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Abstract

We consider the problem of partitioning n integers into two subsets of given cardinalities
such that the discrepancy, the absolute value of the difference of their sums, is minimized.
The integers are i.i.d. random variables chosen uniformly from the set {1,...,M}. We
study how the typical behavior of the optimal partition depends on n, M and the bias s,
the difference between the cardinalities of the two subsets in the partition. In particular,
we rigorously establish this typical behavior as a function of the two parameters x :=
n~!logy M and b := |s|/n by proving the existence of three distinct “phases” in the rb-
plane, characterized by the value of the discrepancy and the number of optimal solutions: a
“perfect phase” with exponentially many optimal solutions with discrepancy 0 or 1; a “hard
phase” with minimal discrepancy of order Me~®(™): and a “sorted phase” with an unique
optimal partition of order Mn, obtained by putting the (s 4+ n)/2 smallest integers in one
subset. Our phase diagram covers all but a relatively small region in the xb-plane. We
also show that the three phases can be alternatively characterized by the number of basis
solutions of the associated linear programming problem, and by the fraction of these basis
solutions whose +1-valued components form optimal integer partitions of the subproblem
with the corresponding weights. We show in particular that this fraction is one in the
sorted phase, and exponentially small in both the perfect and hard phases, and strictly
exponentially smaller in the hard phase than in the perfect phase. Open problems are

discussed, and numerical experiments are presented.
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1 Introduction

Phase transitions in random combinatorial problems have been the subject of much recent
attention. The random optimum partitioning problem is an exceedingly rare case of an
NP-hard problem for which the existence of a sharp phase transition has been rigorously
established, as have many detailed properties of the transition ([3], see [4] for a short
overview). Here we study a constrained version of the random optimum partitioning
problem, and extend some of the results of [3] to that case.

The integer optimum partitioning problem is a classic problem of combinatorial op-
timization in which a given set of n integers is partitioned into two subsets in order to
minimize the absolute value of the difference between the sum of the integers in the two
subsets, the so-called discrepancy. Notice that for any given set of integers, the discrep-
ancies of all partitions have the same parity, namely that of the sum of the n integers.
We call a partition perfect if its discrepancy is 0, when this sum is even, or 1, when this
sum is odd. The decision question is whether there exists a perfect partition. In the
uniformly random version, an instance is a given a set of n i.i.d. integers drawn uniformly
at random from {1,2,..., M}. We will sometimes use the notation m = log, M; notice
that each of the random integers has m binary bits. Previous work had established a
sharp transition as a function of the parameter x := m/n, characterized by a dramatic
change in the probability of a perfect partition. For M and n tending to infinity in the
limiting ratio k = m/n, the probability of a perfect partition tends to 0 for x < 1, while
the probability tends to 1 for x > 1. This result was suggested by the work of one of the
authors [18] and proved in a paper by the three other authors [3]. See [13] for a beautiful
introduction to the optimum partitioning phase transition and some of its properties.

Here we consider a constrained variant of the problem in which we require that the two
subsets have given cardinalities; we say that the difference of the two cardinalities is the
bias, s, of the partition. We establish the phase diagram of the random constrained integer
partitioning problem as a function of the two parameters x := m/n and b := |s|/n. In
the language of statistical physics, b would be called the magnetization, and the problem
considered here, where b is constrained to assume a particular value, would be called the
“microcanonical” integer partitioning problem. Microcanonical problems are known to
be much more difficult than their unconstrained analogues, particularly in the case of
random systems.

Let us first review previous rigorous and nonrigorous work on the random optimum
partitioning problem. A good deal of rigorous work has been done for the unconstrained
random partitioning problem with random numbers drawn from a compact interval in R,
which can be interpreted informally as the limiting case of m > n. Karmarkar and Karp
[15] gave a linear time algorithm for a suboptimal solution with a typical discrepancy of
order at most O(n=¢") for some constant ¢ > 0. Confirming a conjecture by Karmakar
and Karp, Yakir [5] proved that the expected discrepancy delivered by this algorithm is
indeed n=?0°¢™)  The optimum solution was studied by Karmarkar, Karp, Lueker and
Odlyzko [16] who proved that the typical minimum discrepancy is much smaller, with the
median of order #(27"n'/?). More recently, Lueker [17] proved exponential bounds for
the expected minimum discrepancy. Loosely speaking, these results correspond to m far
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exceeding n, and hence kK — 0o, thus well above the phase transition of the unconstrained
problem which occurs for k = 1.

There have also been (nonrigorous) studies of optimum partitioning in the theoretical
physics and artificial intelligence communities, where the possibility of a phase transition
was examined. Fu [10] noted that the minimum discrepancy is analogous to the ground
state energy of an infinite-range, random antiferromagnetic spin model, but concluded
incorrectly that the model did not have a phase transition. Gent and Walsh [11] studied
the problem numerically and introduced the parameter kK = m/n. They noticed that the
number of perfect partitions falls off dramatically at a transition point estimated to be
close to kK = 0.96. Ferreira and Fontanari studied the random spin model of Fu, and
used statistical mechanical methods to get estimates of the optimum partition [8] and to
evaluate the average performance of simple heuristics [9]. Ferreira and Fontanari [8] also
considered the constrained optimum partitioning problem, noted that the constrained
problem is analogous to putting the random antiferromagnet in an external field, and
observed that the problem becomes much easier when the bias parameter b satisfies b >
V2 1.

Returning to the unconstrained problem, one of the authors of this paper used sta-
tistical mechanical methods and the parameterization of Gent and Walsh to derive a
compelling, but nonrigorous argument for a phase transition at k = 1, and also derived
many of the properties of the transition [18]. In a later work, this author [19] analyzed
Fu’s model by using a heuristic approximation known in statistical mechanics as Derrida’s
random energy model [7], and obtained the limiting distribution of the k-th smallest dis-
crepancy.

Motivated by the statistical mechanics analysis in [18] and [19], the other three authors
of this paper undertook an extensive rigorous study of the random integer partitioning
problem [3]. They established the existence of a transition at k. = 1 below which the
probability of a perfect partition tends to one as n and m tend to infinity , and above which
it tends to zero, and also gave the finite-size scaling window of the transition: namely, in
terms of the more detailed parametrization m = k,, with k, = 1 —log,n/(2n) + A\, /n,
the probability of a perfect partition tends to 1, 0, or a computable A-dependent constant
strictly between 0 and 1, depending on whether A, tends to —oo, oo, or A € (—o00, ),
respectively. The work also calculated the distribution of the number of perfect partitions,
the distribution of the minimum discrepancy, and the joint distribution of the k smallest
discrepancies, k being fixed, which give the entropy, the ground state energy and the
bottom of the energy spectrum, respectively. In particular, the paper [3] provided a
rigorous justification of the Derrida-type approximation both inside and above the scaling
window, insofar as the joint distribution of %k (finite) smallest discrepancies is concerned.

The location of the phase transition for the unconstrained problem immediately yields
a one-dimensional phase diagram as a function of x: For k € (0,k.) with k. = 1, the
system is in a “perfect phase” in which the probability of a perfect partition tends to 1
as M and n tend to infinity in the fixed function k. For k € (k., 00), the probability of a
perfect partition tends to 0, and moreover, there is an unique optimal partition. We call
this the “hard phase,” since for k > k., it is presumably computationally difficult to find
the optimal partition.
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In this work, we consider the constrained optimum partitioning problem with bias s
and extend the phase diagram to the two-dimensional kb-plane. See Figure 1. In addition
to the extensions of the perfect and hard phases, we establish the existence of a new phase
which we call the “sorted phase.”

sorted

05—

04—

b o3t

hard

0.1+ perfect \

Figure 1: Phase diagram of the constrained integer partitioning problem.

The sorted phase is easy to understand. One way to meet the bias constraint is to
take the (s + n)/2 smallest integers and put them in one subset of the partition.! Tt is
not difficult to see that the resulting “sorted partition” is optimal if the total weight of
this subset is at least half of the sum of all n integers. We define the sorted phase as the
subset of the xb-plane where the sorted partition is optimal. We prove that the sorted
phase is given by the condition

b>b:=V2—1, (1.1)

see region III in Figure 1. Moreover, we show that the minimal discrepancy in this phase
is of the order Mn. The region b > /2 — 1 is precisely where Ferreira and Fontanari [8]
observed that the corresponding statistical mechanical problem becomes “self-averaging.”

Our analysis of the perfect and hard phases for b < b, is much more difficult. In
this region, we use integral representations for the number of partitions with a given

I'Note that the task of finding this partition is even easier than the task of sorting the n integers, which
would take #(nlogn) comparisons. Instead, the (s + n)/2 smallest integers can be found by making only
6(n) comparisons [6, Section 10.3].
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discrepancy and bias; these representations generalize those used in [3]. The asymptotic
analysis of the resulting two-dimensional random integrals leads to saddle point equations
for a saddle point described in terms of two real parameters n and (. For discrepancies
of order o(M) (including, in particular, the case of perfect partitions), the saddle point
equations determining ¢ and 7 are:

1
/aztanh((x +n)dz =0,

" (1.2)

/tanh((x +n)dzr = —b.

0

The solution (¢,n) of these equations can be used to define the two convex curves in
Figure 1. To this end, let?

1

L(¢,n) :==bn+ /log(2 cosh(Cz +n)) dz (1.3)
0
o) =1 — tanh(¢ + Z)C— tanh(n)' (1.4)
For ({,n) a solution of (1.2), we then define
R (b) : = —log, p(C, 1), (L.5)

ch<b) = 10}52L(<a77)-

From bottom to top, the two convex curves joining (0, b.) and (1,0) in Figure 1 are then
given by k = k_(b) and k = k.(b).

In this paper, we prove that, in the region x < k_(b), with probability tending to
one as n tends to infinity (or, more succinctly, with high probability, w.h.p.) there exist
perfect partitions; see region I in Figure 1. Moreover the number of perfect partitions
is about 2(f<=%)" in this “perfect phase.” We also prove that w.h.p. there are no perfect
partitions in the region b < b, and K > k.(b). As in the unconstrained problem, we call
this the “hard phase.” Our results leave open the question of what happens in the narrow
region K_ < k < K¢, and also whether the optimal partition is unique in the hard phase;
see the final section for a discussion of this and other open questions.

We are also able to prove that these phase transitions correspond to qualitative changes
in the solution space of the associated linear programming problem (LPP). In the actual
optimum partitioning problem, each integer is put in one subset or the other. The relaxed
version is defined by allowing any fraction of each integer to be put in either of the two
partitions. Using our theorems on the typical behavior of the integer partitioning problem

2Tt turns out the solutions of the saddle point equations 1.2 are just the stationary points of the
function L(¢,n)
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and some general properties of the LPP, we show the following. In the sorted phase, i.e. for
b> b, =+v2—1, wh.p. the LPP has a unique solution given by the sorted partition itself.
For b < b., i.e. in the perfect and hard phases, w.h.p. the relaxed minimum discrepancy
is zero, and the total number of optimal basis solutions is exponentially large, of order
oke(Mn+0,(n'?) " Finally, in the perfect and hard phases, we consider the fraction of these
basis solutions whose integer-valued components form an optimal integer partition of the
subproblem with the corresponding subset of the weights. We show that this fraction is
exponentially small. Moreover, except for the crescent-shaped region between k = k_(b)
and k = K.(b), we show that the fraction is strictly exponentially smaller in the hard phase
than in the perfect phase. This fraction thus represents some measure of the algorithmic
difficulty of the problem, see Remark 8.1.

The outline of the paper is as follows. In the next section, we define the problem
in detail, and precisely state our main results. In Section 3, we introduce our integral
representation and show how it leads to the relevant saddle point equations. We also give
a brief heuristic derivation of some of the phase boundaries. Section 4 contains a proof
of existence and properties of the solution of the saddle point equations for b < b.. In
Section 5, we establish an asymptotic formula for the number of partitions with given
discrepancy and bias in the perfect phase. As a corollary, we obtain both the existence of
exponentially many perfect partitions for £ < x_(b), and a theorem on the distribution
of the bias in the unconstrained problem for x < 1. The analysis of the hard phase
is done in Section 6. In Section 7, we prove that the sorted partitions are optimal for
b > b.. We also show why the sorted phase boundary coincides with the boundary for
existence of solutions of the saddle point equations. In Section 8, we formulate the relaxed
version of the optimum partitioning problem, and establish our results on the space of
basis solutions of the LPP. Finally, in Section 9, we discuss open problems and a few
numerical experiments addressing some of these problems.

2 Statement of Main Results

Let Xi,..., X, be n independent copies of a generic random variable which is distributed
uniformly on {1,..., M}. We are interested in the case when M grows exponentially with
n, and define k as the exponential rate, i.e.

1
k= —logy, M. (2.1)
n

To avoid trivial counterexamples, we will always assume that s stay bounded away from
both 0 and oo as n — oco. We will use P and [E, with or without subindex n, to denote
the probability measure and the expectation induced by X = (X1,..., X,,).

A partition of integers into two disjoint subsets is coded by an n-long binary sequence
o = (01,...,00), 05 € {—1,1}; so the subsets are {j : 0; = 1} and {j : 0; = —1}.
Obviously o and —o are the codes of the same partition. Given a partition o, we define
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its discrepancy (or energy), d(X, o), and bias (or magnetization), s(o), as

dX,0) =|o-X|, with o - X =) 0,X], (2.2)
=1
s(o) =o-e={j:o;=1}-[{j:0o; =1} (2.3)
Here e is the vector (1,...,1). Clearly s(o) is an integer in {—n,...,n}, so let s €

{—n,...,n} and define the bias density

5]

b= (2.4)

n
so that b € [0,1]. Note that by symmetry it suffices to consider s(o) € {0,...,n}, so we
will often take a non-negative integer s € {0,...,n}, in which case s = bn. We define an
optimum partition as a partition o that minimizes the discrepancy d(X, o) among all the
partitions with bias equal to s, and a perfect partition as a partition o with |d(X, )| < 1.

Theorems B, C and D below describe our main results on the phases labelled I, II,
and III in Figure 1 in the introduction. In the statement of these theorems we will use
the parameters (, 7, k.(b) and k_(b) defined in (1.2) — (1.5). Before getting to principal
results, we must begin with an existence statement for the parameters ¢, 7.

Theorem A Let b < b,, where b, = /2 — 1. Then the saddle point equations (1.2) have
a unique solution (¢,n) = (¢(b),n(b)).

This theorem is proved in Section 4. Let
Za(l,5) = Zu(£, 5 X) (2.5)

denote the random number of partitions o with o - X = ¢ and o - e = s. Since s(o) has
the same parity as n, and d(X, o) has the same parity as Z?Zl X, we will only consider
values of s which have the same parity as n, and values of ¢ which have the same parity
as Z?:1 X;. In the theorems in this section and in much of the rest of the paper, we will
not state these restrictions explicitly.

Our central goal is to use the saddle point solution in order to bound the Z, (¢, s) for
various given values of ¢ and s. To formulate our results in a compact, yet unambiguous
form, we use a shorthand a,, < a (a, > a, resp.) instead of limsup a,, < a (liminf a, > a,
resp.), even when the n-dependence of a,, is only implicit, as in Kk = n~tlogy, M and b =
|s/n|. For two random variables U,, and V,, > 0, we will also use the notation U,, = O,(V},)
if U,,/V,, is bounded in probability, i.e. P(|U,|/V, < w(n)) — 1 for w(n) — oo however
slowly, and U,, = 0,(V,,) if U,,/V,, goes to zero in probability, i.e. BbbP(|U,|/V, <€) —
1 for every € > 0. Also, as customary, we will say that an event happens with high
probability (w.h.p.) if the probability of this event approaches 1 as n — oo. In all our
statements n, M, s and ¢ will be integers with n > 1, M > 1 and s > 0. Our main results
in the perfect phase are summarized in the next theorem and remark.
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Theorem B Let { = o(Mn'/?),b < b, and k < r_(b). Then w.h.p. Z,({,s) > 1 and

Za(l, 5) = 2lre®—rlneSun!2ron!/?) (2.6)

where S, converges in probability to a Gaussian with mean zero and variance o? =

Var(log(2 cosh(CU + n))), with U uniformly distributed on [0, 1]. Consequently, w.h.p.,
there exist exponentially many perfect partitions, with £ =0 if Zj X, is even, and [{| =1
if >2; X; is odd.

