
1

Peer-Assisted VoD: Making Internet Video Distribution Cheap

Cheng Huang†, Jin Li†, and Keith W. Ross‡
†Microsoft Research, Redmond, WA 98052

‡Polytechnic University, Brooklyn, NY 11201

Abstract— We consider the design and potential benefits of peer-
assisted video-on-demand, in which participating peers assist the
server in delivering VoD content. The assistance is done in such a
way that it provides the same user quality experience as pure client-
server distribution. We focus on the single-video approach, whereby
a peer only redistributes a video that it is currently watching. We
first describe three natural prefetching policies for exploiting surplus
peer upload capacity. We then study the performance of peer-assisted
VoD using stochastic simulation and trace-driven simulation, with
traces collected from the MSN Video service. The results of these
simulations show that peer-assisted VoD, with the proper prefetching
policy, can dramatically reduce server bandwidth costs.

I. I NTRODUCTION

Video-on-demand (VoD, also called on-demand video stream-
ing) has become an extremely popular service in the Internet.
For example, YouTube, a video-sharing service which streams
its videos to users on-demand, has about 20 million views a
day with a total viewing time of over 10,000 years to date [1].
Other major Internet VoD publishers include MSN Video, Google
Video, Yahoo Video, CNN, and a plethora of copycat YouTube
sites.

Most of the VoD being streamed over the Internet today is
encoded in the 200-400 kbps range. At these rates, ISPs (or
CDNs) typically charge video publishers 0.1 to 1.0 cent per video
minute. It has been estimated that YouTube pays over 1 million
dollars a month in bandwidth costs. These costs are expectedto
go up, as demand increases and higher-quality videos (with rates
up to 3 Mbps or more) are made available.

In this paper, we consider the design and potential benefits of
peer-assisted VoD. In peer-assisted VoD, there is still a server
(or server farm) which stores all of the publisher’s videos and
guarantees that users can playback the video at the playback
rate without any quality degradation. But in peer-assistedVoD,
the peers that are viewing the publisher’s videos also assist in
redistributing the videos. Since peer-assisted VoD can move a
significant fraction of the uploading from the server to the peers,
it can potentially dramatically reduce the publisher’s bandwidth
costs.

There are two broad design approaches to peer-assisted VoD.
In one approach, which we refer to as thesingle-video approach,
a peer only redistributes the video it is currently watching; it
does not redistribute other videos that it may have watched and
stored in the past. The single-video approach is similar to a
torrent in BitTorrent, in which all peers in the torrent share the
same file. In the second approach, which we refer to as the
multiple-video approach, a peer can redistribute videos that it has
previously stored but is not actively viewing. Compared with the
multiple-video approach, the single-video approach is simpler in
the client and tracker design, and involves a straightforward end-
user policy. In this paper, we focus on the single-video approach,
which intuitively should provide good performance if, for each

of the publisher’s videos, many users are watching simultane-
ously. If the publisher hasN videos and adopts the single-video
approach, then the distribution problem essentially becomes N
sub-distribution problems, one for each video. Henceforthin this
paper, we focus on the design and analysis of peer-assisted VoD
for single videos. The aggregation ofN videos is shown through
the multiplexing of all individual ones.

In a peer-assisted VoD system, when the peers alone cannot
redistribute the video among themselves, the server makes up the
difference, so that each peer still receives the video at theencoded
rate. The server is only active when the peers alone cannot satisfy
the demand. When the peers alone can satisfy the demand, not
only is the server inactive, but the peers can potentially prefetch
video from each other using the peers’ surplus bandwidth. This
prefetching allows the peers to build a reservoir of video, which
can be tapped when the aggregate upload bandwidth of peers
becomes less than the demand across all peers.

The contribution of this paper is as follows:
• We introduce the peer-assisted VoD problem and isolate the

prefetching policy issue.
• For the single-video approach, we describe three natural

prefetching policies for exploiting surplus peer upload ca-
pacity. These policies areno-prefetching, water-leveling, and
greedy. We simulate each of the policies and show that
they can significantly reduce server bandwidth usage, with
prefetching providing dramatic gains.

