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Abstract. We consider the problem of partitioning n randomly chosen integers between 1
and 2m into two subsets such that the discrepancy, the absolute value of the difference of
their sums, is minimized. A partition is called perfect if the optimum discrepancy is 0 when
the sum of all n integers in the original set is even, or 1 when the sum is odd. Parameterizing
the random problem in terms of κ = m/n , we prove that the problem has a phase transition
at κ = 1, in the sense that for κ < 1, there are many perfect partitions with probability
tending to 1 as n → ∞ , while for κ > 1, there are no perfect partitions with probability
tending to 1. Moreover, we show that this transition is first-order in the sense the derivative
of the so-called entropy is discontinuous at κ = 1.

We also determine the finite-size scaling window about the transition point: κn = 1 −
(2n)−1 log2 n + λn/n , by showing that the probability of a perfect partition tends to 1, 0,
or some explicitly computable p(λ) ∈ (0, 1), depending on whether λn tends to −∞ , ∞ ,
or λ ∈ (−∞,∞), respectively. For λn → −∞ fast enough, we show that the number of
perfect partitions is Gaussian in the limit. For λn →∞ , we prove that with high probability
the optimum partition is unique, and that the optimum discrepancy is Θ(2λn). Within the
window, i.e., if |λn| is bounded, we prove that the optimum discrepancy is bounded. Both for
λn →∞ and within the window, we find the limiting distribution of the (scaled) discrepancy.
Finally, both for the integer partitioning problem and for the continuous partitioning problem,
we find the joint distribution of the k smallest discrepancies above the scaling window.
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1. Introduction.

This paper is dedicated, with great admiration, to Donald Knuth on the happy occasion
of his 64th birthday. His work has been an inspiration to us throughout the years. We use
this occasion to provide complete proofs and to give several extensions of the results first
announced in [BCP].

There has recently been much interest in the study of phase transitions in random com-
binatorial problems. A combinatorial phase transition is an abrupt change in the qualitative
behavior of the problem as an appropriately defined parameter is varied. The classic combi-
natorial phase transition occurs in the random graph model of Erdős and Rényi [ER1,ER2].
There one considers a graph on n vertices with edge occupation probability α/n . As the
parameter α passes through 1, the model undergoes a phase transition in the sense that
the size of the largest connected component changes from order log n to order n . More
recently, there has been much study of the phase transition in the random k -SAT model,
both by heuristic and rigorous methods; see [BBCKW] and references therein. In k -SAT,
the instances are formulas in conjunctive normal form; each formula has m clauses, and each
clause has k distinct literals drawn uniformly at random from among n Boolean variables
and their negations. For fixed k ≥ 2, the model undergoes a sharp transition from solvability
to insolvability as the parameter α = m/n passes through a particular k -dependent value
[Fri].

In the language of mathematical physics, phase transitions occur only in the so-called
thermodynamic limit, that is, in the limit of an infinite system. Finite-size scaling describes
the approach of a finite system to the thermodynamic limit, in particular, the “broadening”
of the transition point into a “scaling window” due to finite-size effects, and the behavior of
the relevant functions in the scaling window. Finite-size scaling results are known for both
the random graph model [Bol, Luc,JKLP] and the 2-SAT problem [BBCKW]; in both cases,
the width of the window is n−1/3 . But the question of finite-size scaling is open for k -SAT
with k ≥ 3.

The integer partitioning problem is a classic NP-complete problem of combinatorial opti-
mization. In the version considered here, an instance is a given a set of n m-bit integers
drawn uniformly at random from [M ] = {1, 2, . . . ,M} with M = 2m . The problem is to par-
tition the given set into two subsets in order to minimize the absolute value of the difference
between the sum of the integers in the two subsets, the so-called discrepancy. Clearly, the
smallest possible discrepancy is 0 when the sum of all of the integers is even, and 1 when the
sum is odd; a partition with this discrepancy is called perfect. In this work, we prove that the
optimum partitioning problem undergoes a sharp transition as a function of the parameter
κ = m/n , characterized by a dramatic change in the probability of a perfect partition. For m
and n tending to infinity in the limiting ratio κ , the probability of a perfect partition tends
to 1 for κ < 1, while the probability tends to 0 for κ > 1. Our result was inspired by the
results of Mertens [Mer1] who gave an ingenious, nonrigorous argument for the existence of a
phase transition in optimum partitioning.

We also derive the finite-size scaling of the system about the transition point κ = 1.
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Namely, in terms of the more detailed parameterization m = κnn with

κn = 1− log2 n

2n
+
λn

n
, (1.1)

the probability of a perfect partition tends to 1, 0, or a computable λ -dependent constant
strictly between 0 and 1, depending on whether λn tends to −∞ , ∞ , or λ ∈ (−∞,∞),
respectively. To our knowledge, this is the first rigorous analysis of finite-size scaling in an
NP-complete problem. Equation (1.1) is the analogue of the scaling αn = 1 + λn/n

1/3 in the
random graph problem [Bol, Luc,JKLP] and the 2-SAT problem [BBCKW]. Here the scaling
window is much smaller than it is in the random graph or 2-SAT, namely it is of width Θ(1/n)
rather than Θ(1/n1/3). Also here, in contrast to the random graph and 2-SAT, the center of
the scaling window is shifted from its limiting value by an amount which is larger than the
width of the window itself, namely (2n)−1 log2 n versus Θ(1/n).

Finally, we derive the limiting distributions of some of the fundamental quantities in the
system. For λn → −∞ , we get the distribution of the number of perfect partitions, which gives
us the entropy. Both for λn →∞ and within the window, we get the detailed asymptotics of
the distribution of the minimum discrepancy, which corresponds physically to the ground state
energy of the system. We also get the joint distribution of the k smallest discrepancies, which
corresponds physically to the energy spectrum of the system; we show that this spectrum is
asymptotically well approximated by the spectrum of the so-called random energy model of
Derrida [Der].

The random optimum partitioning problem has been studied previously by both rigorous
and nonrigorous methods. A great deal of rigorous work has been done for the partitioning
problem with random numbers drawn from a compact interval in R , which we will henceforth
refer to as the continuous case. This is conceptually analogous to the integer partitioning
problem with m � n . Karmarkar and Karp [KK] gave a linear time algorithm for a subop-
timal solution with a typical discrepancy of size O(n−c log2 n) for some constant c > 0; see
[Yak] for a proof of the KK-conjecture that the discrepancy obtained by their algorithm is
indeed of the order n−θ(log2 n) .

The optimum solution was studied by Karmarkar, Karp, Lueker and Odlyzko [KKLO] who
proved that the typical minimum discrepancy is much smaller, namely of order O(2−n

√
n).

More recently, Lueker [Lue] proved exponential bounds for the expected minimum discrepancy.
Note that all of these results correspond to m� n , and hence κ→∞ , well above the phase
transition studied here.

There have also been (nonrigorous) studies of optimum partitioning in the theoretical
physics and artificial intelligence communities, where the possibility of a phase transition
was studied. Fu [Fu] studied the continuous case and noted that the minimum discrepancy
is analogous to the ground state energy of an infinite-range, random antiferromagnetic spin
model, but concluded incorrectly that the model did not have a phase transition. Gent and
Walsh [GW] examined the problem numerically and introduced the parameter κ = m/n .
They noticed that the number of perfect partitions falls off dramatically at a transition point
estimated to be close to κ = 0.96. Ferreira and Fontanari studied the random spin model of
Fu, and used statistical mechanical methods to get estimates of the optimum partition [FF1]
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and to evaluate the average performance of simple heuristics [FF2]. Our work was motivated
by the beautiful paper of Mertens [Mer1], who used statistical mechanical methods and the
parameterization of Gent and Walsh to derive a compelling argument for a phase transition.
In a later work, Mertens [Mer2] analyzed Fu’s model by heuristically approximating it in
terms of Derrida’s random energy model [Der], and thereby obtained the limiting distribution
of the kth smallest discrepancy.

Merten’s random energy model result [Mer2], albeit nonrigorous, suggested a substantial
sharpening of the rigorous results of [KKLO] and [Lue]. Our analysis of the integer partition-
ing problem provides a rigorous justification of Merten’s approximation both for the integer
and the continuous partitioning problems, at least insofar as the joint distribution of the k
(finite) smallest discrepancies is concerned. We thereby obtain essentially optimal results for
the continuous problem studied originally by Karmarkar, Karp, Lueker and Odlyzko [KKLO],
and the analogous results in the integer case.

It is worth noting that the optimum partitioning problem is closely related to several other
classic problems of combinatorial optimization. The first is the “multi-way” partition problem
in which a set of “weights” is to be partitioned into N ≥ 3 subsets (parts), so that the sums
of the weights in the N parts are as close to equal as possible. Graham [Gra] developed
a linear-time 4

3 -approximation algorithm for a version of this problem in which the goal is
to minimize the weight of the heaviest part. The multi-way problem was also considered by
[KKLO], who noted that their analysis of the minimum discrepancy would extend in a natural
way to this case also. A second related problem is the so-called subset sum problem, in which
one tries to find subsets of a given set of integers which sum to (or near to) a prescribed
target number. This problem reduces to a study of solutions of linear equations of the form∑

i siXi = T , where Xi are the numbers in the given set, si ∈ {0, 1} represents whether
or not Xi is included in a particular subset, and T is the target number. A key idea is to
express the total number of solutions to these equations via a Fourier-type inversion integral,
a paradigm championed by Freiman [Fre]; see also Alon and Freiman [AF], Chaimovich and
Freiman [CF]. We will use an analogous integral representation in our study of the integer
partitioning problem. Some of the methods and results presented here can be used to obtain
stronger results for the subset sum problem, but we will not pursue this here.

2. Statement of Results.

Let us begin with a little notation. The instances of the problem are sets of n integers
X1, . . . , Xn chosen independently and uniformly from [M ] = {1, 2, . . . ,M} , where M is an
integer M ≥ 2. For notational convenience, we will often write M as M = 2m , even when
m = log2M is not an integer. We will generally fix m to be some function of n (e.g., by taking
m = κn). The probability measure induced by the random variables X = {X1, . . . , Xn} will
be denoted by Pn , and expectation by En . When no confusion arises, we will drop the
subscript n . The event that “

∑n
j=1Xj is even” will be denoted by En , while the event that

the sum is odd will be denoted by On . As usual we will say that an event happens with high
probability (w.h.p.) if the probability that it happens goes to one as n→∞ . Finally, X will
denote a generic random variable distributed uniformly on [M ] .

There are 2n ways to form an ordered partition of n integers X1, . . . , Xn into two sets.
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Each such partition can be labelled by σ = (σ1, . . . σn) with σj ∈ {−1, 1} , so that, say, the
first set is {Xj : σj = −1} , and the second is {Xj : σj = 1} . The discrepancy of the partition
with label σ is |σ·X| =

∣∣∑n
j=1 σjXj

∣∣ . Let dn denote the optimum (minimum) discrepancy
of X over all σ :

dn = dn(X) = min
σ
|σ·X|. (2.1)

Clearly dn is even on En , and odd on On . A partition with |σ·X| ≤ 1 (i.e., |σ·X| = 0 on
En and |σ·X| = 1 on On ) is called perfect , and a partition with |σ·X| = dn is called an
optimum or minimum partition. Let Zn = Zn(X) and Z̃n = Z̃n(X) denote the number of
perfect and optimum partitions of X , respectively. Of course, Zn = Z̃n iff dn = 0 or dn = 1.
Note that a partition with label σ has the same discrepancy as that with label −σ . The
random variables Zn(X) and Z̃n(X) therefore take values in the even non-negative integers.

Our first result shows that the model has a sharp phase transition at κ = 1.

Theorem A. Let m = κnn , and assume that there exists lim
n→∞

κn = κ ∈ [0,∞] . Then

lim
n→∞

Pn(∃ a perfect partition) =
{

1 if κ < 1
0 if κ > 1.

(2.2)

Our next result uses the more sensitive parameterization (1.1) to strengthen Theorem A,
and, in particular, to establish the existence of a scaling window.

Theorem B. Let m = κnn , with κn as in (1.1), and assume that lim
n→∞

λn = λ exists. Then

lim
n→∞

Pn(∃ a perfect partition) =


1 if λ = −∞
1− 1

2r(λ)
(
r(λ) + 1

)
if λ ∈ (−∞,∞)

0 if λ = ∞,

(2.3)

where r(λ) = exp
(
−
√

3
2π 2−λ

)
.

Our next result gives detailed information on the distribution of the number of perfect and
optimum partitions, Zn and Z̃n , and therefore also on the entropy , defined as

Sn = log2 Z̃n. (2.4)

Note that, since Z̃n ≥ 1, Sn is well-defined and non-negative for all X , as a “physical”
entropy should be. Note that log2 Zn would not be a well-defined entropy since Zn can
vanish; an “entropy” so defined could lead to statements incompatible with the principles of
statistical mechanics, see e.g. [Mer1].