Remark 2.1 Under the conditions of Theorem B, we actually prove a much more accu-
rate estimate. Namely, we show that there are 2 X 2 positive definite matrices R and K
with deterministic entries, and a constant ¢ < 1 such that, with probability 1 — (’)(qlogzn),

) exp(—37T, R17))

(1+ o(1)).
(2.7)

Here T, is a two-dimensional random vector which converges in probability to a Gaussian
vector T with zero mean and covariance matriz K. See Theorem 5.1 in Section 5.1.

We also prove a corollary relating the distribution of the bias in the unconstrained
problem to the distribution of the bias between heads and tails in fair coin flips; see Sub-
section 5.2.

i n
Zn(gv S) - &Xp (CM TS+ Z 10g(2 COSh(CXj/M + n)) mMnv det R

J=1

The proof of Theorem B and Remark 2.1 is given in Section 5.

Note that the above expression for Z, (¢, s) is much more complicated than its analogue
in the unconstrained case, see equation (2.6) in [3]. Both the sum in the first exponent
and the entire second exponent represent fluctuations which were not present in the
unconstrained case, and which make the analysis of the perfect phase much more difficult
here; see also Remark 2.4 below.

Our next theorem, which describes our main results on the hard phase, has two parts:
The first shows that w.h.p. there are no perfect partitions above k = k.(b), and the second
gives a bound on the number of optimum partitions for k > x_. To state the theorem, let
dopt = dopt(n; s) denote the discrepancy of the optimal partition, and let Z,,; = Z,pi(n; s)
denote the number of optimal partitions.

Theorem C Let b < b,.

a) If k > k(b), then there exists a & > 0 such that with probability 1 — O(e~0%8"n)
there are no perfect partitions, and moreover

dgpt Z 2n[liflic(b)}*op(nl/2)' (28)

b) If kK > k_(b) and € > 0, then there ezists a constant 6 > 0 such that
dopt S 2n[n—n7(b)+e]’ (29)

and
Zopy, < 2lre)=r-(B)¥e], (2.10)

both with probability 1 — O(e~%10e" ™),
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This theorem is proved in Section 6. However, perhaps somewhat surprisingly, the proof
of the upper bound in (2.9) runs parallel to the proof of Theorem B that established
existence of perfect partitions for k < k_(b).

Remark 2.2 We believe that the bound in (2.8) is actually sharp. If we assume that this
is the case, in fact, even if we assume that the weaker bound

dopy = 2" (Fretor(D) (2.11)

holds w.h.p. whenever k > k., then we can significantly improve the upper bound (2.10).
Indeed, under the assumption (2.11), Zy grows subexponentially with n whenever r >
ke(b), see Remark 6.1 (iii).

The optimum partition problem is much simpler for b > b.. Our main result on the
sorted phase is the following theorem, which is proved in Section 7.

Theorem D Letb > b.. Then w.h.p. the optimal partition is uniquely obtained by putting
(s+n)/2 smallest integers X; in one part, and the remaining (n—s)/2 integers into another
part. W.h.p., doy is asymptotic to % [(1 +0)? — 2] , i.e., of order Mn.

By this theorem, for b sufficiently large, the partition is determined by the decreasing
order of weights X;, but not by the actual values of X;.

Until now, all our statements have been about the likely properties of the optimum
partition o, whose components are allowed to assume only two values, —1 and +1. In
an interesting twist, these results shed light on the likely properties of the related linear
programming problem (LPP): find the minimum value of d subject to linear constraints

—d <Y 0 X5, Y 0X; < d,
Z;‘L:1 0j = 8,

-1<0;<1, (1<j5<n).

We denote this minimum value of d by d};”. Our last theorem indicates that the LPP
inherits the phase diagram of the optimum partition problem, and moreover provides,
however incomplete, some way to rate the three regions according the algorithmic difficulty
of the optimal partition problem. To make this precise, we define F,,(k, b) to be the fraction
of basis solutions o with the property that the +1-valued components o; form an optimal
partition of the corresponding subproblem with weights X;. Henceforth, we will call this
the “optimal subpartition property.”

Theorem E  a) Ifb > b., then w.h.p. the sorted partition is a unique solution of the
LPP, and thus dLi" = ©(Mn) and F,(k,b) = 1.
Let b < b..

b) Then w.h.p. d(fplip = 0. In addition, w.h.p. there are 2F®O)+MWIn pasis solutions,

each having either none or exactly two components o; # £1.
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c) W.h.p. F,(k,b) = 27IstoIn for g < k_(b), and 2~ Ire®)elin < B () b) < 27 [r=(b)+o(n
for k> Kk_(b).

Remark 2.3 (i) If one assume that the number of optimal partitions Z,, in the hard
phase grows subexponentially with probability at least 1 — o(n=2) (see Remark 2.2 for a
motivation of this assumption), our upper bound on the fraction F,(k,b) in the hard phase
can be improved to match the lower bound, yielding F,(k,b) = 27 "ke®+eW] 4n the hard
phase, see Remark 8.1 (i).

(ii) If, on the other hand, the asymptotics of Theorem 5.1 hold up to k., more precisely,
if one assumes that for b < b. and k < K.(b)

Zn(l,5) = 2nlre(®)=rto(l))] (2.12)

holds with probability least 1 — o(n~2), then a bound of the form F,(k,b) = 27"+l cqp
be extended to all k < k., see Remark 8.1 (ii).

We close this section with a few additional remarks and an additional theorem on the
expected number of perfect partitions. We start with a discussion of Theorem B.

Remark 2.4 While (2.6) has only been proved for k < k_(b), an upper bound of the same
form can be shown to hold for all k, see Theorem 6.1. Due to the random fluctuations
of the Gaussian term, this upper bound is of order e~ O with, positive probability as
soon as Kk > Ke(b) — O(n~Y2), so that in this regime, there are no perfect partitions
with probability bounded away from zero. Note, however, that as b — 0, the variance
0?2 = Var(log(2 cosh(CU +1n))) of the Gaussian term tends to zero.

We expect that for all b € (0,b.) fluctuations of this kind persist around the true
threshold, whether it is actually equal to k.(b), or whether it is some other value k.(b) <
ke(b). For the constrained partition problem with b € (0,b.), we therefore expect a scaling
window of width at least n='/? in which the probability of perfect partitions lies strictly
between 0 and 1. This is to be contrasted with the unconstrained case, where we had a
very narrow scaling window of width ©(n~"') about the transition point k., see [3].

Next let us consider the statements of Theorem C. Here again the situation is much
more complicated than in the unconstrained case. By Theorem B and the lower bound in
Theorem C (a), the minimum discrepancy changes from being at most one to being expo-
nentially large as k crosses the interval [k_, k.]. However, we also prove (see Section 6.2)
that the expected number of perfect partitions remains exponentially large until s reaches
a value strictly exceeding k.. This is the content of the following theorem and remark.

Theorem F Let ¢ € {—1,0,1} and b € (0,1). Then

nlggo [n'log E(Z,(¢,s)) — R(k,b)] =0 (2.13)
where
R(k,b) = H((1+b)/2) + Ab + log(A ™ sinh \) — xlog 2, (2.14)

with the entropy function H(u) = —ulogu — (1 —wu)log(1 — ), and A satisfying coth A =
A7t —b.
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Figure 2: The curves k = k.(b), kK = k.(b) and b = b,..

Remark 2.5 Graphing the curve R(k,b) =0, i.e.

H((1+4b)/2) + Ab+ log(A~!sinh \)

K = Ke(b) == log2

: (2.15)

we see that it lies strictly above k = k.(b), except at the only common point k = 1,b =0,
see Fig. 2. In particular, the curve intersects the b-azxis at b = 0.56--- > b, = 0.41....
Thus for the points (k,b) between the curves k = k.(b) and k = ke(b), the expected number
of perfect partitions grows exponentially, while w.h.p. there are no perfect partitions at all.

We close this section with a discussion of the results of Theorem E.

Remark 2.6 Clearly, the fraction [F,(r,b)]™! is the expected number of times one has
to generate a uniformly random basis solution of the LPP to get a basis solution with the
optimal subpartition property. In absence of a better candidate, [F,(r,b)]™" seems to be
a possible measure of algorithmic difficulty of the integer partition problem. Our theorem
says that w.h.p. this measure is lowest for the sorted phase (b > b.) where [F,(k,0)]7' = 1),
next lowest for the perfect phase (b < b. and k < r_(b)) where [F,(k,b)] ™t = 25n+o() " gnd
indeed hardest in the hard phase (b < b, and k > k(b)) where [F,(k,b)]~+ > 2(r-®)+e(l)n,

If we make the additional assumptions of Remark 2.3, we have that [F,(k,b)]™t =
25+ for b < b, and K < k.(b), while [F,(x,b)] ™t = 2r<n o) for 1k > k.. This gives an
easy-hard-easy picture along any curve b = b(k), k > 0, that crosses the lines k = Kk.(b)
and b = b., provided that b(k) is strictly increasing in k. Indeed, at a point (k,b) on such
a curve [F,|™' grows exponentially in nk, as long as k < k.(b(k)), i.e. until the curve
b = b(k) intersects k = k.(b). For larger values of k, [F,|™' grows at the exponential rate
nke(b(k)) < nk. Once the curve b = b(k) crosses the horizontal line b = b.., the problem
becomes even easier with [F,|™" = 1. In fact, above this line, the problem becomes easy
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in the usual sense, since the rounded and the fractional problem are identical, and sorted
partitions can be found in linear time.

3 Preliminaries and Outline of Proof Strategy

In this section, we define our notation, review the heuristics of the proof, and point out
why naive extensions of the unconstrained analysis of [3] fail in the constrained case.

3.1 Sorted Partitions

We first discuss our strategy to prove that in region III, the optimal partition is sorted
and has discrepancy of order Mn. To this end, we consider n weights X5, ..., X,,, chosen
uniformly at random from {1, ..., M}, and reorder them in such a way that their sizes are
increasing, Xy < Xz@) < -+ < Xp(m), where 7(1),...,m(n) is a suitable permutation
of 1,...,n. Since M is assumed to grow exponentially with n, we have, in particular,
n? = o(M), which implies that w.h.p. no two weights are equal. So w.h.p. the permutation
7 is unique and Xy 1) < Xz2) < -+ < Xz

Given a bias s > 0, (with s = n(mod 2)), we need to find an optimum partition that
puts k = (s 4+ n)/2 integers in one part, and the remaining n — k integers into another
part. One such feasible partition is obtained if we select the k smallest integers for the
first part; we call it the sorted partition. It is coded by the o, with o,; =1 fori < k
and o, = —1 for ¢ > k. If the total weight of (n — k) largest weights is, at most, the
total weight of k smallest weights, then it is intuitively clear that the sorted partition is
optimal. More precisely: if

k n
0(X) = Xu(j) — Xa(j) >0 (3.1)

j=1 j=k+1

then the sorted partition is the unique, optimal partition, and the minimal discrepancy is
dopt = 65(X). (3.2)

See Section 6.3 for a formal proof.?

To determine the phase boundary of phase III, we thus have to determine the region of
the phase diagram in which w.h.p. the sorted partition meets the condition (3.1). Leaving
the probabilistic technicalities out of our heuristic discussion, let us replace the condition
(3.1) by its mean version, namely E(d5(X)) > 0. Consider an arbitrary b € (0,1]. Let
xg = (1+b)/2 and My = |xgM]. For a typical set of weights X1,..., X, let us consider
the sorted partition with o; = 1 for X; < M, and o; = —1 for X; > M. Since the
probability that X; < M is equal to Zy = My/M = zo + O(M™'), we get that the
expected number of weights X; with X; < M, is nZ,, implying that the expected bias

3If §5(X) = —1, the sorted partition is still optimal (it is, in fact, perfect). But in general, it is not
the unique optimum partition.
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is 2n&o — n = nb+ O(n/M). The expected discrepancy can be calculated in a similar
manner, giving the expression

{ZXI[(X < a:OM> ZXI[( xOMJ)]

=37 {Mo(l + My) — 5.3

= [x% - % + (’)(M_l)] Mn

[(2Y - 2 o]

So, E(d,(X)) is large positive, of order Mn, iff (b + 1)%/4 — 1/2 > 0, or equivalently
b>b, =+v2—1. In Section 6.3 we prove the condition b > b, is both necessary and
sufficient for §5(X) to be, w.h.p., positive, of order Mn. In the language of statistical
mechanics, we show that, for b > b, 0,(X) is “self-averaging,” i.e. its distribution is
sharply concentrated around E(d,(X)).

Remark 3.1 On the heuristic level presented here, the above arguments can easily be gen-
eralized to an arbitrary distribution for the weights X1, ..., X, as long as these weights are
independent copies of a generic (discrete) variable X with a reasonably well behaved prob-
ability distribution. Assuming, e.g., that the variable X /M has a limitmg distribution with
density p, one obtains that the critical value of b is given by b, = b.(p) = 2 fo x)dr—1,

where xq is determined by the equation [;° zpu(x)dz = fxo xu(x )dx However we hcwe
not tried to extend all our results to this more general ji-density case.

3.2 Integral Representations

Let us now turn to the much more difficult region b < b.. Without loss of generality, we
may take s > 0, so that b = s/n.

Let Z, (¢, s) = Z,({, s; X) denote the total number of partitions o such that - X = /¢
and o -e = s. Guided by the results of [3], one might hope to prove that, as the parameter
k = n~'log, M is varied, the model undergoes a phase transition between a region with
exponentially many perfect partitions and a region with no perfect partitions. Since
perfect partitions correspond to £ = 0 or £ = +1, we will be mainly interested in Z, (¢, s)
for [¢] < 1, while s will typically be chosen proportional to n.

A starting point in [3] was an integral (Fourier-inversion) type formula for Z,(¢) =
Zn(0;X), the total number of o’s such that o - X = ¢, namely

Zn(l) = — / cos({x) H cos(zX;) dz. (3.4)

z€(—m/2,m/2]

We need to derive a two-dimensional counterpart of that formula for Z,(¢,s). To this
end, let us first recall that by (2.3), s = 2|{j : 0; = 1}| — n, so that a generic value s
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of s(o) must meet the condition n + s = 0(mod 2). In a similar way, we get that o - X
has the same parity as the sum ) ; Xj. Keeping this in mind, we have that on the event
{>_; X; = {(mod 2)}, for n + s = 0(mod 2),

[(lo-X=V(o-e=5) 7T2 // eileX=0e giloe=s)y qa.dy, (3.5)

z,ye(—7/2,7/2]

thus extending (4.6) in [3]. Multiplying both sides of the identity by 2", and summing
over all o, we obtain

// —ilte+sy) Hcos rX; +y dxdy.

myE( w/2,7/2] j=1 (36>
= 2"P1/2<U-X =/ o-e= S‘X),

where o = (01, ...,0,) is a sequence of i.i.d. Bernoulli random variables with probability
of 0; = £1 equal to 1/2.

We would like to estimate the asymptotics of the integral in (3.6), which is equivalent
to proving a local limit theorem for the conditional probability in (3.6). In general,
to compute — via local limit theorems — the probability that some random variable A
takes the value a, it must be the case that the corresponding expectation of A is near
a. Thus the analogue of the representation (3.6) for the unconstrained problem was well
adapted to the analysis of perfect partitions. Indeed, in that case, we wanted to estimate
Py o(jo - X| < 11X), and we had Eq /(o - X|X) = 0. However, in the constrained case,
this strategy cannot be expected to work for b > 0, since s = bn is very far from the
expectation of o - e, namely E; /(o - e|X) = 0.

To resolve this substantial difficulty, we introduce a two-parameter family of distri-

butions for o; as follows: Given &, € R, let o = (0y,...,0,) be a sequence of random
variables such that, conditioned on X, o4, ..., 0, are mutually independent, and
P(oj = 1|1X) = P(§X; +n), P(oj = —11X) =1 = P(X; +n), (3.7)
where -
P(u) := Sy (3.8)

In terms of these random variables, Z,,(¢, s) can be rewritten as

= e"L”(gnX // ~iltztsy)g E(exp(i(zo - X + yo - €))|X) dzdy, (3.9)
z ye(—ﬂ/2 /2]
where .
L,(&n; X) := £_§ + oy % Z log(2 cosh(£X; +1)). (3.10)

J=1
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Indeed, fix £,7 € R. Then Z,(¢, s) can be rewritten as
Zn(l,s) = Z I(r-X={(T -e=s)

TE{—l,-‘,—l}n
n
_ E eEU=TX)tn(s—T-€) _ &ltns E He—(ﬁXﬁn)TJ‘
T X=4, T:7-X=0, ]:1
T-e=s T-e=s

= {eﬁﬂns ﬁ 2cosh(£X; +n) ] ﬁ P((ﬁXj/ + U)Tj/) (3.11)
: 14 ]/:1

T X=4,
T-e=s

= "nlEnX) Y HIP = 7iX)

Ti7-X=0, ] 1
T-e=s

= " XP(g. X =, 0 - e = s|X),

since P(—u) = 1 — P(u), see equation (3.8).

