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Abstract

We design algorithms for fitting a high-dimensional statistical model to a large, sparse net-
work without revealing sensitive information of individual members. Given a sparse input graph
G, our algorithms output a node-differentially-private nonparametric block model approxima-
tion. By node-differentially-private, we mean that our output hides the insertion or removal of
a vertex and all its adjacent edges. If G is an instance of the network obtained from a generative
nonparametric model defined in terms of a graphon W , our model guarantees consistency, in
the sense that as the number of vertices tends to infinity, the output of our algorithm converges
to W in an appropriate version of the L2 norm. In particular, this means we can estimate the
sizes of all multi-way cuts in G.

Our results hold as long as W is bounded, the average degree of G grows at least like the
log of the number of vertices, and the number of blocks goes to infinity at an appropriate rate.
We give explicit error bounds in terms of the parameters of the model; in several settings, our
bounds improve on or match known nonprivate results.
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1 Introduction

Differential Privacy. Social and communication networks have been the subject of intense study
over the last few years. However, while these networks comprise a rich source of information for
science, they also contain highly sensitive private information. What kinds of information can we
release about these networks while preserving the privacy of their users? Simple measures, such
as removing obvious identifiers, do not work; for example, several studies (e.g., [6, 52]) reidentified
individuals in the graph of a social network even after all vertex and edge attributes were removed.
Such attacks highlight the need for statistical and learning algorithms that provide rigorous privacy
guarantees.

Differential privacy [28], which emerged from a line of work started by [25], provides meaningful
guarantees in the presence of arbitrary side information. In a traditional statistical data set, where
each person corresponds to a single record (or row of a table), differential privacy guarantees that
adding or removing any particular person’s data will not noticeably change the distribution on the
analysis outcome. There is now a rich and deep literature on differentially private methodology for
learning and other algorithmic tasks; see [27] for a recent tutorial. By contrast, differential privacy
in the context of graph data is much less developed. There are two main variants of graph differential
privacy: edge and node differential privacy. Intuitively, edge differential privacy ensures that an
algorithm’s output does not reveal the inclusion or removal of a particular edge in the graph, while
node differential privacy hides the inclusion or removal of a node together with all its adjacent edges.
Edge privacy is a weaker notion (hence easier to achieve) and has been studied more extensively,
with particular emphasis on the release of individual graph statistics [53, 55, 39, 51, 47, 40], the
degree distribution [32, 33, 38, 44, 37], and data structures for estimating the edge density of all
cuts in a graph [31, 9]. Several authors designed edge-differentially private algorithms for fitting
generative graph models [51, 40, 47, 37, 60], but these do not appear to generalize to node privacy
with meaningful accuracy guarantees.

The stronger notion, node privacy, corresponds more closely to what was achieved in the case
of traditional data sets, and to what one would want to protect an individual’s data: it ensures
that no matter what an analyst observing the released information knows ahead of time, she learns
the same things about an individual Alice regardless of whether Alice’s data are used or not. In
particular, no assumptions are needed on the way the individuals’ data are generated (they need
not even be independent). Node privacy was studied more recently [41, 22, 10, 54], with a focus on
on the release of descriptive statistics (such as the number of triangles in a graph). Unfortunately,
differential privacy’s stringency makes the design of accurate, node-private algorithms challenging.

In this work, we provide the first algorithms for node-private inference of a high-dimensional
statistical model that does not admit simple sufficient statistics.

Modeling Large Graphs via Graphons. Traditionally, large graphs have been modeled using
various parametric models, one of the most popular being the stochastic block model [35]. Here
one postulates that an observed graph was generated by first assigning vertices at random to one
of k groups, and then connecting two vertices with a probability that depends on the groups the
two vertices are members of.

As the number of vertices of the graph in question grows, we do not expect the graph to be well
described by a stochastic block model with a fixed number of blocks. In this paper we consider
nonparametric models (where the number of parameters need not be fixed or even finite) given in

3



terms of a graphon. A graphon is a measurable, bounded function W : [0, 1]2 → [0,∞) such that
W (x, y) = W (y, x), which for convenience we take to be normalized:

∫
W = 1. Given a graphon,

we generate a graph on n vertices by first assigning i.i.d. uniform labels in [0, 1] to the vertices,
and then connecting vertices with labels x, y with probability ρnW (x, y), where ρn is a parameter
determining the density of the generated graph Gn with ρn‖W‖∞ ≤ 1. We call Gn a W -random
graph with target density ρn (or simply a ρnW -random graph).

To our knowledge, random graph models of the above form were first introduced under the name
latent position graphs [34], and are special cases of a more general model of “inhomogeneous random
graphs” defined in [12], which is the first place were n-dependent target densities ρn were considered.
For both dense graphs (whose target density does not depend on the number of vertices) and sparse
graphs (those for which ρn → 0 as n→∞), this model is related to the theory of convergent graph
sequences [13, 14, 16, 17, 18]. For dense graphs it was first explicitly proposed in [46], though it can
be implicitly traced back to [36, 5], where models of this form appear as extremal points of two-
dimensional exchangeable arrays; see [24] (roughly, their results relate graphons to exchangeable
arrays the way de Finetti’s theorem relates i.i.d. distributions to exchangeable sequences). For
sparse graphs, [19] offers a different nonparametric approach.

Estimation and Identifiability. Assuming that Gn is generated in this way, we are then faced
with the task of estimating W from a single observation of a graph Gn. To our knowledge, this task
was first explicitly considered in [7], which considered graphons describing stochastic block models
with a fixed number of blocks. This was generalized to models with a growing number of blocks
[56, 23], while the first estimation of the nonparametric model was proposed in [8]. Various other
estimation methods were proposed recently, for example [45, 58, 43, 59, 20, 4, 61, 30, 3, 21, 1, 2].
These works make various assumptions on the function W , the most common one being that after
a measure-preserving transformation, the integral of W over one variable is a strictly monotone
function of the other, corresponding to an asymptotically strictly monotone degree distribution of
Gn. (This assumption is quite restrictive: in particular, such results do not apply to graphons that
represent block models.) For our purposes, the most relevant works are Wolfe and Olhede [59], Gao
et al. [30], Chatterjee [21] and Abbe and Sandon [2], which provide consistent estimators without
monotonicity assumptions (see “Comparison to nonprivate bounds”, below).

One issue that makes estimation of graphons challenging is identifiability : multiple graphons
can lead to the same distribution on Gn. Specifically, two graphons W and W̃ lead to the same
distribution on W -random graphs if and only if there are measure preserving maps φ, φ̃ : [0, 1] →
[0, 1] such that W φ = W̃ φ̃, where W φ is defined by W (x, y) = W (φ(x), φ(y)) [24, 15]. Hence, there
is no “canonical graphon” that an estimation procedure can output, but rather an equivalence
class of graphons. Some of the literature circumvents identifiability by making strong additional
assumptions, such as strict monotonicity, that imply the existence of canonical equivalent class
representatives. We make no such assumptions, but instead define consistency in terms of a metric
on these equivalence classes, rather than on graphons as functions. We use a variant of the L2

metric,
δ2(W,W ′) = inf

φ:[0,1]→[0,1]
‖W φ −W ′‖2 . (1)

where φ ranges over measure-preserving bijections.
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1.1 Our Contributions

In this paper we construct an algorithm that produces an estimate Ŵ from a single instance Gn
of a W -random graph with target density ρn (or simply ρ, when n is clear from the context). We
aim for several properties:

1. Ŵ is differentially private;
2. Ŵ is consistent, in the sense that δ2(W, Ŵ )→ 0 in probability as n→∞;
3. Ŵ has a compact representation (in our case, as a matrix with o(n) entries);
4. The procedure works for sparse graphs, that is, when the density ρ is small;
5. On input Gn, Ŵ can be calculated efficiently.
Here we give an estimation procedure that obeys the first four properties, leaving the question

of polynomial-time algorithms for future work. Given an input graph Gn, a privacy-parameter ε
and a target number k of blocks, our algorithm A produces a k-block graphon Ŵ = A(Gn) such
that

• A is ε-differentially node private. The privacy guarantee holds for all inputs, independent of
modeling assumptions.

• Assume that (1) W is an arbitrary graphon, normalized so
∫
W = 1; (2) the expected average

degree (n−1)ρ grows at least as fast as log n; and (3) k goes to infinity sufficiently slowly with
n. Then when Gn is ρW -random, the estimate Ŵ for W is consistent (that is, δ2(Ŵ ,W )→ 0,
both in probability and almost surely).

Combined with the general theory of convergent graphs sequences, these result in particular give a
node-private procedure for estimating the edge density of all cuts in a ρW -random graph, see (24)
in Section 2.2 below.

The main idea of our algorithm is to use the exponential mechanism of [50] to select a block
model which approximately minimizes the `2 distance to the observed adjacency matrix of G, under
the best possible assignment of nodes to blocks (this explicit search over assignments makes the
algorithm take exponential time). In order to get an algorithm that is accurate on sparse graphs,
we need several nontrivial extensions of current techniques. To achieve privacy, we use a new
variation of the Lipschitz extension technique of [41, 22] to reduce the sensitivity of the δ2 distance.
While those works used Lipschitz extensions for noise addition, we use of Lipshitz extensions inside
the “exponential mechanism” [50] (to control the sensitivity of the score functions). To bound
our algorithm’s error, we provide a new analysis of the `2-minimization algorithm; we show that
approximate minimizers are not too far from the actual minimizer (a “stability” property). Both
aspects of our work are enabled by restricting the `22-minimization to a set of block models whose
density (in fact, L∞ norm) is not much larger than that of the underlying graph. The algorithm is
presented in Section 3.

Our most general result proves consistency for arbitrary graphons W but does not provides
a concrete rate of convergence. However, we provide explicit rates under various assumptions on
W . Specifically, we relate the error of our estimator to two natural error terms involving the

graphon W : the error ε
(O)
k (W ) of the best k-block approximation to W in the L2 norm (see (5)

below) and an error term εn(W ) measuring the L2-distance between the graphon W and the matrix
of probabilities Hn(W ) generating the graph Gn (see (4) below.) In terms of these error terms,

5



Theorem 1 shows

δ2

(
W, Ŵ

)
≤ ε(O)

k (W ) + 2εn(W ) +OP

(
4

√
log k

ρn
+

√
k2 log n

nε
+

1

ρεn

)
. (2)

Along the way, we provide a novel analysis of a straightforward, nonprivate least-squares esti-
mator, whose error bound has a better dependence on k:

δ2

(
W, Ŵnonprivate

)
≤ ε(O)

k (W ) + 2εn(W ) +OP

(
4

√
log k

ρn
+

k2

ρn2

)
. (3)

It follows from the theory of graph convergence that for all graphons W , we have ε
(O)
k (W )→ 0

as k → ∞ and εn(W ) → 0 almost surely as n → ∞. As proven in Appendix D, we also have

εn(W ) = OP (ε
(O)
k (W ) + 4

√
k/n), though this upper bound is loose in many cases.

As a specific instantiation of these bounds, let us consider the case that W is exactly described

by a k-block model, in which case ε
(O)
k (W ) = 0 and εn(W ) = OP ( 4

√
k/n) (see Appendix D). For

k ≤ (n/ log2 n)1/3, ρ ≥ log(k)/k and constant ε, our private estimator has an asymptotic error that
is dominated by the (unavoidable) error of εn(W ) = 4

√
k/n, showing that we do not lose anything

due to privacy in this special case. Another special case is when W is α-Hölder continuous, in

which case ε
(O)
k (W ) = O(k−α) and εn(W ) = OP (n−α/2); see Remark 2 below.

