfaction of the PrSTL for-
mulae for each of the Boolean and temporal operations based
on the predicates is defined as:

(ξ, t) |= λεtαt ⇔ P (λαt(ξ(t)) < 0) > 1− εt
(ξ, t) |= ¬̃λεtαt ⇔ P (−λαt(ξ(t)) < 0) > 1− εt
(ξ, t) |= ϕ ∧ ψ ⇔ (ξ, t) |= ϕ ∧ (ξ, t) |= ψ
(ξ, t) |= ϕ ∨ ψ ⇔ (ξ, t) |= ϕ ∨ (ξ, t) |= ψ
(ξ, t) |= G[a,b]ϕ ⇔ ∀t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ
(ξ, t) |= F[a,b]ϕ ⇔ ∃t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ
(ξ, t) |= ϕ U[a,b] ψ ⇔ ∃t′ ∈ [t+ a, t+ b] s.t. (ξ, t′) |= ψ

∧∀t′′ ∈ [t, t′], (ξ, t′′) |= ϕ.

Remark 1: PrSTL does not follow the law of excluded
middle, while it follows the law of noncontradiction. This
means it will never be the case for a formula and its negation
¬̃, as defined above, to both satisfy a specification at the same
time. However, there exists situations, where they both can
violate a specification.

Remark 2: The PrSTL framework reduces to STL, when
the distribution p(αt) is a Dirac distribution. A Dirac or a point
distribution over αt enforces λαt(ξ(t)) < 0 to be deterministic
and equivalent to an STL predicate µ defined in Section III.

B. Controller Synthesis for Probabilistic STL

We now formally define the controller synthesis problem in
the MPC framework with PrSTL specifications.

Problem 1: Given a hybrid dynamical system as in equa-
tion (2), initial state x0, PrSTL formula ϕ, and cost function
J(ξH) defined over a finite horizon trajectory ξH , find:

argmin
uH

J(ξH(x0,u
H)) subject to ξH(x0,u

H) |= ϕ. (7)

Problem (1) formulates a framework for finding a control
strategy uH that optimizes a given cost function, and satisfies a
PrSTL formula. Finding the best strategy for this optimization
given only deterministic PrSTL formulae, where αt is drawn
from a Dirac distribution is the same as solving a set of mixed
integer linear constraints. We now show how the optimization
is solved for the general case of PrSTL. Specifically, we
provide full solution for Gaussian distributions, where the
optimization reduces to mixed integer semi-definite programs.

1) Mixed Integer Constraints: We first discuss how every
PrSTL formula generates a set of integer constraints. Given a
PrSTL formula, we introduce two integer variables for every
time step t, pϕt and qϕt ∈ {0, 1}, which correspond to the
truth value of the PrSTL formula and its negation respectively.
These variables enforce satisfaction of the formula ϕ as:

(pϕt = 1)→ (ξ, t) |= ϕ and (qϕt = 1)→ (ξ, t) |= ¬̃ϕ (8)

The formula ϕ holds true if pϕt = 1, and its negation ¬̃ϕ
(defined in Section IV-A) holds true if qϕt = 1. Due to the
definition of negation, and Remark 1, these implications are
only one-way, i. e., there always exist a satisfiable solution
when pϕt and qϕt are zero. Using both integer variables,
we define the constraints required for logical and temporal
operations of PrSTL on pϕt and qϕt . It is important to note that
pϕt and qϕt are not functions of the truth value of the formula
ϕ, so their values are not meant to be uniquely determined.
Instead, the integer variables enforce the truth value of the
formula ϕ. We refer to them as truth value enforcers:
• Negation (ϕ = ¬̃ψ) : pϕt ≤ q

ψ
t and qϕt ≤ p

ψ
t

• Conjunction (ϕ = ∧Ni=1ψi) : pϕt ≤ p
ψi
t and qϕt ≤

∑N
i=1 q

ψi
t

• Disjunction (ϕ = ∨Ni=1ψi) : ϕ = ¬̃ ∧Ni=1 ¬̃ψi
• Globally (ϕ = G[a,b]ψ) :

pϕt ≤ p
ψ
t′ ∀t′ ∈ [t+ a, min(t+ b,H−1)],

qϕt ≤
∑t+b
t′=t+a q

ψ
t′ (Only for t < H − b).