• We then investigate the three polices using traces collected
from the MSN Video service. We examine traces from the
top two most popular videos. One has a high demand for a
relatively short period of time; the other has a more moderate
demand but for a relatively long period of time. We also
examine the aggregation of the top100 videos. The trace
analysis again shows that peer-assisted VoD with prefetching
can dramatically reduce server bandwidth costs.

II. RELATED WORK

Most peer-assisted VoD solutions belong to the category of the
single-video approach. Cui et al. [3] proposed oStream, which
extended the application layer multicast to include bufferin the
peer node to support VoD. Hamra et al. [2] proposed a tree based
approach to implement peer-assisted VoD. In their scheme, all
peers form a distribution tree, and based on bandwidth availability,
a new coming peer is connected to a proper parent node in the
distribution tree. Shen et al. [5] combined multiple description
coding (MDC) of video with data partitioning, and provided
a VoD solution with graceful quality degradation when peers
fail and substreams of video are lost. Annapureddy et al. [6]
studied using network coding in the VoD scenario. Li proposed
PeerStreaming [4] to support the multiple-video approach.Us-
ing erasure resilient coding (ERC), PeerStreaming may partially
cache previously viewed videos with the portion of the videos

2

being cached proportional to the upload bandwidth of the peer;
which helps to reduce the overall cache requirement.

Peer-assisted video distribution is also catching up in the
industry. According to a market report [8], in China alone, over
12 million Internet users have accessed peer-assisted streaming
services or downloaded peer-assisted streaming softwares. At
least 15 organizations are providing peer-assisted video delivery
services. Though most services are peer-assisted file download
or peer-assisted broadcast, peer-assisted VoD is certainly gaining
popularity. Roxbeam [9], used to be called CoolStreaming and
regarded as the first practical P2P streaming system, has recently
added VoD in its service. UUSee [7], a new startup invested
by SIG, provides thousands of VoD programs on its website.
It has also signed a four-year contract with CCTV, the largest
TV producer and broadcast network owner in China, to provide
programs to all Internet users.

III. SURPLUS AND DEFICIT MODES

To gain insight into peer-assisted VoD, we begin with a simple
model. Let the length of the video (in seconds) be denoted byT
and the rate of the video be denoted byr (in bps). Let the user
arrive at the system in a Poisson process with parameterλ. Let
M denote the number of user types, where the typem user is of
upload bandwidthwm and appears with probabilitypm. Using the
property of the compound Poisson process, the above user arrival
model is the same as if each typem user arrives in a Poisson
process with independent parameterpmλ. Naturally, the average
upload bandwidth of all users isµ =

∑
pmwm.

It follows from Little’s law that in steady state the expected
number of typem users in the system is given byρm = pmλT .
Thus, in steady state, the average demand isD = r

∑
ρm = rλT

and the average supplyS =
∑

wmρm = µλT . We say that the
system is in thesurplus modeif S > D; and in thedeficit mode
if S < D. That is, the system is in the surplus mode ifµ > r,
and in the deficit mode otherwise. It is important to note that
even if a system is in surplus mode, at any given instant of time,
the server may need to be active and supply video to peers. This
is because(i) although on average the system is in the surplus
mode, due to fluctuation, at a given instant of time the supplymay
become less than the demand; and(ii) it may not be possible to
use all of the supply bandwidth at any given instant of time. The
latter point will become more clear when considering the different
prefetching policies subsequently.

IV. N O-PREFETCHINGPOLICY

We start with the simplest scenario in which all users adopt
a no-prefetchingpolicy. Under this policy, users only download
content in real-time (the download rate equalsr) and do not
prefetch for future needs.