Theorem C. Let m = κnn , with κn as in (1.1), and define

cM = E
(X2

M2

)
=

1
3

+
1

2M
+

1
6M2

. (2.5)
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i) If λn → −∞ , then (
21+|λn|
√

2πcM

)−1

Zn →
{

1 on En

2 on On

(2.6)

in probability and in mean,

Sn − |λn|+
1
2

log2 cM →
{ 1

2 log2(2/π) on En

1
2 log2(8/π) on On

(2.7)

in probability, and
n−1

(
Sn − |λn|

)
→ 0 (2.8)

in mean.
ii) If λn → λ ∈ (−∞,∞) , then Sn is bounded in probability, so that in particular

n−1Sn → 0 (2.9)

in probability. More precisely, on the event On the entropy Sn converges (in distribution)
to 1 + log2 P (µ) where P (µ) is Poisson with parameter µ = 2−λ

√
6/π conditioned on

{P (µ) ≥ 1} ; on the event En the entropy Sn converges to 1 + log2Q(µ) , where Q(µ) =
P (µ/2) with probability 1− e−µ/2 and Q(µ) = P (µ) with probability e−µ/2 .

iii) If λn →∞ , then with probability tending to 1 , the optimum partition is unique up to the
symmetry σ → −σ . In particular, P(Sn = 1) → 1 as n→∞ .

Corollary. Assume that m/n converges to some κ < ∞ . Then the entropy per variable,
sn = n−1Sn , converges in probability to (the deterministic function)

s(κ) = max{0, 1− κ}, (2.10)

so that, in particular, the limiting entropy per variable does not have a continuous derivative
at κ = 1 .

Remarks.
i) The reader will note that the statements below the window in Theorems A and B are

immediate corollaries of Theorem C(i), equation (2.6), which strengthens the statement
Zn > 0 w.h.p. by giving a law of large numbers for Zn .

ii) If the condition of Theorem C(i) is slightly strengthened to λn + log2 n → −∞ , we can
prove even more, namely a central limit theorem stating that, in the limit, Zn has a
Gaussian distribution with mean implicit in (2.6), and standard deviation roughly equal
to the mean times n−1/2 . See Theorem 4.1 in Section 4. This allows us to show that Sn

is also Gaussian in the limit and to replace (2.7) by the following stronger result: given
ε > 0, in probability,

lim
n→∞

Sn − |λn|+ 1
2 log2(πcM/2)

n−(1/2)+ε
=0, on En,

lim
n→∞

Sn − |λn|+ 1
2 log2(πcM/8)

n−(1/2)+ε
=0, on On,

(2.11)
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see Theorem 4.2 .
iii) In statistical physics, phase transitions are characterized by non-analyticities in derivatives

of thermodynamic potentials. These non-analyticities may be discontinuities or smoother
non-analyticities. First-order phase transitions are characterized by a discontinuity in a
first derivative of a thermodynamic potential (but not necessarily in all first derivatives of
all thermodynamic potentials). By contrast, all first derivatives of thermodynamic poten-
tials are continuous at second-order phase transitions; the corresponding second derivatives
usually diverge. In the optimum partitioning problem, the entropy—which is a first de-
rivative of a thermodynamic potential—is continuous, but its derivative is discontinuous.
This is analogous to the behavior of the entropy of the Ising model in a magnetic field,
which has a first-order phase transition as the magnetic field passes through zero.

Another characteristic which can be used to distinguish first- and second-order phase
transitions is the width of the scaling window. In a first-order phase transition, such as
the Ising model in a field, the scaling window of a system of size n is of width n−1 ; see
[BK]. By contrast, second-order phase transitions have scaling windows of width n−b for
some b < 1, as has been established for the random graph [Bol,Luc] and the 2-SAT prob-
lem [BBCKW]. In the optimum partitioning problem, the scaling window of is width n−1 .
Hence we conclude that this problem has a first-order phase transition at κ = 1.

Our next theorem gives detailed distributional estimates of the discrepancy dn defined in
(2.1). Noting that |σ·X| may be viewed as the energy of the “configuration” σ in the random
instance X , we see that the discrepancy can be identified with the ground state energy of
instance X . Above the window, the next theorem also gives the joint distribution of the k
smallest discrepancies, and hence the energy spectrum of the problem. To make this precise,
let D be the ordered multiset

D = {dn,1 ≤ dn,2 ≤ · · · ≤ dn,2n−1}

of all 2n−1 discrepancies.

Theorem D. Let m = κnn , with κn as in (1.1).
i) If λn → −∞ , then

dn →
{

0 in probability on En

1 in probability on On.
(2.12)

ii) If limn→∞ λn ∈ (−∞,∞) , then dn is bounded in probability. More precisely, in the limit,
dn has a (modified) geometric distribution: for ` ≥ 1 ,

lim
n→∞

Pn{dn ≥ `} =
1 + r

2
r`−1, (2.13)

with r = r(λ) as defined in Theorem B.
iii) If λn →∞ , then dn/2λn and its inverse are bounded in probability. In the limit, dn/2λn

has the following exponential distribution: for a > 0 ,

lim
n→∞

Pn

(
dn

2λn
> a

)
= exp

(
−
√

3
2π

a

)
. (2.14)



8 C. Borgs, B. Pittel, J.T. Chayes, August 2001

More generally, let dn,r be the rth smallest discrepancy. Then, for a fixed ` ≥ 1 , the
`-tuple 2−(λn+1)(dn,1, . . . , dn,`) converges in distribution to (W1,W1 +W2, . . . ,W1 + · · ·+
W`) , where Wi are i.i.d. random variables, each distributed exponentially with parameter
(6/π)1/2 .

Remark.
iv) Theorem D(iii) is a discrete counterpart of Stephan Merten’s (nonrigorous) result [Mer2]
for partitions of random numbers which are uniformly distributed on [0, 1]. His statistical
physics approach was based a heuristic mapping of this continuous problem into the so-called
random energy model of Derrida [Der]. For the integer partitions, Merten’s analysis would
require that the discrepancies of all 2n−1 distinct partitions can be approximated by the family
of 2n−1 independent random variables, which individually have the same common distribution
as the actual discrepancies. Theorem D(iii) shows that this approximation is indeed valid,
insofar as the joint distribution of the (finite) k smallest discrepancies is concerned. In fact,
Theorem D(iii) immediately implies the results of Mertens for the uniform distribution on
[0, 1], and optimally extends the rigorous results of [KKLO] and [Lue]. This is formulated in
the next Theorem, which is proved in Section 6. We thank the referee for pointing out that
this result follows easily from our other results and a coupling argument.

Theorem E. Consider the optimum partitioning problem for n random variables U1, . . . , Un

chosen independently and uniformly at random from the interval [0, 1] . Let d̃n,r be the rth

smallest discrepancy of this continuous problem. Then, for any fixed ` ≥ 1 , the `-tuple
(2n−1/

√
n)(d̃n,1, . . . , d̃n,`) converges in distribution to (W1,W1 + W2, . . . ,W1 + · · · + W`) ,

where Wi are i.i.d. random variables, each distributed exponentially with parameter (6/π)1/2 .

The scheme of our proof is as follows. The reader will notice that Theorem B is a corollary of
Theorem D, and that Theorem D(i) follows from Theorem C(i), equation (2.6), while Theorem
C(iii) follows from Theorem D(iii). The proof of Theorems A–D is therefore reduced to that
of Theorem C (i)–(ii) and Theorem D(ii)–(iii). This is accomplished by detailed calculations
using an integral representation to be described in Section 3. Also in Section 3, we formulate
and prove estimates on the first and second moments of the number of partitions with a
given discrepancy. These moment estimates allow us to establish Theorem C(i), as well as
some statements in probability on Sn and dn , namely the “in probability” statements of
Theorems C(ii) and D(ii) and part of those in Theorem D(iii), see Proposition 3.2 in Section
3. In Section 4, for λn + log2 λn → ∞ , we formulate and prove distributional statements
on our integral representations which allow us to establish Remark (ii) above. Section 5 is
devoted to probabilistic bounds on the minimal discrepancy dn , containing in particular the
corresponding statements in Theorem D(iii) and D(ii), see Theorem 5.1, Theorem 5.2 and
Corollary 5.3. The distribution of dn above the window is then studied in Section 6, where
we prove in particular Theorem D(iii). The distribution of dn inside the window is studied
in Section 7, where we prove Theorem D(ii) and C(ii).



Integer Partitioning Problem, August 2001 9

3. The Integral Representation and Moment Estimates.

Recalling M = 2m , we begin by rewriting (1.1) in the form:

2λn =
M
√
n

2n
. (3.1)

Our proofs are based on an integral representation of Zn,` , the number of partition with
discrepancy ` . To derive this representation, we first write Zn,` as

Zn,` =
∑
σ

I(|σ·X| = `), (3.2)

where we use I(A) to denote the indicator of an event A , and then use the identity

I(σ·X = `) =
1

2π

π∫
−π

ei(σ·X−`)xdx (3.3)

to sum over all 2n configurations σ . This gives the representation

Zn,` = 2nIn,` ×
{

1 if ` = 0
2 if ` > 0,

(3.4)

where In,` = In,`(X) is the random integral

In,` =
1

2π

π∫
−π

cos(`x)
n∏

j=1

cos(xXj) dx. (3.5)

The first set of results, namely Theorem A, Theorem B outside the window, and Theorem
C(i), follow from estimates on the first and second moments of In,` . Below we will state and
prove these estimates. We then show how the estimates imply the theorems mentioned above.
The central limit theorem, referred to in Remark (ii) following Theorem C, is a consequence
of detailed estimates on the random integral In,` , rather than just on a few of its moments.
The reader is referred to Section 4 for details.

Proposition 3.1. Let C0 > 0 be a finite constant, let M = M(n) be an arbitrary function
of n , let

γn =
1

M
√

2πncM
(3.6)

with cM as in (2.5), and let ` and `′ be integers with |`|/M ≤ C0 and |`′|/M ≤ C0 . Then

E[In,`] = γn(1 +O(n−1)). (3.7)
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Furthermore

E[In,`In,`′ ] = 2γ2
n

(
1 +O(n−1) +O

( n−1

γn2n

))
+
γn

2n

(
δ`+`′,0 + δ`−`′,0

)
(3.8)

if ` and `′ are of the same parity, i.e. both even or both odd, while E[In,`In,`′ ] = 0 if ` and `′

are of different parity. In (3.7) and (3.8), the bounds implicit in the O -symbols are uniform
in M and n , but depend on the constant C0 .

Proof. We first use (3.5), independence of the Xj , and the Fubini theorem to get

E[In,`] =
1

2π

π∫
−π

cos(`x)fn(x) dx (3.9)

and
E
[
In,`In,`′

]
=

1
(2π)2

∫∫
x1,x2∈(−π,π]

cos(x1`) cos(x2`
′)fn(x1, x2) dx1dx2 (3.10)

where

f(x) := E[cos(xX)] = M−1
M∑

j=1

cos(jx) = M−1

[
sin((M + 1/2)x)

2 sin(x/2)
− 1

2

]
, (3.11)

f(x1, x2) := E
[
cos(x1X) cos(x2X)

]
=

1
2

(f(x1 + x2) + f(x1 − x2)) (3.12)

and fn(x) stands for [f(x)]n .
In our analysis of the asymptotics of these integrals, we show that the major contributions

come from values of the integration variables near the maxima of |f(x)| and |f(x1, x2)| . Note,
however, that the function f depends on the parameter M , which can grow as n → ∞ .
Fortunately, a careful treatment of error terms will allow us to apply a variation of the
standard saddle point method to get the desired asymptotics. When M is bounded, the
proof of Proposition 3.1 is a straightforward application of the standard saddle-point methods,
which we leave to the reader. The arguments below establish Proposition 3.1 for M larger
than some M0 , to be determined in the course of the proof.

Pick 1 < a < b . If x ∈ [−π, π] is such that |2 sin(x/2)| ≥ b/M , then

|f(x)| ≤ 1
b

+
1

2M
≤ 1
a

(3.13)

for M large enough. We will also use

|f(x)| ≤ 1
M | sin(x/2)|

≤ C

M |x|
, (3.14)
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uniformly for |x| ∈ (0, π] , a direct consequence of (3.11). Here and below, C ,C1 , C ′ , etc.,
stand for absolute positive constants. (In (3.14), C can be chosen as π/2.)

Notice that x ∈ (−π, π) satisfies |2 sin(x/2)| ≤ b/M iff |x| ≤ b0/M , where b0 = b0(M) is
defined for M large enough by the condition 2 sin(b0/(2M)) = b/M with b0/(2M) ∈ (0, π/2).
Clearly b0(M) → b as M →∞ . By (3.13),

|f(x)| ≤ 1
a

if |x| ≥ b0/M.

Consider now |x| ≤ b0/M , and set x = y/M , i.e., |y| ≤ b0 . Then, for y 6= 0,

f(x) = M−1

[
sin
(
y + y/(2M)

)
2 sin

(
y/(2M)

) − 1
2

]
=

sin y
2M tan

(
y/(2M)

) +
cos y − 1

2M
,

and, since tan z > z on (0, π/2),

|f(x)| ≤
∣∣∣∣ sin yy

∣∣∣∣+
1− cos y

2M
.