Comparison to Previous Nonprivate Bounds. We provide the first consistency bounds for
estimation of a nonparametric graph model subject to node differential privacy. Along the way, for
sparse graphs, we provide more general consistency results than were previously known, regardless
of privacy. In particular, to the best of our knowledge, no prior results give a consistent estimator
for W that works for sparse graphs without any additional assumptions besides boundedness.

When compared to results for nonprivate algorithms applied to graphons obeying additional
assumptions, our bounds are often incomparable, and in other cases match the existing bounds.

We start by considering graphons which are themselves step functions with a known number
of steps k. In the dense case, the nonprivate algorithms of [30] and [21], as well as our nonprivate
algorithm, give an asymptotic error that is dominated by the term εn(W ) = O( 4

√
k/n), which is of

the same order as our private estimator as long as k = õ(n1/3). [59] provided the first convergence
results for estimating graphons in the sparse regime. Assuming that W is bounded above and
below (so it takes values in a range [λ1, λ2] where λ1 > 0), they analyze an inefficient algorithm
(the MLE). The bounds of [59] are incomparable to ours, though for the case of k-block graphons,
both their bounds and our nonprivate bound are dominated by the term 4

√
k/n when ρ > (log k)/k

and k ≤ ρn. A different sequence of works shows how to consistently estimate the underlying
block model with a fixed number of blocks k in polynomial time for very sparse graphs (as for our
non-private algorithm, the only thing which is needed is that nρ→∞) [3, 1, 2]; we are not aware
of concrete bounds on the convergence rate.

For the case of dense α-Hölder-continuous graphons, the results of [30] give an error which is
dominated by the term εn(W ) = OP (n−α/2). For α < 1/2, our nonprivate bound matches this
bound, while for α > 1/2 it is worse. [59] consider the sparse case. The rate of their estimator
is incomparable to the rate of our estimator; further, their analysis requires a lower bound on the
edge probabilities, while ours does not.

See Appendix A for a more detailed discussion of the previous literature.

6



2 Preliminaries

2.1 Notation

For a graph G on [n] = {1, . . . , n}, we use E(G) and A(G) to denote the edge set and the adjacency
matrix of G, respectively. The edge density ρ(G) is defined as the number of edges divided by

(
n
2

)
.

Finally the degree di of a vertex i in G is the number of edges containing i. We use the same notation
for a weighted graph with nonnegative edge weights βij , where now ρ(G) = 2

n(n−1)

∑
i<j βij , and

di =
∑

j 6=i βij . We use Gn to denote the set of weighted graphs on n vertices with weights in [0, 1],
and Gn,d to denote the set of all graphs in Gn that have maximal degree at most d.

From Matrices to Graphons. We define a graphon to be a bounded, measurable function
W : [0, 1]2 → R+ such that W (x, y) = W (y, x) for all x, y ∈ [0, 1]. It will be convenient to
embed the set of a symmetric n× n matrix with nonnegative entries into graphons as follows: let
Pn = (I1, . . . In) be the partition of [0, 1] into adjacent intervals of lengths 1/n. Define W [A] to be
the step function which equals Aij on Ii× Ij . If A is the adjacency matrix of an unweighted graph
G, we use W [G] for W [A].

Distances. For p ∈ [1,∞) we define the Lp norm of an n×n matrix A by ‖A‖pp = 1
n2

∑
i,j |Aij |p,

and the Lp norm of a (Borel)-measurable function W : [0, 1]2 → R by ‖f‖pp =
∫
|f(x, y)|pdxdy.

Associated with the L2-norm is a scalar product, defined as 〈A,B〉 = 1
n2

∑
i,j AijBij for two n× n

matrices A and B, and 〈U,W 〉 =
∫
U(x, y)W (x, y)dxdy for two square integrable functions U,W :

[0, 1]2 → R. Note that with this notation, the edge density and the L1 norm are related by
‖G‖1 = n−1

n ρ(G).
Recalling (1), we define the δ2 distance between two matrices A,B, or between a matrix A and

a graphon W by δ2(A,B) = δ2(W [A],W [B]) and δ2(A,W ) = δ2(W [A],W ). In addition, we will
also use the in general larger distances δ̂2(A,B) and δ̂2(A,W ), defined by taking a minimum over
matrices A′ which are obtained from A by a relabelling of the indices: δ̂2(A,B) = minA′ ‖A′−B‖2
and δ̂2(A,W ) = minA′ ‖A′ −W‖2.

2.2 W -random graphs and graph convergence

W-random graphs and stochastic block models. Given a graphon W we define a random
n × n matrix Hn = Hn(W ) by choosing n “positions” x1, . . . , xn i.i.d. uniformly at random from
[0, 1] and then setting (Hn)ij = W (xi, xj). If ‖W‖∞ ≤ 1, then Hn(W ) has entries in [0, 1], and we
can form a random graph Gn = Gn(W ) on n-vertices by choosing an edge between two vertices
i < j with probability (Hn)ij , independently for all i < j. Following [46] we call Gn(W ) a W -
random graph and Hn(W ) a W -weighted random graph. We incorporate a target density ρn (or
simply ρ, when n is clear from the context) by normalizing W so that

∫
W = 1 and taking G to

be a sample from Gn(ρW ). In other words, we set Q = Hn(ρW ) = ρHn(W ) and then connect i to
j with probability Qij , independently for all i < j.

The error from our main estimates measuring the distance between Hn(W ) and W is defined
as

εn(W ) = δ̂2(Hn(W ),W ) (4)

and goes to zero as n→∞ by the following lemma, which follows easily from the results of [17].
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Lemma 1. Let W be a graphon with ‖W‖∞<∞. With probability one, ‖Hn(W )‖1 → ‖W‖1 and
εn(W )→ 0.

Stochastic block models are specific examples of W -random graph in which W is constant on
sets of the form Ii × Ij , where (I1, . . . , Ik) is a partition of [0, 1] into intervals of possibly different
lengths.

Approximation by block models. In the opposite direction, we can map a function W to a
matrix B by the following procedure. Starting from an arbitrary partition P = (Y1, . . . , Yk) of [0, 1]
into sets of equal Lebesgues measure, define W/P to be the matrix obtained by averaging over sets
of the form Yi × Yj ,

(W/P)ij =
1

λ(Yi)λ(Yj)

(∫
Yi×Yj

W (x, y)dxdy
)

where λ(·) denotes the Lebesgue measure. Finally, we will use WP to denote the step function

WP =
∑
i,j∈[k]

(W/P)ij1Yi × 1Yj .

Using the above averaging procedure, it is easy to see that any graphonW can be well approximated
by a block model. Indeed, let

ε
(O)
k (W ) = min

B
‖W −W [B]‖2 (5)

where the minimum goes over all k× k matrices B. Given that we are minimizing the L2-distance,
the minimimizer can easily be calculated, and is equal to WPk , where Pk is a partition of [0, 1] into
adjacent intervals of lengths 1/k. It then follows from the Lebesgue density theorem (see, e.g., [17]

for details) that ε
(O)
k (W ) = ‖W −WPk‖2 → 0 as k →∞.

We will take the above approximation as a benchmark for our approach, and consider it the
error an “oracle” could obtain (hence the superscript O).

Convergence. The theory of graph convergence was first developed [13, 14, 16], where it was
formulated for dense graphs, and then generalized to sparse graphs in [11, 17, 18]. One of the
notions of graph convergence considered in these papers is the notion of convergence in metric.
The metric in question is similar to the metric δ2, but instead of the L2-norm, one starts from the
cut-norm ‖ · ‖� first defined in [29],

‖W‖� = sup
S,T⊂[0,1]

∣∣∣∫
S×T

W
∣∣∣,

where the supremum goes over all measurable sets S, T ⊂ [0, 1]. The cut-distance δ� between two
integrable functions U,W ; [0, 1]2 → R is then defined as

δ�(U,W ) = inf
φ
‖Uφ −W‖�,

where the inf goes over all measure preserving bijections on [0, 1]. We will also need the following
variations: a distance δ̂�(G,G′) between two graphs on the same node set, as well as a distance
δ̂�(G,W ) between a graph G and a graphon W , defined as d̂�(G,G′) = minG′′ ‖W [G′′]−W [G]‖�

8



and d̂�(G,W ) = minG′′ ‖W [G′′] − W‖�, respectively, where the minimum goes over graphs G′′

isomorphic to G.
Given these notions, we say a (random or deterministic) sequence Gn of graphs converges to a

graphon W in the cut metric if, as n→∞,

δ�

(
1

ρ(Gn)
W [Gn],W

)
→ 0 .

With this notion of convergence, for any graphon W with
∫
W = 1, a sequence of W -random

graphs Gn with target density ρn converges to the generating graphon W . This was shown for
bounded W and n-independent target densities ρ with ρ‖W‖∞ ≤ 1 in [14], but the statement is
much more general, and in particular holds for arbitrary target densities ρn as long as nρn → ∞
and lim sup ρn‖W‖∞ ≤ 1 [17].

Estimation of Multi-Way Cuts. Using the results of [18], the convergence of Gn in the cut-
metric δ� implies many interesting results for estimating various quantities defined on the graph
Gn. Indeed, a consistent approximation Ŵ to W in the metric δ2 is clearly consistent in the weaker
metric δ�. But this distance controls various quantities of interest to computer scientists, e.g.,
the size of all multi-way cuts, implying that a consistent estimator for W also gives consistent
estimators for all multi-way cuts.

To formalize this, we need some notation. Given a weighted graph G on [n] with node-weights
one and edge-weights βxy(G), and given a partition P = (V1, . . . , Vq) of [n] into q groups, let G/P
be the weighted graph with weights

αi(G/P) = |Vi|/|V (G)| and βij(G/P) =
1

n2‖G‖1

∑
x∈Vi,y∈Vj

βxy(G).

We call G/P a q-quotient or q-way cut of G, and denote the set of all q-way cuts by Sq(G):

Sq(G) = {G/P : P is a partition of [n] into q sets } .

We also consider the set of fractional q-way cuts, Ŝq(G) = {G/ρ}, defined in terms of frac-
tional q-partitions ρ. A fractional q-partition of V (G) is a map ρ : V (G) → ∆q : x 7→ ρ(x),
where ∆q is the simplex ∆q = {ρ = (ρi) ∈ [0, 1]q :

∑
i ρi = 1}, and the corresponding frac-

tional quotient G/ρ is the weighted graph with weights αi(G/ρ) = 1
|V (G)|

∑
x ρi(x) and βij(G/ρ) =

1
n2‖G‖1

∑
x∈Vi,y∈Vj βxy(G)ρi(x)ρj(x).

The set of fractional q-partitions of a graphon W , Ŝq(W ), is defined similarly: Ŝq(W ) = {W/ρ |
ρ : [0, 1] → ∆q}, with a fractional partition now a measurable function ρ : [0, 1] → ∆q, and W/ρ
given in terms of the weights

αi(W/ρ) =

∫
ρi(x)dx and βij(W/ρ) =

1

‖W‖1

∫
ρi(x)ρj(y)W (x, y).

To measure the distance between the various sets of q-way cuts, we use the Hausdorff distance
between sets S, S′ ⊂ Rq+q2 ,

dHaus
∞ (S, S′) = max{sup

H∈S
inf
H′∈S′

‖H −H ′‖∞, sup
H′∈S′

inf
H∈S
‖H −H ′‖∞},
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where ‖ · ‖∞ is the L∞-norm ‖H −H ′‖∞ = max{maxi |αi(H)− αi(H ′)|,maxij |βij(H)− βij(H ′)|}.
It was shown in [17] that if Gn converges to W in the cut-metric, then dHaus

∞ (Sq(Gn), Ŝq(W ))→
0. In particular, a consistent estimator Ŵ for the generating graphon W of a W -random graph Gn
leads to a consistent estimator Ŝq(Ŵ ) for the cuts Sq(Gn), in the sense that dHaus

∞ (Sq(Gn), Ŝq(Ŵ ))→
0. With a little more work, we can give quantitative bounds; see Theorem 3 below.