Suppose at a particularly instant of time there aren users in
the system. Order thesen users so that usern is the most recent
to arrive, usern−1 is the next most recent, and so on. Thus user
1 has been in the system the longest. Letuj , j = 1, . . . , n, be the
upload bandwidth of thejth user and its probability bep(uj).
Recall that userj is of type m with probability pm, so p(uj =
wm) = pm. Let the state of the system be(u1, u2, · · · , un) and
the rate required from the server bes(u1, u2, · · · , un). Since there
is no prefetching, the demand of user1 can only be satisfied by
the server, which is the video rater. Then, the demand of user
2 will be satisfied first by user1 and then the server ifu1 is not

sufficient. The demand of user3 is satisfied first by user1, user
2 and then the server, and so on. The following example might
help clarify the description.

• For n = 1, we haves(u1) = r.
• For n = 2, we haves(u1, u2) = r + max(0, r − u1).

In general, for a given state, the rate required from the server is

s(u1, u2, · · · , un) = max
1≤j≤n

(r + max(0, (j − 1)r−

j−1∑

i=1

ui)). (1)

Note that in the above system, the upload bandwidth of the
most recent user (usern) is not utilized. Furthermore, ifun−1 >
r, the upload bandwidth portionun−1−r of the next most recent
user (usern − 1) is also wasted, as it can only uploadr to user
n. Alternatively, if each user adopts a sharing window and can
tolerate slight delay, then users arrival very close (e.g.,usersn,
n − 1, · · · , n − k, for somek) can potentially upload different
blocks in their windows to each other. Then, all users’ upload
bandwidths could be fully utilized. This is especially truein many
other types of peer-to-peer applications, such as MutualCast [10],
live streaming [11], etc. Nevertheless, the no-delay assumption
serves as a good bound on how a simple and straightforward peer-
assisted VoD system might perform. Furthermore, our analysis
results show that it doesnot have much impact on performance,
so long as the system scale is not too small.

For Poisson user arrival, it can be shown that the average
additional server rate needed is given by

s =
∑

n

(λT)n

n!
e−λT

∑

uj

p(u1, u2, . . . , un)s(u1, u2, · · · , un)

(2)
where

p(u1, u2, · · · , un) =
∏

1≤j≤n

p(uj),

Although this result is not in closed form,s can be readily
calculated using Monte Carlo simulation (details are omitted due
to space constraint).

Now we provide results for the no-prefetching policy. We are
interested in two aspects of a system: 1) the server rate with
respect to the supply-demand ratio; and 2) the server rate with
respect to the system scale. For simplicity, we assume that there
are only two types of users in the system, wherew1 = 768 kbps,
w2 = 256 kbps,r = 512 kbps andT = 300s.

A. Surplus System

We tune the percentage of the type1 and 2 users to drive
the operation of the VoD system into surplus or deficit. Figure 1
shows the server rate in a surplus system. Each curve in the figure
corresponds to a fixed supply-demand ratio and different points
on a particular curve correspond to different number of concurrent
users in the system.

We make the following observations. First, when the supplyS
is greater than the demandD by a substantial margin (S/D = 1.4
and above), the server rate is very close to the video bit rater
and doesnot increase as the system scales (i.e., the number of
users grows). In other words, when there is sufficient average
surplus in the system, an approach as simple as the no-prefetching
policy can be adopted and the server rate will remain very low.
Absurd as it sounds, this condition is totally realistic. Today’s
online video offerings typically use an encoding rater that puts

3

 100

 40

 20

 10

 4

 2

 1

30012060301263

se
rv

er
 r

at
e

/ c
on

te
nt

 r
at

e

avg. concurrent users (ρ1 + ρ2) (x 100)

S/D=1.000
S/D=1.001
S/D=1.004
S/D=1.01
S/D=1.04
S/D=1.1
S/D=1.4

Fig. 1. Server rate in a surplus system

systems in the surplus mode (the argument will become more
convincing after we present the real-world data in a later section).
Second, even with little average surplus, the simple approach can
greatly reduce the server rate. For instance, whenS/D = 1.04
and the number of concurrent users is30, 000, the server rate is
about3.8r. Compared to traditional client-server models, where
the server streams all data and thus its rate would be about
30, 000r, the bandwidth saving is significant. Third, the server rate
increases significantly asS/D → 1. The simple no-prefetching
policy shows its weakness when the system operates closer toa
balanced system.