• Eventually (ϕ = F[a,b]ψ) : ϕ = ¬̃G[a,b]¬̃ψ.
• Unbounded Until (ϕ = ψ1 Ũ[0,∞)ψ2) :∨H−1
t=0

(
(G[0,t]ψ1) ∧ (G[t,t]ψ2)

)
∨G[0,H−1]ψ1

• Bounded Until (ϕ = ψ1 U[a,b]ψ2) :

ϕ = G[0,a]ψ1 ∧ F[a,b]ψ2 ∧G[a,a](ψ1Ũ[0,∞)ψ2)

Here, we have shown how pϕt and qϕt are defined for
every logical property such as negation, conjunction, and
disjunction, and every temporal property such as globally,
eventually, and until. We use Ũ to refer to unbounded until
with infinite time interval, and U for bounded until.

While synthesizing controllers for PrSTL formulae in an
MPC scheme, we sometimes are required to evaluate satisfac-
tion of the formula outside of the horizon range. For instance,
a property G[a,b]ϕ might need to be evaluated beyond H for
some t′ ∈ [t + a, t + b]. In such cases, our proposal is to act
optimistically, i. e., we assume the formula holds true for the
time steps outside the horizon of globally operator, and simi-
larly assume the formula does not hold true for the negation of
the globally operator. This optimism is evident in formulating
the truth value enforcers of the globally operator, and based
on that, it is specified for other temporal properties. With the
recursive definition of PrSTL, and the above encoding, the
truth value enforcers of every PrSTL formula is defined using
a set of integer inequalities involving a composition of the
truth value enforcers of the inner predicates.

2) Satisfaction of PrSTL predicates: We have defined the
PrSTL predicate λεtαt for a general function, λαt(ξ(t)) of the
signal ξ at time t. This function allows a random variable
αt ∼ p(αt) to be drawn from any distribution at every time
step. The general problem of controller synthesis satisfying
the PrSTL predicates is computationally difficult since the
evaluation of the predicates boils down to computing the inte-
gration in equation (6). Consequently, to solve the problem in
equation (7), we need to enforce a structure on the predicates
of ϕ. In this section, we explore the linear-Gaussian structure
of the predicates that appears in many real-world scenarios,
and show how it translates to Mixed Integer SDPs. Formally,



if ϕ = λεtαt is only a single predicate, the optimization in
equation (7) will reduce to:

argmin
uH

J(ξH(x0,u
H))

subject to (ξ, t) |= λεtαt ∀t ∈ {0, . . . ,H−1}.
(9)

This optimization translates to a chance constrained problem
[5, 7, 45, 28, 6] at every time step of the horizon, based on
the definition of PrSTL predicates in equation (5):

argmin
uH

J(ξH(x0,u
H))

subject to P (λαt(ξ(t)) < 0) > 1− εt
∀t ∈ {0, . . . ,H−1}.

(10)

An important challenge with such chance constrained op-
timization is there are no guarantees that equation (10) is
convex. The convexity of the problem depends on the structure
of the function λαt , and the distribution p(αt). It turns out that
the problem takes a simple convex form when λαt is linear-
Gaussian, i. e., the random variable αt comes from a Gaussian
distribution and the function itself is linear in αt:

λαt(ξ(t)) = αt
>ξx(t) = αt

>xt, αt ∼ N (µt,Σt). (11)

It is easy to show that for this structure of λαt , i.e., a weighted
sum of the states with Gaussian weights αt, the chance
constrained optimization in equation (10) is convex [44, 23].
Specifically, the optimization problem can be transformed to a
second-order cone program (SOCP). First, consider a normally
distributed random variable ν ∼ N (0, 1), and its cumulative
distribution function (CDF) Φ =

∫ z
−∞

1√
2π
e
−t2

2 dt. Then, the
chance constrained optimization reduces to SOCP:

P (λαt(ξ(t)) < 0) > 1− εt ⇔ P (α>t xt < 0) > 1− εt ⇔

P (ν <
−µ>t xt
x>t Σtxt

) > 1− εt ⇔
∫ −µ>t xt

x>t Σtxt

−∞

1√
2π
e
−t2

2 dt > 1− εt

⇔ Φ(
µ>t xt
x>t Σtxt

) < εt ⇔ µ>t xt − Φ−1(εt)||Σ1/2
t xt||2 < 0.