3.3 Saddle Point Equations and their Solution

Given &,n, we now face the problem of determining an asymptotic value of the local
probability in (3.9). This will obviously be easier if the chosen parameters ¢ and s are
among the more likely values of o - X and o - e, respectively. A natural choice is to take
¢ and s equal to their expected values, that is

E(o-X|X)=¢, E(c-elX)=s, (3.12)
or explicitly (using (3.8), (3.7))

ZXj tanh(EX; + 1) = —,

= (3.13)
> tanh(6X; + 1) = —
j=1

Note that the equations (3.13) also arise naturally in an apparently different approach
to estimate the integral in (3.6), the “method of steepest descent.” In our context, this
corresponds to a complex shift of the integration path, i.e., to changing the path of
integration for z to the complex path from —x/2 + i€ to —7m/2 + i, and the path of
integration for y to the complex path from —x/2 + in to —7/2 + in, where £ and 7 are
determined by a suitable saddle point condition. For general £ and 7, this leads to (3.9),
while the saddle point conditions turn out to be nothing but (3.13). In fact, this is how
we first obtained (3.9) and (3.13).

Both approaches raise the question of uniqueness and existence of a solution to the
saddle point equations (3.13). In this context, it is useful to realize that the conditions
(3.13) can be rewritten as

OLn(&,1;X)

B OL,(&,m;X)
5 =0, >Ry (3.14)

on



Constrained Integer Partitions (DRAFT, December 05, 2003) 15

Therefore any solution (£, n) is a stationary point of the strictly convex function L, (&, n; X).
If a solution exists, it is therefore the unique minimum point of L,,. Using the first equation
in (3.9), we see also that (£,n) mazimizes the local probability P(a - X = £, 0 - e = s|X),
and hence makes it easier to do an asymptotic analysis. This observation justifies our
choice of &, n.

In the actual proof, we modify this approach a little since the solution £ = &(X),
n = n(X) does not lend itself to a rigorous analysis of P(o - X = ¢, 0 - ¢ = s|X). Instead,
we will resort to “suboptimal” ¢ = (/M, n, where (,n are nonrandom constants, and
(,m) is a solution of nonrandom equations, obtained by replacing the (scaled) sums in
(3.13) with their weak-law limits, see equations (3.18) below. This way we will be able
to establish an explicit asymptotic formula for Z, (¢, s), which will ultimately lead us to
determine the phase boundaries.

In Section 4, we will show that these deterministic equations have a (unique) solution
¢ = ¢(b),n = nb) iff b < b. = /2 — 1, the same b, that determines the sorted phase.
In other words, the threshold b. plays two seemingly unrelated roles: both as a threshold
value of b for solvability of the deterministic saddle point equations (3.18), and as a
threshold for the sorted partition being optimal. On an informal level, the reason for the
coincidence is as follows: For simplicity, suppose that the weights X; are all distinct, so
that X; < --- < X, after reordering. As b approaches the point where the solutions ({, )
to the saddle point equations (3.18) stop existing, these solutions actually diverge, one
tending to +oo and the other to —oo. According to equations (3.7) and (3.8), this in turn
means that P(o; = 1/X) tends to zero or one, depending on whether j < j, or j > j,,
where j, = |{j : 0; = —1}| is the cutoff of the sorted partition for X with bias s = nb,.
Hence, the product measure P(o - X = {,0 - e = s|X) tends to a delta function on the
(unique) sorted partition which is the solution to the number partitioning problem for X
at b = b.. See Subsection 7.2 for details.

3.4 Asymptotic behavior of Z, (¢, s).

Proceeding with our heuristic discussion, let us simply assume that the equations (3.13)
do have a solution ¢ = ¢(X),n = n(X). Then we may hope that, with this choice of the
parameters £ = £(X), n = n(X), we have a reasonable chance to prove—at least for the
likely values of X—a local limit theorem for the conditional probability in (3.9), namely
that w.h.p.

Plo-X=/(0 e=sX)~ W%—Q’ (3.15)
where Var(or- X) (o X )
ar(o - cov(o - X,o - e

@= <COV(O’ -X,0-e) Var(o - e) ) ' (3.16)

Here the (co)variances are conditioned on X, so, e.g., Q11 = Var(o - X|X). If (3.15) holds
then by (3.11), w.h.p.,

Zu(l,5) ~o @M EnE0K) 2 _ nln(enX) 2

my/det Q mnM+vdet R™’

(3.17)
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where R™ is the matrix with matrix elements R\") = —=Var(o - X), R = R =
——cov(o - X, 0 -e) and Rég) = LVar(o - e).

Note that, in the limit M — oo, X;/M are independent, uniform random variables in
[0,1]. We therefore expect that as M,n — oo with k = n~!log, M fixed, both ((X) :=
M¢(X) and n(X) are close, in probability, to the deterministic ¢, 7, defined as the roots
of the averaged version of the “saddle point equations” (3.13), namely

1

tanh dr = — ——
/3: anh(Cx +n) dzx s

0 (3.18)

1

/tanh((x+n) de=-0b, b=
0

S
0

Recall that, without loss of generality, we have taken s > 0, so b > 0.

Furthermore, approximating &(X) and n(X) by M( and 7, respectively and using the
bound |d coshu/du| < 1, it is easy to see that, because of the weak law of large numbers,
w.h.p.

La(E0X), 1(X); X) = - 3 log (4071802, cosh (€(X) X; + (X))

l
~—C+bn+ /log(2 cosh(Cx +n)) dz, (3.19)
Mn
0
and similarly for the matrix elements of R,

1
R ~ / 2~ (1 — tanh?(Ca + 7)) e (3.20)
0

Putting everything together, we thus may hope to prove that for |[¢| < 1 and M growing
exponentially with n, (i.e. logy, M ~ kn for some n-independent k), we have w.h.p.

1

1
—log Z, (¢, s) ~ /log(2 cosh(Cz +n))dz +bn — K
n
0
= k(D) — K,

(3.21)

suggesting that for k < k.(b) there are exponentially many perfect partitions, while for
K > k(D) there are none.

However, this informal argument is too naive. Equation (3.21) could not possibly
hold for k > k.(b). Indeed, Z,(¢,s) is an integer, and thus cannot be asymptotically
equivalent to an exponentially small, yet positive number. This means that a rigorous
proof of (3.21) must be based on the condition £ < k.(b). But our heuristic discussion
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provides no clue as to how this condition might enter the picture. Furthermore, our
attempts to find such a proof are stymied by mutual dependence of the random variables
P(o; = 1|1X), (1 < j < n), a consequence of the fact that (£(X),n(X)) depends, in an
unwieldy manner, on the whole X. This complicated dependence of (£(X),n(X)) on X
would have made it very hard to gain an insight into the random fluctuations of the sum
in (3.19), even if we had found a proof.

Fortunately, once we have informally connected (£(X),n(X)) to ((,n) via (X) =
(1 + 0,(1))¢/M, n(X) = (1 + 0,(1))n, we may try to use the suboptimal parameters
((/M,n) instead. The corresponding random variables P(c0; = 1|X) each depend on their
own Xj;, and are thus mutually independent. A key technical issue is whether the sub-
optimal parameters are good enough to get an asymptotic formula for the corresponding
probability P(o - X, o - X = s|X), given that now the random equations (3.13) may hold
only approximately. Our proof below shows that they are indeed sufficient. With those
parameters, we will be able to get a sharp explicit approximation for log Z,,(¢, s), at least
in the range k < k_(b).

We prove the existence and uniqueness of the solution to (3.18) in the next section,
and then use them in Section 5.1 to derive the asymptotics of Z, (¢, s).

4 Solution of the Deterministic Saddle Point Equa-
tions

Based on the heuristic discussion of the last section, we define o as the random sequence

(01,...,0p) such that, conditioned on X, the o, are independent and
X, X,

with P(u) defined in (3.8), and (¢, n) is a solution of the equations
1
/xtanh((x +n)dx =0,

" (4.2)

/tanh({x +n)dz = —b.

0

These are the equations (3.18), except that the right hand side of the first equation is set
0, since our focus is on ¢ < Mn.

However, does such a solution exist? A key observation here is that the equations
(4.2) mean that ({,n) is a stationary point of the function

1

L(¢,n) :=bn+ /log(2 cosh(Cz +n)) dz (4.3)
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which is the r.h.s. in (3.19), without the term (¢/(Mn), i.e., the (weak) limit of the
function L, (£(X), n(X); X) defined in (3.10). Since L({,n) is strictly convex, it may have
at most one stationary point, and this point is a global minimum. So a solution to (4.2)
exists iff L((,n) attains its global infimum.

Theorem 4.1 Let 0 < b < b.:=+v2—1. Then:

(1) L(C,n) attains its infimum, hence there exists a unique solution (¢,n) = ({(b),n(b))
of the equations (4.2).

(2) The minimizers ((b),n(b) are continuous functions, with ¢(b) > 0, n(b) < 0 and
¢(b) +n(b) > 0 whenever 0 < b < b..

(8) L(b) := L(C(b),n(b)), the minimum of L(C,n), decreases with b. For b € (0,b.), ils
deriative is dL(b)/db = n(b).

(4) limy_p, ¢(b) = oo, lim,_p, n(b) = —o0,

and hmbﬂbc i/(b) =0. )
(5) limy_ ¢(b) = 0, lim,_on(b) = 0, and lim, o L(b) = log 2.

20—

T T L P PR PR PR PR L S T T T S N S S S B Y
0 0.1 02 03 04 0 01 0.2 03 04

b b

Figure 3: Numerical solution of eq. 4.2. The dashed lines are the linearized solutions

¢(b) = 6b+ O(b?*) and n(b) = —4b + O(V?).

Proof of Theorem 4.1.
(1) Since log(2 coshu) > |ul, we have

L(¢,n) = L(¢,n), (4.5)

where

1
£(C,m) = by + / ¢z + ] d. (4.6)
0
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It thus suffices to prove that
liminf L£({,n) = oo, (4.7)

(€m) oo —o00

where [|(¢, 7)||sc = max{][c], |nl}.
Since L is homogeneous, degree 1, and continuous, it suffices to prove that £({,n) > 0

for all (¢,n) such that ||({, )|/« = 1. To this end, we will first show that
min  L£((,n) = min L(1,7n). 4.8
(i L(C,m) = min L(1,7) (4.8)
Since L£(¢,n) > L(|¢|, —|n|), it suffices to consider n < 0 and ¢ > 0. But n <0, ¢ > 0 and
1(¢,n)|loo = 1 implies that either ( =1 and -1 <n<0orn=—-1land 0 < <1. We
thus have to show £((,n) is bounded below by the right hand side of (4.8) if n = —1 and
0 < ¢ < 1. Indeed, under these conditions, |(z+n|=1—(x > 1 —x = |z + 1|, implying
that £(¢,n) > £(1,—1), which is clearly bounded below by the right hand side of (4.8).

It remains to bound £(1,7) from below, for —1 < n < 0. Setting & = —n, we have

+ 72— F(1+b). (4.9)

N | —

1
E(l,n):—bi—l—/\x—ﬁdx:
0

At & = mg := (1+b)/2 the right hand side attains its minimum value 3[1 — (1 + b)%/2],
which is bounded away from zero as b < b, = V2 — 1. Thus we have proved that for
be[0,v/2—1),and all ¢, n,

L(¢,n) = ¢ (b) max{[c], [n]}, (4.10)

where ¢*(b) = £[1 — (1 +b)?/2] > 0. Therefore £(¢,7) attains its infimum, hence so does
L(¢,n). We conclude that (4.2) has a unique solution solution (¢,n) = ({(b),n(b)).

(2) Suppose n(b) > 0. Using (4.2), and ytanhy > 0 if y # 0, one can show easily that
n(b) > 0 and ¢(b) < 0. But such a point (¢(b),n(b)) cannot be a minimum point of L(¢, n),
since L(¢(b),n(b)) > L(—((b), —n(b)), due to the symmetry of coshy, and the fact that
bn(b) > —bn(b). Therefore n = n(b) < 0, and

C+n=(Cx+mn)|,_, >0. (4.11)

Continuity will be proved along with (3), where we actually prove continuous differentia-

bility.

(3) The equations (4.2) are an explicit form of Ly = 0, L, = 0. It is easy to show that
Lee L

the Jacobian matrix ( ¢« "C) is nonsingular. Therefore (), n(b) are continuously

Ly er
differentiable, and consequently
Ly(b) = | Lo(b,1,€) + Le(b, € mG(B) + Ly(b, ¢ mim(0) (4.12)
¢=¢(b),n=n(b)

=Ly (b, n(b), ¢ (b)) = n(b) < 0. (4.13)
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Therefore L(b) decreases with b.

(4) Pick ¢ > 0, xg € (0,1), and set n = —x((. Breaking the integral (4.3) into two parts,
x € [0,20] and x € [z, 1], and using

log(e* +e ) = u + log(1 +e ), (4.14)
we get:
L(C. ) :%(2:703 ~2u(14+b) +1)
. 2(9001 (1 )d . . 2C(1/960)1 (1 N 7u) | (4.15)
QC og u 2 og e u.

0

At g = (1 +0)/2 the quadratlc polynomial attains its minimum value 1 — (1 + b)?/2,
which is positive since b < b.. With this xy, choose ( = (1 — %)_1/2. Then ( — oo as
b — b, so that the integral terms add up to O(¢™1), which is also the order of the first
term. Hence L(¢,n) — 0, and therefore limy_;, L(b) < 0. To see that lim,_,, L(b) = 0,
we just note that L(b) = min, ¢ L(¢,n) > min, ¢ £(¢,1) = 0.

To complete the proof, in (4.15) set ¢ = ((b) and xo = —n(b)/{(b), so that n = n(b).
(Note that zo € (0,1) as {(b) + n(b) > 0.) Since the quadratic polynomial in (4.15) is
non-negative if b < b., and max(zg, 1 — xg) > 1/2, we have that

¢(b)
/ log(1+e ) du > 0, (4.16)
0

blirgl L(b) > hm 1nf

if lim inf,_;,_ ¢(b) < oo. So, since lim,_,;, L(b) = 0, we conclude that ¢ (b) — oo as b — b,.
But then, using (4.15) again,

¢(b) .
0= lim == [223 — 220(1 4 b) + 1] = lim (225 — 220(1+b) + 1] =0 (4.17)
, 1

the only root of 222 — 22v/2 4+ 1 = 0.

(5) This statement is immediate from the fact that {(b), n(b) are continuously differen-
tiable on (0, b.) and the observation that for b = 0, L({,n) attains its minimum value of
log2 at (¢,n) = (0,0). ™

Remark 4.1 Theorem 4.1 can easily be generalized to the case of non-uniform i.i.d. ran-
dom variables X; provided X;/M has a limiting density p(x), x > 0. In that case, b. is
replaced by b. = b.(1), as defined in Remark 3.1, i.e.

by = z/omou(x) dr— 1, /0 su(z) da = /oo () de. (4.19)
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The counterpart of L(¢,n) is obviously

L(¢,n) =bn+ /000 log(2 cosh(Cx + 7)) p(z) da. (4.20)

Remarkably, this extension requires only obvious changes in the above proof. For instance,
below is the proof of the item (1). Note that the surprising dual role of b., namely as both
the point at which the saddle point equation stops having a solution and as the threshold
for optimality of sorted partitions, still holds for b.(p). In fact, if correctly interpreted, this
dual role persists deterministically for any fized instance { X1, ..., X, }, see Subsection 7.2.