Hence there exist a small enough constant C1 = C1(b0) > 0 such that for M large enough

|f(x)| ≤ e−C1y2
if |y| ≤ b0. (3.15)

For |y| sufficiently small, we also have

f(x) = E
(
cos(y(X/M))

)
= E

(
1− y2

2
· X

2

M2
+O(y4)

)
= 1− cM

2
y2 +O(y4) = exp

(
−cM

2
y2 +O(y4)

)
,

(3.16)

with cM as in (2.5), so that

fn(x) = exp
(
−ncM

2
y2
) (

1 +O(ny4)
)
. (3.17)

Combining (3.17) and (3.15), we get

1
2π

∫
|x|≤b0/M

fn(x) dx =
1

2πM

∫
|y|≤n−1/2 log n

exp
(
−ncM

2
y2
)
dy

+O

(
M−1

∫
|y|≤n−1/2 log n

ny4 exp
(
−ncM

2
y2
)
dy

)

+O

(
M−1

∫
|y|≥n−1/2 log n

e−nC1y2
dy

)

=
1

M
√

2πncM

(
1 +O(n−1) +O

(
e−C′ log2 n

))
=

1
M
√

2πncM

(
1 +O(n−1)

)
.

(3.18)



12 C. Borgs, B. Pittel, J.T. Chayes, August 2001

and more generally

1
2π

∫
|x|≤b0/M

cos(`x)fn(x) dx =
1

2πM

∫
|y|≤n−1/2 log n

cos
(
`M−1y

)
exp

(
−ncM

2
y2
)
dy

+O

(
1

M
√

2πncM

(
O(n−1) +O

(
e−C′ log2 n

)))
=

1
M
√

2πncM

(
exp

(
− `2

2nM2cM

)
+O(n−1)

)
.

(3.19)

Besides, by (3.13) and the definition of b0 ,∫
|x|∈[b0/M,π]

|f(x)|n dx ≤
∫

|x|∈[b0/M,π]

[
min

{
a−1,

C

Mx

}]n

dx

≤2Ca
M

a−n +
∫

|x|≥Ca/M

(
C

Mx

)n

dx ≤ 4Ca
M

a−n = O(a−nM−1).

Thus, for all integers ` and all a > 1,

EIn,`(X) =
1

M
√

2πncM

(
exp

(
− `2

2nM2cM

)
+O(n−1)

)
+O(a−nM−1)

=γn

(
exp

(
− `2

2nM2cM

)
+O(n−1)

)
,

(3.20)

where the constant implicit in O(n−1) (and similar error terms below) depends on a . Under
the assumption ` = O(M), this proves the estimate (3.7) for all sufficiently large M .

Next we turn to the second moment (3.10). Since f(x1, x2) = f(±x1,±x2) we have

E
[
In,`In,`′

]
=
(

1
2π

)2 ∫∫
x1,x2∈(−π,π]

ei(`x1+`′x2)fn(x1, x2) dx1dx2,

=
(

1
2π

)2 ∫∫
x1,x2∈(−π,π]

ei`1(x1+x2)ei`2(x1−x2)fn(x1, x2) dx1dx2,

(3.21)

where
`1 = (`+ `′)/2 and `2 = (`− `′)/2. (3.22)

Let us consider a square Q with corners at (0,±π), (±π, 0), so that Q = {(x1, x2) : |x1| +
|x2| ≤ π} . The coordinate axes partition Q into the four direct (isosceles) triangles. The
integration square [−π, π]2 consists of Q and four other direct triangles. Let us look at one
of the latter triangles, in the positive quadrant say. It has its corners at (0, π), (π, 0), (π, π).
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Clearly, this triangle can be obtained via a parallel translation from the triangle with corners
at (−π, 0), (0,−π), (0, 0) in the direction determined by the vector (1, 1). In this translation,
every point (x1, x2) moves to a point (x′1, x

′
2) such that

x′1 + x′2 = x1 + x2 + 2π, x′1 − x′2 = x1 − x2;

Since f(x) is 2π -periodic, it follows from (3.12) that f(x′1, x
′
2) = f(x1, x2). If `+ `′ is even,

then the other two factors in the integral (3.21) are invariant as well, and the contributions of
the two triangles to the value of E

[
In,`In,`′

]
are equal to each other, while they cancel each

other if ` + `′ is odd, since in this case ei`1(x1+x2) = −ei`1(x
′
1+x′2) . The contributions from

the other triangles in [−π, π]2 \ Q behave in a similar way, so that E
[
In,`In,`′

]
is twice the

value of the integral over the square Q if `+ `′ is even, and zero if `+ `′ is odd. Changing
to the integration variables ξ1 = x1 + x2 and ξ2 = x1 − x2 , and observing that the Jacobian
is ∂(x1, x2)/∂(ξ1, ξ2) = 1/2, we therefore obtain that, for `+ `′ even,

E
[
In,`In,`′

]
=

1
(2π)2

∫∫
ξ1,ξ2∈(−π,π]

ei`1ξ1ei`2ξ2φn(ξ1, ξ2) dξ1dξ2, (3.23)

where
φ(ξ1, ξ2) =

1
2

(f(ξ1) + f(ξ2)). (3.24)

Before analyzing the integral (3.23) in the general, we first consider the easier case ` =
`′ = 0, i.e. we consider the integral

E
[
I2
n,0

]
=

1
(2π)2

∫∫
ξ1,ξ2∈(−π,π]

φn(ξ1, ξ2) dξ1dξ2. (3.25)

As in the computation of EIn,0(X), we clearly need to treat the points (x1, x2) according to
how small | sin(ξ1/2)| and | sin(ξ2/2)| are. Consider first all (ξ1, ξ2) ∈ (−π, π]2 such that

|2 sin(ξ1/2)| ≤ b/M and |2 sin(ξ2/2)| ≤ b/M.

Since |ξ1|, |ξ2| ≤ π , the corresponding set of points (x1, x2) is a small neighborhood Ub0 of
the origin (0, 0) given by

Ub0 = {(ξ1, ξ2) : |ξ1| ≤ b0/M, |ξ2| ≤ b0/M}.

(Recall the definition of b0 from the computation of EIn,0(X).) For the points (ξ1, ξ2) ∈ Ub0

we set ξ1 = η1/M and ξ2 = η2/M (so that max{|η1|, |η2}| ≤ b0 whenever (ξ1, ξ2) ∈ Ub0 ). As
in (3.16), we have

φ(ξ1, ξ2) =E
[

cos(η1(X/M)) + cos(η2(X/M))
2

]
=E

[
1− X2(η12 + η2

2)
4M2

+O(η14 + η2
4)
]

=1− cM (η12 + η2
2)

4
+O(η14 + η2

4).
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Hence there exists a small enough y∗ ≤ b0/2 such that in a subneighborhood max{|η1|, |η2|} ≤
y∗ of Ub0

φ(ξ1, ξ2) =
2∏

i=1

exp
(
−cMηi

2

4
+O(ηi

4)
)
.

Using (3.24), (3.15), and a little algebra, one can also show that there exist C∗ > 0 such that
in the whole neighborhood Ub0

|φ(ξ1, ξ2)| ≤ exp
(
−C∗(η12 + η2

2)
)
.

So, as in (3.18), we get

1
(2π)2

∫∫
(ξ1,ξ2)∈Ub0

φn(ξ1, ξ2) dξ1dξ2 = 2
(

1
M
√

2πncM

)2

· (1 +O(n−1)). (3.26)

Therefore, the contribution of Ub0 to E[I2
n,0(X)] is

2
(

1
M
√

2πncM

)2

· (1 +O(n−1)) = 2γ2
n(1 +O(n−1)). (3.27)

Consider the opposite case when both |2 sin(ξ1/2)| ≥ b0/M and |2 sin(ξ2/2)| ≥ b0/M . Denote
the corresponding subset of (−π, π]2 by R . According to (3.13) and (3.14), for (ξ1, ξ2) ∈ R ,

|φ(ξ1, ξ2)| ≤1
2

(ψ(ξ1) + ψ(ξ2));

ψ(z) := min
{
a−1,

C

M |z|

}
, z 6= 0.

Therefore ∫∫
(ξ1,ξ2)∈R

|φ(ξ1, ξ2)|n dξ1dξ2 ≤ 2−n
n∑

j=0

(
n

j

)
In,j , (3.28)

where
In,j :=

∫∫
(ξ1,ξ2)∈R

ψj(ξ1)ψn−j(ξ2) dξ1dξ2 ≤ IjIn−j ;

Ik :=
∫ π

−π

ψk(z) dz, 0 ≤ k ≤ n.

(3.29)

A direct integration shows that

Ik =


2π, if k = 0;
2C
M

+
2C
M

log
Mπ

Ca
= O(M−1 logM), if k = 1;

2C
Mak−1

+
2C

(k − 1)M

((1
a

)k−1

−
( C

Mπ

)k−1)
= O(M−1a−k), if k ≥ 2.

(3.30)
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Collecting (3.28)-(3.30), we conclude that for some constant C ′ = C ′(a), we have

1
(2π)2

∫∫
(ξ1,ξ2)∈R

|φ(ξ1, ξ2)|n dξ1dξ2 ≤C ′2−n

 1
Man

+
logM
M2an

+
1

M2an

n−2∑
j=2

(
n

j

)
=O

(
2−nγn

n

)
+O

(
γ2

n

n

)
.

(3.31)

It remains to consider the intermediate case when only one of the sines is small. Let R ⊂
(−π, π]2 be the set of points (ξ1, ξ2) where, for instance,

|2 sin(ξ1/2)| < b/M and |2 sin(ξ2/2)| ≥ b/M.

This set consists of two narrow rectangles R1 and R3 , given by

R1 = {(ξ1, ξ2) : |ξ1| < b0/M and b0/M ≤ ξ2 ≤ π},
R3 = {(ξ1, ξ2) : |ξ1| < b0/M and − π ≤ ξ2 ≤ −b0/M}.

(3.32)

We get two more rectangles, R2 and R4 , when the sines exchange their roles. The contribu-
tions of all four rectangles are the same. Consider the rectangle R1 . We write

∫∫
(ξ1,ξ2)∈R1

φn(ξ1, ξ2) dξ1dξ2 =
1
2n

n∑
k=0

(
n

k

) b0/M∫
−b0/M

fn−k(ξ1) dξ1 ·
π∫

b0/M

fk(ξ2) dξ2, (3.33)

and use again (3.13) and (3.14) to bound the integrals on the right. For k ≥ 1, the second
integral on the right is bounded by Ik , see (3.29) and (3.30), and by (3.15), the first integral
is bounded by

1
M

b0∫
−b0

e−C1(n−k)y2
dy ≤ C3

M
√
n− k

for k ∈ {1, . . . , n− 1} , and is bounded by C ′3/M for k = n . Hence

b0/M∫
−b0/M

fn−k(ξ1) dξ1 ≤
C ′′3

M
√
n− k + 1

(3.34)

for k ∈ {1, . . . , n} .
Then, by (3.18), the difference between the double integral in (3.33) and

2π(π − b0M
−1)

2nM
√

2πncM
· (1 +O(n−1)) (3.35)
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(which is the contribution of the term k = 0) is of order at most(
n

1

)
logM

2n
√
nM2

+
1

2nM2

n∑
k=2

1
ak
√
n− k + 1

(
n

k

)
=
√
n logM
2nM2

+O

(
1

M2
√
n

(
1 + a−1

2

)n)
.

In order to bound the first term on the right, we consider two cases: either M ≤ 2n , in
which case we bound logM by n log 2, or M > 2n , in which case we bound M−1 logM by
2−n(n log 2). As a consequence, the difference between the double integral in (3.33) and the
expression (3.35) is of order at most

n3/2

M22n
+

1
M2

√
n

(
1 + a−1

2

)n

, (3.36)

and the total contribution of the four narrow rectangles to E[I2
n,0(X)] is

2
2nM

√
2πncM

·
(
1 +O(n−1)

)
+O

(
n3/2

M22n

)
+O

(
1

M2
√
n

(
1 + a−1

2

)n)
=

2γn

2n

(
1 +O(n−1)

)
+O(γ2

n/n). (3.37)

Putting together (3.27),(3.31) and (3.37), we obtain

E[I2
n,0] = 2

(
γ2

n + 2−nγn

)
(1 +O(n−1)), (3.38)

which proves (3.8) in the special case ` = `′ = 0.
To prove (3.8) for general ` and `′ , we start from (3.23) and proceed as in the derivation

of (3.38), keeping track of the changes induced by the extra factors inside the integral. In the
counterpart of (3.27), this just forces replacement of the term (1 +O(n−1)) by

exp
(
− `21 + `22
nM2cM

)
+O(n−1).