In this formulation, µ>t xt is the linear term, where µt is
the mean of the random variable αt at every time step, and
||Σ1/2

t xt||2 is the l2-norm representing a quadratic term, where
Σt is the variance of αt. This quadratic term is scaled by
Φ−1(εt), the inverse of the Normal CDF function, which is
negative for small values of εt ≤ 0.5. Thus, every chance
constraint can be reformulated as a SOCP, and as a result with
a convex cost function J(ξH), we can efficiently solve the
following convex optimization for every predicate of PrSTL:

minimize
uH

J(ξH(x0,u
H))

subject to µ>t xt − Φ−1(εt)||Σ1/2
t xt||2 < 0

∀t ∈ {0, . . . ,H − 1}.

(12)

Assuming a linear-Gaussian form of the function, we generate
the SOCP above, and translate it to a semi-definite program
(SDP) by introducing auxiliary variables [7]. We use this SDP
that solves the problem in equation (9) with a single constraint

ϕ = λεtαt as a building block, and use it multiple times to han-
dle complex PrSTL formulae. Specifically, any PrSTL formula
can be decomposed to its predicates by recursively introducing
integer variables that correspond to the truth value enforcers
of the formula at every step as discussed in Section IV-B1.

We would like to point out that assuming linear-Gaussian
form of λαt is not too restrictive. The linear-Gaussian form
subsumes the case of Bayesian linear classifiers, and conse-
quently the framework can be applied to a wide variety of
scenarios where a classification or regression function needs
to estimate quantities of interest that are critical for safety. Fur-
thermore, the framework is applicable to all random variables
whose distributions exhibit unimodal behavior and aligned
with the large law of numbers. For non-Gaussian random
variables, there are many approximate inference procedures
that effectively estimate the distributions as Gaussian.

3) Convex Subset of PrSTL: As discussed in the previous
section IV-B2, at the predicate level of ϕ, we create a chance
constrained problem for predicates λεtαt . These predicates of
the PrSTL formulae can be reformulated as a semi-definite
program, where the predicates are over intersections of cone
of positive definite matrices with affine spaces. Semi-definite
programs are special cases of convex optimization; conse-
quently, solving Problem 1, only for PrSTL predicates is
a convex optimization problem. Note that in Section IV-B1
we introduced integer variables for temporal and Boolean
operators of the PrSTL formula. Construction of such integer
variables increases the complexity of Problem 1, and results in
a mixed integer semi-definite program (MISDP). However, we
are not always required to create integer variables. Therefore,
we define Convex PrSTL as a subset of PrSTL formulae that
can be solved without constructing integer variables.

Definition 1: Convex PrSTL is a subset of PrSTL such
that it is recursively defined over the predicates by applying
Boolean conjunctions, and the globally temporal operator.
Satisfaction of a convex PrSTL formulae is defined as:

(ξ, t) |= λεtαt ⇔ P (λαt(ξ(t)) < 0) > 1− εt
(ξ, t) |= ϕ ∧ ψ ⇔ (ξ, t) |= ϕ ∧ (ξ, t) |= ψ
(ξ, t) |= G[a,b]ϕ ⇔ ∀t′ ∈ [t+ a, t+ b], (ξ, t′) |= ϕ

Theorem 1: Given a convex PrSTL formula ϕ, a hybrid
dynamical system as defined in equation (2), and an initial
state x0; the controller synthesis problem (Problem 1) is
convex under a convex cost function J .