Proof of (1) for an arbitrary distribution u: First, we write

L(¢,m) = L(¢,n) = bn + / ¢z +n| p(z) dz. (4.21)
0
Second, we bound
HK%;ﬁ(Q 1) = min ({gi%oﬁ(l,n), in L(¢, —1)) : (4.22)

Furthermore,
‘C(C7 _1) =-b + M(C_l)a 5
M) = [0 ey e de+ [ @ = D) d

Using 4.19, we see that

min M(y) = M(zo) = be(p), (4.23)
hence
L(¢,—1) > —=b+b.(u) >0, (4.24)

for b < b.(n). Likewise, if n < 0, we set n = —%, and easily obtain
L(1,n)=2(=b+ M(Z)) > #(=b+ b.(u)) > 0, (4.25)

for b < be(p). W

5 The Perfect Phase

5.1 Asymptotic Enumeration of Partitions by Discrepancy and
Bias

Now that we have proved existence of the solution (¢,7) of (4.2) for b < v/2 — 1, we are
justified in using the marginals (4.1). It is critically important that each P(c; = £1|X)
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depends only on its own Xj, so that they are mutually independent. This would not have
been the case if we had used (£(X),n(X)), the solution of the random equations (3.13).
The corresponding version of (3.9) is

Zn(l,s) = exp (C% + sn+ ilog <2 cosh <C% + n)))[n(X) (5.1)

Here I,,(X) is the random integral

1 .
LX) = [/ =i+ £(3 1 X) dady, (5.2)
$7y€(—71'/2,ﬂ'/2]

where
f(z,y; X) ::E(exp (xo - X +yo-e))|X)

:H (X; /M i mX +y) +q(X /M)e z(ijer)]’ (5.3)

with the shorthands p(u) and q(u) for P(Cu+n) and 1 — P(Cu + n), where ((,n) is the
solution of (4.2), and P(-) is given by (3.8). Now that the summands in (5.1) are simply
i.i.d. random variables, the core of the problem is to determine the asymptotically likely
behavior of I,,(X).

Theorem 5.1 Suppose that limsup |s|/n < b., 0 < liminf , limsup(k — k(b)) < 0,
¢ = o(Mn'?) and n = o(M?). Then there is a constant § > 0 such that, with probability
1 — O(efzﬂoan)’

L,(X) = (14 0(1)) m eXp(—iTnR_lT/n). (5.4)
Here
_ (2E(U*p(U)q(U)) 2E(Up(U)q(U))
R‘(mwmm«m> m@wmw»)’ (5:5)

and T, 1s a two-dimensional random vector which converges in probability to a Gaussian
vector T, with mean zero and covariance matric

_ < Var(U(p(U) — q(U)) cov(U(p(U) — q(U)), p(U) — CJ(U))) (5.6)
cov(U(p(U) —q(U)), p(U) —q(U)) Var(p(U) — q(U)) ’
where U is uniformly distributed on [0,1]. Furthermore, ||7,| < logn with probability at
least 1 — O(e~0ls™m),
Consequently, with probability 1 — O(e~%1°8" ), Z, (¢, 5) > 1 and

log Z,(€,s) = n[L(¢,n) — klog 2] + n/2S, 4+ o(n'/?), (5.7)
where
Sy = ﬁ i <log <2cosh <C% +77>> — E[log (QCosh (C% —1—77))]) (5.8)
j=1

is asymptotically Gaussian with zero mean and variance o* = Var(log(2 cosh(CU + n))).
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Remark 5.1 It is a consequence of Theorem 4.1 and Theorem 5.1 that for allb € [0,b.),

k_(b) < Kke(b), (5.9)

with
k-(0) =ke(0) =1 and Kk_(b.) = ke(b:) = 0. (5.10)

Indeed, let us assume that iminf(k_(b) — k) > 0. By Theorem 5.1, we then have that
n~tlog Z, (¢, s)— [L(C, n)—k log 2] — 0 in probability. In particular, since w.h.p. Z,(¢,s) >
1, we have liminf(L((,n) — xlog2) = liminf(k.(b) — k)log2 > 0. So the condition
liminf(k_(b) — k) > 0 implies that liminf(k.(b) — k) > 0, which proves (5.9). Since
¢(0) = n(0) = 0, it follows from the definitions (1.3) — (1.5) that k_(0) = k.(0) = 1.
Finally, by Theorem 4.1, we have i(bc—) =0, or k.(be—) = 1. Numerical computations
indicate that k_(b) < k.(b) for 0 < b < b., but the graphs of two functions remain sur-
prisingly close to each other. Our limited attempts to prove this strict inequality have not
succeeded.

Proof of Theorem 5.1: Pick a large, but fixed, B > 0. Split the integration into two
parts, |z| < B/M and |x| > B/M, and denote the corresponding integral I,,;(X) and
I2(X), respectively. Consider I,;(X) first. Begin with
A A 2
‘p(X]/M)ez (ij-i—y) +q(Xj/M>e—z (ij—f—y)
=1 —2p;q;(1 — cos(2(2X; +y))) (5.11)
< exp(~2005(1 — cos(2(zX; +)))),

where we have introduced the abbreviations p; = p(X;/M) and ¢; = q(X;/M). Let
S,={j: X;/M <n/(3B)}. (5.12)

Clearly, 5 € §,, implies

B s 5%
2z X; +y| <2 <M i+ 5) < 5 < 27. (5.13)
Now, there exists a constant ¢; > 0 such that
1 —cosa > ca®, o€ [-57/3,57/3). (5.14)
Since
2 = ! > ! (5.15)
Piti = 2 cosh*(¢X;/M +1) ~ max{2cosh®(n), 2 cosh?*(¢ +n)}’ '
we thus have shown that there exists a ¢y > 0 such that
2
[f 2,y X) Sexp | =2 Y (¢X; +y)
(5.16)

= exp(—CQ(xQMg + 2xy M, + yQMO)),
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where

n

k k k
My =My(B) =Y X" =>"x"(B), Xx"(B):=XMx,mzrjccpy.  (5.17)
JESH 7=1
Since X}k)(B) are independent with X (B )/IE[X(]C (B)] = O(B), the event
A, = {M,, € [0.99nE(X®(B)), 1.01nE(X®(B))], k =0,1,2} (5.18)

has probability 1 — O(e=%") for some d; > 0, by, e.g., the Azuma-Hoeffding inequality.
We continue our computation on the event A,. It is easy to see that

1? My + 2zyMy + y* My > esn[(Mz)® +y°], ¢ > 0. (5.19)

Set r, = n~/2logn. From (5.16) and (5.19), it follows that, for ¢, = cycs,

// (2, y; X)| dzdy < <— // e=elel® 4z dz, :O<(Mn) 1gc1log? n)

H(Mw Yll=rn ||z]|>logn
z|<B/M
(5.20)
For |[(Mz,y)| < r,, we expand and exponentiate:
pjei(J:Xj+y) +qje—i($Xj+y) —
. 1
=1+i(2X; +y)(p; — ¢;) — é(xX +y) + O(Jx X + |y|*)
1
= eXp( (2X; +y) (0 — 45) = 5 (2X; + )
1 2 (5.21)
#5040 0y = 0+ O+ o))
= exp( (X; +y)(pj — a5)
- 2 (X3 + 20y +07) + O X+ o)),
j j j
Therefore,
—i(lz+sy) X)) = i(Mx)(Th1—£/M)+iy(Tp2—s)

x exp(—(Mz,y)Q(Mz,y) + O(nM>[z]* + nly|*)),
where (Mz,y) denotes the transpose of (Mz,y), and

T =Y (X;/M)(p; — q5),

g 5.23
Too =) (pj — 4)), o2

J
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Qu =Y _(X;/M)*2p;q;,

J

Q12 = Z(XJ/M)ijqj (5.24)

J
Qa2 = Z 2p;iq;-
J

Here T),1,T,2 are sums of i.i.d. random variables, and it is easy to show that the
random vector

Tn = (Tnla Tng) = n_l/Q(Tnl — E(Tnl)a Tng — E(Tng)) (525)
is asymptotically Gaussian, with zero means, and the covariance matrix {K (7, j)}, with

Ky (1,1) =Var(Un (p(Un) = ¢(Un))),
K(1,2) =cov(Un (p(Un) = ¢(Unr)), p(Unr) = q(Unr)), (5.26)
K (2,2) =Var(p(Un) — q(Unr)),
and Uy, distributed uniformly on {1/M, ..., M/M}. Consequently
Ky=K+O0O(M™), (5.27)

where K is defined like K, with Uy, replaced by the [0, 1]-uniform U, which is the matrix
K defined in (5.6). We can use K as the limiting covariance matrix for 7,. Also, again
by Azuma-Hoeffding, for any ¢ > 0,

|7l < clogn (5.28)
with probability 1 — O(e~%192" ") for some d, = d,(c) > 0. In addition,
B(T) =nE[(X/M)(p(X/M) — q(X/M))] = nE(U(p(U) — (1)) + O(n/M)
=0(n/M),

E(Ty) =nE[p(X/M) — q(X/M)] = nE(p(U) — q(U)) + O(n/M)
—s+ O(n/M).

(5.29)

Using the equations (5.25) and (5.29), we obtain

Tnl - E/M = nl/Q (Tnl + O(nl/Q/M + |£|/<Mﬂ1/2))),
To—s = n'/? (TnQ + (’)(nl/z/]\/[)).

Both remainder terms are o(1) since n'/? = o(M) and ¢ = o(Mn'/?). Since Q;; is a
sum of n bounded i.i.d. random variables, Q;; = E(Q;;) + O(n'/?logn) with probability
1 — O(e~%!9°m) for some d3 > 0. Approximating E(Q;;) as E(Q;;) = n[R;; + O(M~)] =
n[Rij + o(n"'/2)], where

Ry, =2E(U*p(U)q(U)),

Ry =2E(Up(U)q(U)), (5.30)

Ryy =2E(p(U)q(U)),
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we get
Q =n(R+O(n"?logn)) (5.31)
with probability 1 — O(e™% log® .
Consequently, with probability 1 — O(e™% log? ny,

// “illetsy) £ (2, y; X) dady

[(Mz,y)||<rn

/ / exp (i(Mn*?2) (71 + 0(1)) + i(n"2) (72 + 0(1)))

[(Mz,y)||<rn

eXp(—(Mﬂf, y)Q(Mz,y) + O(|Mz|*n + |y’n)) dady

1 s ( 1 . ,) ]
= — exp| -7, 71, ) +o(l)|. (532
i | o oo (5 OIRNEES
Using (5.20) and (5.28), we see that the r.h.s. of (5.32) also gives the asymptotics of
I,,1(X), the integral over all (z,y) with |z| < B/M.

Let us turn now to 7,2(X). We want to show that for some § > 0 we have 1,5 = o(I,1)
with probability 1 — O(e_‘”"gQ"). First of all, by (5.2), (5.3) and the definition of I,2(X),

[In2(X / / / / e Hm—e)=isti—v) p(x v X) dxdy, (5.33)

\301\ \902\6[3/1‘1”/2
y1,y2€(—7/2,m/2]

where
F(X7 y; X) :f(xlvyl; X) f(1727 Y2; X) (5-34>
= H [piei(w’lxﬁyi) + q?e—i(x’lxﬂry’l) (5.35)
i—1
(e HIT) T HLTA], (5.36)
and
T) =@ — Ty, Ty =Ty + T} Yp = Y1 — Y2, Yo = Y1+ Yo (5.37)
Therefore
BlLOP) < = [[[] 1Py sy, (5.39)
\m g |€[B/M,x /2]
Y1.y2€(—7/2,7/2]
where

1 ; i(x) j+yh 1 . il it
F(x,y) :M ZPQ(J/M>Q( ) M Zq2(J/M)e (2} 5+v))
(5.39)
+— Zp j/M ]/M)( i(zhj+yh) + e—l(a:2]+y2))

To proceed, we need the followmg lemma.
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Lemma 5.1 Let g(u) be continuously differentiable on [0,1]. Then, for x ¢ 2rZ and for

all y,
M
i) | < 2llgll+ 119l
> g/ M)l < S e T (5.40)
j=1
where ||g|| == max{|g(u)| : u € [0, 1]}, and ||¢'|| := max{|g'(u)| : u € [0, 1]}.
Proof of Lemma 5.1. First write
M M Z(:E j+1)+y) _ez(ijry)
> g(i /M)ty = Z 9(j/M)
Jj=1 Jj=
1
= — : |: (1/M)el (z+y) +g(M/M) i(x(M+1)+y)
ell‘ -
M—1
g((j +1)/M) = g(j/M))e' U+ | (5.41)
j=1

Since each of the differences in the last sum has absolute value bounded by M~!{¢|,
while the first two terms are clearly bounded by ||g||, we obtain (5.40). W

Returning to the proof of the theorem, we observe that since |z;| < 7/2, we have
|z;| <7, t =1,2. Furthermore,

B/M < x| = 0.5]z) £ 3], t=1,2, (5.42)

implies that max{|z}|, |z4|} > B/M. If ||| > B/M, then applying Lemma 5.1 to the
first two sums in (5.39), we obtain

[F(x,y)| <+ ZP]/M q(j/M) +O(B™)

g (5.43)
—2 /0 p(w)q(w) du+ O(B™).
If | > B/M, then likewise
|F(x,y)] < /Ol(pz(U)+q2(U))dU+(9(B‘1)- (5.44)
And, if min{|’ |, |24|} > B/M, then
|F(x,y)| = O(B™). (5.45)

Since the right hand side of (5.43) is dominated by the right hand side of (5.44) (just use
that 2pq < p? + ¢*), we conclude that there is a constant ¢ independent of B such that

IF(x,y)|<p+cB™' or |F(x,y)|<cB™, (5.46)
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depending upon whether only one or both |z}| exceeds B/M. Here

= () + () du = / (1- Leost~2(cu-+ ) du

tanh(¢ 4+ n) — tanh(n) (5.47)
2¢

-1

=92 r-(0)
We conclude then that
E(|Luo(X)P) < (¢/B)" + O(M~(p+¢/B)"). (5.48)

Since M p™ is exponentially small if lim sup(k—r_ (b)) < 0, we get that for B large enough,
there exists a 0, > 0 such that

E(|,2(X)|?) < e™%"(Mn)~2. (5.49)

On the other hand, |I,;(X)[2 = (Mn) 2e°0°5"*) with probability 1 — O(e %28’ n) —
O(e=%10g ) By (5.28) and (5.32). Thus |L2(X)| = o(|1,1(X)]) with probability at least
1 — O(e~%%* ") implying (5.4). To prove (5.7), we just note that the prefactor in (5.1)
can be rewritten as

1 u X.
exp <CM + sn + ]Z:;log (2008h (CM] + 77)))
1
= exp (Ci + sn 4 n'/2S, + n/ log (2 cosh(¢z + n))dx + (’)(n]\/[l)) (5.50)
M 0
= exp <nL(C, n) +n'28, + O(nM=1) + Cﬁ/M),

while, with probability 1 — O(e*MOan)’
I,(X) = M LeOUog?n) _ pr—1g0(n'/?) (5.51)
[ |

Remark 5.2 As the reader may have noticed, the condition that ¢ has the same parity as
Zj X; has not been used in the above proof. Thus the asymptotics stated in (5.4) hold for
all £ with £ = o(Mn'/?), independent of the parity of £. But this does not mean that the
corresponding asymptotics hold for the number of partitions Z,(¢,s), since (5.1) is valid
only if the parity of € is the same as that of Ej X;. If this condition is violated, the left
hand side of (5.1) is zero, while w.h.p., the random integral I,,(X) is different from zero.

Applied to the special case |¢| < 1, Theorem 5.1 asserts, roughly, that for every point
(b, k) such that b < b, and k < k_(b) < 1, w.h.p. there are exponentially many perfect
partitions. In fact, if in the right hand side of (5.1) the random integral I,,(X) is replaced
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by the leading term in (5.4), then the resulting product remains exponentially large within
the narrow (crescent-shaped) region between x = k_(b) and k = k.(b). In principle, this
may mean that the likely number of perfect partitions remains exponentially large in this
extended region! An extensive numerical simulation (see Section 9) strongly suggests
that the expected logarithm of the number of perfect partitions at every point of the
region Kk < K.(b) is extremely well approximated by the expected logarithm of the above-
mentioned product. Based on our experience with the unconstrained problem and these
simulations, we expect that w.h.p. at least the weaker formula

log Z,(¢,s) = n[L(¢,n) — klog2 + o(1)]n, (5.52)

cf.(5.7), remains valid in the whole region limsup(x — k(b)) < 0.