B. Deficit System

4

3

2

1

0
30012060301263

se
rv

er
 r

at
e

/ c
on

te
nt

 r
at

e
(1

0y)

avg. concurrent users (ρ1 + ρ2) (x 100)

D/S=1.004
D/S=1.04
D/S=1.4
bounds (D-S)

Fig. 2. Server rate in a deficit system

Figure 2 shows the server rate of a deficit system under various
supply-demand ratios and number of concurrent users in the
system. We have the following observations. First, when the
supply S is less than the demandD by a substantial margin
(S/D < 1.4), the server rate almost always equals toD − S.
This means when the system is in this high-deficit mode, users
do not need to adopt sophisticated prefetching approaches either.
Note that the high deficit system is not the dominant operational
mode for today’s peer-assisted VoD yet. Second, the server rate
deviates fromD − S as S/D → 1. Third, the gap between the
server rate and the boundD − S shrinks as the number of users
in the system increases. Nevertheless, if we consider the absolute
value between the server rate andD − S, it is not negligible as
the system scales up.

In summary, the no-prefetching policy provides insight into the
surplus/deficit modes of peer-assisted VoD, and performs near-
optimal in the high-surplus and high-deficit modes. It doesnot
perform well in the balanced mode, where the average supply is
approximately equal to the average demand. This motivates us to
consider more advanced prefetching policies.

V. WATER-LEVELING POLICY

The performance deviation from the bound in the balanced
mode reveals a fundamental limitation of the no-prefetching
policy. Due to the arrival/departure dynamics, at any giventime,
a balanced system (on average) might be instantaneously in a
surplus or deficit state. When the system is in a surplus state,the
no-prefetching policy doesnot use the surplus upload bandwidth
that might be available. When the system enters a deficit state, the
server needs to supplement the peers’ uploading in order to satisfy
the real-time demands. Intuitively, if users prefetch andsave for
a rainy day, the server contribution can potentially be reduced. In
this section, we consider awater-leveling policy, for which users
prefetch content and buffer data for their future needs. Of course,
to keep the server rate low, we assume users donot prefetch from
the server. A peer only prefetches from those peers that arrived
before it and have sufficient upload bandwidth for distribution.
Also, since users might havesavings in their buffer, they can
drain their buffer before they request any new data. Hence, the
demand of each user might vary depending on its buffer level,as
opposed to the constant demand with the no-prefetching policy.

In the water-leveling policy, we definepi(t), di(t) and bi(t),
respectively, as the playback point, the demand and the buffer
point of useri at timet. The buffer pointbi(t) is the total amount
of content downloaded by useri up to timet. We always ensure
that the buffer points of all peers follow its arrival order,i.e.,
bi ≥ bj , for all i < j. We also define itsbuffer levelasBi(t) =
bi(t)−pi(t). Each user must maintainsBi(t) ≥ 0 for continuous
real-time playback. For simplicity, let the demand of useri be 0,
if its buffer level is above0, andr otherwise.

If all users maintain their buffer level above0, the server rate
would be 0, as the demands of all users are0 at the moment.
This observation leads to an insight that the server rate might
be reduced if all users accumulate a high buffer level when the
system is in surplus mode. Treating all users’ buffer aswater
tanks, thewater-fillingstrategy naturally suggests to fill the lowest
buffer level first. Although this policy is sub-optimal, as users’
arrival order also comes into play, it nevertheless, appears to
be a very reasonable heuristic. The water-leveling policy can be
implemented via the following three steps.

A. Satisfying Real-Time Demands

At some timet, assume there aren users in the system. The
demand of each user is0 or r, depends on whether its buffer is
empty. As in the no-prefetching policy, we pass through all users
in order and determine the required server rate. This ensures all
real-time demands are satisfied. During the process, we record
how much upload bandwidth remains at each user (denoted by
li).