Proof: We have shown that the predicates of ϕ, i. e., λεtαt
create a set of convex constraints. The Boolean conjunction
of convex programs are also convex; therefore, ϕ∧ψ result in
convex constraints. In addition, the globally operator is defined
as a set of finite conjunctions over its time interval: G[a,b]ϕ =∧b
t=a ϕt. Thus, the globally operator retains the convexity

property of the constraints. Consequently, Problem 1, with a
convex PrSTL constraint ϕ is a convex program.
Theorem 1 allows us to efficiently reduce the number of
integer variables required for solving Problem 1. We only
introduce integer variables when disjunctions, eventually, or
until operators appear in the PrSTL constraints. Even when a



formula is not completely part of the Convex PrSTL, integer
variables are introduced only for the non-convex segments.

Algorithm 1 Controller Synthesis with PrSTL Formulae
1: procedure PROB. SYNTHESIS(f, x0, H, τ, J, ϕ)
2: Let τ = [t1, t2] is the time interval of interest.
3: past ← Initialize(t1)
4: for t = t1: dt: t2
5: flin = linearize(f, ξ(t))
6: αt ← Update Distributions(αt−dt, sense(ξx(t))
7: ϕ← ϕ(αt, εt)
8: CPrSTL = MISDP(ϕ)
9: C = CPrSTL ∧ flin

10: ∧ [ ξ(max(t1, t−H) · · · t− dt) = past ]
11: uH = optimize

(
J(ξH),C

)
12: xt+1 = f(xt, ut)
13: past ← [past ξ(t)]
14: Drop the first element of past if len(past) > H

dt
15: end for
16: end procedure

We show our complete method of controlling dynamical
systems in uncertain environments in Algorithm 1. At the first
time step t1, we run an open-loop control algorithm to populate
past in line 3. We then run the closed-loop algorithm, finding
the optimal strategy at every time step of the time interval
τ = [t1, t2]. In the closed-loop algorithm, we linearize the
dynamics at the current local state and time in line 5, and
then update the distributions over the random variables in the
PrSTL formula based on new sensor data in line 6. Then, we
update the PrSTL formulae, based on the updated distributions.
If there are any other dynamic parameters that change at every
time step, they can also be updated in line 7. In line 8, we
generate the mixed integer constraints in CPrSTL, and populate
C with all the constraints including the PrSTL constraints,
linearized dynamics, and enforcing to keep the past horizon’s
trajectory. Note that we do not construct integer variables if
the formula is Convex PrSTL. Then, we call the finite horizon
optimization algorithm under the cost function J(ξH), and the
constraints C in line 11, which provides a length H strategy
uH . We advance the state with the first element of uH , and
update the previous horizon’s history in past. The size of this
problem does not grow, and keeping the past horizon history
is crucial in satisfaction of fairness properties, e. g., enforcing
a signal to oscillate. We continue running this loop and
synthesizing controllers for all times in interval τ . Algorithm 1
solves MISDP problems, which is NP-hard. However, the
actual runtime depends on the size of the MISDP, which is
linear in the number of predicates and operators in the PrSTL
specification. For convex PrSTL, the complexity is the same
as an SDP, which is cubic in the number of constraints [27].

V. EXPERIMENTAL RESULTS

We implemented our controller synthesis algorithm for
PrSTL formulae as a Matlab toolbox available at:
https://github.com/dsadigh/CrSPrSTL.
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Fig. 1: A quadrotor (shown by green square) starting a trajectory from the
origin. The purple surface represents the ceiling, and the orange surface is the
quadrotors belief of the ceiling’s location is based on the current sensor data.

We uses Yalmip [29] and Gurobi [17] as the optimization en-
gines. In all of our examples discussed below, the optimization
at every step is completed in less than 2 seconds on a 2.3 GHz
Intel Core i7 processor with 16 GB RAM.

A. Quadrotor Control

Controlling quadrotors in dynamic uncertain environments
is a challenging task due to different sources of uncertainty,
e.g., the position of the obstacles estimated based on classifi-
cation methods, distributions over wind or battery profiles. We
show how to characterize different models of uncertainty over
time, and then find an optimal strategy using the framework.