2.3 Differential Privacy for Graphs

The goal of this paper is the development of a differentially private algorithm for graphon estimation.
The privacy guarantees are formulated for worst-case inputs — we do not assume thatG is generated
from a graphon when analyzing privacy. This ensures that the guarantee remains meaningful no
matter what an analyst knows ahead of time about G.

In this paper, we consider the notion of node privacy. We call two graphs G and G′ node
neighbors if one can be obtained from the other by removing one node and its adjacent edges.

Definition 1 (ε-node-privacy). A randomized algorithm A is ε-node-private if for all events S in
the output space of A, and node neighbors G,G′,

Pr[A(G) ∈ S] ≤ exp(ε)× Pr[A(G′) ∈ S] .

We also need the notion of the node-sensitivity of a function f : Gn → R, defined as maximum
maxG,G′ |f(G)−f(g′)|, where the maximum goes over node-neighbors. This constant is often called
the Lipshitz constant of f

Finally, we need a lemma concerning the extension of functions f : Gn,d → R to functions

f̂ : Gn → R. We say a function on adjacency matrices is nondecreasing if adding an edge to the
adjacency matrix does not increase the value of the function.

Lemma 2 ([48, 41]). For every function f : Gn,d → R, there is an extension f̂ : Gn → R of f with
the same node-sensitivity as f . If f is a nondecreasing linear function of the adjacency matrix, then
we can select f̂ to be nondecreasing and computable in polynomial-time and so that f̂(G) ≤ f(G)
for all graphs G ∈ Gn.

The lemma is proved in Appendix B.

3 Differentially Private Graphon Estimation

3.1 Least-squares Estimation

Given a graph as input generated by an unknown graphon W , our goal is to recover a block-model
approximation to W . The basic nonprivate algorithm we emulate is least squares estimation, which
outputs the k × k matrix B which is closest to the input adjacency matrix A in the distance

δ̂2(B,A) = min
π
‖Bπ −A‖2,

where the minimum runs over all equipartitions π of [n] into k classes, i.e., over all maps π : [n]→ [k]
such that all classes have size as close to n/k as possible, i.e., such that ||π−1(i)|−n/k| < 1 for all i,
and Bπ is the n×n block-matrix with entries (Bπ)xy = Bπ(x)π(y). If A is the adjacency matrix of a

graph G, we write δ̂2(B,G) instead of δ̂2(B,A). In the above notation, the basic algorithm we would
want to emulate is then the algorithm which outputs the least square fit B̂ = argminB δ̂2(B,G),
where the argmin runs over all symmetric k × k matrices B.
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3.2 Towards a Private Algorithm

Our main idea to turn the least square algorithm into a private algorithm is to use the so-called
exponential mechanism of McSherry and Talwar [50]. Applied naively, we would therefore want to
output a random k × k matrix B according to the probability distribution

Pr(B̂ = B) ∝ exp
(
−Cδ̂2

2(B,A)
)
,

with C chosen small enough to guarantee differential privacy. It is a standard fact from the theory
of differential privacy, that C should be at most ε over twice the node-sensitivity of the “score
function”, here δ2

2(B, ·). But this value of C turns out to be too small to produce an output that is
a good approximation to the least square estimator. Indeed, for a given matrix B and equipartition
π, the distance ‖G − Bπ‖22 can change by as much as 1

n when G is replaced by a node-neighbor,
regardless of the magnitude of the entries of B. To obtain differential privacy, we then would need
to choose C ≥ nε/2, which turns out to not produce useful results when the input graph G is
sparse, since small values of C will lead to large errors relative to the least square estimator.

To address this, we first note that we can work with an equivalent score that is much less
sensitive. Given B and π, we subtract off the squared norm of G to obtain the following:

score(B, π;G) = ‖G‖22 − ‖G−Bπ‖22 = 2〈G,Bπ〉 − ‖Bπ‖2, and (6)

score(B;G) = max
π

score(B, π;G), (7)

where the max ranges over equipartitions π : [n]→ [k]. For a fixed input graph G, maximizing the
score is the same as minimizing the distance, i.e. argminB δ̂2(B,G) = argmaxB score(B;G). The
sensitivity of the new score is then bounded by 2

n2 · ‖B‖∞ times the maximum degree in G (since
G only affects the score via the inner product 〈G,Bπ〉). But this is still problematic since, a priori,
we have no control over either the size of ‖B‖∞ or the maximal degree of G.

To keep the sensitivity low, we make two modifications: first, we only optimize over matrices
B whose entries are of order ρn (in the end, we expect that a good estimator will have entries
which are not much larger than ‖ρnW‖∞, which is of order ρn), and second we restrict ourselves to
graphs G whose maximum degree is not much larger than one would expect for graphs generated
from a bounded graphon, namely a constant times the average degree. While the first restriction is
something we can just implement in our algorithm, unfortunately the second is something we have
no control over: We need to choose C small enough to guarantee privacy for all input graphs, and
we have set out to guarantee privacy in the worst case, which includes graphs with maximal degree
n − 1. Here, we employ an idea from [10, 41]: we first consider the restriction of score(B, π; ·) to
Gn,dn where dn will be chosen to be of the order of the average degree of G, and then extend it
back to all graphs while keeping the sensitivity low.

3.3 Private Estimation Algorithm

After these motivations, we are now ready to define our algorithm. It takes as input the privacy
parameter ε, the graph G, a number k of blocks, and a constant λ ≥ 1 that will have to be chosen
large enough to guarantee consistency of the algorithm. It outputs a matrix B from the set of
matrices

Bµ = {B ∈ [0, µ]k×k : all entries Bi,j are multiples of 1
n}.
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Inside our algorithm, we use an ε/2-private algorithm to get an estimate ρ̂ for the edge density of
G. We do so by setting ρ̂ = ρ(G) + Lap(4/nε), where Lap(κ) is a Laplace random variable with
density h(z) = 1

2κe
−|z|/κ. The existence of the Lipschitz extension used in the algorithm follows

from Lemma 2.

Algorithm 1: Private Estimation Algorithm

Input: ε > 0, λ ≥ 1, an integer k and graph G on n vertices.
Output: k × k block graphon (represented as a k × k matrix) estimating ρW

1 Compute an (ε/2)-node-private density approximation ρ̂ = ρ(G) + Lap(4/nε) ;
2 d = λρ̂n (the target maximum degree) ;
3 µ = λρ̂ (the target L∞ norm for the matrix B) ;
4 For each B and π, let ŝcore(B, π; ·) denote a nondecreasing Lipschitz extension of
score(B, π; ·) from Gn,d to Gn such that for all matrices A, ŝcore(B, π;A) ≤ score(B, π;A),
and define

ŝcore(B;A) = max
π

ŝcore(B, π;A)

5 return B̂, sampled from the distribution

Pr(B̂ = B) ∝ exp
( ε

4∆
ŝcore(B;A)

)
,

where B ranges over matrices in Bµ and ∆ =
4dµ

n2
=

4λ2ρ̂2

n
;

Lemma 3. Algorithm 1 is ε-node private.

Proof. By Lemma 10 from Appendix B, the estimate ρ̂ is ε/2-private, so we want to prove that
the exponential mechanism itself is ε/2-private as well. In view of Lemma 11 from Appendix B,
all we need to show is that the the vertex sensitivity of ŝcore(B; ·) is at most ∆. To this end, we
first bound the vertex sensitivity of the original score when restricted to graphs with degree d. Let
G,G′ ∈ Gn,d be node neighbors. From (6), we see that

score(B, π;G)− score(B, π;G′) =
2

n2

∑
x,y∈[n]

(Axy −A′xy)Bπ(x)π(y) ,

where A,A′ are the adjacency matrices of G and G′. Since A and A′ differ in at most 2d entries, the
score differs by at most 4d‖Bπ‖∞/n2. This is at most ∆, since B ∈ Bµ. Since ŝcore is a Lipschitz
extension of score, the vertex sensitivity of ŝcore (over all neighboring graphs) is at most ∆, as
required.

Theorem 1 (Performance of the Private Algorithm). Let W : [0, 1]2 → [0,Λ] be a normalized
graphon, let 0 < ρΛ ≤ 1, let G = Gn(ρW ), λ ≥ 1, and k be an integer. Assume that ρn ≥ 6 log n

and 8Λ ≤ λ ≤
√
n, 2 ≤ k ≤ min{n

√
ρ
2 , e

ρn
2 }. Then the Algorithm 1 outputs an approximation

(ρ̂, B̂) such that

δ2

(
W,

1

ρ̂
W [B̂]

)
≤ ε(O)

k (W ) + 2εn(W ) +OP

(
4

√
λ2 log k

ρn
+ λ

√
k2 log n

nε
+

λ

nρε

)
.
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The theorem will be proven in Section 5.
In the course of the proof, we will prove results on the performance of a non-private algorithm,

which is a variant of the standard least square algorithm, the main difference being that instead
of minimizing δ̂2(B,A) over all matrices B, we only optimize it over matrices whose entries are
bounded by a constant times the density of G.

Algorithm 2: Nonprivate Algorithm

Input: λ ≥ 1, an integer k and graph G on n vertices.
Output: k × k block graphon (represented as a k × k matrix B) estimating ρW

1 µ← λρ(G) (the target L∞ norm for the matrix B) ;

2 return B̂ ∈ argmin
B∈Bµ

δ̂2(B;G).

Theorem 2 (Performance of the Nonprivate Algorithm). Let W : [0, 1]2 → [0,Λ] be a normalized
graphon, let 0 < ρΛ ≤ 1, let G = Gn(ρW ), λ ≥ 1, and k be an integer. If B̂ is the least-squares

estimator (Algorithm 2), 2Λ ≤ λ ≤
√
n, 2 ≤ k ≤ min{n

√
ρ
2 , e

ρn
2 }, then

δ2

(
W,

1

ρ(G)
W [B̂]

)
≤ ε(O)

k (W ) + 2εn(W ) +Op

(
4

√
λ2

(
log k

ρn
+

k2

ρn2

))
.

In particular, δ2

(
W, 1

ρ(G)W [B̂]
)
→ 0 in probability if k →∞ and λ2

(
log k
ρn + k2

ρn2

)
→ 0.

Theorem 2 is proven in Section 4.

Remark 1. While Theorem 1 and Theorem 2 are stated in term of bounds which hold in probability,
our proofs give slightly more, and allow us in particular to prove statements which hold almost
surely as n → ∞. Namely, they show that under the assumptions of Theorem 2, the output B̂ of
the nonprivate algorithm is such that

δ2

(
W,

1

ρ(G)
W [B̂]

)
≤ ε(O)

k (W ) +O

(
4

√
λ2 log k

ρn
+
λ2k2

ρn2

)
+ o(1);

they also show that if we replace the assumption nρ ≥ 6 log n in Theorem 1 by the stronger assump-
tion nρε/ log n→∞, then the output B̂ of the private algorithm is such that

δ2

(
W,

1

ρ̂
W [B̂]

)
≤ ε(O)

k (W ) +O

(
4

√
λ2 log k

ρn
+ λ

√
k2 log n

nε
+

√
λ

nρε

)
+ o(1)

where in both expressions, o(1) is a term which goes to zero with probability one as n→∞.
Thus for both algorithm, as long as k grows sufficiently slowly with n, with probability one, the

asymptotic error is of the form ε
(O)
k (W ) + o(1), which is best possible, since we can’t do better than

the best oracle block model approximation.