B. Allocating Growth Rates

After the first pass through all users, the water-leveling policy
allocates remaining upload bandwidths to users with the smallest

4

buffer levels. It is easy to see thatln−1 (remaining bandwidth
at usern − 1) can only be allocated to usern, while l1 can
be allocated to any users from2 to n. Due to this asymmetry,
we perform the allocation of the remaining upload bandwidthin a
backward manner, from usern−1 to user1. There is no user later
than usern, so its remaining upload bandwidth is not utilized.

Let gi be thegrowth rateof useri, which represents the extra
upload bandwidths assigned to useri beyond satisfying its real-
time demand. We start with usern− 1, and assign its remaining
bandwidth ln−1 to usern, i.e., gn = ln−1. Then, we examine
user n − 2. The allocation of the remaining bandwidth at user
n − 2 can be calculated as (goes to usern − 1 or n):

• gn−1 = ln−2, if Bn−1 < Bn;
• gn = gn + ln−2, if Bn−1 > Bn;
• gn−1 = min(ln−2+gn

2
, ln−2), gn = gn + ln−2 − gn−1, if

Bn−1 = Bn.

If Bn−1 6= Bn, then ln−2 is assigned to whoever has smaller
buffer level. Otherwise, forBn−1 = Bn, the bandwidth assign-
ment is to ensure that the growth rates of the usern − 1 and n
are equal after the allocation.

After the remaining bandwidth of usern − 2 is completely
assigned, we move to process usern − 3 in a similar way. Note
that the entire backward allocation can be completed withO(n)
time, as long as we maintain a simple auxiliary data structure to
keep track of groups containing neighboring users with the same
buffer level.

C. Adjusting Growth Rates

The growth rate allocation in the above step is purely based on
the users’ buffer levels. If the buffer point (note: not buffer level)
of userk+1 catches up with userk (i.e., bk+1(t) = bk(t)), while
userk+1 is assigned a higher growth rate than userk (i.e.,gk+1 >
gk). Then, the buffer point of userk+1 will surpass userk. In such
a case, we need to decrease the growth rategk+1 to gk. Hence,
the third step is to pass through all users again in order, andshred
off the growth rates of those users who have already caught up
with earlier users, and re-assign extra bandwidths to laterusers.
Again, as long as we update the auxiliary data structure (used in
the second step as well) properly, this process can be completed
with O(n) time.

In short, the bandwidth allocation in the water-leveling policy
consists three steps: 1) pass through all the users in order and de-
termine the required server rate to support real-time playback; 2)
process all the users backwards to assign remaining bandwidths;
and 3) traverse all the users again in order and adjust the growth
rates. The complexity of the entire allocation isO(n).

VI. GREEDY POLICY

We carefully examined the simulation traces of the water-
leveling policy. Typically when the server rate is positive, the
buffer levels of earliest users (user1, 2, 3, etc.) are usually0.
This implies that data demands imposed on the server are usually
generated by the earliest users. Due to the asymmetry of the VoD
system, only earlier users can upload to later users, and they are
more likely to be assigned lower growth rates than later users.
Hence, the actual behavior of the system is that later users tend to
have higher buffer levels than earlier users, and earlier users have
a higher risk of running out of buffer. Whenever that happens,
these users will have to request data directly from the server. To

correct this behavior, in this section we consider agreedy policy,
where each user simply dedicates its remaining upload bandwidth
to the next user right after itself.

The greedy policy works in the following two steps: The first
step is similar to the no-prefetching policy and the first step of
the water-leveling policy. We pass through all users in order and
process each of them to determine the server rate that satisfy
the real-time demands. We again record the remaining bandwidth
at each user during the process. The second step of the greedy
policy passes through all users in order and allocates as much
bandwidth as possible to the next user. We still need to ensure
that the growth rate of userk + 1 doesnot exceed userk, when
their buffer points become the same.

The second step can be further explained in the following
pseudo code block. Note that the growth rate of the buffer point

algo 1 2nd Step - Greedy Policy
1: budget := 0
2: for k = 1 : n − 1 do
3: budget := budget + lk;
4: if bk = bk+1 and dk + gk < dk+1 + budget then
5: gk+1 := dk + gk − dk+1

6: else
7: gk+1 := budget
8: budget := budget − gk+1

9: return

(demand + growth rate) is compared between userk andk + 1.
The allocation doesnot use the buffer level at all.