We follow the derivation of the dynamics model of a
quadrotor in [18]. We consider a 12 dimensional system, where
the state consists of the position and velocity of the quadrotor
x, y, z and ẋ, ẏ, ż, as well as the Euler angles φ, θ, ψ, i. e., roll,
pitch, yaw, and the angular velocities p, q, r. Let x be:

x = [x y z ẋ ẏ ż φ θ ψ p q r]>. (13)

The system has a 4 dimensional control input u =[
u1 u2 u3 u4

]>
, where u1, u2 and u3 are the control

inputs about each axis for roll, pitch and yaw respectively.
u4 represents the thrust input to the quadrotor in the vertical
direction (z-axis). The nonlinear dynamics of the system is:

f1(x, y, z) =
[
ẋ ẏ ż

]>
f2(ẋ, ẏ, ż) =

[
0 0 g

]> −R1(ẋ, ẏ, ż)
[
0 0 0 u4

]>
/m

f3(φ, θ, ψ) = R2(ẋ, ẏ, ż)
[
φ̇ θ̇ ψ̇

]>
f4(p, q, r) = I−1 [u1 u2 u3

]> −R3(p, q, r)I
[
p q r

]>
,

where R1 and R2 are rotation matrices, R3 is a skew-
symmetric matrix, and I is the inertial matrix of the rigid
body. Here, g and m denote gravity and mass of the quadrotor,
and for all our studies the mass and inertia matrix used are
based on small sized quadrotors. Thus, the dynamics equation
is f(x,u) =

[
f1 f2 f3 f4

]>
.

1) Control in an Uncertain Environments: We first demon-
strate obstacle avoidance for a quadrotor. Figure 1, shows the
quadrotor as a green square at its initial position (0, 0, 0), and
its objective is to reach the coordinates (1, 1, 0) smoothly. If
we let z = 0 represent the ground level (z < 0 is above the
ground level), the objective of the quadrotor is to take off
and travel the distance, and then land on the ground at the



destination coordinate through the following:

J(ξH) =

H−1∑
t=0

||(xt, yt, zt)− (1, 1, 0)||22 + c||(φt, θt, ψt)||22.

Here, we penalize the l2-norm of the Euler angles, which
enforces a resulting smooth trajectory. Besides initializing the
state and control input at zero, we bound the control inputs via
the following deterministic PrSTL formulae (here only shown
for roll, similar form follows for pitch and thrust):

ϕroll = G[0,∞)(||u1|| ≤ 0.3) Bound on Roll Input

In Figure 1, the purple surface is a ceiling that the quadrotor
should not collide with as it is taking off and landing at the
final position. However, the quadrotor does not have a full
knowledge of where the ceiling is exactly located. We define
a sensing mechanism for the quadrotor, which consists of a
meshgrid of points around the body of the quadrotor. As the
system moves in the space, a Bayesian binary classifier is
updated by providing a single label −1 (no obstacles present)
or 1 (obstacle present) for each of the sensed points.

The Bayesian classifier is the same as the Gaussian Process
based method described in Section III and has the linear-
Gaussian form. Applying this classifier results in a Gaussian
distribution for every point in the 3D-space. We define our
classifier with confidence 1 − εt = 0.95, as the stochastic
function λ0.05αt (ξ(t)) = α>t [xt yt zt]. Here, xt, yt, zt are the
coordinates of the sensing points, and αt ∼ N (µt,Σt) is the
Gaussian weight inferred over time using the sensed data. We
define a time-varying probabilistic constraint that needs to be
held at every step as its value changes over time. Our constraint
specifies that given a classifier based on the sensing points
parameterized by αt, we would enforce the quadrotor to stay
within a safe region (defined by the classifier) with probability
1− εt at all times. Thus the probabilistic formula is:

ϕclassifier = G[0.1,∞)

(
P (α>t [xt yt zt] < 0) > 0.95

)
.

We enforce this probabilistic predicate at t ∈ [0.1,∞), which
verifies the property starting from a small time after the initial
state, so the quadrotor has gathered some sensor data. In
Figure 1, the orange surface represents the second order cone
created based on ϕclassifier, at every step characterized by:

µ>t
[
xt yt zt

]
− Φ−1(0.05)||Σ1/2

t

[
xt yt zt

]
||2 < 0.