5.2 Distribution of the Bias

Let us have a closer look at the case |[¢| < 1 and s = o(n). A simple computation shows
that 5 5
(=621 O((s/m)). n=—1> +O((s/n)?), (5.53)

so that .
p(u) = P(Cu+n) = 5+ O(|s|/n), (5.54)

and the entries of the covariance matrix K are of order O(|s|/n). Furthermore

_ (1/6+0(s|/n) 1/4+0(|s|/n)
R_<1/4+0(Is|/n) 1/2+(9(|s|/n))’ (5.55)

so that detR = 1/(48) + O(|s|/n), and (5.4) yields

4/3
TMn

I,(X) = (1+0,(1)) (5.56)

In addition, the exponential factor in the formula for Z, (¢, s) becomes 2"e°", where

5, =~ 4% O(Jsl/(n) + 1f? )
- (5.57)
LS (X e+ O ),

(\V]

By the central limit theorem and (5.53), the sum can be written as
C*(nE(U?) + Op(n'72)) + 207 (nE(U) + Op(n'/?)) + nn

2
S
—4% 1 O(|sf* n?) + Oy(s*/n*'?) (5.58)
82
:45 + Op(]')7
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uniformly for |s| < n?3w=!(n), where w(n) — oo, however slowly. Thus (5.57) simplifies

to
2

S
S = —2— +0,(1). (5.59)

Using this formula and (5.56) we obtain

43 2" 2
\/__6723 /n

Zo(:5) = (1+ 0,( 1)) = e

(5.60)

uniformly for |s| < n?3w=!(n) and |¢| < 1; and, of course, s = n(mod 2), and ¢ =
>_; Xj(mod 2). In [3] it was shown that, for Mn'/2/2" — 0, Y,(0) = 3% Z,,, the

S§=—00

o 4 . . o . . . .1s ont+1,/3
total number of partitions® with o - X = £ is asymptotic, in probability, to 3 NI Let

s, denote the bias of a perfect partition o™ chosen uniformly at random from all perfect
partitions. The formula for Y,,(¢) and (5.60) prove the following corollary of Theorem 5.1.

Corollary 5.1 Assume that limsup % logo, M < 1. Then

P(s, = s|X) = (1 + op<1))f/%e2s% (5.61)

uniformly for |s| < n?3wt(n), (s = n(mod 2)), and consequently

. 2 [
P ( ‘j/rj <a X) = \/;/e_UQ/2 du. (5.62)
2 0

Remark 5.3 Thus the bias of the randomly selected (typical) perfect partition is exactly
of order n'/?, just like t,,, the bias of the sequence of n flips of a fair coin, i.e. the difference
between number of heads and number of tails of a fair coin. However,

A 2 [
P (n1/2 <a)|= —Je du, (5.63)
0

i.e. in distribution the bias of the random perfect partition is, in the limit, half as large as
the bias of the sequence of n coin flips. Perhaps we should have anticipated some reduction
of the typical bias, since perfect partitions are by definition those with the smallest discrep-
ancy, which should favor smaller bias. In retrospect, the fact that most perfect partitions
turn out to have small bias may be responsible for the greater mathematical tractability of
the unconstrained problem.

4Note that Y, (¢) is equal to the total number of perfect partitions if £ = 0, and equal to half the total
number of perfect partitions if £ = 1. In a similar way, Z,(¢, s) is the total number of perfect partitions
with bias s if £ = 0, and half that number if ¢ = 1.
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6 The Hard Phase

6.1 Lower Bounds on the Minimal Discrepancy

Cautiously extrapolating the asymptotic formula in Theorem 5.1, we expect that w.h.p.
there will be no perfect partitions in the domain where this expression tends to zero, that
is where k > r.(b). Here we establish this result outside a small window of width n~'/2
above k..

Theorem 6.1 Suppose that limsup |s|/n < b and that 0 < liminfx < limsupx < oo.
Let S, be the random variable defined in (5.8), let ¢, be a sequence of positive integers
with €, = o(Mn*?) and let |¢| < €,. Then, with probability at least 1 — O (e~ 18" "),

Zn(g7 8) < 2[Hc(b)—fﬁ]nenl/QS’nelog2 n+O(¢/M) (61)

and
Z Zn(& S) < £n2[HC(b)—fi]nenl/QSnelog2 n—l—O(Zn/M)' (62)
e1e<tn

If (k — ke(b))n'/? — oo, we thus have
ot > 2= 0p(n 712l (6.3)
so that w.h.p. there are no perfect partitions.

Remark 6.1 (i) The proof of (6.3) can be generalized to show that there is a constant
§ > 0 such that, with probability 1 — O(e 018" n),

dopt > LQ[H—HC(b)—n_l/Q log n]nJ ) (64)

For k — ke(b) > 1+n"Y2logn, there are therefore no perfect partitions with probability
1 — O(edlog™n),

(i3) If |k — ke(D)| = O(n=Y?), the term n'/2S,, is larger than n|k — k.(b)| with positive
probability, implying that with positive probability, Z,(¢,s) is smaller than 1, and hence
zero. The above theorem therefore implies that for |k — k.(b)| = O(n~1/2), the probability
that there are no perfect partitions stays bounded away from zero.

(iii) As mentioned in Remark 2.2, we believe that dn,; = 2 rtorn ywhenever
liminf(k — k.) > 0. In other words, we believe that for every ¢ > 0, w.h.p., dop <
ols—reteln  If we assume such a bound, then w.h.p. the number of optimal partition
Zopt s bounded by the right hand side of (6.2) with {, = |25=*<Feln| implying that
w.h.p. Zop < 22n - Since € was arbitrary, we get Lopt = e (™ whenever lim inf(k—k.) > 0.

Proof of Theorem 6.1 and Remark 6.1 (i). The bounds (6.3) and (6.4) follow
from (6.2). Indeed, let w, be such that w, — oo and [k — k.(n)]n'/? — w, — oo as
n — oco. Setting £, = |2lF—re®In=n'Zwn | "the hound (6.2) immediately implies dyp > £,
which gives (6.3). To prove (6.4), we set £, = |2E—re®-n""lognln| and observe that
for ¢ sufficiently small, S, is bounded by 3logn with probability 1 — Oe 018" ") Ag a



Constrained Integer Partitions (DRAFT, December 05, 2003) 32

consequence, the r.h.s. of (6.2) goes to zero with probability 1 — (’)(e*‘”"g%), implying
again that dy, > ¢,,.

It is thus enough to prove (6.1) and (6.2). Note that the bound (6.2) is not just a
consequence of the bound (6.1) since the intersection of 2¢,, — 1 events happening with
high probability does not necessarily happen with high probability if ¢, is not bounded.

Using (5.50), we rewrite Z, (¢, s) as

Zall, 5) = 2O Skt MAOGM N 5 (¢ ) (6.5)

where S, is defined in (5.8) and

1 )
Zn(& S) = ﬁ / efz(ZZDJrSy)f(x’ Y X) d‘rdy7 (66)
s
z€(—m,m]
ve(=n/2m/2]
with f(z,y;X) as defined in (5.3). In contrast to (5.1), the relation (6.5) holds whether
¢ has the same parity as > ;X or not, since x is now integrated over [—7, ) instead of

[—7/2,7/2). Introducing finally
Zu(s)= Y Zulls), (6.7)
ele1<tn

we have
Z Zn(£, 5) = 2mheen!/2SntOUn/MIFOMM™Y) Z ()
o<,

(6.8)

Since nM~' = o(log”n), the bounds (6.1) and (6.2) are equivalent to proving that, with
probability 1 — O(e*IOgQ”), we have Z,({,s) < M—1elos®n and Z.(s) < 0, Mk’ n,

We will prove these bounds by establishing a suitable bound on the expectation of
Z,(¢,s). To this end, we first rewrite E(Z,(, s)) as

ze(—m,m)
ye(—m/2,m/2

E(Z,(¢,s)) :% // e ISy f1 (g y) dardy, (6.9)
]

Fy) =57 S pU/MEE + (/AN @, (6.10)

As in the estimates of E(|,2(X)[?) in the proofs of Theorem 5.1, we need the bounds of

| f(x,y)| for various ranges of z, y.
Pick B > 0. Let |x| > B/M. Using Lemma 5.1 and (6.10), we get

|f(z,y)| < ¢/B. (6.11)
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Let |z| < B/M. Setting x = z/M, we have |z| < B. For these 2’s, let us bound |f(x,y)|
more sharply. We have

2

M
Z ]/M i(zj/M)+iy

= S GIM) o 3 MU/ M) cos(zi /M — jo/M)

:(%Zm/M)) —%A P /M)p(jz/M) (1 = cos(z(1/M — j2/M))). (6.12)
Here
1 ) ! —1
37 00/ = [ ptu)du 001, (6.13)

Pick a small € and consider j; < j; such that

o -
BN com e - < OM, 5= T

Clearly there are ©(3M?) such pairs (ji, jo). For those (ji,72), and |z| < B, there is a
positive constant ¢ = ¢(¢), such that

1= cos(z(j1 /M — jo/M)) > c[2(j1/M — jo/M)]’ (6.15)
So the double sum in (6.12) is bounded below by

B (6.14)

2

cz 4 . 4 4 _ _
T 2. Pl/M)pG/M)(G /M — ja/M)* = (B~ + O(M )2,
lj1/M—j2/M|<B
(6.16)
// U,l UQ Ul — UQ) duldu2
uy,ug€(0,1]
Jug— u2\<ﬁ
We thus obtain
1 M 2 1 2
3 pG /M| < ( | pwdus 0(1/M>) —(¢B +OM™)22, (6.17)
j=1 0
so that

M 1
|$ 3 (/M) )| < ( / p(u)duwwl)) e EE L (618)
j=1 0

for some positive constant «y. Analogously to (6.18),

< (/01 q(u) du + O(l/M)) e (0> 0),  (6.19)

M
1 o

— § :q(j/ﬂ{)e—Z(ZJ/M-HJ)
M j=1
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hence, for a = min{ay, as},

1z, y)] < (14+OM e B <e @B o/ >0, (6.20)

for B > |z| > ©(y/B/M). The bounds (6.11) and (6.20) indicate that |f(z,y)|™ is small
for large and moderate values of z(= xM), regardless of y. The value of y begins to
matter when z is small. To see how, we need yet a sharper bound for |f(x,y)| for small
|z|. By the definition (6.10) of f(z,y), we have

1 . . M
|f($>y>’2 :W Zp(j1/M)p(]2/M)e (J1/M—j2 /M)
J1,32
1 > . Z'Z . =
+WZQ(]1/M)Q(]2/M)G (jo/M—j1/M)
] J1,J2 | | | (6.21)
+ M2 Zp(jl/M)q(jz/M)eZ(Z(Jl/M+12/M)+2y)

J1,J2

2 Z q(jl/M)p(jQ/M)e_Z(Z(Jl'f’]Q)-i-Qy)’

M J1,32
so that
() < (M ZP(J/M)> + (%qum)
+2 (% Zp(j/m) (57a000) (622

_ % N 0 /M)a(ja/M)[1 — cos(=(jr /M + jo/ M) +2y))].

J1,J2

Here the first three terms add up to

2
(% S /M) + q<j/M>>> -1 (6.23)
J
Furthermore, picking z5 > 0 small enough so that
220 + 2|y| < 2(z0 + 7/2) < 27 — ¢, (6.24)
we get: for |z| < zg,
1 — cos(2(j1/M + jo/M) +2y) > c[2(j1 /M + jo/ M) + 2y]". (6.25)

The first inequality in (6.24) holds because |y| < 7/2, a consequence of s = n(mod 2).
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So, within the factor 2¢, the double sum in (6.22) exceeds

% > (i /M)q(ja/ M) [2° (1 /M + jo/M)? + 4y2(ji /M + jo /M) + 4y°]

J1,J2

/ / p(un)q(us) (s + u2)? dugdus + O(M)

1,u2€[0,1]

(6.26)

+ 4dyz // p(u)q(ug) (uy + ug) dugduy + O(M ™)
\Ql,UQE[O,l]

+ 4y // (u1)q(us) durduy + O(M™1) |,

1 u2€01]

Since the functions 1 and u; + uy are linearly independent, there exists ¢y > 0 such that,
for M large enough, the quadratic form is bounded below by co(2? + y?). So

1f(2, )2 <1 —co(2% +y%) = |f(z,y)| < e oEH/2, (6.27)

if |z| < 20,y € (—7/2,7/2], M > M(z). Putting (6.20) and (6.27) together enables us
to conclude that (6.27), with a possibly smaller ¢y, holds for all z,y with |z| < B and
ly] < /2. Note however, that ¢y now depends on B and goes to zero like B~! as B — co.
Making this dependence explicit, we have that

[f(w,y)| < e 6l HrE (6.28)

whenever M is large enough, |z| < B and |y| < 7/2.
Finally, for |z|, |y| both small

Li(G/My) 1 4 () _YoJ 3
e 1iz(zM+y) 2( M+y) +O(|2]* + [y*). (6.29)
So
AN I (T 1 JN_ o d
f(fv,y)—1+2<zsz:M(p(M) q<M>)+yM;(p<M> q<M>)>
11 j j
L LS 4 2y )+ O + )
J
B . . 11 9, J J 3
= L bianz il + /)y — 5 S(PCE 4 22y 47+ O(12 + 1y,
J

(6.30)
where, by the definitions p(u) = P(Cu+n) and ¢(u) = 1 — P(Cu+n), and equations (3.8)
and (4.2),

@ = )3 L(rp) = o3p) = [ wlot) =g du+ 0(ar7) = 00 (631
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= i L L i — ' _ _ -1\ __ -1
bn = 37 ; (p(M) Q(M)> - —/O (p(u) — q(w)) du — b+ O(M™Y) = O(M™).
(6.32)
Exponentiating the expansion for f, we arrive at
. . /S
f(z,y) =exp (lzan + iy (5 + bn)>
(6.33)

1 !/
<exp (520 0) + O + 1o )

where ) , )

Qi =E[(X/M)"] + O(M ™) — E[(X/M)7],

Q1 =E(X/M) + O(bM ) — E(X/M), (6.34)

Qo =1—(b+O(M™1)? —1-b"
Note that the matrix Q is positive definite in the limit since
1 1= 4b?
4 12

E[(X/M)%] (1 —b?) — E*(X/M) — %(1 —b?) — >0, (6.35)

since b < 1/2. By (6.33) and (6.34)

e iy g (g ) = exp <iZ(ELn + iyb,, — ﬁ(Z, ¥)Q(z,9) + O(n(|z]* + |?/|3))) , (6.36)

2

where a, = na,, — {/M and b, = nb,,.

Let us derive an asymptotic formula for E(Z, (¢, s)), using (6.11), (6.28), and (6.33)-
(6.36). By (6.9) and (6.11), the contribution of the (z,y) with |z| > B/M to E(Z,(¢, s))
is of order O((¢/B)"). Let || < B/M. Switch to z = Mxz,y = y. By (6.28), the
contribution of the (z,%)’s with ||(z,y)|| > 7, := n="/?logn is of order

Mt / re "6 /B gy = Mlem OB log®n), (6.37)

>N

By (6.33)-(6.36), the contribution of the (z,y)’s with [|(z,y)|| < r, is asymptotic to

.o~ - n ,
TV //exp izdn + iyb, — 2 (= y)Q(y,z)) <1+(9(n|z|3+n|y|3)> dzdy

ll(z.y H<7"n

2M7T2 // eXp ’twnﬂyb ( )Q(z,y)’) dZderO(ﬁn_l/Q). (6.38)

(z)l<rn

The first term on the r.h.s. of (6.38) is equal to

1 e —1/212 / —t2/2
S exp( (@, b) Q72 ) + O e dt) | (6.39)

t>0O(logn)
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where the exponential term is

1+ 0 Ya2 +02) =1+ 0n/M?*) + O (¢/M)* =1+ O ™) 4+ O(n~1(¢/M)?),

(6.40)
while the integral is of order e=©(°&*n)  Combining the last formula with the estimates of
contributions of other ranges of (z,y), we obtain

o(

E(Z,(6,)) = (1 + 0@~ 2) + O((e/ M) o1 my/(1— b?)E1(U2) —E2(0)
2v3 1

/1 -0 Mn’
whenever |¢| < {, = o(n'/?M). Summing over ¢ € {—({, —1),...,¢, — 1}, the bound
(6.41) clearly implies a similar bound for Z,(s), namely

2v3 20,1
™1 -0 Mn ~
By the bounds (6.41) and (6.42) and Markov’s inequality, we have that Z,(¢,s) <
M—tels®n and Z,(s) < £,M~'e°2’ " with probability 1 — O(e~'8"7). Combined with
(6.5) and (6.8) this implies (6.1) and (6.2). W

(6.41)
= (1+0(1))

E(Z.(s)) = (1+0(1)) (6.42)

6.2 A Digression: The Expected Number of Perfect Partitions

The reader may have noticed how gingerly we have tiptoed around the first factor in (5.1),
concentrating instead on the asymptotic behavior of the double integral. To see why, we
will show that E(Z, (¢, s)) remains exponentially large above the curve k = k.(b), in sharp
contrast to the fact that, in this domain, w.h.p. there are no perfect partitions at all.