VII. S IMULATION RESULTS

We developed a discrete-event simulator to study the perfor-
mance of the water-leveling and greedy policies. Because no-
prefetching is shown to be close to optimal in high-surplus and
high-deficit modes, we focus on the cases that the average supply
approximately equals the average demand (the balanced mode).

 8

 6

 4

 2

 1
 0.5

 0

1.401.201.101.041.021.011.0041.0021.0011

se
rv

er
 r

at
e

/ c
on

te
nt

 r
at

e

Supply/Demand (S/D)

no prefetching
water-leveling
greedy

(a) Surplus mode

 100

 40

 20

 10

 4

 2

 1

 0.4

1.401.201.101.041.021.011.0041.0021.001

se
rv

er
 r

at
e

/ c
on

te
nt

 r
at

e

Demand/Supply (D/S)

no prefetching
water-leveling
greedy
bounds (D-S)

(b) Deficit mode (x-axis logscale)

Fig. 3. Comparison of Three Prefetching Policies

We fix the user arrival rate atλ = 1 and vary the supply-
demand ratio between1/1.4 to 1.4. We use a relatively low user
arrival rate as such systems fluctuate more between instantaneous
surplus and instantaneous deficit state in the balanced mode.
From Figure 3, we see that the prefetching policies can result
in dramatically lower average server rates. For example, inthe
perfectly balanced mode, prefetching can reduce the average
server rate by a factor of five or more. In the surplus modes, the
server rate actually goes to0 when users are allowed to prefetch
content. The buffer built up during the surplus state allowsthe
systems to sustain streaming without using the server bandwidth

5

at all. In a deficit system, the server rate is much closer to the
boundD − S. This is true in both the water-leveling policy and
the greedy policy. Moreover, the greedy policy appears to achieve
slightly lower server rates than the water-leveling policyunder all
the examined conditions.

VIII. R EAL-WORLD CASE STUDY

In this section, we use real-world traces to study peer-assisted
VoD and the three prefetching polices. We use a set of trace
records collected from the MSN Video service, which consists of
all the on-demand streaming requests during the entire month of
April 2006. Each trace record contains the start/end time (thus
the duration) of a streaming session and the name/length/size of
the accessed media file. All video streams were served by MSN
servers (via a CDN, to be precise). Although these traces were
generated from a client-server video streaming deployment, we
can use them to drive a simulation and assess how well a peer-
assisted VoD would have performed to save the server bandwidth.

A large number of videos offered by MSN Video are very
popular, typically being viewed by many users simultaneously,
which makes them good candidates for the single-video peer-
assisted VoD distribution.

A. Inferring Users’ Upload Bandwidths

 100

 80

 60

 40

 20

 0
 0 0.5 1 1.5 2 2.5 3 3.5

C
D

F
 (

%
)

bandwidth (Mbps)

down link BW distribution

Fig. 4. User download link bandwidth distribution

Each trace record contains the download bandwidth of the
corresponding user machine, which is measured by the Windows
Media Server whenever a connection is established. Figure 4
shows the distribution of these measured download bandwidths.
Note the streaming media server doesnot distinguish user down-
load bandwidth greater than3.5 Mbps, thus all such measure-
ments collapse to a single point to the right of Figure 4. By
using a simple mapping table based on available DSL/Cable
offerings, we can infer the upload bandwidths of the users, as
shown in Table I. Note that we are making very conservative

modem ISDN DSL1 DSL2 Cable Ethernet
downland 64 256 768 1500 3000 > 3000

upload 64 256 128 384 768/384 768

share (%) 2.84 4.34 14.26 23.28 18.0 37.27

TABLE I

USER BANDWIDTH BREAKDOWN (KBPS)

assumptions on the users’ upload bandwidth. For instance, many
users, whose download bandwidths are above3 Mbps, might
actually be on university campus networks and therefore have

much higher upload bandwidths than the768 kbps assumed here.
Nevertheless, a benign peer-assisted VoD system may not want to
fully exploit the bandwidth of the high capacity users, as doing
so might greatly deter their participation.