Remark 2. Under additional assumptions on the graphon W , we can say a little more. For
example, if we assume that W is Hölder continuous, i.e, if we assume that the exists constants
α ∈ (0, 1] and C <∞ such that |W (x, y)−W (x′, y′)| ≤ Cδα whenever |x− x′|+ |y − y′| ≤ δ, then

we have that ε
(O)
k (W ) = O(k−α) and εn(W ) = OP (n−α/2). See Appendix E for details.
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Theorems 1 and 2 imply that the sets of fractional q-way cuts of the estimator B̂ from these
theorems provide good approximations to the q-way cuts of the graph G (as defined in Section 2.2).
Specifically:

Theorem 3. Let q ≥ 2 be an integer.
(i) Under the assumptions of Theorem 2,

dHaus
∞ (Sq(G), Ŝq(B̂nonprivate)) = Op

(
ε
(O)
k (W ) + εn(W ) + 4

√
λ2

(
log k

ρn
+

k2

ρn2

))
.

(ii) Under the assumptions of Theorem 1,

dHaus
∞ (Sq(G), Ŝq(B̂private)) = Op

(
ε
(O)
k (W ) + εn(W ) + 4

√
λ2 log k

ρn
+ λ

√
k2 log n

nε
+

λ

nρε

)
.

The proof of the theorem relies on the theory of graph convergence, in particular the results of
[16, 17, 18], and is given in Appendix F.

Remark 3. When considering the “best” block model approximation to W , one might want to
consider block models with unequal block sizes; in a similar way, one might want to construct a
private algorithm that outputs a block model with unequal size blocks, and produces a bound in

terms of this best block model approximation instead of ε
(O)
k (W ). With more cumbersome notation,

this can be easily proved with our methods, with the minimal block size taking the role of 1/k in all
our proofs. We leave the details to a journal version.

4 Estimation Error of the Least Square Algorithm

At a high level, our proofs of Theorems 1 and of 2 follow from the fact that for all B and π, the
expected score E[Score(B, π;G)] is equal to the score Score(B, π;Q), combined with a concentra-
tion argument. As a consequence, the maximizer B̂ of Score(B;G) will approximately minimize
the L2-distance δ̂2(B,Q), which in turn will approximately minimize ‖1

ρW [B]−W‖2, thus relating

the L2-error of our estimator B̂ to the “oracle error” ε
(O)
k (W ) defined in (5).

In this section we present the analysis of exact and approximate least squares. This allows us
to analyze the nonprivate algorithm. The analysis of the private algorithm (Theorem 1) requires
additional arguments relating the private approximate maximizer to the nonprivate one; we present
these in Section 5).

Our main concentration statement is contained in the following proposition, which we prove
in Section 4.1 below. To state it, we define, for every symmetric n × n matrix Q with vanishing
diagonal, Bern0(Q) to be the distribution over symmetric matrices A with zero diagonal such that
the entries {Aij : i < j} are independent Bernouilli random variables with EAij = Qij .

Proposition 1. Let µ > 0, Q ∈ [0, 1]n×n be a symmetric matrix with vanishing diagonal, and
A ∼ Bern0(Q). If 2 ≤ k ≤ min{n

√
ρ(Q), eρ(Q)n} and B̂ ∈ Bµ is such that

Score(B̂;A) ≥ max
B∈Bµ

Score(B;A)− ν2
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for some ν > 0, then with probability at least 1− 2e−n,

δ̂2(B̂,Q) ≤ min
B∈Bµ

δ̂2(B,Q) + ν +O

(
4

√
µ2ρ(Q)

(
k2

n2
+

log k

n

))
(8)

and in particular

‖B̂‖2 ≤ (2‖Q‖2 + ν)

(
1 +

2k

n

)
+O

(
4

√
µ2ρ(Q)

(
k2

n2
+

log k

n

))

≤ (2‖Q‖2 + ν)

(
1 +

2k

n

)
+O

(√
µρ(Q)

) (9)

Morally, the proposition contains almost all that is needed to establish the bound (3) proving
consistency of the standard least squares algorithm (which, in fact, only involves the case ν = 0),
even though there are several additional steps needed to complete the proof (see Sections 4.2 and
4.3 below).

The proposition also contains an extra ingredient which is a crucial input for the analysis of
the private algorithm: it states that if instead of an optimal, least square estimator, we output
an estimator whose score is only approximately maximal, then the excess error introduced by the
approximation is small. To apply the proposition, we then establish a a lemma which gives us a
lower bound on the score of the output B̂ in terms of the maximal score and an excess error ν.

There are several steps needed to execute this strategy, the most important ones involving a
rigorous control of the error introduced by the Lipschitz extension inside the exponential algorithm
(which in turn requires estimating the deviation of the maximal degree from the expected degree,
a step where the condition that ρn has to grow like log n is needed). The excess error ν eventually
turns into the second to last error term in (2), while the difference between our private estimator
ρ̂ for the edge density and the actual edge density of G is responsible for the last one.

The analysis of the private algorithm is presented in Section 5; the remainder of this section
presents the detailed analysis of the least squares estimator.

Remark 4. Note that for both the non-private algorithm and the private algorithm, the above
proposition naturally gives a bound for the L2 estimation error for matrix of probabilities Q. In
fact, our proofs provide error bounds on δ̂2(B̂,Q) which differ from (3), (2) and the bounds in

Theorem 3 in that (i) the error term 2εn(W ) is absent, and (ii) the oracle error ε
(O)
k (W ) is replaced

by an oracle error ε̂
(O)
k (Hn) for Hn, see Theorems 4, 5 and 6. Converting these bounds into bounds

on δ2(W, 1
ρ̂W [B̂]) and expressing the result in terms of ε

(O)
k (W ) instead of ε̂

(O)
k (Hn) then introduces

the error term 2εn(W ) in (3), (2) and the bounds in Theorem 3.

4.1 Expectation and Concentration of Scores

The following two lemmas contain the core of the argument outlined at the beginning of this section.

Lemma 4 (Expected scores). Let Q ∈ [0, 1]n×n be a symmetric matrix with vanishing diagonal, let
A ∼ Bern0(Q), and let B,B′ be k × k matrices. Then

δ̂2
2(Q,B)− δ̂2

2(Q,B′) = max
π′

E[Score(B′, π′;G)]−max
π

E[Score(B, π;G)],

where the two max’s go over equipartitions π, π′ : [n]→ [k].
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Proof. By linearity of expectation, we have

Escore(B, π;A) = E
(
2〈A,Bπ〉 − ‖Bπ‖2

)
= 2〈Q,Bπ〉 − ‖Bπ‖22

= ‖Q‖22 − ‖Q−Bπ‖22 .

Taking into account the definition of δ̂2(B,Q), the lemma follows.

Our second lemma states that the realized scores are close to their expected values. The proof
is based on a careful application of the concentration bounds. The argument is delicate because we
must take advantage of the low density (when ρ is small).

Lemma 5 (Concentration of scores). Let µ > 0, let Q ∈ [0, 1]n×n be a symmetric matrix with
vanishing diagonal and let A ∼ Bern0(Q). If 2 ≤ k ≤ min{n

√
ρ(Q), eρ(Q)n}, then, with probability

at least 1− 2e−n

|score(B, π;A)− E[score(B, π;A)]| = O

(
µ

√
ρ(Q)

(
k2

n2
+

log k

n

))

for all equipartitions π and all B ∈ [0, µ]k×k.

Proof. First, consider a specific pair B, π. Recall that

score(B, π;A)− E[score(B, π;A)] = 2〈A−Q,Bπ〉 .

We wish to bound the deviation of score(B, π;A) from its mean. Set ρ(Q) = ρ̃. The quantity

S = n2

2µ · 〈A,Bπ〉 =
∑

i<j
Bπ(i)π(j)

µ Aij is a sum of
(
n
2

)
independent random variables in [0, 1] with

expectation ES ≤ ρ̃
(
n
2

)
. Using a slight variation on the standard Chernoff bound, which we state

in Lemma 17, we will bound the probability that S deviates from its mean by at most βµ0, where
µ0 ≥ E[S] will be chosen in a moment. Setting η = 2e−n and

β =

√
k2 + n log k + log(2/η)

3ρ̃n2
= O

(√
k2

ρ̃n2
+

log k

ρ̃n

)

the assumption k ≤ min{n
√
ρ(Q)n, eρ(Q)n} implies β ≤ 1, and setting µ0 = 9n2ρ̃, the bound from

Lemma 17 becomes
2e−3β2ρ̃n2

= e−k
2
k−nη ≤ 2−k

2
k−nη,

implying that

Pr

(
|2〈A−Q,Bπ〉| ≥

4µ

n2
βµ0

)
≤ η

kn2k2
.

Finally, we observe that for any A, the maximum of |〈Q−A,Bπ〉| over all B ∈ [0, µ]k×k is the
same as the maximum over all B ∈ {0, µ}k×k. Taking a union bound over the (at most 2k

2
kn) pairs

B, π and observing that 4µ
n2βµ0 = O

(
µ

√
ρ̃
(
k2

n2 + log k
n

))
, we get the statement of the lemma.
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Proof of Proposition 1. Let B̂ ∈ Bµ be as specified, let B′ ∈ Bµ arbitrary, and let π, π′ : n→ k be
two equipartitions. By Lemmas 4 and 5,

δ̂2
2(Q, B̂)− δ̂2

2(Q,B′) = max
π′

E[Score(B′, π′;G)]−max
π

E[Score(B̂, π;G)]

≤ Score(B′;G)− Score(B̂;G) +O

(
µ

√
ρ(Q)

(
k2

n2
+

log k

n

))

≤ ν2 +O

(√
µ2ρ(Q)

(
k2

n2
+

log k

n

))

which implies the bound (8). (Taking square roots works since
√∑

iC
2
i ≤

∑
iCi as long as

Ci ≥ 0.) To prove (9), we use that for an arbitrary equipartition π ‖B̂π‖22 ≥
(

1− k
n

)
‖B̂‖22 and that

‖B̂π‖2 ≤ ‖Q‖2 +‖Bπ−Q‖2. Inserting the definition of δ̂2(B̂,Q) and using the main statement plus
the assumptions 2 ≤ k ≤ min{n

√
ρ(Q), eρ(Q)n}, we obtain (9).

4.2 Estimation of the edge-probability matrix Q

Up to technical details, Proposition 1 contains all that is needed to prove consistency of the least
square algorithm. As indicated in Remark 4, we will first prove that the algorithm gives a consistent
estimator for the matrix Q, and then use this prove that the output also gives a consistent estimator
for W . The first statement is formalized in the following theorem.

Theorem 4. Under the assumptions of Theorem 2,

δ̂2

( 1

ρ(G)
B̂,Hn(W )

)
≤ ε̂(O)

k (Hn(W )) +Op

(√
λ
( log k

ρn
+

k2

ρn2

)1/4
)

(10)

where
ε̂
(O)
k (H) = inf

B
δ̂2(B,H),

with the inf going over all symmetric k × k matrices B. Moreover, a.s. as n→∞,

δ̂2

(
1

ρ(G)
B̂,Hn(W )

)
≤ ε̂(O)

k (Hn(W )) +O

(
4

√
λ2

(
k2

n2ρ
+

log k

nρ

))
+ o(1).