Theorem 6.2 Let [(| < 1. Fors >0, s+n = 0(mod 2), and b = s/n bounded away from
0 and 1,

2 (n e () sinh A
E|Z,,s) ~— , A) = . 6.43
2000~ 3 (o) T o) = T (6.4)
where Uy € [—1,1] has density
/2 (6.44)
fye[—m] e /2dy’ .
and A < 0 is such that E(Uy) = —b, or explicitly:
1
coth A — 1= —b. (6.45)
Consequently,
1
lim - logE[Z,(¢,s)] = R(k,b), (6.46)
where
1+b 2 1-0 2 sinh A
b) = 1 1 Ab+1 — klog?2. 4
R(k,b) 5 og1+b+ 5 10877 +Ab+log— r log (6.47)
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Proof of Theorem 6.2. In order to calculate the expectation of Z,(¢,s), we use the
following analogue of (3.6), which is valid whether or not £ has the same parity as > X;:

n

Zn(l, s 2712 // ~iltatsy) Hcos (zX; +y) dady. (6.48)

acE( j=1
yee( 7r/2 Tr/2
This gives
E(Z,.(¢,5)) = 27r2 // e HIE" (cos(2X +y)) dady, (6.49)
w€ (=]
yEE(—ﬂ/Zﬂ/?]
where
M eixM 1
E X —R iy )1 iwj | — Re | M Leilety) &
(cos(zX +y)) =Re |e ;e e { e T

sin (44) (orine, )

=——"—cos| ——+vy]|.
M sin (%) 2

Notice that the first factor is a function of x only, and the argument of the cosine is y

shifted by z(M + 1)/2. Integrating first with respect to y, we can choose y € (—m/2 +
(M +1)/2,7/2+ x(M + 1)/2], thus reducing the y-integral to

S / e Y cos" ydy. (6.51)

m
ye(-m/2,7/2]

Here we can write cosy = E(e®?), P(c = £1) = 1/2. So, introducing the independent
copies og1,...,0, of o, we write the last integral as

P <§ o = s) - 2%(%) (6.52)

Therefore we get the simpler expression

n 1 . sin Mz "
sz (L) 5 [ o) o (6.5
% 27 M sin £ 5

xe(—m,m]
M+1
2

t:=—/0+s

(6.54)

To simplify the rest of the exposition, let us assume that sinz/2 in the denominator
can be replaced asymptotically by x/2. (A refined version of the argument shows that
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this replacement is asymptotically correct for n = o(M). We leave it to the interested
reader to check this.) Substituting z = Mx/2, we get then

E(Z,(€;5)) N(%) ﬁ / < (Sirzlz)n = (6.55)

z€(—Mm/2,Mm/2)
7i=s(14+ M) —20/M,

so that 7 is very close to s, since |[¢| < 1. Next, we observe that y~!siny is the character-
istic function of the random variable U, uniformly distributed on [—1, 1]. Hence (%)n
is the characteristic function of S,, = E?:1 U, where U; are the independent copies of U.
In particular, using the Fourier inversion formula for fg , the density of .S,

fsn(—T)zi / ol (Sirzlz) dz, (6.56)

2€(—00,00)

we get from (6.55):
n

E(Z,(L,5)) ~ %(w)fsn(f). (6.57)

(The error caused by extending the integration interval in (6.55) to (—o0, 00) is extremely
small, of order M~" = 27%"*) We cannot use the local limit theorem for fg, (—7) directly
as ES,, = nEU # —71. So we introduce an auxiliary random variable U, with density
proportional to e*® on [—1, 1], choosing A such that E(Uy) = —7/n, that is setting A equal
the root of

PN T 1 + 1. sinhA
o) = o) = 3 / M dr = A. (6.58)
z€[—1,1]
Then
fs.(=7) = e XD (N) fi, 0 (=7), (6.59)

where S, )\ = Z?Zl U; . By the local limit theorem (see, e.g., [12], Sect. 5.10), the density
fSn,A(_T) of Sy, » is asymptotic to

1
S 6.60
V2rnVarU,’ ( )
where Var(U,) can be explicitly calculated, giving
¢"(A) 2
Var(U,) = —(7/n)". 6.61
W) =55 = () (6.61)
Thus
2 (n 2 (n e (\)
E(Z,(¢,5)) ~ — AP (N A—TN—( ) , 6.62
2t )~ 3 (o )~ () s 6

as claimed. W
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6.3 Optimal Imperfect Partitions

In Theorem 6.1 we proved that, for £ > k.(b) and b < b., w.h.p. the minimum discrepancy
is at least 2n(x=re(®)=0p(n'*) The next theorem provides a complementary upper bound
for the minimum discrepancy.

Theorem 6.3 Suppose that limsup |s|/n < b and that 0 < liminf x <limsup k < co. Let
e >0, let S, be the random variable defined in (5.8), and let ¢, be a sequence of positive
integers with £, = o(Mn'/?/logn) and ¢, > 2-="-O)1+eln - Then there is a constant § > 0
such that, with probability 1 — O(e=0%s" 1),

ST Zall,s) = b2l O FSuotn! ), (6.63)
ole|<ty,

where £, x is the number of integers { with [(| < €, with the same parity as »_; X;. With
probability 1 — O(e~1°8" 1) we thus have

dopy < [20H=O)F)n] (6.64)
implying in particular that M~ d,, is exponentially small in n.

Note that for limsup(x — k_(b)) < 0, we recover that d,, < 1. Not astonishingly, the
proof of Theorem 6.3 follows closely the proof of Theorem 5.1, which established that,
w.h.p., there are exponentially many perfect partitions for limsup(x — k_(b)) < 0.

Proof of Theorem 6.3. Let us first note that depending on the parity of Ej X, the

number ¢, x is either ¢, or ¢, — 1, implying in particular that ¢, x > ¢, — 1. Using

this fact, it is not hard to see that the bound (6.64) follows from (6.63). Indeed, let

l, = [205=7=F2"] 1 1. Since f,x > £, — 1 > 2(57F=F4)" the right hand side of (6.63) goes

to infinity, implying that d,,; > ¢,, — 1. It is therefore enough to prove (6.63). Also, since

both sides of (6.63) are identically zero if ¢, x = 0, it is enough to consider ¢, x > 0.
Analogously to the proof of Theorem 6.1, we set

Zu(s)= Y Zulls), (6.65)

e10)<ty,

where Z,,(¢, s) is the random integral defined in (6.6). Let us note, however, that Z,(¢, s)
is equal to the random integral defined in (5.2) if £ is of the same parity as ; X, and
equal to zero otherwise. The sum in (6.65) can therefore be replaced by the sum over all
¢ with the same parity as Ej X;, and

1 , )
26=5 ff {Z/e‘lﬂe‘“yﬂx,y;X)dxdy, (6.66)
we(—nj2,m/2) ClE<tn
ye(—n/2,m7/2]

where the sum " indicates the sum over all £ with the same parity as 3 ; Xj. Obviously,
we have

</lyx (6.67)
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and
/ .
Z e =L, x(1+0((La]z])?)) as Cylz| — 0. (6.68)
1| <tn
Recalling that, depending on the parity of > ; X, the number /,, x of terms in the sum
> is either £, or ¢, — 1, we also have

lpx—1
-y —i2%kx sin((¢, — 1)z)
E e = E e <1 ' < L. (6.69)
|0 <ty k=0 ST

As in the proof of Theorem 5.1, we split the right hand side of (6.66) into two parts,
Jp1(X) and J,(X), for |z| < B/M and |z| > B/M respectively. We start with J,;(X).
As in (5.20), we restrict ourselves to the event A, defined in (5.18). With the help of
(6.67), we then bound the contributions of all x with ||[(Mz,y)|| > r, = n=/2logn by

b box _
// 33 y’ ’dxdy < x // 7c4llz|| d21d22 0) (_’Xe C4(log2n)) )
Mn

(Maz,y)||>rn ||z||>10gn
|Mz|<B

(6.70)
For ||[(Mz,y)| < rn, we may use (6.68) since £,|z| < M~",r, = o(r,n'?log™'n) — 0.
And, analogously to (5.32), we have that with probability at least 1 — O(e~%8")

P e

I\(Mxy\|<r &l <tn
= . ex ——’TnR T, +o(1)]| . 6.71
Vin | rvaer i U )+o()|. (6.71)

Comparing (6.70) and (6.71) (and using again the bound (5.28), this time to get a lower
bound on the right hand side of (6.71)), we see that the last expression is a sharp asymp-
totic formula for J,,;(X).

Next, we use (6.69) to bound

E(]Jn2(X) < //// 14 S(z1))(1 4+ S(z2))|F(x,y)|" dxdy, (6.72)

\wl\ lzg|€[B/M,m /2]
y1,y2€(—7/2,m/2]

where F(x,y) is defined in (5.39) and

| sin((¢,, — 1)x)| '

Sta) = e (6.73)
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Arguing as in the case of I,,3(X), we thus obtain that E(|J,2(X)|?) is of order

2

(/B | 14 / [sin((ln — D)]

| sin(z)|
z€(—m/2,m/2]
] Sl b,

zq,xo€(—m/2,7/2]
|x14+ao|<B/M

with, as before, p = 27"-. Here the single integral is of order

|sin((6, — )] , St on oy o
/ 7] do = / ] dt = O(logt,) = O(n),  (6.75)

z€(—7/2,m/2] [t|<m(ln—1)/2

and the double integral is of order

% / ‘, (1 + |Sm‘((sfg<;)1|)x>’> de = O(M~1, log £,,) = O(né, M~1).  (6.76)

z€(—m/2,7/2]
Combining the contributions from (6.75) and (6.76), we get that for B sufficiently large

(| Jpa(X)[2) = O(nQ(c/B)"> +O (nan_l(p + c/B)")

-ofgri) =o{() ),

Here, in the second step we used that p is bounded away from 0 and 1, and that B is
large enough, while in the third step, we used that ¢, /M is assumed to be at least p"e"
By Markov’s inequality (and the fact that ¢, < ¢, x +1 < 24, x whenever ¢, x # 0), we
conclude that with probability 1 — O(e=(/47),

(6.77)

ly, I 200X (/8
[Jna(X)] < e/ < e, (6.78)
By (6.70), (6.71) and (5.28), J,1(X) is of order at least é\’}—’ze_log% with probability

e~910g’n for some d4 > 0, much larger than the above order of [Jus(X)|. We thus have
shown that there is a constant § = d(¢) > 0 such that with probability at least 1 —
O(e—élog2n>’
lhx 1
Mn 7+/detR
Together with (6.8), this implies the bound (6.63). W

The following corollary follows immediately from Remark 6.1 (i) and Theorem 6.3.

Z,(s) = (14 0(1)) exp(—7n(4R)"'1)). (6.79)

Corollary 6.1 Assume that limsup |s|/n < b, limsup K < co and liminf[x — k.(b)] > 0,
and lete > 0. Then there exists a constant § > 0 such that with probability 1—0(6_610g2 "),

plr—re®)=nlognln < g < olu—r-(O)+eln, (6.80)
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As argued in Remark 6.1(iii), we expect that for liminf k > k., the number of opti-
mal partitions Z,,, grows subexponentially. But so far, we only can prove the following
corollary to Theorem 6.3.

Corollary 6.2 Suppose that limsup |s|/n < b and that 0 < liminfx < limsupk < oc.
Then for every e > 0, there exists a constant o > 0 such that

Zopt < 2Rt max[9=rn g=r-n} (6.81)
with probability 1 — O(e~?108" ),

Proof. Let ¢, = [2lF=#-()+</2n] 1 1. By the bound (6.64) of Theorem 6.3, we have that
there exists some ¢ > 0 such that d,,; < ¢, — 1 with probability 1 — O(e_élogQ"). Using
the bound (6.63), we therefore get

Zopt < gnQ[nc(b)fﬁ]nen1/25n+o(n1/2) < €n2[lic(b)fn]ne(9(nl/2 logn)7 (682)

again with probability 1 —o(e~9%&""), Bounding ¢, < 3 max{1, 2ls="-®)+/2n} e obtain
the bound (6.81). W

7 The Sorted Phase

It remains to study the minimum discrepancy for b > b..

7.1 Characteristics of the Sorted Phase

Theorem 7.1 Suppose that M > n? and liminfs/n > b.. Then w.h.p. the optimal
partition o™ is the sorted partition obtained as follows. Order X; in the increasing order,
so that Xrqy < -+ - < Xy for some permutation m of {1,...,n}. W.h.p. there will be no
ties, and the ordering m will be uniquely defined. Denoting j, = (n+s)/2 = n(1+b)/2,
b=s/n,

L, 1< <

! {_17 jn<j§n7

and w.h.p. the minimum discrepancy is asymptotic to M2[(1+ b)? — 2], i.e. of order Mn.

(7.1)

Proof of Theorem 7.1. We begin with the following observation. If
Jn n
0u(X) = Xy — Y. Xugy 20, (7.2)
j=1 J=int1

then the sorted partition is optimal, and d,; = 5(X). Indeed, let o be any feasible
partition o. Then s(o) = |{j:0; =1} = |{j : 0; = =1} = 2|{j : 0; = 1}| — n so that
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{j :0; =1} = j,. Thus

ooxi- > X (7.3)

{jio;=1} {jioy=—-1}
jn n

> ZXW(]') - Z Xri) 20, (7.4)
j=1 j=int

which implies optimality of the partition o* and d, = 05(X).
In light of this property, all we need to do is to show that, for b > b. and bounded
away from b., w.h.p.

Mn

5.(X) = =

[(1 T h)? - ](1 +o(1)) > 0. (7.5)

Let U be [0, 1]-uniform, and Uy,...,U, be the independent copies of U. Then the
sequence {X}} := {[MUj]} has the same distribution as our sequence {X; : 1 < j < n}.
So we will consider {X}} instead. Since M > n?, it follows easily that w.h.p. X/ 1) <

- < X ! 1f and only if Urq) < -+ < Ur(n). Furthermore

0 < [MU;]— MU; < 1, (7.6)

so it suffices to show that w.h.p.

Zn:Uw( ZU [1+b) ](1+0(1)). (7.7)

J=jn+1

A second simpliﬁcation is based on a fact that the sequence {Uﬂ(j)}lgjgn has the same
distribution as {S -}1<j<n, where S; = Zk | Zy, and Z4, ..., Z, are independent copies

of Z, the EXponentlal (A), A > 0 being arbitrary, i.e. P(Z < 2) =1 —e**. Choose A = 1
for certainty. Since S,,y1 is w.h.p. asymptotic to (n + 1)EZ = n + 1, it suffices to show
that w.h.p.

Zs - Z S —nz[l+b) —2](1+0( ), (7.8)

J=jn+1

or, in terms of Z,;’s, that w.h.p.

2

I S ”Z [(1 b2 2} (1+ o(1)), (7.9)
where ‘
S1=Y (o —k+1)Z,

h=t (7.10)
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Finally, introduce {Z} }, the truncated version of {Z;}, namely
Z, = min(Zy,2logn), 1<k<n. (7.11)
Noticing that

P(3k <n: Z, # Zy) <nP(Z] # Zy) (7.12)
=nP(Z; > 2logn) =n""' — 0, (7.13)

we can and will replace Z; by Z; in (7.10), denoting the corresponding sums by X..
Observe that

B(Z) =E(Z) = [ (v 2logme "dy=1-n", (7.14)
2logn
so that
E(X) =E(X)+0(1), i=1,2. (7.15)

By the Azuma-Hoeffding inequality (see, e.g., [12], Section 12.2) and Z; < 2logn, we
have: for every a > 0,

2 2
P(|Y, — E(Z)| > a) < 2exp (—m) = 2exp (—Sng‘;‘m) . (7.16)
Using this bound with a = n™/4, we obtain that w.h.p.
|5 - E(Z)] </t <0, (7.17)
implying that w.h.p.
S — By = =5 =E(2) —E(Z,) + O(n™). (7.18)

It remains to observe that

E(X] — X)) =E(%,) — E(X;) + O(1)

:jn(an_ 1) - (n _ ]n)]n _ (n - ]n)(T;_ ]n + 1) + O(l)
:2j72z 2_ n2 + o) (7.19)
:%2[(1 +b)? — 2] +O(n),

which completes the proof. B

Remark 7.1 Consider a point (k,b) such that b < b.. From the above proof, it is easy to
show that w.h.p. the sorted partition o* cannot be optimal. Indeed, by (7.19), we see that
2
E(X, —3) = ”z [(1+4)% —2] + O(n) < —O(n?). (7.20)
This means that w.h.p.
o' X< -0(Mn) = |o"-X|>6O6(Mn), (7.21)

and we know that doy,y = o(Mn) for every (k,b), with b < b,.
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7.2 The Dual Role of b..

