PYRAMID CODES:

FLEXIBLE SCHEMES TO TRADE SPACE FOR ACCESS EFFICIENCY IN RELIABLE DATA STORAGE SYSTEMS

Cheng Huang, Minghua Chen, and Jin Li Microsoft Research, Redmond, US IEEE NCA, Boston, July 2007

networked storage on the rise ...

- rapidly growing demands on storage systems
 - consumers, enterprises ...
 - web services ...
- using commodity components to build large scale
 storage systems is becoming a common practice
 - reliability is a must (five 9's)
 - failure is norm and dealt with by redundancy

outline

- replication vs. erasure codes
 - the fundamental trade-off
- Pyramid Codes and recoverability theorem
 - not YAC (yet another code)
 - basic Pyramid Codes
 - generalized Pyramid Codes

replication vs. erasure codes (1)

- 3-replication
 - storage overhead: 3x
 - 12 data nodes + 24 replica nodes
 - access/recovery cost (one data failure): 1x

replication vs. erasure codes (2)

- □ (16, 12) erasure code
 - storage overhead: 1.33x
 - 12 data nodes + 4 redundant nodes
 - access/recovery cost (one data failure): 12x

replication vs. erasure codes (3)

	replication scheme	erasure codes
storage overhead	high (3x)	low (1.33x)
access/recovery cost	low (1x)	high (12x)

- in the end, storage is not that cheap
 - more storage → more machine, more space, more maintenance personal, etc. → 55% of data centers' operating costs (Windows Live service data)
- network traffic is not free either
 - network in data centers can become bottleneck (Lian et al. ICDCS'05)
- □ same concerns for P2P storage ...

the fundamental trade-offs in replication vs. erasure codes

I. basic Pyramid Codes (1)

I. basic Pyramid Codes (2)

- storage overhead: 1.42x
- □ access/recovery cost (one data failure): 6x
- recovery any 4 failures

I. basic Pyramid Codes (3)

- □ recover d5 and d6
- \square combine C_{1,1} and C_{1,2} \rightarrow C₁; C_{2,1} and C_{2,2} \rightarrow C₂
- recover d7, d8, d11 and d12

I. basic Pyramid Codes (4)

decoding is analogous to climbing up a Pyramid!

another erasure pattern

- □ is this erasure pattern recoverable at all?
 - no small group recovery

- not recoverable!
- □ C_{2,1} and C_{2,2} \rightarrow C₂, so only 3 redundant nodes at the global level
- counting failures/parities: 5 failures and 5 parities
- □ now what?

recoverability theorem (1)

an erasure pattern is recoverable <u>only if</u>
 the corresponding Tanner graph contains

a full-size matching.

Tanner graph

failed data

survival redundancy

recoverability theorem (2)

an unrecoverable example

Tanner graph no full-size matching!

recoverability theorem (3)

- the recoverability theorem is a necessary condition for all erasure codes
- □ it is not sufficient for all known storage codes
 - including basic Pyramid Codes
- generalized Pyramid Codes makes the condition sufficient
 - able to recover any erasure pattern ever possible to recover – optimal recoverably property

II. generalized Pyramid Codes (1)

- a generalized Pyramid Code can be constructed given any configuration (data/parity association)
 - details in paper ...
- any generalized Pyramid Code satisfies optimal recoverable property

II. generalized Pyramid Codes (2)

- why is this a big deal?
 - MDS codes are optimal when redundant nodes and data nodes are fully associated
 - Pyramid Codes are optimal when redundant nodes and data nodes are partially associated
- contributions recap
 - a necessary condition theorem for recoverability
 - a construction algorithm for generalized Pyramid
 Codes, which achieve optimal recoverability

optimal decoding of generalized Pyramid Codes

- □ how to access/recover with minimum cost?
 - all failed nodes
 - or simply one failed node (say d12)
- optimal decoding path
 - details in paper ...

summary

- the fundamental trade-off between
 storage overhead and access/recovery efficiency
- □ two classes of Pyramid Codes
- recoverability theorem
 - generalized Pyramid Codes are optimal