In the counterpart of (3.31) the change is not noticeable, since ei`1ξ1ei`2ξ2 has maxnorm one.
Turn to the analog of (3.37), and assume first that `2 = 0 and `1 6= 0. Then the contribution
of the k = 0 term to the integral over the rectangle R1 in the analog of (3.33) is given
by (3.35), with the factor (exp(−`21/(2nM2cM )) + O(n−1)) instead of (1 + O(n−1)). The
overall contribution of the terms k ≥ 1 remains at most of the order given in (3.36) . The
contribution of the rectangle R3 is exactly the same. Not so for the rectangles R2 and R4

though! Since
π∫

−π

ei`1ξ dξ = 0 for `1 6= 0,
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the k = 0 contribution to the integral over R2 ∪R4 is

1
2−n

b0/M∫
−b0/M

fn(ξ2)d ξ2
∫

b0/M≤|ξ1|≤π

ei`ξ1d ξ1 = O

(
1

2nM2
√
n

)
,

that is of the same order as the error term in the k = 0 contribution to the integral over
R1 ∪R3 . Putting these results together we get

E
[
In,`In,`′

]
= 2γ2

n

(
exp

(
− `21 + `22
nM2cM

)
+O(n−1)

)
+
γn

2n

(
exp

(
− `21 + `22

2nM2cM

)
+O(n−1)

)
(3.39)

if either `1 or `2 (but not both) are zero. If both `1 and `2 are non-zero, the k = 0
contribution from all four rectangles is of the order O

(
1

2nM2
√

n

)
, so that now

E
[
In,`In,`′

]
= 2γ2

n

(
exp

(
− `21 + `22
nM2cM

)
+O(n−1)

)
+O

( γn

n2n

)
. (3.40)

Combining (3.38), (3.39) and (3.40) with the observation that `21 + `22 = (`2 + (`′)2)/2 we get

E
[
In,`In,`′

]
=2γ2

n

(
exp

(
− `2 + (`′)2

2nM2cM

)
+O

(
n−1

2nγn

)
+O(n−1)

)
+ (δ`+`′,0 + δ`−`′,0)

γn

2n
exp

(
−`

2 + (`′)2

2nM2cM

)
.

(3.41)

For ` and `′ of order O(M), this gives (3.8). �

Remark. It is worth pointing out that Proposition 3.1 is a generalization of the standard
local limit theorem. Indeed, let Y be the random variable σX , where X and σ are chosen
uniformly in {1, . . . ,M} , and {−1,+1} , respectively. Then

E[In,`] =
1

2π

π∫
−π

(cos `x)En(cos(xX)) dx

=
1

2π

π∫
−π

e−i`xE

 n∏
j=1

eixYj

 dx

=P

 n∑
j=1

Yj = `

 ,

(3.42)

where Y1, . . . , Y` are independent copies of Y . Since Y has zero expectation and variance
M2cM , equation (3.7) is just a local limit theorem for the random variable Y . In a similar
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way, equation (3.8) is a local limit theorem for the coupled random variables Y (1) = σ(1)X
and Y (2) = σ(2)X , where σ(1) and σ(2) are independent random variables, chosen uniformly
from {−1,+1} . Note that our results are stronger than the usual local limit theorem, which
corresponds to the situation where M is bounded as n→∞ .

Proof of Theorem A, Theorem B outside the window, and Theorem C(i). To apply Proposition
3.1, we first observe that Zn,0 = Zn and Zn,1 = 0 on En , while Zn,1 = Zn and Zn,0 = 0 on
On . Consequently

E[Zn,0] = P(En)E(Zn|En) and E[Z2
n,0] = P(En)E(Z2

n|En), (3.43)

while
E[Zn,1] = P(On)E(Zn|On) and E[Z2

n,1] = P(On)E(Z2
n|On). (3.44)

Next we note that Pn(En) → 1/2 as n → ∞ , with an error that is exponentially small
in n . Indeed, writing P(En) = P (|{j : Xj is odd}| is even) , denoting p = P(X is odd), and
observing that p = 1

M dM/2e obeys 1/2 ≤ p ≤ 2/3 for M ≥ 2, we get

P(En) =
∑

j even

(
n

j

)
pj(1− p)n−j =

1
2

∑
j

(
n

j

)
pj(1− p)n−j(1 + (−1)j)

=
1
2
[
1 + (1− 2p)n

]
=

1
2

+O(3−n).

(3.45)

It now follows from (3.43) – (3.45), (3.4) and the statements of Proposition 3.1 for ` = `′ = 0
and ` = `′ = 1 that

E(Zn|En) = ρn(1 +O(n−1)), (3.46)

E(Zn|On) = 2ρn(1 +O(n−1)) (3.47)

and
E(Z2

n|En) =
(
E2(Zn|En) + 2E(Zn|En)

)
(1 +O(n−1)), (3.48)

E(Z2
n|On) =

(
E2(Zn|On) + 2E(Zn|On)

)
(1 +O(n−1)), (3.49)

where

ρn =
2n+1

M
√

2πncM
= 2n+1γn. (3.50)

Comparing the definitions (3.1) and (3.50) of λn and ρn , we see that ρn = Θ(2−λn), so that
the condition λn → −∞ is equivalent to the condition ρn →∞ . By the conditional version
of Cauchy-Schwarz inequality, (3.46) and (3.48), we therefore get that below the window

E ( |Zn/ρn − 1| | En) ≤ρ−1
n

√
Var(Zn|En) + |E (Zn/ρn|En)− 1|

=ρ−1
n

√
E(Z2

n|En)− E2(Zn|En) + |E (Zn/ρn|En)− 1|

=O
(
(n−1 + ρ−1

n )1/2
)

= o(1),
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as n→∞ . Therefore, on En , Zn/ρn → 1 in L1 (in mean, that is), whence in probability. In
particular, on En , whp Zn > 0, whence Zn = Z̃n and Sn = log2 Zn . This observation and
the convergence of Zn/ρn imply directly that in probability

Sn − |λn|+
1
2

log2 cM → 1
2

log2(2/π) (3.51)

on En . In the same way, (3.47) and (3.49) imply that, on On , Zn/ρn → 2 in mean and
probability, from which we conclude that on On ,

Sn − |λn|+
1
2

log2 cM → 1
2

log2(8/π) (3.52)

in probability.
The equations (3.51) and (3.52) certainly imply that ∆sn := n−1(Sn − |λn|) goes to zero

in probability. And |∆sn| ≤ 1, since 0 ≤ Sn ≤ n and |λn| ≤ n . So, by the bounded
convergence theorem, ∆sn → 0 in expectation as well, completing the proof of Theorem C(i),
and hence the statements of Theorems A and B below the window. To see that the statements
of Theorems A and B above the window follow from Proposition 3.1 as well, we use that the
probability of finding a perfect partition is equal to the probability that Zn > 0, which in
turn is bounded above by the expectation of Zn . But this expectation goes to zero above the
window by (3.46) and (3.47). �

Moment estimates can also be used to obtain some statements in probability on Sn and
dn , namely the “in probability” statements of Theorems C(ii) and D(ii) and part of those in
Theorem D(iii). These are summarized in the following proposition.

Proposition 3.2.
(i) If λn → λ ∈ (−∞,∞) , then both dn and Sn are bounded in probability.
(ii) If λn →∞ , then 1/(ρndn) is bounded in probability.

Proof. (i) Let Zn,≤ω =
∑

`≤ω Zn,` , and let ω = ω(n) = O(M) be a sequence of integers
which goes to infinity. Use (3.4) and both the ` = `′ and the ` 6= `′ relations in Proposition
3.1 to estimate sharply the first and second moments of the sum Zn,≤ω . It turns out that

E[Z2
n,≤ω(n)] ∼ E2[Zn,≤ω(n)] ∼ (ω(n)ρn)2,

because ω(n) → ∞ . (We leave the details to the reader.) Then the Chebyshev inequality
implies that, inside the window,

Zn,≤ω(n)

ω(n)ρn
→ 1 (3.53)

in probability. Observing that ρn is bounded away from zero inside the window, and noting
that Zn,≤ω(n) > 0 implies dn ≤ ω(n), the bound (3.53) proves in particular that dn is
bounded in probability. Since Zn,≤ω(n) > 0 implies Z̃n ≤ Zn,≤ω(n) , the bound (3.53) also
implies that inside the window Z̃n and Sn = log2 Z̃n are bounded in probability.
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(ii) If λn → ∞ , then ρn → 0. Let ω(n) → ∞ as n → ∞ , slowly enough so that
kn := 1/(ρnω(n)) →∞ . Since kn ≤M for all sufficiently large n , we can use (3.4) and (3.7)
to conclude that

P(dn ≤ kn) ≤
kn∑

k=0

E[Zn,k] = (1 + 2kn)
ρn

2
(1 +O(n−1)) = O

(
ω−1(n)

)
, (3.54)

implying that dn goes to infinity at least as fast as 1/ρn , which is the desired result. �

Remark. An alternative proof for the first statement of Proposition 3.2 can be found in Section
5, where we will in fact prove the more general statement that dnρn is bounded in probability
as long as ρn is bounded, see Theorem 5.2.

4. Subcritical Distribution of Zn .
The next theorem provides a sharp distributional result for the number of perfect partitions.

Theorem 4.1. Assume that λn + log2 n→ −∞ . Then, for every fixed x ∈ R ,

lim
n→∞

P
(
Zn − ρn

ρnδn
≤ x

∣∣∣∣ En

)
=

1
(2π)1/2

x∫
−∞

e−u2/2 du, (4.1)

lim
n→∞

P
(
Zn − 2ρn

2ρnδn
≤ x

∣∣∣∣ On

)
=

1
(2π)1/2

x∫
−∞

e−u2/2 du, (4.2)

where

δn =

√
Var[(X/M)2]

2cM
√
n

. (4.3)

Proof of Theorem 4.1. As in Theorem 3.1, M may or may not go to ∞ as n→∞ . And as
before, the harder case is the case where M → ∞ as n → ∞ . Thus, for brevity, we again
confine ourselves to the case where M is larger than some M0 determined in the course of
the estimates.

We first observe that the condition λn + log2 n→ −∞ is equivalent to the condition

lim
n→∞

M

n−3/22n
= 0. (4.4)

On the event En ,
Zn = Zn,0 = 2nP(σ · X = 0|X), (4.5)

see (3.2). Since σ · X assumes only even values on En , we can write

P(σ · X = 0|X) =Ĩn,0(X), where

Ĩn,0(X) :=
1
π

π/2∫
−π/2

n∏
j=1

cos(xXj) dx,
(4.6)
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compare with (3.5). We shall see that our ability to replace (−π, π] by the smaller interval
is crucial for obtaining a sharp asymptotic formula for the random integral Ĩn,0(X). By
contrast, in the proof of Theorem 3.1, we obtained expressions only for the expectation and
variance of In,0(X).

Let M2 = M2(X) =
∑n

j=1X
2
j , and observe that, in probability,

M2

nE[X2]
→ 1 as n→∞. (4.7)

Let An be the event n−1M2/E[X2] ∈ [1/2, 3/2]. Since P(An) → 1, it suffices to consider
the integral in (4.6) on En

⋂
An only. As in the proof of Theorem 3.1, we break the integral

into two parts, one for |2 sin(x/2)| ≥ b/M , and another for the remaining x ’s. However, this
time we select b ∈ (1, π). Then b0 = b0(M) (defined by 2 sin(b0/(2M)) = b/M ) satisfies
b0 < π for all large enough M ; in fact, it is bounded away from π for M large enough. So, if
x = y/M and |y| ≤ b0 , then |xX| = |y| · (X/M) ≤ b0 , that is |xX| < π and |xX| is bounded
away from π for M large enough. Therefore, for those x ’s and M ’s, there exist C̃, C1 >
such that

| cos(xX)| ≤1− C̃(xX)2 = 1− C̃y2(X/M)2

≤ exp
(
−C1y

2(X/M)2
)
.

(4.8)

And if y∗ ∈ (0, b0) is chosen small enough then for |y| ≤ y∗

cos(xX) = cos
(
y(X/M)

)
= 1− y2

2
· (X/M)2 +O(y4)

= exp
(
−y

2

2
· (X/M)2 +O(y4)

)
.

(4.9)

Using (4.8), (4.9), and the fact that M2/(nE(X2)) ≥ 1/2 on the event An , we get a counter-
part of (3.18):

1
π

∫
|x|≤b0/M

n∏
j=1

cos(xXj) dx =
1
πM

∫
|y|≤n−1/2 log n

(
1 +O(ny4)

)
exp

(
−M2y

2

2M2

)
dy

+O

(
M−1

∫
|y|≥n−1/2 log n

exp
(
−C1y

2M2/M
2
)
dy

)

=
(

2
πM2

)1/2

·
(

1 +O(n−1
)

+O
(
e−C2 log2 n

))
=
(

2
πM2

)1/2

·
(
1 +O(n−1)

)
.

(4.10)

It remains to show that the second integral

Jn(X) :=
1
π

∫
b0/M≤|x|≤π/2

n∏
j=1

cos(xXj) dx
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is likely to be o
(
M

−1/2
2

)
. We have

E
[
J2

n(X)
]

=
1
π2

∫∫
b0/M≤|x1|,|x2|≤π/2

fn(x1, x2) dx1dx2, (4.11)

see (3.12) for f(x1, x2). The integration region consists of four squares, one per quadrant,
each contributing equally to the double integral. Consider the square {(x1, x2) : b0/M ≤
x1, x2 ≤ π/2} . Here x1 + x2 ≥ 2b0/M . If |x1 − x2| ≥ b0/M then, by (3.12) and (3.11),

|f(x1, x2)| ≤(2M)−1

[
1 +O(M−1)

2b0/M
+

1
2

]
+ (2M)−1

[
1 +O(M−1)

b0/M
+

1
2

]
=

3
4b0

+O(M−1).