Note that the surface shown in Figure 1, at the initial time
step is not an accurate estimate of where the ceiling is, and
it is based on a distribution learned from the initial values of
the sensors. Thus, if the quadrotor was supposed to follow
this estimate without updating, it would have collided with
the ceiling. In Figure 2, the blue path represents the trajectory
the quadrotor has already taken, and the dotted green line is
the future planned trajectory based on the current state of the
classifier. The dotted green trajectory at the initial state goes
through the ceiling since the belief of the location of the ceiling
is incorrect; however, the trajectory is modified at every step
as the Bayesian inference updates the distribution over the

Fig. 2: The quadrotor in Fig. 1 taking the optimal trajectory to reach the
goal, while avoiding collisions with the ceiling. The figures from the top
correspond to t = 0.18 s t = 0.63 s, and t = 1.02 s.

classifier. As shown in Figure 2, the orange surface changes
at every time step, and the learned parameters µt, and Σt are
updated, so the quadrotor safely reaches the final position.
We solve the optimization using our toolbox, with dt = 0.03,
and horizon of H = 20. These choices describe a common
setting for solving MPC problems. We emphasize that some
of the constraints are time-varying, and we need to update
them at every step of the optimization. We similarly update the
dynamics at every step, since we locally linearize the dynamics
around the current position of the quadrotor.

2) Control under Battery Constraints: Next we demonstrate
a scenario that addresses safety, when there is uncertainty
around the battery level. The battery level is a stochastic
variable due to uncertain environment and usage factors, such
as radio communications, etc. Our goal is to derive a safe
strategy that considers such stochasticity. We start by aug-
menting the logarithm of battery level (bt) to the state space
of the system discussed above. Thus, the quadrotor is a 13
dimensional system, where the first 12 states follow the same
order and system dynamics as before and xt(13) = log(bt). In
our model, the state of log(bt) evolves with the negative thrust
value: d log(bt)

dt = −|u4|. We enforce the same constraints to
bound the control as earlier, and the objective of the quadrotor
is to start from the origin and reach the top diagonal corner
of the space with coordinates (1, 1,−0.9) smoothly.

We then consider adding a safety invariant that would limit
high altitude flights if the battery level is low. The following
formulae describe these constraints: (i) φ := F[0,0.3](zt ≤
−0.1) encodes that eventually in the next 0.3 s, the quadro-
tor will fly above a threshold level of −0.1 m. (ii) ψ :=
P (log(bt) + N (0, tσ2) ≥ bmin) ≥ 1 − εt represents the
constraint that the quadrotor has to be confident that the
logarithm of its battery state perturbed by a time-varying
variance is above bmin. Now, we can combine the two formulae
to specify the condition that the quadrotor needs to fly low if



(a) Deterministic state: σ = 0. (b) Probabilistic state: σ = 10.

Fig. 3: Quadrotor flying to reach a goal while being confident in its battery
level. On the right, the quadrotor has low confidence in its battery state, so it
avoids flying higher than z = −0.1 m.

the battery state is low: ϕbattery := G[0,∞)

(
φ→ ψ)

)
. The→ in

the formula ϕbattery is the implication relation, and intuitively
states that anytime the quadrotor flies above the threshold then
it means that there is sufficient battery reserve.

We synthesize a controller for the specifications with εt =
0.2. The trajectory of the quadrotor is shown in Figure 3.
Figure 3a corresponds to σ = 0, i. e., the battery state changes
deterministically, and Figure 3b, corresponds to σ = 10, when
the quadrotor is more cautious about the state of the battery.
Note the safe trajectory does not pass the −0.1 m height level
whenever the confidence in the battery level is low.

B. Autonomous Driving

We now consider an autonomous driving scenario. We use
a simple point-mass model to define the dynamics of the vehi-
cles. Let the state of the system be x = [x y θ v]>, where x,
y denote the coordinates of the vehicle, θ is the heading, and v
is the speed. If u = [u1 u2]> are the steering and acceleration
control inputs respectively, then the dynamics of the vehicle
are: [ẋ ẏ θ̇ v̇] = [v · cos(θ) v · sin(θ) v

mu1 u2].
Figure 4, shows a scenario for an autonomous vehicle

making a right turn at a signalized intersection. Here the red
car is the ego vehicle that is autonomous, and the yellow car as
the environment vehicle. Our goal is to find a strategy for the
ego vehicle (red), so it makes a safe right turn when the traffic
light is red, while yielding to the oncoming traffic (yellow).