B. Trace Simulation Results

MSN served over12, 000 on-demand videos that month. We
first study the top two most popular videos. Each of the stream
attracted about800, 000 views during the month. We plot the
server rate using the pure client-server deployment as theno P2P
curve in Figure 5. Because the server rate is proportional tothe
number of users watching the video, this curve also reflects the
popularity change of the video over time. The request patterns
on these two streams are strikingly different. The most popular
stream, which we call thegold stream, was released on April
5th and quickly attracted a large number of requests. However,
its popularity also declined very quickly, and after5 days only
occasional views were observed. The second most popular stream,
the silver stream, remains quite popular throughout the entire
month. We observe that its popularity goes through a peak and
valley cycle each day. Interestingly, its popularity also has a7-
day cycle as well, where the valley matches nicely with weekend
times.

We use these traces to drive the simulation and study the
performance of the proposed policies. We first examine the pure
client-server model and the peer-assisted model using the greedy
policy. The performance of both gold and silver streams is shown
in Figure 5. The server rate in the peer-assisted model is plotted

 1.2

 1

 0.8

 0.6

 0.4

 0.2

 0
9th8th7th6th5th

se
rv

er
 r

at
e

(G
bp

s)

date (Apr. 2006)

no P2P
P2P (3x quality)
P2P (current quality)

(a) gold stream

 50

 40

 30

 20

 10

 0
30th25th20th15th10th5th1st

se
rv

er
 r

at
e

(M
bp

s)

date (Apr. 2006)

no P2P
P2P (3x quality)
P2P (current quality)

(b) silver stream

Fig. 5. Trace-driven simulation

as theP2P (current quality)curve. We also consider the case

6

when the video is distributed with peer assistance at much higher
quality (its bitrate tripled), as shown in theP2P (3x quality)curve.

We make the following observations. First, it is clear that the
MSN Video offering is currently operating in a surplus mode
due to the relatively low bitrates of the video. We believe that
this applies to other major VoD sites as well. Hence, if a peer-
assisted VoD system were to replace the client-server system, the
server rate would be dramatically reduced. In fact, Figure 5shows
a 1000-fold server rate reduction! Second, the occasional traffic
often occurs at times when the video popularity enters valleys,
which corresponds to small numbers of concurrent users in the
system. This conforms quite well with our analysis. When the
number of concurrent users is small, the peer-assisted VoD is
more likely to run into a temporary deficit state and requires
server participation. Third, when a peer-assisted VoD solution
is deployed, we can easily offer much higher streaming quality
(e.g. tripling the content bitrate) and still trim the server rate
significantly. Finally, peer-assistance benefits both the flash crowd
(gold stream) and the long-lasting (silver stream) scenarios.

We now compare the performance of all three prefetching
policies using the MSN Video traffic, as shown in Table II. The
system operates in the surplus mode with the current quality
and in the deficit mode with3 times quality. We report the

gold stream silver stream
serv. rate (bps) N.P. W.L. greedy N.P. W.L. greedy

bitrate (kbps) 206 206

no P2P (Mbps) 20.9 36.0

cur. qual. (kbps) 225 173 172 258 11.9 0
3x qual. (Mbps) 7.03 7.00 7.00 7.60 7.25 7.19

TABLE II

TRACE-DRIVEN COMPARISON OF THREE POLICIES(USE THE95 PERCENTILE

RULE, A COMMON INDUSTRY MEASURE). N.P. -NO-PREFETCHING POLICY

AND W.L. - WATER-LEVELING POLICY.

results using the95th percentile bandwidth rule, which works
as follows. An average server bandwidth is measured every5
minutes. All bandwidth points in the month form a set, and the
95th percentile is the smallest number that is greater than95% of
the numbers in the set. This is a common industry measure used
for billing purpose. We observe dramatic improvements going
from client-server to peer-assistance with no-prefetching, and then
further substantial improvements going from no-prefetching to
either of the water-leveling or greedy prefetching policies. We
further observe that the greedy policy tends to achieve the lowest
server rate under all conditions. Note that the values of thegold
stream are actually less than those of the silver stream, because
it rarely generates traffic on days other than the5 most popular
days.