Recall that b0 = b0(M) → b , and we can select b arbitrarily close, from below, to π . Since
3/(4π) < 1/4, we can pick b to ensure that, whenever |x1 − x2| ≥ b0/M and M is large
enough, we have

|f(x1, x2)| ≤ 1/4.

Those points in the square contribute O(4−n) to the double integral. Note that since 3/(4π) <
(4.188)−1 , we could have selected b < π such that

|f(x1, x2)| ≤ 1/(4.18), (4.12)

whenever |x1 − x2| ≥ b0/M . This will come handy in the proof of Theorem 5.2.
The remaining points of the square form a narrow strip, given by

|x1 − x2| ≤ b0/M, 2b0/M ≤ x1 + x2 ≤ π.

Observe that, like the rectangle defined in (3.32), this strip is far away from the “influential”
point (π, π). Here this is due to the restriction x1, x2 ≤ π/2. Arguing as in (3.33)–(3.37), we
see that the strip contribution is of order at most

εn :=
1

2nMn1/2
+

1
M2

√
n
·
(

1 + a−1

2

)n

,

where a constant a ∈ (1, b) can be chosen arbitrarily. Thus

E
[
J2

n(X)
]

= O
(
εn + 4−n

)
, (4.13)

and consequently Jn(X)/
√
εn + 4−n is bounded in probability.

Therefore, invoking (4.10), with high probability on En

⋂
An , P(σ · X = 0|X) is equal to(

2
πM2

)1/2
[

1 +O(n−1) +O

(
ω(n)

((
Mn1/2

2n

)1/2

+ n1/4

(
1 + a−1

2

)n/2
))]

,
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if ω(n) →∞ however slowly. (An extra term ω(n)Mn1/2

2n due to the 4−n term in (4.13) has

been subsumed by ω(n)
√

Mn1/2

2n , as Mn1/2/2n → 0.) We conclude that

P(σ · X = 0|X) =
(

2
πM2

)1/2

(1 +O(n−1) + op(1)). (4.14)

Here op(1) stands for a random variable which approaches zero in probability. More precisely,

whp it is of order O
(
ω(n)

(
Mn1/2

2n

)1/2
)

, for any ω(n) →∞ .

Note that, in deriving (4.14), we have only used that Mn1/2/2n → 0. Using the slightly
stronger assumption of the theorem, namely Mn3/2/2n → 0, we can replace the error term
op(1) in (4.14) by op(n−1/2). (Needless to say, Un = op(n−1/2) means, by definition, that
Un/(n−1/2) → 0 in probability.) Consequently, on En ∩An , whence on En itself,

Zn =
2n+1

√
2πM2

(1 + op(n−1/2)). (4.15)

We use (4.15) to show that Zn is Gaussian in the limit. To this end, let us look close at
M2 =

∑n
j=1X

2
j . Since ∑n

j=1 E(X2
j )3(

Var
(∑n

j=1X
2
j

))3/2
= O(n−1/2),

we have by Lyapunov’s theorem (see, e.g., [Dur]) that

M2 =
n∑

j=1

X2
j = nE(X2) +

√
nVar(X2)Nn, (4.16)

where Nn is standard normal in the limit, that is

lim
n→∞

P
(
Nn ≤ x

)
=

1
(2π)1/2

x∫
−∞

e−u2/2 du.

We want to show that Nn remains standard normal in the limit if it is conditioned on the
event En = {

∑n
j=1Xj is even} . First of all En = {

∑n
j=1X

2
j is even} , since En happens iff

the number of odd-valued Xj ’s is even.
Suppose that M is bounded. Then, by the local limit theorem (see, e.g., [Dur]),

√
nVar(X2) P

(
Nn =

`− nE(X2)√
nVar(X2)

)
=

1√
2π

exp
(
− (`− nE(X2))2

2nVar(X2)

)
+ o(1),
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uniformly for all nonnegative integers ` . So, for fixed a < b ,

lim
n→∞

P
(
{a ≤ Nn ≤ b}

⋂
En

)
=

1
2
· 1

(2π)1/2

b∫
a

e−u2/2 du,

so that, for a fixed x ,

lim
n→∞

P
(
Nn ≤ x|En) =

1
(2π)1/2

x∫
−∞

e−u2/2 du,

as limn→∞ P(En) = 1/2.
Next, suppose that M →∞ . Then

|{i ≤M : i even (odd)}| =
M

2
+O(1),

and therefore

P(En|X1, . . . , Xn−1) =P

Xn has parity of
n−1∑
j=1

Xj

∣∣∣∣∣∣ X1, . . . , Xn−1


=

1
2

+O(M−1),

i.e. asymptotically independent from X1, . . . , Xn−1 . Introduce

Ñn−1 =

∑n−1
j=1 X

2
j − (n− 1)E(X2)√
nVar(X2)

,

so that Ñn−1 depends on X1, . . . , Xn−1 only. Then

P
(
{Nn ≤ x}

⋂
En

)
=P
(
{Ñn−1 + (X2

n − E(X2))/
√
nVar(X2) ≤ x}

⋂
En

)
≤P
({
Ñn−1 ≤ x+ E(X2)/

√
nVar(X2)

}⋂
En

)
=
(

1
2

+O(M−1)
)

P
(
Ñn−1 ≤ x+ E(X2)/

√
nVar(X2)

)
,

and analogously

P
(
{Nn ≤ x}

⋂
En

)
≥
(

1
2

+O(M−1)
)

P
(
Ñn−1 ≤ x+ (E(X2)−M2)/

√
nVar(X2)

)
.
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Since X2
n ≤M2 = o

(√
nVar(X2)

)
and Ñn−1 is also standard normal in the limit, these two

inequalities imply that Nn , conditioned on En , is standard normal in the limit as well.
Combining this fact with (4.15) and (4.16), we obtain (4.1). Indeed, we have that on the

event En ,

Zn =
2n+1√

2π(nE(X2) + (nVar(X2))1/2Nn)
(1 + op(n−1/2))

=ρn

(
1 +

√
Var(X2)

n1/2E(X2)
Nn

)−1/2

(1 + op(n−1/2))

=ρn

(
1− 1

2

√
Var(X2)

n1/2E(X2)
Nn + op(n−1/2)

)

=ρn −
ρn

√
Var(X2)

2n1/2E(X2)
(Nn + op(1))

=ρn − ρnδn(Nn + op(1)),

where Nn + op(1) converges in distribution to a standard normal variable.
The relation (4.2) is proved in a similar way. �

The proof above allows us to obtain a limiting distribution of the entropy Sn .

Theorem 4.2. Under the condition and in the notation of Theorem 4.1, for every fixed
x ∈ R ,

lim
n→∞

P
(
Sn − |λn|+ 1

2 log2(πcM/2)
δn/ log 2

≤ x

∣∣∣∣ En

)
=

1
(2π)1/2

∫ x

−∞
e−u2/2 du,

(4.17)

lim
n→∞

P
(
Sn − |λn|+ 1

2 log2(πcM/8)
δn/ log 2

≤ x

∣∣∣∣On

)
=

1
(2π)1/2

∫ z

−∞
e−u2/2 du.

(4.18)

So, on both En and On , the entropy Sn randomly fluctuates within a distance Op(n−1/2)
about the values |λn| − 1

2 log2(πcM/2) and |λn| − 1
2 log2(πcM/8) , respectively.

Proof. First of all, whp Z̃n = Zn , since Zn > 0 in probability. So, by (4.15), (3.1), (4.16)
and (4.3), whp on the event En

Sn = log2 Zn = |λn| −
1
2

log2(πcM/2)− δn
log 2

Nn + op(n−1/2), (4.19)

and, likewise, whp on the event On

Sn = log2 Zn = |λn| −
1
2

log2(πcM/8)− δn
log 2

Nn + op(n−1/2). (4.20)

The relations (4.19) and (4.20) are equivalent to (4.17) and (4.18), respectively.
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5. Bounds on the Optimal Discrepancy dn .

Theorem 5.1. Suppose that λn →∞ , and hence ρn → 0 . Then
(a) lim

n→∞
P(Zn = 0) = 1

(b) In probability, dnρn is bounded away from zero; in other words, with high probability, dn

tends to infinity at least as fast as ρ−1
n does.

Proof. (a) This follows immediately from Proposition 3.1 and the fact that

P(Zn > 0) ≤ E(Zn). (5.1)

(b) This has already been proven in Section 3, see Proposition 3.2 (ii). �

The next theorem shows that with high probability, the lower bound given in Theorem 5.1
is in fact the correct order of magnitude of dn .

Theorem 5.2. Suppose that lim inf
n→∞

λn > −∞ . Let rn → ∞ as a power of n at most, and

introduce Λn =
[
rn2λn

]
. Denote by Zn,≤Λn

the total number of partitions with discrepancy
Λn at most. Then, in probability,

lim
n→∞

Zn,≤Λn

rn
√

6/π
= 1. (5.3)

Consequently P(dn ≤ Λn) → 1 , that is dn2−λn (and hence dnρn ) is bounded in probability.

Proof. Suppose that the event En happens, so that
∑

j Xj is even. Then Zn,k = 0 if k is
odd, and

Zn,k =
1

1 + δk,0

2n

π

π/2∫
−π/2

(eikx + e−ikx)
n∏

j=1

cos(xXj) dx (5.4)

if k is even. Now

Zn,≤Λn
=

µn−1∑
µ=0

Zn,2µ , (5.5)

where µn = min{µ : 2µ > Λn} . Observe that µn → ∞ as n → ∞ , since Λn → ∞ by the
assumptions of the theorem, and note that

µn =
Λn

2
(
1 +O(Λ−1

n )
)

=
rn
2
Mn1/2

2n

(
1 +O(r−1

n )
)
, (5.6)

a relation which will be used at several points in this proof.
In light of Section 2, it would seem natural to use (5.4) and (5.5) to compute the first two

moments of Zn,≤Λn
and to show that E[Z2

n,≤Λn
] � E2(Zn,≤Λn

). Even though Zn,≤Λn
is in-

deed concentrated around its expected value, we prove it avoiding the Chebyshev’s inequality,
since we have not succeeded in showing that Var(Zn,≤Λn

) � E2(Zn,Λn
) in the whole range of
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Theorem 5.2. To circumvent this substantial difficulty, we use a smoothing device, inspired by
[KKLO] (the proof of Theorem 3.1), and the type of Gibbs distribution on integer partitions
suggested and used in [Mer1].

In the language of statistical physics, Zn,≤Λn
is the zero-temperature partition function of

the system with maximal discrepancy Λn , and the smoothing device referred to above is to
study its “finite-temperature” analog

Zn(q) =
∑

µ≤µn−1

q2µZn,2µ =
∑

σ:|σ·X|≤Λn

e−β|σ·X|. (5.7)

Here β = − log q is the inverse temperature, and |σ · X| is the energy of the configuration
σ in the fixed random environment X . In this interpretation, the minimum discrepancy dn

is the ground state energy.
The parameter q will be chosen in such a way that q = qn ∈ (0, 1) goes to one as n→∞ .

In fact, we will choose q in such a way that qµn → 1, or equivalently that (1 − q)µn → 0.
Then obviously

Zn(q) =
(
1 +O((1− q)µn)

)
Zn,≤Λn

and hence Zn,≤Λn
=
(
1 +O((1− q))µn)

)
Zn(q).

By this observation, and by (5.6), (4.7) and (3.50), in order to prove (5.3), it suffices to show
that Zn(q) is asymptotic, in probability, to 2n+1µn (2/(πM2))1/2 .

In the course of the argument, we will require some additional, mutually compatible, con-
ditions on how fast (slow) qn should approach 1 for this asymptotic behavior of Zn(q). As in
the proof of Theorem 4.1, it suffices to study Zn(q) on En

⋂
An , where An = {M2/(nE[X2]) ∈

[1/2, 3/2]} . First of all, using (5.4) (together with the corresponding relation for Zn,0 , see
equations (4.5) and (4.6)), we get

Zn(q) =
2n

π

π/2∫
−π/2

 ∑
|µ|<µn

q|2µ|ei2µx

 n∏
j=1

cos(xXj) dx

=
2n

π

π/2∫
−π/2

gn(x)
n∏

j=1

cos(xXj) dx, where

gn(x) :=
1− q4 + 2q2(µn+1) cos(2(µn − 1)x)− 2q2µn cos 2µnx

1− 2q2 cos 2x+ q4
.