Note the ego vehicle only has a probabilistic model of the
velocity of the environment car. We refer to the states of the
environment vehicle as: [xenv yenv θenv venv]>. To synthesize
a safe strategy, we need to ensure collision avoidance despite
the uncertainty in the estimates of the states. We define
collision avoidance as the following PrSTL property:

ϕcrash = G[t0,∞)

(
P
(
xt − (xenv

t0 + st0,x(t− t0)) ≥ δ
)
≥ 1− εt

∨ P
(
xt − (xenv

t0 + st0,x(t− t0)) ≤ −δ
)
≥ 1− εt

∨ P
(
yt − (yenv

t0 + st0,y(t− t0)) ≥ δ
)
≥ 1− εt

∨ P
(
yt − (yenv

t0 + st0,y(t− t0)) ≤ −δ
)
≥ 1− εt

)
Here, ϕcrash consists of a global operator at all times over the
disjunction of four PrSTL predicates. The four probabilistic
predicates encode all possible crash scenarios between the
two vehicles. The minimum permissible distance between the
vehicles is represented as δ that generates the four disjunctions
on the predicates. The estimate of the distance between x and
y coordinates of the two vehicles is encoded in each predicate
as the difference between the coordinates of the ego vehicle,

(a) A deterministic model
of the yellow car’s velocity
with σ = 0.

(b) A probabilistic model
of the yellow car’s velocity
with σ = 0.4.

Fig. 4: Red car making a right turn at a signalized intersection. On the right,
the strategy computed performs a safer trajectory with a probabilistic model
of the environment, where it first waits for the yellow car to pass. The blue
lines show the trajectory followed by the ego vehicle, and the dotted green
line is the future planned trajectory.

and the propagated coordinates of the environment vehicle
based on the value of its velocity. We assume the magni-
tude of the velocity is distributed as a Gaussian distribution
venv
t ∼ N (v̄t

env, σ2). Then the vector of Gaussian random
variables [st0,x, st0,y]T = venv

t0 [cos(θenv
t0 ), sin(θenv

t0 ]T consists of
projections of the velocity venv

t on the x and y directions based
on the current heading θenv

t0 . The predicates in ϕcrash take the
familiar linear Gaussian form representing the coordinates of
the ego vehicle, and are parameterized by the random variable
characterizing the velocity of the environment vehicle.

We use dt = 0.1 s as sampling time, H = 20 as the horizon,
σ = 0.4, δ = 0.4 and εt = 0.2. We synthesize a strategy for
the autonomous vehicle by solving Problem 1, and following
the steps in Algorithm 1. The trajectory generated is shown
by the solid blue line in Figure 4. The dotted green line is the
future trajectory computed by the MPC scheme. In Figure 4a,
the ego vehicle has a deterministic model of the environment
vehicle as σ = 0; therefore, it turns right before letting the
environment vehicle pass. However, as shown in Figure 4b, for
σ = 0.4, and εt = 0.2, the ego vehicle is not confident enough
in avoiding collisions, so it acts in a conservative manner and
waits for the environment car to pass first before turning right.

VI. CONCLUSION

We presented a framework to achieve safe control under
uncertainty. The key contributions include defining PrSTL, a
logic for expressing probabilistic properties that can embed
Bayesian graphical models. We also show how to synthesize
receding horizon controllers under PrSTL specifications that
express Bayesian linear classifiers. Further, the resulting logic
adapts as more data is observed with the evolution of the
system. We demonstrate the approach by synthesizing safe
strategies for a quadrotor and an autonomous vehicle traveling
in uncertain environments.

The approach extends easily to distributions other than
Gaussians via Bayesian approximate inference techniques [31,
4] that can project distributions to the Gaussian densities.
Future work includes extending controller synthesis for arbi-
trary distributions via sampling based approaches; we are also
exploring using the proposed framework for complex robotic
tasks that need to invoke higher level planning algorithms.
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