In Theorem 4.1, we proved that b. is the threshold of the values of b for solvability of
the saddle point equations (3.18). Then, in Theorem 7.1, we proved that the same b, is
also the threshold for optimality of the sorted partition. At this point, while the results
are complete, the equality of these two thresholds seems to be nothing but a numerical
coincidence. In this subsection, we give an explanation of this coincidence. It turns out
that the coincidence reflects a deterministic property of the integer partitioning problem
which holds for a broad set of X, see Theorem 7.2 below.

We caution the reader that Theorem 7.2 does not directly imply the two Theorems 4.1
and 7.1. Theorem 7.2 holds only for a given instance X, and states that for s/n greater
than some b.(X), the sorted partition is optimal, while for s/n < b.(X), the saddle point
equations (3.13) have an unique solution. In order to apply this theorem to the random
integer partitioning problem, we would have to address two issues. First, we would have
to show that if b > b., then w.h.p., b > b.(X). This follows in a relatively straightforward
fashion using the techniques of the last subsection. The more difficult issue is to relate
existence of solutions of the saddle point equations (3.13) to that of the averaged saddle
point equations (3.18). This requires that we establish existence and commutation of the
limits n — oo and s/n — b, and deal with the fact that nb. is generally not an integer
so that, as b — b, the solution to the saddle point equations gives a o with some ¢, in
the interval [—1,41] rather than all o; € {—1,+1}, see below. Since the coincidence is
already proved in Theorems 4.1 and 7.1, and since the purpose of this section is simply
to elucidate the coincidence, we do not deal with these, admittedly difficult, issues here.
We just present the result for a given X.

Consider n arbitrary numbers Xi,..., X, € {1,..., M}, subject to the constraints
that no two of them are equal, and that their sum is even (the odd case is similar and
is left to the reader). Without loss of generality, further assume that the X; are ordered
in increasing order, so that X; < Xy < --- < X,,. Consider the equations (3.13) with
¢ =0, and define s.(X) as the supremum over all s for which the equations (3.13) have a
solution.

Let o be a fractional partition, i.e., let & € [—1,1]". We say that o has bias s, if
Z?Zl o; = s, and we say that it is sorted, if o; < ;1 for all ¢ and |o;| = 1 for all but
at most one i. Note that there is exactly one sorted partition with bias s for any real
s € [—n,n]. We finally introduce the critical sorted partition as the sorted (fractional)
partition & that obeys the condition

> 6X;=0. (7.22)
j=1

There is at most one such partition for a fixed set of weights X1, ..., X,,. With slight abuse
of notation, we say that a probability distribution P(o) on partitions is concentrated on
a fractional sorted partition & if P(o; = ;) = 1 whenever |5;| = 1, and P(o; = 1) = p
when &; takes the fractional value 2p — 1.

The following theorem shows that the critical bias for the existence of a solution to the
random saddle point equations and the critical bias for the optimality of the fractional
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sorted partition are identical. For brevity, we drop the term “fractional” throughout.

Theorem 7.2 Let X; < Xo < --- < X, € {1,..., M}, and assume that the sum Y, | X;
1S even.

i) If £ =0 and 0 < s < s.(X), then the saddle point equations (3.13) have a unique
solution (&,m) with —oo <n <0, 0< & < o0 and |n|/§ < M.

it) For £ =0, s < s.(X), and a solution (£,n) of the saddle point equations (3.13),
let Py(-) be the probability distribution on partitions defined in (3.7). If s /" s.(X), then
& /00, n\, —00, and the distribution Pg(-) gets concentrated on the critical sorted
partition.

iii) If £ =0 and s > s.(X), then the saddle point equations (3.13) have no solution,
and the sorted partition with bias s is optimal; if s > s.(X), this partition has non-zero
discrepancy, implying that there are no perfect partitions with bias s > s.(X).

Remark 7.2 Statement ii) clearly implies that the critical sorted partition has bias s.(X).
As a consequence, a sorted partition with bias s > s.(X) has non-zero discrepancy. By
an easy extension of the argument given for non-fractional partitions, this in turn implies
that sorted partitions with bias s > s.(X) are optimal. FExcept for the statement that the
saddle point equations (3.13) have no solution for { =0 and s = s.(X), statement iii) is
therefore an immediate consequence of statement ii).

Proof of Theorem 7.2: i) Given X; < Xy < --- < X, € {1,..., M}, let
F(¢m) =Y X, tanh(§X; + ),

J=1

G(&,n) =) tanh(¢X; + ).

j=1

(7.23)

Since the partial derivatives OF(&,n)/0¢ and OF(§,n)/0n are strictly positive for all
(&,m) € R?, the equation

F(&n(£)) =0 (7.24)

has a well defined, unique solution 7(¢) for all £ € R, and n(§) is strictly decreasing on
R. Let

9(&) = G(&,n(E))- (7.25)

Each solution (£,n) of the saddle point equations (3.13) is then a solution of g(§) = —s
and n = n(£), and vice versa. Using the fact that the derivatives of F' and G are second
order derivatives of the strictly convex function L, (&,n), one easily shows that g(-) is
strictly decreasing. Combined with the fact that 1(0) = 0 so that g(0) = 0, we easily
complete that proof of i). Indeed, by the monotonicity of g, the equation g(§) = —s has
a unique solution £ € (0, 00) whenever

9(0) =0< s <s.=— lim g(&). (7.26)

£/00
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But £ > 0 implies n = n(§) < 0, so we are just left with the proof of the inequality
In| < &M. To this end, we just observe that F'(§,n7) =0, £ > 0 and the fact that not all
X; e{l1,..., M} are equal imply that

0="> X;tanh((X; +n) < tanh(EM +1) Y X, (7.27)

j=1 j=1

which in turn gives EM +n > 0, as desired.

ii) By the strict monotonicity of g, ¢ /" oo as s /" s. (otherwise, the equation g(§) =
—5s. would have a finite solution £ < oo, which contradicts the strict monotonicity of g on
(0,00)). If n = n(&) stayed bounded away from —oo as £ " oo, the function F(&,n(€))
would converge to the sum of the weights X;, which is not compatible with F'(§,7(£)) = 0.
Thus n \, —o0 as s /" s.. We now set 0;(§) = tanh({X; +n(£)), so that

F(&m(€) = > Xj0i(8). (7.28)

In order to complete the proof of ii), we have to show that o (£) converges to the critical
sorted partition as & — oo.

To this end, we first note
11— o ()] < 2¢75, (7.29)

for all but at most one j. Indeed, let X(£) = —n(&) /€, so that o;(§) = tanh(&(X;—X(€))).
Let jo be such that | X, — X ()| is minimal. Since two consecutive weights X;, X, differ
by at least 1, we conclude that | X; — X (£)| > 1/2 for all j # jo. Together with the bound
|| tanhz| — 1| < 2e72%| this proves (7.29) for j # jo.

Consider now a sequence (&) with & — oo as r — oo. By compactness, we can
always find a subsequence such that o(¢,) converges to some &. Due to (7.29), we must
have that |5;| = 1 for all but at most one j. Since F(&,n(&)) = >_;0;(5)X; = 0
and 01(§) < -+ < 0,(€), the same holds for the limiting sequence &1,...,5,. As a
consequence, & is the critical sorted partition defined in (7.22) (recall that the critical
sorted partition is unique). Thus any convergent subsequence of o (&) converges to the
critical sorted partition &, implying that o (&) itself converges to &. This concludes the
proof of ii).

iii) We already showed above that the equation ¢g({) = —s. has no finite solution
¢ < 00. As pointed out in the remark following the theorem, this is the only statement
in iii) which does not follow directly from the statements in ii).

8 Relaxed Version of the Integer Partitioning Prob-
lem
It is a rather common idea to approximate an optimization problem defined with integer-

valued variables by its relaxed version, where the variables are now allowed to assume any
value within the real intervals whose endpoints are the admissible values of the original
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integer variables. In our case, the relaxed version is a linear programming problem (LPP)
which can be stated as follows. Find the minimum value d,, of d, subject to linear

constraints
—dSZO'ij, ZO‘ijSd,
J J

ZO‘j =S, (81)

-1<0;<1, (1<j<n).

As usual, the LPP has at least one basis solution, i.e. a solution (o, d,,), which is an
extreme (vertex) point of the polyhedron defined by the constraints (8.1). Let N(o) :=
{j : o; € (—1,1)}| be the number of components of o which are non-integer. It is easy
for the reader to verify that N(o) < 2 for all basis solutions o. In fact, N(o) cannot
be 1 either, since in this case the exceptional o, # +1 must be zero, which contradicts
s = n(mod 2). Thus, for a basis solution, N(o) € {0,2}. N(o) = 0 signals that o is an
optimal partition. Suppose N (o) = 2, and let {ji,j2} = {j : 0; € (—1,1)}. Using the
second line in (8.1), we see that

O'jl -+ O'j2 € {—1,0, 1} (82)

Moreover, the second condition in (8.1), combined with s = n(mod 2), rules out the values
+1. Therefore, {0;},4, ., is a partition of {X;};.;, j,, of bias s.

Our last theorem shows that the horizontal line b = b, is a phase boundary for the LPP
as well. For b > b, the solutions of the initial partition problem and of its LPP version
coincide. For b < b, they are very far apart, in terms of the ratio of respective optimal
discrepancies. To state this precisely, we introduce the fraction of basis solutions o with
a property that the deletion of the N (o) components of o with values in (—1, 1) produces
an optimal integer partition for the remaining weights X;. We denote this fraction by
F.(k,b).

Theorem 8.1 Let limsupk < oo and 0 < liminf k.

(i) If iminf s/n > b, then w.h.p. the sorted partition o* is an unique solution of the
LPP (8.1), so that in particular F,(k,b) =1 and dy, = O(Mn).

Let limsup s/n < b,.
(11) W.h.p. dope = 0, and there are re(b)n+Om!2logn) poois solutions (o, 0).
(111) If iminf (k — k(b)) > 0, all basis solutions are fractional (i.e. have N(o) =2), and

)
if limsup(k — k_(b)) < 0, the number of basis solutions with N(o) = 0 is at most
Q(HC(b)_H)”+OP(”1/2) .

w <e< Ko and liminf(xk — K_ > 0, then, w.h.p., 270" < (K, 0) <
) If 0 b) and liminf b)) >0, th h.p., 27Re®n=en < B (15 b
9=r-O)nten I lim sup(k — k(b)) < 0, then, w.h.p., Fy(,b) = 2-rnt0n!/logn),
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Remark 8.1 (i) As discussed in Remark 6.1 (iii), we believe that the number of optimal
partitions above k. grows subexponentially in n. Let us assume such a bound, more pre-
cisely, assume that for e > 0, for b < b., and for k with liminf(x — k.(b)) > 0, we have
that the number of optimal partitions is bounded by 25", with probability at least 1 —o(n=?).
Under this assumption, the proof of Theorem 8.1 can be easily generalized to show that,
w.h.p., 27Rbn=en < B () b) < 27Re®nFen yuhenever b < b, and liminf(k — k(b)) > 0.

(i) If, on the other hand, one believes that the asymptotics of Theorem 5.1 hold up
to ke, more precisely, if we assume that the bound (5.52) holds with probability at least
1 —o(n™?), whenever b < b. and limsup(k — k(b)) < 0, then one can prove that, w.h.p.,
Fo(k,b) = 2750 for all (b, k) with b < b, and limsup(k — k(b)) < 0.

Proof of Theorem 8.1 and Remark 8.1. (i) Suppose liminfs/n > b.. Then
w.h.p. Zj 0i Xz = ©(Mn) > 0, where o* is the sorted partition, so that X.q) <
e < Xw(n)a and

' i
e S (8.3)
! - 17 J = Jn-

Let o € [—1,1]™ be an arbitrary relaxed partition with o -e = o* - e. The proof of (1)
then reduces to the proof of the statement that

ZUjXW(j) > ZU;XF(]‘) if o 75 o (84)
J J

If o # o, then there exists a pair of indices ¢ < j such that o; < 1 and o; > —1. Assume
that ¢ is the first such index, and that j is the last such index. Since X,y < X(;), we can
strictly lower the value of ;0 Xr(j) by raising o; and lowering o, and preserving o;+ oy,
until at least one of them has absolute value 1, i.e. either o; = o] or 0; = 0. Repeating
this procedure with the lowest ¢ and the largest j such that o; < 1 and o; > —1 in the
new configuration, we will eventually arrive at the configuration o*. Since the value of
;0 Xx(j) Was strictly lowered in each step, this proves (8.4), and thus statement (i).

(ii) Let limsup s/n < b, and consider the partitioning problem for { X;};>5. Let a > 0,
and set ¢, = [Mn=*]. By Theorem 6.3, we have that with probability 1 — @(e=0%s*n),
there are at least 2%e=O('/?logn) typleg {0;};>3 such that

1> X)) <t (8.5)
j=3
We will denote the event expressed in (8.5) by A. On the other hand, introducing the
event B ={|X; — Xa| > Mn=}, a; € (0,a), we have
1

P(B) =1 -+ oo
56)
=1-0(n"").
Introducing C = A N B, we have then that 1 —P(C) — 0. On C, we can define o1 = —o9
where
o = Z0212%5K5 ey ¢ (1), (8.7)

X7 — X5
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Clearly >7 ,0;X; = 0, and denoting & = {0;}1<j<n, We have that (o,0) is a basis
solution of the LPP. Thus w.h.p. the LPP has at least gnre=0(n'/?logn) hagis solutions.
Conversely, suppose o is a basis solution, with 1,09 € (=1, 1), and o1 + 03 = 0. Then

> 0X;

j=3

< |X) — Xo| < M = o(Mn*?log ' n). (8.8)

Again by Theorem 6.3, we know that with probability 1—®(e~?1°6" ") the total number of
all such (n — 2)-tuples with bias s is gnre+Om!/2logn) anq for each such tuple, the feasible
values of 01, 09 are determined uniquely. Since there are (72‘) ways to select ji, jo as indices
of components o; € (—1, 1), and since the union of (g) events happening with probability
1— O(e_5l°g2") happens with probability 1 — O(nQe_MOgQ"), we get that et On!/?logn)
is also w.h.p. an upper bound on the number of basis solutions o with N(o) = 2.

If N(o) = 0 then, since b < b., o is a perfect partition, and thus of zero discrep-
ancy. The number of such partitions can clearly be bounded by the number of partitions
with discrepancy smaller than ¢, = M. By Theorem 6.3, this is in turn bounded by
et O(n!/? logn) - completing the proof that the number of basis solutions with N(o) = 0
or N(o) = 2 is 2nretOn!/?logn),

(iii) If liminf(k — k(b)) > 0 or limsup(k — k_(b)) < 0, we know a little bit more.
In the first case, w.h.p. there are no perfect partitions, and thus no basis solutions with
N(o) = 0. In the latter case, w.h.p. the number of perfect partitions of zero discrepancy
(and thus the number of basis solutions with N(o") = 0) is at most 2(xe®)=r)n+0p(n'/?)
which is negligible relative to 2e®)n+OMn!logn)

(iv) If e > 0 and liminf(k — £_(b)) > 0, then with probability 1 — O(n2e—%%s"n) for
every subset of (n—2) weights X, there are at most 2(re—r—+e)n ghtimal integer partitions
by Corollary 6.2. As in (ii), once the 1 values of the corresponding o; are known, the
values of the two remaining o; are determined uniquely. So w.h.p. the LPP may have
at most (1)2("e="=+9)" basis solutions with N (o) = 2 that have the optimal subpartition
property. Similarly, the number of o with N(o) = 0 is at most 2("e=*-+4)" So for every
e, w.h.p.