Proof. As a first step, we will bound the left hand side of (10) by conditioning on the event that

ρ

2
≤ ρ(Q) ≤ 2ρ. (11)

By a concentration argument very similar to the proof of Lemma 5 above (in fact, it is easier, see
Lemma 12 (part 3) in Appendix C), we have that, with probability at least 1− 2e−n,

ρ(G)

ρ(Q)
= 1 +O

(
1√
nρ(Q)

)
= 1 +O

(
1
√
nρ

)
.
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We can now apply Proposition 1 with ν = 0 (since the nonprivate algorithm returns an exact
minimizer). Recall that Hn(W ) = Q

ρ and µ = λρ(G) = Θ(λρ). We get that, with probability at

least 1− 4e−n,

δ̂2

(
1

ρ
B̂,Hn(W )

)
≤ min

B∈Bµ
δ̂2

(
1

ρ
B,Hn(W )

)
+O

(
4

√
λ2

(
k2

n2ρ
+

log k

nρ

))
. (12)

In the remainder of the proof, we bound the first term on the left-hand side above by relating it

to the “oracle error” ε̂
(O)
k (Hn(W )). Let B′ and π be such that ε̂

(O)
k (Hn(W )) = ‖Hn(W )−B′π‖2. It

is easy to see that then B′π is obtained from Hn(W ) by averaging over the classes of π, which in turn
implies that ‖B′π‖∞ = ‖B′‖∞ ≤ ‖Hn(W )‖∞ ≤ ‖W‖∞ ≤ Λ and ‖B′π‖2 ≤ ‖Hn(W )‖2 = ρ−1‖Q‖2.
Define B by rounding all entries of ρ(G)B′ down to the nearest multiple of 1/n, adding a rounding
error of at most 1/n, so that ‖B−ρ(G)B′‖∞ ≤ 1/n. Note that B′ is on the scale of W and Hn(W )

(that is, we expect ‖B′‖ = Θ(1)), while B is on the scale of ρW and Q; hence, ‖Bπ‖2 ≤ ρ(G)
ρ ‖Q‖2.

Now µ ≥ ρ(G)Λ, ‖B‖∞ ≤ ρ(G)‖B′‖∞ ≤ ρ(G)Λ, and Λ ≤ λ/2. Thus, B is in the set Bµ that the
algorithm searches over. We can bound the first term in the left-hand side of (12) by

δ̂2

(
Hn(W ),

1

ρ
B

)
≤

∥∥∥Hn(W )− 1

ρ
Bπ

∥∥∥
2

≤
∥∥∥Hn(W )− 1

ρ(G)
Bπ

∥∥∥
2

+
∥∥∥ 1

ρ(G)
Bπ −

1

ρ
Bπ

∥∥∥
2

≤ ε̂
(O)
k (Hn(W )) +

∥∥∥B′π − 1

ρ(G)
Bπ

∥∥∥
2

+
∥∥∥ 1

ρ(G)
Bπ −

1

ρ
Bπ

∥∥∥
2

≤ ε̂
(O)
k (Hn(W )) +

1

nρ(G)
+
∣∣∣1−ρ(G)

ρ

∣∣∣‖Q‖2
ρ

Combined with our previous two bounds and the fact that by (11), we can bound ‖Q‖2 by ‖Q‖2 ≤√
‖Q‖1‖Q‖∞≤

√
ρ(Q)Λρ ≤

√
2Λρ ≤

√
λρ, this implies that

δ̂2

(
1

ρ
B̂,Hn(W )

)
≤ ε̂(O)

k (Hn(W )) +
√
λ
∣∣∣1− ρ(Q)

ρ

∣∣∣+O

(√
λ

nρ

)
+O

(
4

√
λ2

(
k2

n2ρ
+

log k

nρ

))

≤ ε̂(O)
k (Hn(W )) +

√
λ
∣∣∣1− ρ(Q)

ρ

∣∣∣+O

(
4

√
λ2

(
k2

n2ρ
+

log k

nρ

))
.

We can now use (9) to bound ‖B̂‖2 by O(‖Q‖2 +
√
µρ(Q)) = O(

√
λρ) and thus δ2(B̂/ρ, B̂/ρ(G))

by O(
√
λ)|1− ρ(Q)/ρ| plus an error which can be absorbed into the error term above. We obtain

that, conditioned on (11), with probability at least 1− 4e−n, we have

δ̂2

(
1

ρ(G)
B̂,Hn(W )

)
≤ ε̂(O)

k (Hn(W )) +O

(
4

√
λ2

(∣∣∣1− ρ(Q)

ρ

∣∣∣4 +
k2

n2ρ
+

log k

nρ

))
. (13)

By Lemma 12 from Appendix C, |ρ(Q)− ρ|2 = OP (λρ2/n), implying that

λ2
∣∣∣1− ρ(Q)

ρ

∣∣∣4 = OP

(
λ4

n2

)
= OP

(
λ2

n

)
= OP

(
λ2 log k

ρn

)
.
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On the other hand, again by Lemma 12 from Appendix C, the probability that (11) does not hold
is O(λ/n), showing that with probability 1− 4e−n −O(λ/n) = 1−O(λ/n),

δ̂2

(
1

ρ(G)
B̂,Hn(W )

)
≤ ε̂(O)

k (Hn(W )) +OP

(
4

√
λ2

(
k2

n2ρ
+

log k

nρ

))
.

This holds conditioned on an event E of probability O(λ/n). To bound the contribution of E to
the overall error, we bound 1

ρ(G)‖B̂‖2 ≤
1

ρ(G)‖B̂‖∞ ≤ λ and ‖Hn(W )‖2 ≤ ‖Hn(W )‖∞ ≤ λ, giving

an error contribution of OP (λ2/n) = OP ( 4
√
λ2/ρn) which we can absorb into the error already

present.
To prove the almost sure statement, we use that εn(W )→ 0 almost surely, which by Lemma 12

(part 2) from Appendix C implies that ρ(Q)/ρ → 1 almost surely. Since the error probability in
(13) is exponentially small, we can use the Borel-Cantelli Lemma to obtain the a.s. statement.

4.3 Estimation of the graphon W

To deduce Theorem 2 from Theorem 4, we will bound ε̂
(O)
k (Hn(W )) in terms of ε

(O)
k (W ), and

δ2(B̂/ρ(G),W ) in terms of δ̂2(B̂/ρ(G), Hn(W )). We will show that the leading error in both cases
is an additive error of εn(W ). To do this, we need two lemmas.

Lemma 6. Fix n and k ≤ n.

(i) For each equipartition π : [n]→ [k] and each permutation σ : [n]→ [n], π ◦ σ is an equiparti-
tion.

(ii) For all equipartitions π, π′ : [n] → [k] there exists a permutation σ : [n] → [n] such that
π′ = π ◦ σ.

Proof. Any equipartition must have exactly L− classes of size bn/kc and L+ classes of size dn/ke,
where L± are determined by the equations L− + L+ = k, L−bn/kc + L+dn/ke = n; and any
partition with these properties is an equipartition. The statement follows.

To state the next lemma, we define the standard equipartition π of [n] into k classes to be the
partition into the classes Ii = {ni−1 + 1, . . . , ni}, i ∈ [k], where ni = bin/kc. Note that n0 = 0,
nk = n, and bn/kc ≤ |ni+1 − ni| ≤ dn/ke.

Lemma 7. Let B be a symmetric k× k matrix with nonnegative entries, and let π be the standard
equipartition of [n] into k classes. Then

‖W [B]−W [Bπ]‖2 ≤
√

4k

n
‖B‖2.

Proof. Let I1, . . . , Ik be adjacent intervals of length 1/k, and for i = 1, . . . , k, let Ji be the set of
point in x ∈ Ii such that x ≤ ni/n, and let ∆i = Ii \ Ji. Then (W [B] −W [Bπ])(x, y) = 0 unless

(x, y) lies in one of the 3k2 sets R
(1)
ij = ∆i×∆j , R

(2)
ij = Ii \∆i×∆j or R

(3)
ij = ∆i×Ij \∆j , i, j ∈ [k].

Taking, e.g., (x, y) ∈ R(1)
ij we have that |(W [B]−W [Bπ])(x, y)|2 = |Bij−Bi+1,j+1|2 ≤ B2

ij+B2
i+1,j+1

(note that the set ∆k is empty, so that here we only have to consider i, j ≤ k − 1). In a similar

19



way, the difference in R
(2)
ij is bounded by B2

ij + B2
i+1,j , and the difference in R

(3)
ij is bounded by

B2
ij +B2

i,j+1. The total contribution of all these sets can then be bounded by

∑
ij

B2
ij(

2

nk
− 1

n2
) +

∑
ij

B2
i,j+1

1

nk
+
∑
ij

B2
i+1,j

1

nk
+
∑
ij

B2
i+1,j+1

1

n2
≤ 4

nk

∑
ij

B2
ij =

4k

n
‖B‖22.

Proof of Theorem 2. We start by bounding δ2(B̂/ρ(G),W ). Let π : [n] → [k] be a standard
equipartition, and let (I1, . . . , In) be a partition of [0, 1] into adjacent intervals of lengths 1/n. By
the triangle inequality, the fact that the set of measure preserving bijections π : [0, 1] → [0, 1]
contains all bijections which just permute the intervals I1, . . . , In and Lemma 6

δ2

(
1

ρ(G)
B̂,W

)
≤ 1

ρ(G)
δ2(W [B̂],W [B̂π]) + δ2

(
1

ρ(G)
W [B̂],W [Hn(W )]

)
+ δ2(W [Hn(W )],W )

≤ 1

ρ(G)
‖W [B̂]−W [B̂π]‖2 + δ̂2

(
1

ρ(G)
B̂,Hn(W )

)
+ δ̂2(Hn(W ),W ).

The third term is equal to εn(W ). To bound the first term, we first condition on the event (11),
and then use (9) together with Lemma 7 to conclude that conditioned on (11), with probability at
least 1− 4e−n,

1

ρ(G)
δ2(W [B̂],W [B̂π]) ≤ O

(
ρ

ρ(G)

√
λk

n

)
= O

(
4

√
λ2

k2

ρn2

)
.

In view of Lemma 12 from Appendix C, the probability that this bound does not hold is bounded
by 4e−n+O(λ/n) = O(λ/n), so in view of the fact that B̂ ∈ Bµ, which shows that ‖B̂‖2/ρ(G) ≤ λ,

we see that the contribution of the failure event is again bounded by OP (λ2/n) = O
(
λ2 k

ρn

)
=

O
(

4

√
λ2 k

ρn

)
. All together, this proves that

δ2

(
1

ρ(G)
B̂,W

)
≤ δ̂2

(
1

ρ(G)
B̂,Hn(W )

)
+ εn(W ) +OP

(
4

√
λ2

(
k2

n2ρ
+

log k

nρ

))
. (14)

The corresponding a.s. bound follows again from the fact that ρ(Q)→ ρ a.s., and the fact that all
other failure probabilities are exponentially small.

Next fix B such that it is a minimizer in (5). That implies that B is obtained from W by
averaging over a partition of W into k classes, which in particular implies that ‖B‖2 ≤ ‖W‖2 ≤√
‖W‖∞‖W‖1 ≤

√
λ. Together with Lemma 7 this implies that there is an equipartition π : [n]→

[k] such that

ε
(O)
k (W ) ≥ ‖W −W [B]‖2

≥ ‖W −W [Bπ]‖2 −
√

4k

λ
n

≥ δ̂2(Bπ,W )−
√

4k

λ
n

20



Using Lemma 6 to express δ̂2(B,Hn(W )) as a minimum over permutations σ : [n] → [n], we then
bound

ε̂
(O)
k (W ) ≤ δ̂2(B,Hn(W )) = min

σ
‖Bπ − [Hn(W )]σ‖2

≤ ‖W [Bπ]−W‖2 + δ̂2(Hn(W ),W )

≤ ε(O)
k (W ) + εn(W ) +

√
4k

λ
n,

where in the first line we use [Hn(W )]σ to denote the matrix with entries [Hn(W )]σ(x),σ(y). Together
with (14) this completes the proof of the theorem.

5 Analysis of the Private Algorithm

In this section we prove consistency of the private algorithms. Our analysis relies on some basic
results on differentially private algorithms from previous work, which are collected in Appendix B.