(5.8)

The behavior of gn(x) plays a key role in the estimates. We notice that

|gn(x)| ≤ C

1− q + |x|
, ∀ q ∈ (0, 1), x ∈ [−π/2, π/2]. (5.9)

Indeed the denominator is at least

(1− q2)2 + 2q2(1− cos 2x) ≥ (1− q)2 + 4q2 sin2 x

≥ C1

(
(1− q)2 + x2

)
≥ C1

2
(1− q + |x|)2,

(5.10)
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and the numerator is bounded by

4(1− q) + 2
∣∣q2 cos(2(µn − 1)x)− cos 2µnx

∣∣ ≤8(1− q) + 2 |cos(2(µn − 1)x)− cos 2µnx|
≤8(1− q) + 8|x| = 8(1− q + |x|).

(The inequality (5.10) would not hold for x ∈ [−π, π] .) As in the proof of Theorem 4.1,
we choose b ∈ (1, π) and break the integral (5.8) into two parts, for |x| ≤ b0/M and |x| ∈
[b0/M, π/2], where b0 is again defined by 2 sin(b0/2M) = b/M .

We start with the case |x| ≤ b0/M . The numerator of gn(x) is

1− q4 + 2q2(µn+1) − 2q2µn

+ 2
(
q2(µn+1) − q2µn

)
·
(
cos(2(µn − 1)x)− 1

)
+ 2q2µn

(
cos(2(µn − 1)x)− cos 2µnx

)
.

The second summand is O
(
(1 − q)(µnx)2

)
, the third summand is O

(
µnx

2
)

, and the third
bound is dominant since (1− q)µn → 0. On the other hand,

αn :=1− q4 + 2q2(µn+1) − 2q2µn

=(1− q2)(1− q2µn + q2(1− q2µn−2))

=(4µn − 2)(1− q)2(1 + q)
(
1 +O((1− q)µn))

)
≥Cµn(1− q)2,

(5.11)

so that, for |x| ≤ b0/M , the numerator is αn

(
1 + O(M−2(1 − q)−2)

)
. This motivates the

condition M(1− q) →∞ . In addition, still for |x| ≤ b0/M ,

1− 2q2 cos 2x+ q4 =(1− q2)2 + 2q2(1− cos 2x)

=
[
(1− q2)2 + 4q2x2

](
1 +O(M−2)

)
.

Therefore
gn(x) =

αn

(1− q2)2 + 4q2x2

(
1 +O(M−2(1− q)−2)

)
, (5.12)

and we notice up front that, by (5.11),

αn

(1− q2)2
= (2µn − 1)

(
1 +O(µn(1− q))

)
. (5.13)

For |x| ∈ [(Mn1/2)−1 log n, b0/M ] we use the bound (4.8) for
∏n

j=1 cos(xXj) and the relations
(5.12), (5.13) to estimate

1
π

∫
|x|∈[log n/(Mn1/2),b0/M ]

|gn(x)| ·
n∏

j=1

| cos(xXj)| dx = O

(
µn

M
1/2
2

e−C̃ log2 n

)
; (5.14)
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cf. the remainder term in (4.10), the first equation. For the dominant x ∈ [−b0/M, b0/M ] ,
by (4.9) and (5.12), (5.13), the corresponding integral is at most

(2µn − 1)
(

2
πM2

)1/2 [
1 +O

(
M−2(1− q)−2 + n−1 + µn(1− q)

)]
.

Since
αn

(1− q2)2
− αn

(1− q2)2 + 4q2x2
≤ 4αnx

2

(1− q2)4
,

the lower bound for the integral is within

4αn

(1− q2)4

∞∫
−∞

x2e−M2x2/2 dx = O

(
αn

(1− q2)4M3/2
2

)
= O

(
µn

(1− q2)2M3/2
2

)

of the upper bound. Therefore

1
π

∫
|x|≤(Mn1/2)−1 log n

gn(x)
n∏

j=1

cos(xXj) dx = (2µn − 1)
(

2
πM2

)1/2

×
(

1 +O
(
M−2(1− q)−2 + n−1 + µn(1− q) +M−1

2 (1− q)−2
))
. (5.15)

Recall that M2 is of order nM2 on An . So we can drop M−1
2 (1 − q)−2 in the remainder

term expression. The relations (5.14) and (5.15) imply that

1
π

∫
|x|≤b0/M

gn(x) ·
n∏

j=1

cos(xXj) dx

= (2µn − 1)
(

2
πM2

)1/2(
1 +O

(
M−2(1− q)−2 + n−1 + µn(1− q)

))
. (5.16)

We are left with the integral over |x| ≥ b0/M . We need to show that, in probability, the
corresponding integral, call it Kn(X), is sufficiently negligible, compared to the right-hand
expression in (5.16). We have

E
[
K2

n(X)
]

=
1
π2

∫∫
b0/M≤|x1|,|x2|≤π/2

gn(x1)gn(x2)fn(x1, x2) dx1dx2.

Consider the first quadrant (x1, x2) ∈ Q1 = [b0/M, π/2)2 . By (5.9),

|gn(x1)gn(x2)| ≤ C2

x1x2
.
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By (4.12), we know that, for |x1 − x2| ≥ b0/M , |f(x1, x2)| ≤ 1/(4.18), if b is chosen close
enough to π and M sufficiently large. Also, by (3.14),

f(x1, x2) =
1
2

(f(x1 + x2) + f(x1 − x2)) ≤ Ĉ

(
1

M(x1 + x2)
+

1
M |x2 − x1|

)
,

if x1 6= x2 . Therefore the contribution of the points (x1, x2) such that |x1 − x2| ≥ b0/M is
of order at most

(4.18)−n

∫∫
x1,x2≥b0/M
x2−x1≥b0/M

|gn(x1)gn(x2)| · |f(x1, x2)| dx1 dx2

≤ C2(4.18)−n

∫∫
y1,y2≥b0
y2−y1≥b0

dy1dy2
y1y2

(
1

y1 + y2
+

1
y2 − y1

)
= O

(
(4.18)−n

)
, (5.17)

since the last integral converges.
Let |x1 − x2| ≤ b0/M . Set ξ1 = x1 − x2, ξ2 = x1 + x2 , so that |ξ1| ≤ b0/M ≤ ξ2/2. Then

|x1|+ |x2| =
1
2
(
|ξ2 + ξ1|+ |ξ2 − ξ1|) = ξ2,

|x1x2| =
1
4

(ξ22 − ξ21) ≥ 3
16
ξ2

2,

and, using (5.9),

|gn(x1)gn(x2)| ≤ C2

(1− q)2 + (1− q)(|x1|+ |x2|) + |x1| · |x2|

≤ C ′

(1− q + ξ2)2
.

Since f(x1, x2) = (f(ξ1) + f(ξ2))/2, the contribution of the strip{
(x1, x2) ∈ [b0/M, π/2]2 : |x1 − x2| ≤ b0/M

}
⊂
{

(ξ1, ξ2) : |ξ1| ≤ b0/M, ξ2 ∈ [2b0/M, π]
}

is then of order at most

1
2n

n∑
j=0

(
n

j

) b0/M∫
−b0/M

fn−j(ξ1) dξ1 ·
π∫

2b0/M

|f(ξ2)|j

(1− q + ξ2)2
dξ2, (5.18)

see (3.33). Here |f(ξ2)| ≤ min{a−1, CM−1ξ2
−1} for M sufficiently large. Now

π∫
2b0/M

|f(ξ2)|
(1− q + ξ2)2

dξ2 ≤


O
(
(1− q)−1

)
if j = 0

O
(

log(M(1−q))
M(1−q)2

)
if j = 1

O
(

a−j

M(1−q)2

)
if j ≥ 2,

(5.19)
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where we used |f(ξ2)| ≤ CM−1ξ2
−1 in the cases j = 1, 2, and, in addition, the bound

|f(ξ2)| ≤ a−1 in the case j > 2. So, with the help of (3.34) and (5.47), we conclude that the
sum in (5.18) is of order at most

1
2nMn1/2(1− q)

+
log
(
M(1− q)

)
2nM2n1/2(1− q)2

+
(1 + a−1)n

2nM2n1/2(1− q)2
.

Since M(1− q) →∞ , the second error term can be absorbed into the first one, and we get

E
[
K2

n(X)
]
≤ C

[
1

(4.18)n
+

1
2nMn1/2(1− q)

+
(1 + a−1)n

2nM2n1/2(1− q)2

]
,

that is, with probability approaching 1,
∣∣Kn(X)

∣∣ does not exceed

ω(n)

[
1

(2.04)n
+

1[
2nMn1/2(1− q)

]1/2
+

1
M(1− q)n1/4

(
1 + a−1

2

)n/2
]
, (5.20)

if ω(n) → ∞ however slowly. For an appropriate choice of ω(n), this bound is negligible
compared to µn/(Mn1/2), the exact order of the integral in (5.16), if µn/(Mn1/2) dwarfs
every one of the three summands within the square brackets in (5.20). Recalling the relation
(5.6), we see that the first condition is met even if rn is simply bounded away from zero, as
(2/(2.04))n → 0. So there remain two other requirements and the conditions

(1− q)µn → 0, M(1− q) →∞.

Recalling that 2−λn = 2n/(n1/2M) is bounded by the assumptions of the theorem, we pick
σ > 0 and define q by

Mn1/2

2n
(1− q) = r−σ

n that is q = 1− 2nr−σ
n

Mn1/2
. (5.21)

Certainly q < 1 and q → 1 as n→∞ . (Here is the first spot where we use rn →∞ .) Also

µn(1− q) = rn ·
Mn1/2

2n
(1− q) = r1−σ

n → 0,

if σ > 1. Furthermore

M(1− q) =
2nr−σ

n

n1/2
→∞,

if, for instance, rn does not grow faster than 2n/σ′ , σ′ > σ . So it remains to guarantee that

µn

Mn1/2
� 1[

2nMn1/2(1− q)
]1/2

(5.22)
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and
µn

Mn1/2
� (1 + a−1)n/2[

2nM2n1/2(1− q)2
]1/2

. (5.23)

Using (5.6) and (5.21), we transform (5.22) into rn � r
σ/2
n . Since rn → ∞ , we can meet

the condition if we choose σ < 2. (Again, a weaker condition “rn is bounded away from
zero”would not have allowed us to find a suitable σ .) Thus we need to have σ ∈ (1, 2).
Finally, the condition (5.23) can be rewritten as

r2−2σ
n � n1/2

(
1 + a−1

2

)n

,

and it is met if

rn ≤
(

2
1 + a−1

)n/(2σ̃−2)

, σ̃ > σ.

If rn grows as a power of n at most, then the ratio of the square bracket expression in (5.20)
and µn/(Mn1/2) is of order r−(1−σ/2)

n at most. And the “big O”-term in (5.16) is of order
n−1 +r

−(σ−1)
n at most. Hence, choosing σ = 4/3, we obtain an asymptotic formula for Zn(q)

on En

⋂
An :

Zn(q) =
(
1 +O(r−1/3

n + n−1)
)
· 2n(2µn − 1)

(
2

πM2

)1/2

. (5.24)

Therefore
Zn,≤Λn =

(
1 +O((1− q)µn)

)
Zn(q)

=
(
1 +O(r−1/3

n + n−1)
)
· 2n(2µn − 1)

(
2

πM2

)1/2

=
(
1 +O(r−1/3

n + n−1)
)
· 2n+1µn

(
2

πM2

)1/2

,

(5.25)

where in the last step we used that by the assumptions of the theorem µ−1
n = O(r−1

n ). Since
2µn ∼ Λn , and M2/(3−1M2n) → 1 in probability, we obtain that on En

⋂
An , whence on

En ,
Zn,≤Λn

rn(6/π)1/2
→ 1

in probability. The same argument works for the event On . �

The next corollary is an immediate consequence of Theorems 5.1 and 5.2.

Corollary 5.3.
(i) If lim

n→∞
λn ∈ (−∞,∞) , then dn is bounded in probability.

(ii) If λn →∞ , then both dnρn and 1/(dnρn) are bounded in probability.

Remark. From (4.16), (5.25), and (5.6) it follows that Zn,≤Λn
is asymptotically normal with

mean rn
√

6/π and standard deviation rn
√

6/(5πn), if rn � n3/2 .
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6. The Distribution of dn above the Window.
Our next theorem is a discrete counterpart of Stephan Merten’s (nonrigorous) result [Mer2]

on partitions of random numbers uniformly distributed on [0, 1]. It is formulated in terms of

Ẑn(t) =
1
2

∑
`≤tbn

Zn,`, where bn = 2λn+1 =
M
√
n

2n−1
. (6.1)

Note that (6.1) differs from Zn,≤tbn
by a factor of two: it counts the number of unordered par-

titions with discrepancy at most tbn , while Zn,≤tbn
counts the number of ordered partitions

with discrepancy at most tbn .

Theorem 6.1. Let lim
n→∞

λn = ∞ and λn = O(n) . Then the process (Ẑn(t)) converges, in

terms of finite-dimensional distributions, to the Poisson process with parameter (6/π)1/2 .

Note that the `th smallest discrepancy, dn,` , satisfies dn,` ≤ tbn if and only if Ẑn(t) ≥ ` ,
` = 1, 2, . . . . Using this, Theorem 6.1 immediately implies the following corollary, which, in
turn immediately implies that, under the conditions of Theorem 6.1, the optimum partition
is unique in the limit n→∞ .