C. Multiplexing Effects with the Top 100 Videos

To get an estimation of the total server bandwidth costs, we
have to take into account the multiplexing effect of many different
videos, as one video’s peak might happen to be another video’s
valley. To this end, we now examine the top100 popular videos
on the MSN site. We restrict ourselves to100 videos simply
to reduce the processing load. During the entire month of April
2006, these videos attracted over16 million views in total. We
calculate the aggregate server rate to support these100 videos
in three scenarios: not using P2P, using P2P without increasing

 100

 80

 60

 40

 20

 0
 0 0.2 0.4 0.6 0.8 1

C
D

F
 (

%
)

server rate (Gbps)

no P2P
P2P (3x quality)
P2P (current quality)
95th percentile cut

Fig. 6. System wide savings (aggregation of 100 videos)

quality and using P2P with3 times quality. The average aggregate
server rate is measured every5 minutes. Then, the Cumulative
Density Function (CDF) over the entire30 days is plotted for
each scenario. We then calculate the95th percentile bandwidth
by making a cut at95% on each curve.

As shown in Figure 6, the server rate without using P2P is
670.7 Mbps. Using peer-assisted VoD without increasing quality,
the server rate becomes2.82 Mbps. It is 280.3 Mbps using P2P
with 3 times quality. Hence, by using peer assistance, the server
bandwidth can potentially be trimmed down by99.6% at current
quality level. Alternatively, peer-assisted solution cantriple the
video rate (with a corresponding improvement in quality) and
still trim the server bandwidth by58.2%.

IX. CONCLUSION

We considered the design and potential benefits of peer-assisted
video-on-demand. Using real-world data, we have shown that
peer-assisted VoD can dramatically reduce the distribution cost of
video publishers. There remains a number of open issues in peer-
assisted VoD, including how close the proposed water-leveling
and greedy prefetching policies are to optimal, and how much
potential improvement can be gained using the multiple-video
approach.

REFERENCES

[1] L. Gomes, “Will All of Us Get Our 15 Minutes On a YouTube
Video?”, Wall Street Journal, Aug. 30, 2006.

[2] A. Al Hamra, E. W. Biersack, and G. Urvoy-Keller, “A pull-based
approach for a VoD service in P2P networks”,Proc. of HSNMC’04,
Toulouse, France, Jul. 2004.

[3] Y. Cui, B. Li, and K. Nahrstedt, “oStream: asynchronous streaming
multicast in application-layer overlay networks”,IEEE JSAC, vol.
22, no. 1, 2004.

[4] J. Li, “PeerStreaming: a practical receiver-driven peer-to-peer media
streaming system”,MSR-TR-2004-101, Sep. 2004.

[5] Y. Shen, Z. Liu, S. Panwar, K. W. Ross, and Y. Wang, “Efficient
substream encoding for P2P video on demand”, in submission.

[6] S. Annapureddy, C. Gkantsidis, P. R. Rodriguez, and L. Massoulie,
“Providing video-on-demand using peer-to-peer networks”, MSR-
TR-2005-147, Oct. 2005.

[7] UUSee, http://www.UUSee.com
[8] China P2P Streaming Research Report 2006, iResearch, http://-

www.iresearch.com.cn
[9] Roxbeam, http://www.roxbeam.com

[10] J. Li, P. A. Chou, and C. Zhang, “MutualCast: an efficient mecha-
nism for one-to-many content distribution”,ACM SIGCOMM ASIA
Workshop, Apr. 2005.

[11] R. Kumar, Y. Liu, and K. W. Ross, “Stochastic Fluid Theory for P2P
Streaming Systems”, IEEE INFOCOM 2007, Anchorage, Alaska,
May. 2007.