Compared to the analysis of the non-private algorithms, we need to control several additional
error sources which were not present for the nonprivate algorithm. In particular, we will have
to control the error between ρ̂ and ρ(G), the fact that the algorithm (approximately) maximizes
ŝcore(B;G) instead of Score(B;Q), and the error introduced by the exponential sampling error.
The necessary bounds are given by the following lemma. To state it, we denote the maximal degree
in G by dmax(G).

Lemma 8. Let (ρ̂, B̂) be the output of the randomized Algorithm 1. Then the following properties
hold with probability at least 1− 2e−nρε/16 with respect to the coin flips of the algorithm:
1) |ρ(G)− ρ̂| ≤ ρ/4.
2) If dmax(G) ≤ λρ/4 and ρ(G) ≥ ρ/2, then

Score(B̂;G) ≥ max
B∈Bµ

Score(B;G)− 16λ2ρ̂2(k2 + 1) log n

nε
.

Proof. Observing that Pr{|Lap(4/nε)| ≥ x} = exp(−xnε/4), we get that

Pr (|ρ(G)− ρ̂| ≥ δρ) = e−δnρε/4, (15)

which immediately gives (1).
To prove (2), we first use (1) and the assumptions on ρ(G) and dmax(G) to bound

λρ̂ ≥ λ(ρ(G)− ρ/4) ≥ λρ/4 ≥ dmax(G).

This implies that the extended score is equal to the original score.
We conclude the proof by using Lemma 11 to show that with probability at least 1 − e−n ≥

1− e−nρε/16, the exponential mechanism returns a matrix B̂ such that

Score(B̂;G) ≥ max
B∈Bµ

Score(B;G)− 4∆ log(|Bµ|)
ε

.

where ∆ = ∆ = 4dµ
n2 = 4λ2ρ̂2

n . Bounding |Bµ| ≤ nk
2
, this completes the proof of the lemma.
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Theorem 1 will follow from the following theorem in the same way as Theorem 2 followed from
Theorem 4.

Theorem 5. Under the assumptions of Theorem 1,

δ̂2

(1

ρ̂
B̂,Hn(W )

)
≤ ε̂(O)

k (Hn(W )) +OP

(
4

√
λ2 log k

ρn
+ λ

√
k2 log n

nε
+

λ

nρε

)
. (16)

Moreover, if we replace the assumption nρ ≥ 6 log n in Theorem 1 by the stronger assumption
nρε/ log n→∞, then a.s. as n→∞,

δ̂2

(
1

ρ̂
B̂,Hn(W )

)
≤ ε̂(O)

k (Hn(W )) +O

(
4

√
λ2 log k

ρn
+ λ

√
k2 log n

nε
+

√
λ

nρε

)
+ o(1).

Proof of Theorem 5. With probability at least 1− e−nρε/16, we may assume that the output of the
private algorithm obeys the conclusions of Lemma 8. With a decrement in probability of at most
Pn = O(Λ/n), we then have that

ρ

2
≤ ρ(G) ≤ 2ρ,

ρ

2
≤ ρ(Q) ≤ 2ρ and

ρ

4
≤ ρ̂ ≤ 3ρ. (17)

Next use the assumption ρn ≥ 6 log n, the fact that 1 ≤ Λ ≤ λ/8, and Lemma 13 from Appendix C

with β = λ/(8Λ) to show that at a decrement in probability of at most elogn− 1
24
λρn ≤ e−

1
48
λρn, the

maximal degree in G is at most (Λ + λ
8 )ρ ≤ λρ

4 . Lemma 8 then allows us to use Proposition 1 with

ν =

√
16λ2ρ̂2(k2 + 1) log n

nε
= O

(
λρ

√
k2 log n

nε

)
.

This introduces an additional error term ν
ρ = O

(
λ
√

k2 logn
nε

)
into the bound (12) and an extra

error term of order O

(
λρ
√

k2 logn
nε

)
in the upper bound (9), leading to the estimate that, with

probability at least 1− 4e−n − Pn − e−
1
48
λρn − e−nρε/16 = 1−O(Λ/n)− e−Ω(nρε),

δ̂2

(
1

ρ
B̂,Hn(W )

)
≤ min

B∈Bµ
δ̂2

(
1

ρ
B,Hn(W )

)
+O

(
4

√
λ2

(
k2

n2ρ
+

log k

nρ

)
+ λ

√
k2 log n

nε

)
and

‖B̂‖2 = O

(
√
λρ+ λρ

√
k2 log n

nε

)
.

From here on we proceed as in the proof of (13), except that we now move from the minimizer B′

for ε̂
(O)
k (Hn(W )) to a matrix B ∈ Bµ by rounding the entries of ρ̂B′ down to the nearest multiple

of 1/n. Instead of (13), we now obtain the bound

δ̂2

(
1

ρ̂
B̂,Hn(W )

)
≤ ε̂(O)

k (Hn(W )) +O

(
4

√
λ2

(
k2

n2ρ
+

log k

nρ

)
+ λ

√
k2 log n

nε

)
+O

(√
λ
∣∣∣ ρ̂
ρ
− 1
∣∣∣),
(18)
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a bound which is valid with probability at least 1− 4e−n − Pn − e−
1
48
λρn − e−nρε/16. Now the fact

that |Lap(4/nε)| = OP ( 1
nε) and ρ(G) = ρ(1 +OP (

√
Λ/n)) implies that

∣∣∣1− ρ̂

ρ

∣∣∣√λ = OP

(
λ√
n

)
+OP

(√
λ

nρε

)
= OP

(
4

√
λ2

n

)
+OP

(√
λ

nρε

)
.

Combining this with (18), we obtain that with probability at least 1−4e−n−Pn−e−
1
48
λρn−e−nρε/16,

δ̂2

(
1

ρ̂
B̂,Hn(W )

)
≤ ε̂(O)

k (Hn(W )) +OP

(
4

√
λ2

(
k2

n2ρ
+

log k

nρ

)
+ λ

√
k2 log n

nε
+

√
λ

nρε

)
. (19)

The contribution of the failure event can now be bounded by

OP

(
λ

(
e−n +

λ

n
+ e−nρλ/48 + e−nρε/16

))
= OP

(
λ2

n
+

λ

nρε

)
(20)

To complete the proof of the bound in probability, we have to add the error terms from (19) and
(20). We can simplify the resulting expression somewhat by first noting that the left hand side of
Eq. (19) is of order at most λ, which shows that for the bound on δ̂2 not to be vacuous, we need
k2

n ≤
k2 logn
nε ≤ 1. We can therefore drop the term λ2k2

ρn2 inside the fourth root of (19). Furthermore,

by the assumption of the Theorem, λ ≤
√
n, which shows that the first term in (20) is O( 4

√
λ2/n)

and can hence be absorbed into the error terms in (19). This gives us the main theorem statement.
To prove bounds which hold a.s., we note that for nρε/ log n → ∞, the error probability in

(15) is summable (that is, the probability of error pn satisfies
∑∞

n=1 pn < ∞) for all δ > 0, which
together with our previous results implies that ρ̂/ρ→ 1 with probability one. Since the probability
of failure for all other events necessary for (19) to hold is summable as well, we get that a.s.,

δ̂2

(
1

ρ̂
B̂,Hn(W )

)
≤ ε̂(O)

k (Hn(W )) +O

(
4

√
λ2 log k

ρn
+ λ

√
k2 log n

nε
+

√
λ

nρε

)
+ o(1),

where again o(1) is a term which goes to zero with probability one as n→∞.

Proof of Theorem 1. The proof of Theorem 1 follows from Theorem 5 in essentially same way as
Theorem 2 followed from Theorem 4. The only modification needed is that we now have to bound
1
ρ̂δ2(W [B̂],W [B̂π]) instead of 1

ρ(G)δ2(W [B̂],W [B̂π]). But this is even easier, since here we won’t

need to distinguish several cases. Instead, we just use that B̂ ∈ Bµ implies ‖B̂‖∞ ≤ λρ̂. With the

help of Lemma 7, we then bound this error term by λ
√

4k
n , a term which can be incorporated into

the error term O

(
λ
√

k2 logn
nε

)
.
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A Comparison to Nonprivate Bounds from Previous Work

The most relevant previous works are those of Wolfe and Olhede [59], Chatterjee [21] and [30]. We
provide comparisons for two types of bounded graphons: (1) k-block graphons, and (2) α-Hölder
graphons.

k-block graphons. A k-block graphon is a function on [0, 1]2 that is constant on rectangles of
the form Ii × Ij , where I1, ..., Ik form a partition of the interval [0, 1].

In this setting, the oracle error ε
(O)
k (W ) = 0 and εn(W ) = OP ( 4

√
k/n) (see Appendix D). Our

nonprivate estimator then has asymptotic error 4

√
k
n + log k

ρn + k2

ρn2 ; this is dominated by εn(W ) as

long as k ≤ ρn and ρ ≥ log k
k . For constant ε, our private estimator has asymptotic error at most

4

√
k
n + log k

ρn + k4 log3 n
n2 . For k ≤ (n/ log2 n)1/3 and density ρ ≥ log k

k , the error of our estimator is

again dominated by the (unavoidable) error of εn(W ) = 4
√
k/n.

Several works analyze procedures for estimating the edge-probability matrix Q assuming that
it is (exactly) a k-block matrix. In the dense case ρ = Ω(1), Gao et al. [30, Theorem 1.1] show that

the least squares estimator achieves error ‖1
ρQ̂−

1
ρQ‖2 = OP ( kn+

√
log k
n ). They also give a matching

lower bound, which shows that the MLE is optimal with respect to `2 estimation of Q. Chatterjee

[21, Theorem 2.3] gives a polynomial-time algorithm with higher error ‖1
ρQ̂−

1
ρQ‖2 = OP ( 4

√
k
n).

These bounds apply to estimating the edge-probability matrix Q, but do not apply directly to
estimating an underlying block graphon W . Lemma 14 shows that 1

ρQ converges to W in the δ2

metric at a rate of OP ( 4
√
k/n). Using either of the algorithms above for estimating W gives a net

error rate of OP ( 4
√
k/n) for δ2 estimation of W . This is the best known nonprivate rate, and is

matched by our nonprivate rate.
In the sparse case, where ρ → 0 as n → ∞, Wolfe and Olhede showed under additional

assumptions (roughly, that entries of Q are bounded above and below by multiples of ρ) that the

MLE produces an estimate Q̂ of Q that satisfies ‖1
ρQ̂−

1
ρQ‖2 = OP

(
k
n ·
√

log(n)
ρ + 4

√
log2(1/ρ) log(k)

nρ

)
[59, Theorem 5.1]1. Again, one can combine these with Lemma 14 to get a rate of 4

√
k
n + k

n

√
log(n)
ρ +

4

√
log2(1/ρ) log(k)

nρ for estimating an underlying k-block graphon W . Note that when ρ is small, any
of these three terms may dominate the rate.

Hölder-continuous graphons. The known algorithms for estimating continuous graphons pro-
ceed by fitting a k-block model to the observed data, and arguing that this model approximates
the underlying graphon.

Our results show that if ε is constant and W is α-Hölder continuous (Lipschitz continuity

corresponds to α = 1), then the nonprivate error scales as
(

1
n
√
ρ

) α
2α+1

+ 4

√
logn
ρn + n−α/2 for an

appropriate choice of k, while the private error scales as
(

logn
n

) α
2α+2

+ 4

√
logn
ρn + n−α/2 for an

appropriate choice of k. See Remark 2 for details.

1The guarantee in [59, Theorem 5.1] is given in terms of KL divergence. One can convert to `2 using the fact that
D(p‖q) = Θ((q − p)2/p) when q − p is small relative to p.
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In the dense case (ρ = Ω(1)), [30] show that one can estimate a α-Hölder continuous graphon
by a k-block graphon with error

δ2(W, ŴLS) = OP ( kn +
√

log k
n + k−α + n−α/2),

with the last term accounting for the difference between estimating Q and W . Setting k to the
optimal value of k = 1/nα+1 gives a rate which except for the case α = 1 is dominated by the
term εn(W ) = O(n−α/2). Our nonprivate bound matches this bound for α < 1/2, and is worth for
α > 1/2, while the private one is always worth.