Corollary. Under the conditions of Theorem 6.1,

P
{
dn

bn
> a

}
= P{Ẑn(a) = 0} → exp

(
−
√

6
π
a

)
, (6.2)

with bn as in (6.1). More generally, let dn,r denote the rth smallest discrepancy. Then,
for a fixed ` ≥ 1 , the `-tuple b−1

n (dn,1, . . . , dn,`) converges (in distribution) to (W1,W1 +
W2, . . . ,W1 + · · ·+W`) , where Wi are i.i.d. random variables, each distributed exponentially
with parameter (6/π)1/2 .

Remark. The condition λn = O(n) is the same as “M grows no faster than an exponen-
tial function of n”. As was pointed out to us by the referee, one can use a coupling ar-
gument to boost the statements of Theorem 6.1 to cover arbitrary sequences M(n) with
λn = log2M(n) + 1

2 log2 n−n→∞ , thus giving Theorem D(iii) in the form stated in Section
2. The details of this argument are given at the end of this section.

Proof of Theorem 6.1. We will use the method of factorial moments to prove that Ẑn = Ẑn(a)
is asymptotically Poisson with parameter χ = a(6/π)1/2 , i.e., we will show that for every
integer k ≥ 1

lim
n→∞

E
[
(Ẑn)k

]
= χk, (6.3)

where (Ẑn)k stands for the falling factorial [Ẑn(Ẑn − 1) · · · (Ẑn − k + 1)].
To prove that the process (Ẑn(t)) converges to the Poisson process with parameter (6/π)1/2 ,

one has to show that for every finite family of nonoverlapping intervals [ai, bi], (1 ≤ i ≤ r), the
increments Ẑn(bi)− Ẑn(ai) converge in distribution to the increments of the Poisson process
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with parameter (6/π)1/2 . Generalizing the proof below, this is easily done by proving the
convergence of the corresponding multidimensional factorial moments, i.e. by proving that
for any fixed r -tuple (k1, . . . , kr),

lim
n→∞

E
[ r∏

i=1

(Ẑn(bi)− Ẑn(ai))ki

]
=

r∏
i=1

((bi − ai)χ)ki . (6.4)

Since the proof of (6.4) is identical to the proof of (6.3), except for slightly more cumbersome
notation, we leave it to the reader.

To prove (6.3), it is convenient to replace the random variables Xi by variables Yi , where
the variables Yi , i = 1, . . . , n are iid random variables which are equal to Xi with probability
1/2, and equal to −Xi with probability 1/2. For every σ , (with σ1 = 1), let Iσ denote the
indicator of the event {|σ ·Y| ≤ abn} . It is then easy to see that, in terms of the random
variables Yi , Ẑn = Ẑn(a) can be rewritten as Ẑn =

∑
σ Iσ .

Starting with the case k = 1, let us first observe that, by symmetry of Y ’s, σ ·Y has the
same distribution as

∑n
j=1 Yj . So

EẐn = 2n−1P

∣∣∣∣∣∣
n∑

j=1

Yj

∣∣∣∣∣∣ ≤ abn

 . (6.5)

Observing that abn = aM21−n
√
n = O(M), we now use (3.42) in conjunction with Propo-

sition 3.1, the definition (3.6) of γn and the fact that cM = 1/3 + O(M−1) to conclude
that

P

 n∑
j=1

Yj = `

 = γn(1 +O(n−1)) =

√
3/(2π)
Mn1/2

(1 +O(n−1)),

uniformly for |`| ≤ abn . As a consequence

P

∣∣∣∣∣∣
n∑

j=1

Yj

∣∣∣∣∣∣ ≤ abn

 = (1 + o(1))2−(n−1)a(6/π)1/2,

and
EẐn = (1 + o(1))a(6/π)1/2.

Next

E
[
(Ẑn)k

]
=

∑
σ(1) 6=···6=σ(k)

E

(
k∏

s=1

Iσ(s)

)

=
∑

σ(1) 6=···6=σ(k)

∑
|`(1)|,...,|`(k)|≤abn

P

(
k⋂

s=1

{
σ(s) ·Y = `(s)

})
.

(6.6)
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(Since each σ ·Y has parity of
∑n

j=1 Yj , the last probability can be different from zero only
if `(1), . . . , `(k) are either all odd, or all even.)

As a first step we will show that the leading contribution to (6.6) comes from the terms
where the vectors σ(1) . . .σ(k) are linear independent. To this end, let 1 ≤ r ≤ k be the rank
of the k×n matrix

[
σ

(s)
j

]
{s≤k,j≤n} , and suppose, for instance, that it is σ(1), . . . ,σ(r) which

form the basis of the row space. Then obviously the innermost sum in (6.6) is upper bounded
by the sum ∑

|`(1)|,...,|`(r)|≤abn

P

(
r⋂

s=1

{
σ(s) ·Y = `(s)

})
. (6.7)

Using the r -variate inversion formula for the random vector (σ(1) ·Y, . . . ,σ(r)Y), and the
independence of Yj ’s, we have

P

(
r⋂

s=1

{
σ(s) ·Y = `(s)

})
=(2π)−r

∫
x∈T r

exp

(
−i

r∑
s=1

`(s)xs

)
n∏

j=1

f

(
r∑

s=1

xsσ
(s)
j

)
dx, (6.8)

where f(u) := E(cosuX) and T r is the r -dimensional torus (−π, π]r . If, for instance, the
basis of column space of the reduced r×n matrix

[
σ

(s)
j

]
{s≤r,j≤n} consists, say, of the vectors

(σ(1)
j , . . . , σ

(r)
j ), (1 ≤ j ≤ r), we substitute

uj =
r∑

s=1

xsσ
(s)
j ,

in the first r terms in the product over j , and bound |f
(∑r

s=1 xsσ
(s)
j

)
| by 1 in the remaining

n− r terms. Since |f(u)| is 2π -periodic, and f(u) = O
(
min{1, (M |u|)−1}

)
for |u| ≤ π (see

(3.11) and (3.14)), we obtain that, rather crudely, the probability in (6.8) is of order at most r∏
j=1

∫ A

A

|f(uj)| duj

 =

(∫ A

−A

|f(u)| du

)r

= O
(
M−r logr M

)
, (6.9)

where A = rπ . Consequently, the sum in (6.7) is of order at most

(bnM−1 logM)r = O((n1/22−n logM)r). (6.10)

To continue, we need to estimate the number of terms in the first sum in (6.6) for which the
rank of the k × n matrix

[
σ

(s)
j

]
{s≤k,j≤n} is r . Consider therefore r < k linear independent

row vectors σ(1), . . . ,σ(r) . We claim that there are at most 2r(k−r) ways to generate the
additional (k− r) rows linearly dependent on them. Indeed, each such row can be expanded
as

σ(s) =
r∑

t=1

cstσ
(t),
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Since the rank of
[
σ

(t)
j

]
{t≤k,j≤n} is r , we can find an r×r submatrix of rank r , implying that

the coefficients cs1, . . . , csr are uniquely determined by the corresponding r -long segment of
the row σ(s) . Since the total number of values for this segment is 2r , we get the claim that
there are at most 2r(k−r) ways to generate (k−r) rows σ(r+1), . . . ,σ(k) linearly dependent on
σ(1), . . . ,σ(r) . As a consequence, the number of terms in the first sum in (6.6) for which the
rank of the k × n matrix

[
σ

(s)
j

]
{s≤k,j≤n} is r grows at most like 2nr2r(k−r) . Unfortunately,

the bound (6.10) is not sharp enough to control this many terms.
To overcome this difficulty, we use the following trick: Given δ ∈ {−1, 1}r , let

nδ = nδ(σ(1), . . . ,σ(r)) =
∣∣∣{j ≤ n : (σ(1)

j , . . . , σ
(r)
j ) = δ

}∣∣∣ . (6.11)

For a typical r -tuple (σ(1), . . . ,σ(r)) one should expect that all 2r integers n(δ) are close
to n2−r . Indeed, by considering the sequence of n independent trials, with 2r equally likely
outcomes in each trial, it is easy to show that

max
δ

∣∣∣nδ(σ(1), . . . ,σ(r))− n

2r

∣∣∣ ≤ n1/2 log n, (6.12)

for all but 2nre−c log2 n r -tuples (σ(1), . . . ,σ(r)). We then split the contribution of the k
tuples σ(1), . . . ,σ(k) with r < k into the sum of terms for which the condition (6.12) is
violated, and the sum of terms for which it is satisfied. Using the bound (6.10) and the fact
that there are at most 2r(k−r) ways to generate (k − r) rows that are linearly dependent on
r linear independent rows (σ(1), . . . ,σ(r)), we see that the total contribution of the k tuples
σ(1), . . . ,σ(k) with r < k such that the condition (6.12) is not satisfied, is of order at most(

n1/22−n logM
)r · 2nre−c log2 n · 2r(k−r) → 0,

since logM = O(n).
Suppose, on the other hand, that the r < k linearly independent rows σ(1), . . . ,σ(r) meet

the condition (6.12). This means, in particular, that every δ ∈ {−1, 1}r is among the columns
of [σ(s)

j ]{s≤r,j≤n} . Hence, from

σ(r+1) =
r∑

t=1

cr+1,tσ
(t),

it follows that
∑r

t=1 cr+1,t = 1, and moreover∣∣∣∣∣
r∑

t=1

±cr+1,t

∣∣∣∣∣ = 1,

for every choice of pluses and minuses. These two conditions imply easily that cr+1,t = δtt0 for
some 1 ≤ t0 ≤ r , i.e. σ(r+1) = σ(t0) . It contradicts the restriction σ(1) 6= σ(2) 6= · · · 6= σ(k)

in (6.6).
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We therefore have shown that, asymptotically as n → ∞ , we can restrict the summation
in (6.6) to the tuples (σ(1), . . . ,σ(k)) such that σ(1), . . . ,σ(k) are linearly independent. Using
(6.10), we further see that the total contribution to the sum in (6.6) of the terms with r = k ,
that do not meet the condition (6.12), is of order at most(

n1/22−n logM
)k · 2nke−c log2 n = nk/2(logM)ke−c log2 n → 0,

so that we can further restrict the summation in (6.6) to the tuples (σ(1), . . . ,σ(k)) such that

max
δ

∣∣∣nδ(σ(1), . . . ,σ(k))− n

2k

∣∣∣ ≤ n1/2 log n. (6.13)

It is obvious that the last condition absorbs, for n large enough, the summation condi-
tion σ(1) 6= · · · 6= σ(k) . Moreover, for large n , (6.13) also implies linear independence of
σ(1), . . . ,σ(k) . Indeed, for all 1 ≤ α 6= β ≤ k ,

σ(α) · σ(β) =
∑

{δ∈{−1,1}:δα=δβ}

nδ(σ(1), . . . ,σ(k))−
∑

{δ∈{−1,1}:δα 6=δβ}

nδ(σ(1), . . . ,σ(k))

=2k−1
( n

2k
+O(n1/2 log n)

)
− 2k−1

( n
2k

+O(n1/2 log n)
)

=O(n1/2 log n),

(6.14)

so that
σ(α) · σ(β)

‖σ(α)‖ · ‖σ(β)‖
= O(n−1/2 log n).

Hence the vectors σ(1), . . . ,σ(k) are almost orthogonal, thus linearly independent! Finally,
the condition (6.13) holds for all (2(n−1)k that is) but 2nke−c log2 n k tuples (σ(1), . . . ,σ(k)).