F,(k,b) < 27r-(b)nt2en, (8.9)

If we assume that for liminf(x — k.(b)) > 0, the number of optimal partitions obeys the
bound Z,,; < 2°" with probability at least 1 — o(n™?), so that w.h.p. for every subset
of (n — 2) weights X there are at most 2" many optimal integer partitions, the above
argument gives that for liminf(x — k.(b)) > 0, w.h.p.,

F,(k,b) < 2 relb)nt2en, (8.10)

Combined with the bound (8.13) below, this proves Remark 8.1.
Conversely, given ji,jo, with probability 1 — O(e 918°") there exists at least one
optimal partition {o;},.;, j, of the subset {X;},.;, ,, with discrepancy

> o0X;

J#I1,d2

< MR- (binten (8.11)
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by the bound (6.64) of Theorem 6.3. Given such an optimal subpartition (and assuming
that € has been chosen smaller than x_ (b)), with sufficiently high probability we can find
an unique pair 0j,,0;, € (—1,1) such that {o;}1<;<, is a basis solution of the full LPP,
by solving

ajIle + UjQXj = = Z anj’
J#J1,52
041 + Oj, = 0.
Indeed, with probability 1—O(e™° log? "), the sum on the right is bounded by A72~%-(®)n+en
and with probability 1 — Q(27%-(®nten)

X, — Xj,| > M2r-(Gnten, (8.12)

Thus w.h.p. there exist at least (g) basis solutions with the optimal subpartition property,
so that
g re®n=en < B (. b) (8.13)

as long as 0 < e < k_(b).

Consider finally lim sup(x—#_(b)) < 0. Then, by Theorem 5.1, on the event “3_; X is
even,” w.h.p. we have 9 (re(b)=r)n+O(n'/? logn) perfect partitions o of discrepancy zero, each
being a basis solution of the LPP with N(o) = 0. On the complementary event “Zj X;
is 0dd”, w.h.p. there are 2(re(®)=RIn+On?logn) Harfact partitions {oj}jz12 of {X;}212, of
discrepancy one, and we can find, uniquely, o1, 09 € (—1,1) such that

o1+ 09 = 0, O'1X1 +O’2X2 = — Z O'ij. (814)
j#1,2

Indeed |X; — X5| is w.h.p. of order, say, Mn™® at least (a > 0), and the last sum
is in [—1,1]. Thus, regardless of the parity of Zj Xj, the LPP has w.h.p. at least

9re(B)=R)n+OM!2logn) hagis solutions with the optimal subpartition property.

On the other hand, the total number of the optimal subpartition basis solutions o is
at most 2(7e(0)=Rn+O(!2logn) with probability 1 —O(ne~°1°¢" ). Indeed, for N(o) = 0, &
is a perfect partition, and for N (o) = 2, the +1-valued ¢; form an optimal, hence perfect
partition of the corresponding weights X;. In either case, the number of corresponding
perfect partitions is asymptotic to 2ke@)—rRn+0®!2logn) 414 F,(k,b) = 27 rn+0(/nlogn),

Finally, if we assume that the bound (5.52) holds with probability at least 1 —o(n=2),
whenever b < b. and lim sup(k — k(b)) < 0, then the above arguments immediately give
that, w.h.p., F,(k,b) = 27" R

9 Open Problems and Numerical Experiments

9.1 Open Problems

Many problems are left open in our analysis. Most important is the question of how
we characterize the phase transition from the perfect phase to the hard phase. In the
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unconstrained case [3], our theorems would have allowed us to give at least three equivalent
definitions.

First, in the unconstrained problem, we defined the phase transition to be the point
k = k. = 1 at which the probability of a perfect partition decreases abruptly from 1 to
0. For the constrained case considered in this paper, we have proved only that such a
transition occurs somewhere within the interval (k_(b), k.(b)). In particular, we have not
proved that such a transition is sharp.

Second, in the constrained case, we could have characterized the phase transition as the
point up to which the expected number of perfect partitions remains exponential, which
again would have led to the value k = k. = 1 [3]. In contrast, in the unconstrained case,
here we have shown that the expected number of perfect partitions remains exponential
until some k = k.(b) > k.(b), because up to k = k.(b), with vanishingly small probability,
there are very many perfect partitions. Thus we cannot use the second definition in the
constrained case. Alternatively, one could ask whether the typical (say median) number
of perfect partitions changes from exponentially large to 0 at k = k.(b), a definition that
would have given the same transition point k. = 1 in the unconstrained case, and that
might also work here.

A third possible definition of the transition point is the point above which there is
an unique optimal partition, a definition which would have again led to k. = 1 in the
unconstrained case [3]. Here we cannot prove uniqueness until we are in the sorted phase
(b > b.), far above Kk = k.(b).

A natural conjecture would be that at least the first and third definitions coincide and
that both lead to a sharp transition along the line k = k.(b).

Assuming we could establish a sharp transition, we could then examine some other
open problems. In the unconstrained problem, we were able to determine the finite-size
scaling window around the transition point £ = k., i.e. the region in which the probability
of a perfect partition has nontrivial distribution. In [3], we showed that the window has
width of order n~!, and is centered at k. + ©(n~'logn) . In the constrained case, as
discussed in Remark 2.4, the fluctuations in the number of perfect partitions should be
large enough to lead to a nontrivial probability distribution within a window of width of
~1/2 about k.. Hence we expect the width of the window to be larger here than
~1/2_ Our numerical experiments,

order n
it was in the unconstrained case, at least of order n
reviewed in the next subsection, support this expectation.

Next, detailed estimates in the unconstrained case proved that the k smallest discrep-
ancies (i.e., for a given set of n random integers, the k smallest absolute values of the
difference in the sums of the integers in the two subsets) have a Poisson joint distribution
[3]. This is the behavior that would be observed if the discrepancies of 2"~! partitions
(with oy fixed) were independent random variables. This result confirmed the validity
of the so-called Random Energy Model or REM approximation for the continuous case,
proposed earlier by Mertens [19]. We have no analogous estimates for the constrained
problem.

Finally, for both the constrained and unconstrained problems, it would be very use-
ful to have theorems which establish the relevance of our phase transition results (and
associated results like the Poisson joint distribution) to the complexity of the number
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partitioning problem, and to the performance of widely used algorithms for the problem.
In particular, is the perfect phase easy, i.e., in this phase, is it possible to find some perfect
partition in polynomial time? Is the so-called hard phase actually computationally diffi-
cult (under the usual assumptions, e.g., P # NP)? What are the changes in the behavior
of commonly used algorithms at k = k.(b)7 Is k_(b) an artifact of our proofs or does it
reflect some change in the complexity of the problem? For example, is there a change in
the (admittedly non-rigorous, but often very instructive) replica solution at Kk = xk_(b)?
Do commonly used algorithms experience any slowdown across this curve? And finally,
can our LPP results be extended to establish genuine average-case complexity results for
a class of partitioning algorithms?

9.2 Numerics

In this subsection, we present some simulations which address the question of sharpness
of the transition and finite-size scaling. We begin with a brief discussion of methods, then
go on to finite-size effects, since this is important for the interpretation of the results.
Most of our simulations concern the number of perfect partitions in the crescent-shaped
region from k = k_(b) to kK = k.(b).

9.2.1 Methods and Accessible System Sizes

The general experimental setup is this: generate a random instance, i.e. n random integers
X, uniformly drawn from the interval [1, M| and calculate the optimum discrepancy and
the number of optimal solutions of the corresponding constrained partitioning problem.
Loop over many such instances to get the empirical mean and the empirical standard
deviation of quantities like the logarithm of the number of optimal partitions.

The numbers X are constructed from the output of pseudorandom number generators;
we use LCG64, a 64 bit linear congruential random number generator from the TRNG
collection [2]. Tt is known that the least significant bits of linear congruential recurrences
are correlated, so it is dangerous to use the elements of such sequences directly as a random
instance. Instead, we use a random number for each bit in X;. The bits are set to 1 or 0
with probability %, depending on the most significant bits of the corresponding random
number, thereby minimizing the influence of hidden correlations in the pseudorandom
sequence. On the other hand, this restricts us to values of M that are integer powers of
2.

We can afford these extra calls to the random number generator, since the generation
of the random instances is not the part of the simulation that limits the accessible system
sizes. The hard part of the simulations is the solution of the particular instance. (After
all, we are dealing with an NP-hard problem.) Even in the perfect phase, where a smart
heuristic algorithm might find one of the exponentially many perfect partitions quickly,
we want to find them all, so there is no obvious way to avoid an exhaustive enumeration
of all partitions. The corresponding O(2") time complexity is the limiting factor for our
accessible system sizes.

Horowitz and Sahni [14] presented an algorithm that solves the unconstrained integer
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partitioning problem in time O(n-2%), and this algorithm can easily be modified to count
all perfect partitions for the constrained problem within the same time complexity. The
Horowitz-Sahni algorithm achieves its prodigious speed-up by dividing the set of numbers
X in two halves and tabulating all 2% possible discrepancies of the two half-sized sets.
Each discrepancy of the original problem can then be represented by the sum or the
difference of two elements, one from each table. The tables are sorted (this is the origin
of the complexity O(n-23)), and due to the monotonicity of the sorted tables, the perfect
partitions of the original problem can be found with only one single scan through both
lists.

The drawback of the Horowitz-Sahni algorithm is that it trades time against space.
For k = 1, the X,’s are n-bit numbers, hence the tables require 2n27% bits of computer
memory. Equipped with 512 MByte of main memory, this means n < 50. For a single
instance of size n = 50, the optimum discrepancies for all (discrete) values of b can be
found in about 4 minutes on a Pentium III CPU with 800 Mhz clock rate. Averages
over 10% random instances can be calculated in less than half an hour using 156 CPUs
of a Beowulf cluster [1]. Counting all perfect partitions in the perfect phase can take
considerably longer if there are many such partitions, i.e. for small values of .

9.2.2 Concentration and Finite-Size Effects

For our first numerical experiment, we study the finite-size effects of the central quantity
in the perfect phase, namely the number Z of perfect partitions for given b and k.

Optimistically extending the formula (5.1) — (5.6) (Theorem 5.1), we expect that for
large n

1 1 1
E(— log Z) ~ L(¢,7) — rlog2 — —log (ﬁn\/det R) — _TR'K 9.1)
n n 4n

is a valid approximation for all kK < k.(b). It is illuminating to check the accuracy of this
approximation numerically, even in absence of a sharp bound for the error term, which is
implicit in (9.1).

Figure 4 shows the results of the simulation. For each data point we generated 103
instances of n random kn-bit integers and counted the number Z of perfect partitions using
the Horowitz-Sahni algorithm. Each symbol in Figure 4 denotes the empirical average over
the 103 values of n~!log Z, and the error bars indicate 1 empirical standard deviation.

For n < 50, finite-size effects are clearly visible. On the other hand, the error bars
decrease with increasing n, indicating a concentration of n~!log Z around its expected
value. Note that the size of the error bars does not decrease if the number of random
samples increases. This indicates that the error bars are a measure of the inherent fluctu-
ations in n~!log Z. Note also that for b > 0, the statistical fluctuations are much larger
than in the b = 0 case, consistent with our rigorous results in Theorem B and Remark 2.4.

The most surprising observation is that Eq. 9.1 is a very good approximation for finite
n > 30. Note that the “finite-size corrections” in Eq. 9.1, i.e. the O(n~!logn)-term and
O(n~')-term, are essential for a good approximation: even for n = 50, the measured
values of n~'E(log Z) are about 20% below the predicted asymptotic values.
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9.2.3 Sharpness and Location of the Perfect to Hard Transition

The major open problem with the phase diagram is the behavior of the system inside the
crescent-shaped region between k = k_(b) and k = k.(b). From Theorems 5.1 and 6.1,
we know that w.h.p. there are exponentially many perfect partitions for k < x_ and no
perfect partitions for k > k.. What happens to the number of perfect partitions between
k = k_ and Kk = k.? Is there a sharp transition from “no” to “exponentially many”
perfect partitions, like in the unconstrained case or the case b = 07 If so, where does it
occur?

For all numerical experiments shown in this section, we have chosen b = 0.25 because
here the gap between k_ = 0.674 ... and k. = 0.799. .. is relatively large. Setting b = 0.25
means that n must be a multiple of 8.

In the first experiment, we determine Ppe e, the fraction of randomly generated
instances that have a perfect partition. According to Theorems 5.1 and 6.2, as n — oo,
this fraction should tend to 1 for Kk < k_ and to 0 for K > k. . Figure 5 shows the results
for n = 32,40,48. For these finite n, the decay of Pperect from 1 to 0 extends over an
interval larger than the crescent-shaped region, but the values outside this region seem to
converge to their limits 1 and 0 as n gets larger.

To see more clearly what is happening with Pperfect, We define® % by Pperfect (R) = %
and plot Ppefect versus the rescaled control parameter Ax = (kK — E)nl/ 2 for various values
of n. By definition, all these curves intersect at Ax = 0, but the simulation shows that
the curves coincide for all values of Ax (Figure 6). This data collapse indicates that
Pperfect 15 not a function of the two parameters x and n, but of one single parameter
Ak = (k —R)n'/2,

Poerfect (K, 1) = f((/{ — E)nl/g). (9.2)
Validity of this scaling hypothesis in particular would imply that the transition Pperfect = 1
t0 Pperfect = 0 becomes sharp as n — oo and that the width of the transition region scales
like O(n~1/2). The transition point & itself depends on n but seems to converge to k. as
n — oo (see Figure 8). Our simulation results support the conclusion that the probability
of a perfect partition shows a sharp transition at s.:

. 1 K <k
nll—>rgo Pertect = { 0 k> ke (9-3)
So far, the crescent-shaped region is not visible in the simulations, but this may change
if we look at other quantities like the number of perfect partitions for xk < k..

Figure 7 shows the result of a simulation with n = 40. The mean value of n=!log Z is
very well approximated by a piecewise linear function

R

(F—r)log2 k<

n'-E(log Z(k)) = { 0 s (9.4)

R

where kK is a fit parameter that depends on n. Eq. 9.4 is a very accurate description
of the numerical data even for rather small values of n. The value of n influences only

50f course, for finite n, there is in general no solution % to the equation Pperfect(R) = Instead, we

1
5 .
take %, to be the closest linear interpolation of solutions with parameters n and M = 2"»",
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the size of the fluctuations of n=1 - log Z (k) around its expected value and the value of
K. As n becomes larger, the fluctuations decrease and & increases, moving beyond & _
and towards k. (see Figure 8). Note that Theorem 5.1 implies that lim,, .., n"'log Z is a
linear function of k for kK < K_.

Of course, the numerical data on £ and & do not allow us to conclude that both values
will converge to k. as n — oo, but it is obvious that both values increase with increasing
n and are larger than x_. Again we can use Theorem 5.1 to estimate the finite-size
corrections to k.,

() = L(¢,n) B log (mr\/det R) TrR-1K

log 2 nlog 2 ~ 4nlog2”

(9.5)

Figure 8 shows that both & and & are close to the finite-size estimate of x..

In all our simulations, we did not find any trace of a critical line x_. The properties
of the system do change for values below k., but above x_, but there is some evidence
that this is a finite-size effect and that for really large systems, it is only x. that matters.
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Figure 4: Comparison of eq. 9.1 (lines) for b = 0 (top) and b = 0.25 (bottom) with
simulations. Symbols denote averages over 10? random samples of uniform numbers X,

errorbars indicate 41 standard deviation.
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Figure 5: Probability of having a perfect partition in a random instance of the constrained
partitioning problem with b = 0.25. Symbols are empirical probabilities found in 103
random samples. The shaded area is the crescent-shaped region from x_ to k..
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Figure 6: Same data as in Fig. 5, but this time plotted versus the scaled control parameter
Ak = (k — F)n'/2. The data collapse indicates a sharp transition as n — co and a width
O(n~1/2) of the scaling window.
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Figure 7: Logarithm of the number of perfect partitions in random instances of the
constrained partitioning problem with b = 0.25. Symbols are averages over 10 random

samples, errorbars indicate +1 standard deviation. Inset: Magnification of the “critical”
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Figure 8: Values of « that indicate a transition from the perfect to the hard phase.