Wolfe and Olhede [59] analyse the MLE in the sparse case, again restricting to k-block models.
They show2

δ2(W, ŴMLE) = OP

(
k
n ·
√

log(n)
ρ + 4

√
log2(1/ρ) log(k)

nρ + k−α +

√
log(n/ρ)

nα/4

)
(21)

The value of k that maximizes this expression (asymptotically) can be found by setting the first

and third terms to be equal; we get k =
(
n
√
ρ/ log n

) 1
α+1

and a resulting bound of

δ2(W, ŴMLE) = OP

((
1
n ·
√

logn
ρ

) α
α+1

+ 4

√
log2(1/ρ) log(n)

nρ +

√
log(n/ρ)

nα/4

)
.

Next, note that ρ must be Ω(log3(n)/n) for the middle term to be less than 1. This means that

the first term is O(n
−α

2(α+1) ). For α ≤ 1, this is never larger than the third term. We may therefore

simplify the bound to OP

(
4

√
log2(1/ρ) log(n)

nρ +

√
log(n/ρ)

nα/4

)
, as stated in the introduction.

B Background on Differential Privacy

The notion of node-privacy defined in Section 2.3 “composes” well, in the sense that privacy is pre-
served (albeit with slowly degrading parameters) even when the adversary gets to see the outcome
of an adaptively chosen sequence of differentially private algorithms run on the same data set.

Lemma 9 (Composition, post-processing [49, 26]). If an algorithm A runs t randomized algorithms
A1, . . . ,At, each of which is ε-differentially private, and applies an arbitrary (randomized) algorithm
g to their results, i.e., A(G) = g(A1(G), . . . ,At(G)), then A is tε-differentially private. This holds
even if for each i > 1, Ai is selected adaptively based on A1(G), . . . ,Ai−1(G).

Output Perturbation. One common method for obtaining efficient differentially private algo-
rithms for approximating real-valued functions is based on adding a small amount of random noise
to the true answer. A Laplace random variable with mean 0 and standard deviation

√
2λ has

density h(z) = 1
2λe
−|z|/λ. We denote it by Lap(λ).

In the most basic framework for achieving differential privacy, Laplace noise is scaled according
to the global sensitivity of the desired statistic f . This technique extends directly to graphs as long

2We state [59, Theorem 3.1] for the special case where one searches over k-block graphons in which all intervals
have size Θ(k/n) (since allowing nonuniformly sized blocks only makes their bounds worse), the original graphon
takes values in a range [λa, λb] defined by two constants such that 0 < λa < λb, and k is polynomially smaller than
n.
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as we measure sensitivity with respect to the metric used in the definition of the corresponding
variant of differential privacy. Below, we explain this (standard) framework in terms of node privacy.
Let G denote the set of all graphs.

Definition 2 (Global Sensitivity [28]). The `1-global node sensitivity of a function f : G→ Rp is:

∆f = max
G,G′ node neighbors

‖f(G)− f(G′)‖1 .

For example, the edge density of an n-node graph has node sensitivity 2/n, since adding or
deleting a node and its adjacent edges can add or remove at most n − 1 edges. In contrast, the
number of nodes in a graph has node sensitivity 1.

Lemma 10 (Laplace Mechanism [28]). The algorithm A(G) = f(G) + Lap(∆f/ε)p (which adds
i.i.d. noise Lap(∆f/ε) to each entry of f(G)) is ε-node-private.

Thus, we can release the number of nodes, v(G), in a graph G with noise of expected magnitude
1/ε while satisfying node differential privacy. Given a public bound n on v(G), we can release the
number of edges, e(G), with additive noise of expected magnitude n/ε.

Exponential Mechanism. Sensitivity plays a crucial role in another basic design tool for dif-
ferentially private algorithms, called the exponential mechanism.

Suppose we are given a collection of Q functions, q1, .., qQ from Gn to R, each with sensitivity
at most ∆. The exponential mechanism, due to McSherry and Talwar [50], takes a data set (in our
case, a graph G) and aims to output the index i∗ of a function in the collection which has nearly
maximal value at G, that is, such that q∗i (G) ≈ maxi qi(G). The algorithm A samples an index i
such that

Pr(A(G) = i) ∝ exp
( ε

2∆
qi(G)

)
.

Lemma 11 (Exponential Mechanism [50], see also [27, Sec. 3.4]). The algorithm A is ε-differentially
private. Moreover, with probability at least 1− η, its output i∗ satisfies

qi∗(G) ≥ max
i

(qi(G))− 2∆ ln(Q/η)

ε
.

Lipschitz Extensions. There are cases (and we will encounter them in this paper), where the
sensitivity of a function can only be guaranteed to be low if the graph in question has sufficiently
low degrees. In this situation, it is useful to consider extensions of these functions from graphs
obeying a certain degree bound to those without this restriction.

Definition 3 (Gn,d and vertex extensions). Let Gn,d denote the set of graphs with degree at most

d. Given functions f : Gn,d → R and f̂ : Gn → R, we say f̂ is a vertex Lipschitz extension of f

from Gn,d to Gn if f̂ agrees with f on Gn,d and f̂ has the same node-sensitivity as f , that is

sup
G,G′∈Gn

vertex neighbors

|f̂(G)− f̂(G′)| = sup
G,G′∈Gn,d

vertex neighbors

|f(G)− f(G′)| .

We close this section with the proof of Lemma 2.
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Proof of Lemma 2. The existence of f̂ follows from a very general result (e.g., [48, 42]), which states
that for any metric spaces X and Y such that Y ⊂ X, and any Lipschitz function f : Y → R, there
exists an extension f̂ : X → R with the same Lipschitz constant. The explicit, efficient construction
of extensions for linear functions is due to Kasiviswanathan et al. [41]. The idea is to replace f(G)
with the maximum of f(C) where C ranges over weighted subgraphs of G with (weighted) degree
at most d. It is the value of the following linear program:

f̂(G) = max f(C) such that


C ∈ [0, 1]n×n is symmetric, and

Ci,j ≤ A(G)i,j for all i, j, and∑
j 6=iCi,j ≤ d for all i ∈ [n] .

See [41] for the analysis of this program’s properties.

C Auxiliary Bounds on Densities and Degrees

Lemma 12. Let W : [0, 1]2 → [0,Λ] be a normalized graphon, let ρ ∈ (0,Λ−1], let Q = Hn(ρW ),
let G = Gn(ρW ) and assume that ρn is bounded away from zero. Then

1. Eρ(Q) = Eρ(G) = ρ, V ar(ρ(Q)) = O(ρ2Λ/n) and V ar(ρ(G)) = O(ρ2Λ/n), so in particular

Pr{|ρ(G)− ρ| ≥ δρ} = O

(
Λ

nδ2

)
and Pr{|ρ(Q)− ρ| ≥ δρ} = O

(
Λ

nδ2

)
.

for any δ > 0.

2. Let εn(W ) = ‖W −W [Q]‖2. Then

(1− εn(W ))
n

n− 1
≤ ρ(Q)

ρ
≤ (1 + εn(W ))

n

n− 1
.

3. Let δ ∈ 0 < δ < 1. With probability at least 1− 2e−
1
6
δ2ρ(Q)n2

,

1− δ ≤ ρ(G)

ρ(Q)
≤ 1 + δ.

Proof. 1. Clearly, Eρ(Q) = Eρ(G) = ρ.
To bound the variance of ρ(Q), we expand 1

ρ2
V ar(ρ(Q)) as a sum of n2(n− 1)2/4 terms of the

form E[W (xi, xj)W (xk, x`)]− E[W (xi, xj)]E[W (xk, x`)] with i < j and k < `. Observing that only
those terms contribute for which either i = k, j = ` or j = k, and bounding E[W (xi, xj)W (xk, x`)] ≤
‖W‖22 ≤ ‖W‖∞‖W‖1, we obtain that the variance of 1

ρρ(Q) is O(Λ/n).
To bound the variance of ρ(G), we first condition on X = (x1, . . . , xn), and bound

E[ρ2(G) | X] = ρ2(Q) +
4

n2(n− 1)2

∑
i<j

(
Qij −Q2

ij

)
≤ ρ2(Q) +

2

n(n− 1)
ρ(Q).

Taking the expectation over X and using the bound on the variance of ρ(Q), we obtain that

V ar(ρ(G)) = O
(ρ2Λ

n
+

ρ

n2

)
= O

(ρ2Λ

n

)
.
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where in the last step we used the assumption that ρn is bounded away from zero.
2. Note that ρ(Q) = n

n−1‖Q‖1. Next, we use the triangle inequality and the fact that the
L1-norm is bounded by the L2-norm to see that∣∣∣‖Q‖1

ρ
− 1
∣∣∣ =

∣∣∣‖Q‖1
ρ
− ‖W‖1

∣∣∣ ≤ ‖1

ρ
W [Q]−W‖1 ≤ ‖

1

ρ
W [Q]−W‖2 = εn(W )

3. Conditioned on X, S = n(n−1)
2 ρ(G) is a sum of Bernouilli random variables with mean

E(S) = n(n−1)
2 ρ(Q). By the multiplicative Chernov bound from Lemma 17, we have that for all

β ≤ 1

Pr
{
|ρ(G)− ρ(Q)| > δρ(Q)

∣∣∣X} ≤ 2 exp
(
−δ

2

3

n(n− 1)

2
ρ(Q)

)
≤ 2 exp

(
−δ

2

6
n2ρ(Q)

)
.

Next we bound the maximal degree in G = Gn(ρW ).

Lemma 13. Let W be a normalized graphon with ‖W‖∞ ≤ Λ, let 0 < ρΛ ≤ 1, and let β ≥ 1.
Then with probability at least 1 − n exp(−βΛρn/3), the maximal degree in Gn(ρW ) is bounded by
(1 + β)Λρn.

Proof. Note that the degrees in Gn are stochastically dominated by those in an Erdos-Renyi random
graph where edges are chosen i.i.e. with probability ρΛ. In such a graph, the degree of a given
vertex i is a sum of n−1 i.i.d Bernouilli random variables, and the standard Chernov bound implies
that for all β ≥ 1

Pr
(
di ≥ nρΛ(1 + β)

)
≤ exp

(
−β

3
nρΛ

)
.

Taking the union bound over all n vertices in Gn(ρW ) this proves the claim.

D Convergence of the edge-probability matrix for k-block graphons

The sampling error εn(W ) plays a key role in the statements of Theorems 2 and 1. In some settings

such as Hölder-continuous graphons, this sampling error is dominated by the oracle error ε
(O)
k (W ).

For k-block graphons, however, ε
(O)
k (W ) = 0 and εn(W ) becomes more significant.

Lemma 14. If W is a k-block graphon, then E(εn(W )2) = O(Λ2
√
k/n) and E(εn(W )) = O(Λ 4

√
k/n)

where Λ = ‖W‖∞.

Proof. Fix a k-block graphon W , and let p1, ..., pk be the lengths of the “blocks”, that is the intervals
defining the block representation (so that pt ≥ 0 and

∑
t pt = 1). Given a sample x1, ..., xn of i.i.d.

uniform values in [0, 1], let p̂t denote the fraction of the xi that land in each block t.
Aligning Q = (W (xi, xj))i,j∈[n] with W consists of finding a permutation π of [n]. This maps

each xi to one of the intervals I1, .., In where I` = [ `−1
n , `n ].