It remains to estimate sharply the generic probability in (6.8) for r = k , and (σ(1), . . . ,
σ(k)) meeting the condition (6.13). From the proof of Proposition 3.1 we recall that for every
α > 1 there exists b0 = b0(α) > 0 such that |f(u)| ≤ α−1 for |u| ∈ [b0/M, π] . Then since
f(u) is 2π -periodic,

|f(u)| ≤ α−1, if min
µ even

∣∣µπ − u
∣∣ ≥ b0/M. (6.15)

If x = (x1, . . . , xk) is such that uj :=
∑k

s=1 xsσ
(s)
j satisfies the condition in (6.15) for at least

one j0 ∈ [1, n] , then (see (6.13)) we can upper bound the integrand in (6.8) by∏
j∈A

|f(uj)| · α−(n/2k)(1+o(1));

here |A| = k−1, and {(σ(1)
j , . . . , σ

(k)
j )}j∈A∪{j0} is a basis of the column space. Therefore the

contribution of such x ’s to the integral in (6.8) is of order at most

(M−1 logM)k−1 · α−(n/2k)(1+o(1)).
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Hence the overall contribution of such x ’s to the value E[(Ẑn)k] in (6.6) is of order at most

2nkbkn · (M−1 logM)k−1α−(n/2k)(1+o(1)) = M2k(logM)k−1nk/2α−(n/2k)(1+o(1)) = o(1),

provided α > 1 is so large that, say, M = o
(
αn/2k+1)

. (That such α = α(k) exists follows
from the condition that M grows no faster than an exponential function of n .) So, we can
restrict the integration in (6.8) to the x ’s such that uj :=

∑k
s=1 xsσ

(s)
j satisfies the condition

in (6.15) for all j = 1, . . . , n , or, equivalently, to the x ’s such that

min
µ even

∣∣∣∣∣µπ −
k∑

s=1

xsδs

∣∣∣∣∣ < b0
M

for all δ ∈ {−1,+1}k. (6.16)

(Note that, by the condition (6.13), we have nδ(σ(1), . . . ,σ(k)) > 0 for all δ ∈ {−1,+1}k ,
implying that the set of vectors (σ(s)

j )s=1,...,k is just the set of all vectors δ ∈ {−1,+1}k .) Let
Rk be the subset of T k defined by (6.16). Clearly, Rk is open, and, for large M , it is a disjoint
union of open neighborhoods of the 2k−1 points x0 in {0, π}k for which

∣∣{s : x0
s = π}

∣∣ is
even. The neighborhood “centered” at such an x0 is given by∣∣∣∣∣

k∑
s=1

(xs − x0
s)δs

∣∣∣∣∣ < b0
M
, for all δ ∈ {−1,+1}k,

or equivalently
k∑

s=1

∣∣xs − x0
s

∣∣ < b0
M
. (6.17)

Furthermore

k∑
s=1

x0
sσ

(s)
j ≡ 0(mod 2π), ∀ 1 ≤ j ≤ n,

k∑
s=1

x0
s`

(s) ≡ 0(mod 2π),

if the integers `(1), . . . , `(s) are all of the same parity. So the integrand in (6.8) equals 1 at
every such x0 . Setting xs = x0

s + M−1ys , 1 ≤ s ≤ k , in the neighborhood (6.17) of x0 , we
have

n∏
j=1

f

(
k∑

s=1

xsσ
(s)
j

)
=

n∏
j=1

f

(
M−1

k∑
s=1

ysσ
(s)
j

)
=

∏
δ∈{−1,+1}k

f

(
M−1

k∑
s=1

ysδs

)nδ

, (6.18)

exp

(
−i

k∑
s=1

`(s)xs

)
= exp

(
−iM−1

k∑
s=1

`(s)ys

)
= 1 +O

(
n1/22−n

)
, (6.19)

since |`(s)| = O
(
Mn1/22−n

)
and |ys| = O(1), (1 ≤ s ≤ k ).
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Consider, for a moment, the neighborhood of x0 in which y(δ) =
∑

s ysδs is sufficiently
small for all δ , say |y(δ)| ≤ n−1/2 log2 n . In such a neighborhood we use (3.16) to estimate

∏
δ∈{−1,+1}k

f

(
M−1

k∑
s=1

ysδs

)nδ

= exp

−cM
2

(1 + o(1))
∑

δ∈{−1,+1}k

nδ(y(δ))2

 . (6.20)

The sum over δ simplifies, via (6.13) and the fact that
∑

δ δs1δs2 = 0 if s1 6= s2 , to

∑
δ∈{−1,+1}k

nδ

∑
s1,s2

ys1ys2δs1δs2 = n
k∑

s=1

y2
s +O

(√
n log n

∑
1≤s1<s2≤k

|ys1ys2 |
)

=
(
1 +O(n−1/2 log n)

)
n

k∑
s=1

y2
s ,

(6.21)

uniformly for all y = (y1, . . . , yk) in question.
If |y(δ)| > n−1/2 log2 n for at least one δ ∈ {−1,+1}k , we use the bound (3.15) to conclude

that∣∣∣∣ ∏
δ∈{−1,+1}k

f

(
M−1

k∑
s=1

ysδs

)nδ ∣∣∣∣ ≤ exp

−C ′ ∑
δ∈{−1,+1}k

nδ(y(δ))2


≤ e−θ(log n2) exp

−C ′
2

∑
δ∈{−1,+1}k

nδ(y(δ))2


= e−θ(log n2) exp

(
−nC

′

2
(1 + o(1))

k∑
s=1

y2
s

)
.

(6.22)

Using the bounds (6.18)–(6.22) and proceeding as in the proof of (3.18), we get

1
(2π)k

∫
x∈T k

x meets (6.17)

exp

(
−i

k∑
s=1

`(s)xs

)
n∏

j=1

f

(
k∑

s=1

xsσ
(s)
j

)
dx

= (1 + o(1))
1

(2πM)k

∞∫
−∞

· · ·
∞∫

−∞

exp

(
−cM

2
n

k∑
s=1

y2
s

)
dy

= (1 + o(1))

(
1
M

√
3

2πn

)k

(6.23)
where we used cM = (1 + o(1)) 1

3 . Adding up the total contribution of the 2k−1 points x0

with |{s : x0
s = π}| even, we thus obtain that the right hand side of (6.8) is asymptotic to
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M−k (3/(2πn))k/2·2k−1, uniformly for all σ(1), . . . ,σ(k) , and `(1), . . . , `k in question. Now the
total number of `(1), . . . , `k (either all odd or all even) is asymptotic to 2(2abn/2)k = 2(abn)k ,
while the total number of σ(1), . . . ,σ(k) meeting (6.13) is asymptotic to 2(n−1)k . Hence we
arrive at

E[(Ẑn)k] =(1 + o(1))

(
1
M

√
3

2πn

)k

· (2abn)k · 2(n−1)k = (1 + o(1))

[
a

√
6
π

]k

.
�

Having established Theorem 6.1, we now prove Theorem D(iii) and Theorem E. For the
convenience of the reader, we summarize the relevant statements in the following theorem.

Theorem 6.2.
i) Let U = (U1, . . . , Un) , where U1, . . . , Un are independent random variables, chosen

uniformly at random from the interval [0, 1] , and let dn(U) be the minimal discrepancy,

dn(U) = min
σ∈{−1,+1}n

|σ ·U |. (6.24)

More generally, let dn,`(U) denote the `th largest discrepancy. For any fixed ` ≥ 1 , the `-
tuple (2n−1/

√
n)(dn,1(U), . . . , dn,`(U)) converges in distribution to (W1,W1 +W2, . . . ,W1 +

· · ·+W`) , where Wi are i.i.d. random variables, each distributed exponentially with parameter
(6/π)1/2 .

ii) The statements of the corollary to Theorem 6.1 hold for any sequence M(n) with λn =
log2M(n) + 1

2 log2 n− n→∞ .

Proof. The proof of Theorem 6.2 uses a coupling argument suggested to us by the referee. Let
X = (X1, . . . , Xn) with Xj = dMUje . Then X1, . . . , Xn are independent random variables,
distributed uniformly in {1, . . . ,M} . From MUj ≤ Xj ≤MUj + 1 it follows that∣∣∣∣Xj

M
− Uj

∣∣∣∣ ≤ 1
M
, (6.25)

and hence
|dn(U)− dn(X/M)| ≤ n/M. (6.26)

Using the last bound and dn(X/M) = dn(X)/M , we get∣∣∣∣ dn(U)
n1/22n−1

− 1
bn
dn(X)

∣∣∣∣ ≤ √
n2n−1

M
= O

(
n2−λn

)
. (6.27)

In a similar way, we obtain that the `th largest discrepancy obeys a bound∣∣∣∣ dn,`(U)
n1/22n−1

− 1
bn
dn,`(X)

∣∣∣∣ ≤ √
n2n−1

M
= O

(
n2−λn

)
. (6.28)
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Now choose, say, λn = n . By the corollary to Theorem 6.1, the `-tuple b−1
n (dn,1(X), . . . , dn,`(X))

converges (in distribution) to (W1,W1 +W2, . . . ,W1 + · · ·+W`), where Wi are i.i.d. random
variables, each distributed exponentially with parameter (6/π)1/2 . Since the error term in
(6.28) goes to zero as n→∞ , the statement i) follows.

To prove ii), we note that the distribution of (2n−1/
√
n)(dn,1(U), . . . , dn,`(U)) does not

depend on M at all. So using (6.28) once more, we conclude that ii) follows from i) if, say,
λn ≥ n . If, on the other hand, λn →∞ in such a way that λn ≤ n , then part ii) is basically
the corollary to Theorem 6.1. �

7. Distribution of dn inside the window.
From Corollary 5.3, dn is bounded in probability when Mn1/2/2n has a finite limit. We

can easily adapt the argument in the last section to show that in this case dn is distributed
geometrically in the limit.

Theorem 7.1. Let lim
n→∞

λn = λ ∈ (−∞,∞) . Then, for every ` ≥ 1 ,

lim
n→∞

P{dn ≥ `} =
1 + r

2
r`−1, r := exp

(
−2−λ

√
3

2π

)
. (7.1)

In particular,
P
{
a perfect partition exists

}
→ 1− r(r + 1)/2.

Proof. Let Ẑn,d stand for the total number of unordered partitions σ, (σ1 = 1), with dis-
crepancy d . Of course, if

∑
j Yj is even (odd), then Ẑn,d = 0 for all odd (even) d ’s. We want

to show that, for d ’s even (odd), the random variables Ẑn,d are in the limit independent
Poissons on the event “

∑
j Yj is even (odd).” Consider the even case. Let M ≥ 2, and

k0, . . . , kµ−1 ≥ 0 be given, with k :=
∑

ν kν > 0. Then

E

[Ẑn,0]k0 · · · [Ẑn,2(µ−1)]kµ−1 ;
∑

j

Yjeven

 = E
(

[Ẑn,0]k0 · · · [Ẑn,2(µ−1)]kµ−1

)

=
∑

σ(1) 6=···6=σ(k)

P

µ−1⋂
ν=0

∑
j≤ν kj⋂

s=
∑

j<ν kj+1

{
σ(s) · Y = ±2ν

} . (7.2)

For every choice of pluses and minuses, the probability in (7.2) is asymptotic to 2k−1 times
the expression in (6.23), uniformly for all dominant σ(1), . . . ,σ(k) , i.e. those satisfying the
condition (6.13). Therefore

E

[Ẑn,0]k0 · · · [Ẑn,2(µ−1)]kµ−1 ;
∑

j

Yjeven

 =(1 + o(1))2
∑µ−1

ν=1 kν

(
31/2

M
√

2πn

)k

· 2k−1 · 2(n−1)k

→ 1
2

( √
3

2λ
√

2π

)k0

·

(
2
√

3
2λ
√

2π

)∑µ−1
ν=1 kν

,
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and

E

[Ẑn,0]k0 · · · [Ẑn,2(µ−1)]kµ−1

∣∣∣∣∣∣
∑

j

Yjeven

→

( √
3

2λ
√

2π

)k0

·

(
2
√

3
2λ
√

2π

)∑µ−1
ν=1 kν

.

Therefore, on the event “
∑

j Yj is even,” the random variables Ẑn,d , (d even), are in the
limit n → ∞ independent Poissons, Ẑn,0 with parameter

√
3/(2λ

√
2π), and the rest with

parameter 2
√

3/(2λ
√

2π).
In exactly the same fashion we establish that, on the event “

∑
j Yj is odd,” the random

variables Ẑn,d , (d odd), are in the limit n→∞ independent Poissons, each with parameter
2
√

3/(2λ
√

2π).
Therefore, for every µ > 0,

P

dn ≥ 2µ

∣∣∣∣∣∣
∑

j

Yj even

 =P

 Ẑn,0 = 0, . . . , Ẑn,2(µ−1) = 0
∣∣∣∑

j

Yj even


→ exp

(
− 31/2

2λ
√

2π
− 2(µ− 1)

31/2

2λ
√

2π

)
=r2µ−1; r := exp

(
−2−λ

√
3

2π

)
.

Likewise

P

dn ≥ 2µ+ 1

∣∣∣∣∣∣
∑

j

Yj odd

→ r2µ.

Therefore, for every ` > 0,

P
{
dn ≥ `

}
=

1
2

P

dn ≥ `

∣∣∣∣∣∣
∑

j

Yj even

+
1
2

P

dn ≥ `

∣∣∣∣∣∣
∑

j

Yj odd


→ 1

2
r`−1 +

1
2
r`.

It remains to notice that a perfect partition exists iff dn = 0 or dn = 1. �

We close this section (and the paper) with the following theorem, which (together with
Proposition 3.2 i)) directly implies Theorem C(ii). To state it, we recall that Z̃n is the number
of ordered partitions with discrepancy dn .
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Theorem 7.2. Let ν = 2−λ
√

3/2π . Under the condition of Theorem 7.1, we have, for a
fixed t ≥ 1 ,

P
(1

2
Z̃n = t

∣∣∣En

)
→ e−ν ν

t

t!
+ e−2ν (2ν)t

t!
· e−ν

1− e−2ν
, (7.3)

P
(1

2
Z̃n = t

∣∣∣On

)
→ e−2ν (2ν)t

t!
· 1

1− e−2ν
. (7.4)

In particular, on the event On , the number of unordered optimal partitions, 1
2 Z̃n , converges

(in distribution) to P (2ν) , where P (χ) is Poisson with parameter χ conditioned on the event
{Poisson(χ) ≥ 1} ; on the event En , the distribution of 1

2 Z̃n converges to a mixture of P (ν)
and P (2ν) , with weights 1− e−ν and e−ν , respectively.

Proof. The proof follows directly from the convergence of the sequence Ẑn,d to the respective
sequences of independent Poissons which was established in the proof of Theorem 7.2. �
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