We say xi is correctly aligned if its interval Iπ(i) is contained in the block in which xi landed.
For each block t, we can ensure that nmin{pt, p̂t} − 2 of the points xi that landed in t get aligned
with t (the −2 term accounts for the fact that up to 1/n of the length at each end of the interval
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does not line up exactly with one of the intervals I`). Thus, the number of points xi that get
incorrectly aligned is at most n

∑
t (p̂t −min{p̂t, pt}+ 2/n) = n

2 ‖p− p̂‖1 + 2k.
Each misaligned point contributes at most 2Λ2/n to the total squared error ‖W − Q‖22, so we

have
δ̂2

2(W,Q) ≤ Λ2(‖p− p̂‖1 + 4k/n).

Each term |pt−p̂t| in the `1 norm on the right-hand side is the deviation of a binomial from it’s mean,
and has standard deviation

√
pt(1− pt)/n. This upper bounds the expected absolute deviation by

Jensen’s inequality. Thus, E(δ̂2
2(W,Q)) ≤ Λ2

∑
t

√
pt/n+4Λ2k/n. The sum

∑
t

√
pt/n is maximized

when pt = 1/k for all t; it then takes the value k
√

1/(kn) =
√
k/n. Hence E(δ̂2

2(W,Q)) ≤
Λ2
√
k/n+ 4Λ2k/n ≤ 5Λ2

√
k/n. By Jensen’s inequality, E(δ2(W,Q)) ≤

√
5Λ 4
√
k/n, as desired.

Corollary 1. For any graphon W , we have E(εn(W )) ≤ 2ε
(O)
k (W ) +O( 4

√
k/n).

Proof. Fix a matrix W , and let WP denote the best k-block approximation to W in the L2 norm

(that is, the minimizer of ε
(O)
k (W )). Given a uniform i.i.d. sample in x1, ..., xn, let Hn(W ) denote

the matrix (W (xi, xj))i,j∈[n], and let Hn(WP ) denote (WP (xi, xj))i,j∈[n]. By the triangle inequality,

εn(W ) = δ̂2(W,Hn) ≤ ‖W −WP ‖2︸ ︷︷ ︸
ε
(O)
k (W )

+εn(WP ) + ‖Hn(W )−Hn(WP )‖2.

Lemma 14 bounds εn(WP ) by 4
√
k/n. It remains to bound the last term. Squaring it, we have

‖Hn(W )−Hn(WP )‖22 = 2
n2

∑
i<j |(W −WP )(xi, xj)|2. These terms are not independent, but each

individually has expectation ‖W −WP ‖2 = ε
(O)
k (W )2. By linearity of expectation, E‖Hn(W ) −

Hn(WP )‖22 ≤ ε
(O)
k (W )2, and hence E‖Hn(W )−Hn(WP )‖2 ≤ ε(O)

k (W ).

E Bounds for Hölder-Continuous Graphons

In this section we prove Remark 2. Throughout this section we assume that W : [0, 1]2 → [0, 1] is
α-Hölder continuous for some α ∈ (0, 1], i.e., we assume that there exists a constant C < ∞ such
that

|W (x, y)−W (x′, y′)| ≤ C
(
|x− x′|+ |y − y′|

)α
.

Lemma 15. Let H = Hn(W ), and assume that the vertices of H are reordered in such a way that
x1 < x2 < . . . , xn. Then

‖W −W [Hn]‖2 = OP (n−α/2).

Proof. We first approximate W in terms of the weighted graph H̃ with weights (H̃)ij = W (x̄i, x̄j),
where x̄i = i

n+1 is the expectation of xi. Since |x − x̄i| ≤ 1
n when x ∈ [ i−1

n , in ], we can use the
Hölder continuity of W to conclude that

‖W −W [H̃]‖2 ≤ ‖W −W [H̃]‖∞ ≤ C
( 2

n

)α
.

To prove the lemma, it is therefore enough to prove that

E
[
‖W [H̃]−W [H]‖22

]
= O(n−α),
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where E[·] denotes expectations with respect to the random variables x1, . . . , xn. Using the Hölder
continuity of W together with Jensen’s inequality, we bound

E
[
‖W [H̃n]−W [H]‖22

]
=

1

n2

∑
i,j∈[n]

E
[(
W (x̄i, x̄j)−W (xi, xj)

)2]
≤ C2

n2

∑
i,j∈[n]

E
[(
|x̄i − xi|+ |x̄j − xj |

)2α]
≤ C2

n2

∑
i,j∈[n]

E
[(

2|x̄i − xi|2 + 2|x̄j − xj |2
)α]

≤ C2

n2

∑
i,j∈[n]

(
2E
[
|x̄i − xi|2

]
+ 2E

[
|x̄j − xj |2

])α
Using the fact that xi has expectation x̄i = i

n+1 and variance 1
n+2 x̄i(1 − x̄i) ≤

1
4n , we bound the

right hand side by C2n−α, completing the proof.

Lemma 16. Let Pk be a partition of [0, 1] into adjacent intervals of lengths 1/k. Then

ε
(O)
k (W ) ≤ ‖W −WPk‖∞ ≤ C

(2

k

)α
.

Proof. Let Pk = (I1, . . . , Ik). For (x, y) ∈ Ii × Ij , WPk(x, y) is an average over points in Ii × Ij ,
implying that |W (x, y)−WPk(x, y)| ≤ C(2/k)α.

F Consistency of Multi-way cuts

In this appendix, we prove the following theorem which implies Theorem 3 by the same arguments
as those which lead from Theorems 5 and 4 to Theorems 1 and 2.

Theorem 6. Let q ≥ 2 be an integer.
(i) Under the assumptions of Theorem 2,

dHaus
∞ (Sq(G), Ŝq(B̂nonprivate)) ≤ 2ε̂

(O)
k (Hn(W )) +OP

(
4

√
λ2

(
k2

n2ρ
+

log k

nρ

))
. (22)

(ii) Under the assumptions of Theorem 1,

dHaus
∞ (Sq(G), Ŝq(B̂private)) ≤ 2ε̂

(O)
k (Hn(W )) +Op

(
4

√
λ2 log k

ρn
+ λ

√
k2 log n

nε
+

λ

nρε

)
. (23)

Before we prove the theorem, we start with a few bounds on the Hausdorff distance of various
sets of q-way cuts. First, using the definition of the cut-distance (and the fact that the set of q-way
cuts of a graph is invariant under relabelings), it is easy to see (see also [18]) that whenever G and
G′ are weighted graphs on [n] and P is a partition of [n], then

‖G/P −G′/P‖∞ ≤ δ̂�
( 1

‖G‖1
G,

1

‖G′‖1
G′
)
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implying that

dHaus
∞ (Sq(G), Sq(G

′)) ≤ δ̂�
( 1

‖G‖1
G,

1

‖G′‖1
G′
)
. (24)

In a similar way, we have that for two graphons W,W ′,

dHaus
∞ (Ŝq(W ), Ŝq(W

′)) ≤ δ�
( 1

‖W‖1
W,

1

‖W ′‖1
W ′
)
. (25)

We will also need to compare the fractional and integer cuts, Ŝq(G) and Sq(G
′). To do so, one can

use a simple rounding argument, as in Theorem 5.4 and its proof from [16]. This gives the bound3

dHaus
∞ (Sq(G), Ŝq(G)) ≤ 5

‖G‖1
√
n
, (26)

valid for any weighted graph G with node weights 1 on [n] and maximal edge-weight 1. We also
note that for any weighted graph Q,

Ŝq(Q) = Ŝq(W [Q]) (27)

(see [16, Proposition 5.3] 4). Finally, we note that
∣∣‖W‖1 − ‖W ′‖1∣∣ ≤ ‖W −W ′‖�. In particular,∣∣∣‖G‖1 − ‖G′‖1∣∣∣ ≤ δ̂�(G,G′) and
∣∣∣‖W‖1 − ‖W ′‖1∣∣∣ ≤ δ�(W,W ′). (28)

Proof of Theorem 6. Let Q = Hn(ρW ) and G = G(Q). By Lemma 12, we have that ρ(Q) ∈
[ρ/2, 2ρ] with probability at least 1−O(Λ/n). By the assumptions of the two theorems, ρn ≥ 2 log 2.

We apply [17, Lemma 7.2] to show that δ̂�(G,Q) = ρO
(√

1
ρn

)
with probability at least 1−O(Λ/n).

As a consequence, again with probability 1−O(Λ/n),

δ̂�

(
1

‖Q‖1
Q,

1

‖Q‖1
G

)
= O

(√ 1

ρn

)
.

By (24) and (28), this implies that with the same probability

dHaus
∞ (Sq(G), Sq(Q)) = O

(√ 1

ρn

)
.

Next we apply (26) to the weighted graph Q′ = 1
‖Q‖∞Q. Since 1

‖Q′‖1 = ‖Q‖∞
‖Q‖1 ≤

Λρ
‖Q‖1 , we

conclude that with probability at least 1−O(Λ/n),

dHaus
∞ (Sq(Q), Ŝq(Q)) = dHaus

∞ (Sq(Q), Ŝq(Q
′)) = O

(√ 1

ρn
+

Λ√
n

)
.

Since ‖F‖∞ ≤ 1 for all F ∈ Sq(G) and all F ∈ Ŝq(Q), we can easily absorb the failure event, getting

dHaus
∞ (Sq(G), Ŝq(Q)) = OP

(√ 1

ρn
+

Λ√
n

)
. (29)

3To translate the results from [16] into (26), we need to take into account that in [16], quotients where defined
with a normalization of 1

n2 instead of 1
n2‖G‖1

(leading to the factor 1
‖G‖1

on the right hand side of (26)), and that

Hausdorff distances were defined with respect to the L1-norm (leading to a bound which is better by a factor q than
the bounds in [16]).

4Note that in [16] the notation for integer and fractional partitions is the reverse of the one used here and in [18].
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To complete the proof, we proceed as in the proof of (14) to show that

δ2

(
Hn(W ),

1

ρ(G)
B̂

)
≤ δ̂2

(
1

ρ(G)
B̂,Hn(W )

)
+OP

(
4

√
λ2

(
k2

n2ρ
+

log k

nρ

))
.

Combined with the bound from Theorem 2, the fact that the cut-norm is bounded by the L2-norm,
and the fact that δ�(Hn(W ), 1

‖Q‖1Q) ≤ |1− ρ(Q)/ρ| = OP (Λ/n), we conclude that

δ�

( 1

‖Q‖1
Q,

1

ρ(G)
W [B̂]

)
≤ ε̂(O)

k (Hn(W )) +OP

(
4

√
λ2

(
k2

n2ρ
+

log k

nρ

))
.

Combined with (27), (25), (28), and the bound (29), this proves (22). The proof of (23) is essentially
identical, except that now we use Theorem 1.

G Useful Lemmas

Lemma 17 (Multiplicative Chernoff bound). Let X1, X2, ..., Xn be independent random variables
taking values in [0, 1], and let X =

∑n
i=1Xi. If E(X) ≤ µ0 and β ≤ 1, then

Pr(|X − E(X)| ≥ βµ0) ≤ 2 exp(−β2µ0/3) .

For β > 1, the probability is at most

Pr(|X − E(X)| ≥ βµ0) ≤ 2 exp(−βµ0/3) .

Proof. Let µ = E(X) denotes the exact mean of X (so µ ≤ µ0). The standard multiplicative form
of the Chernoff bound states that for δ > 0 (not necessarily less than 1), we have

Pr(|X − EX| ≥ δµ) ≤ 2 max(e−
1
3
δ2µ, e−

1
3
δµ) .

Setting δµ = βµ0 (that is, δ = βµ0
µ ), the bound above becomes 2 max(e

− 1
3

β2µ20
µ , e−

1
3
βµ0) . Both of

these terms are bounded above by 2 exp(−β2µ0/3): the first, since µ0 ≤ µ; and the second, since
β ≤ 1.
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