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Abstract— We consider the design and potential benefits of peer- of the publisher’s videos, many users are watching simeitan
assisted video-on-demand, in which participating peers assist the gusly. If the publisher ha®V videos and adopts the single-video
server in delivering VoD content. The assistance is done in such aapproach then the distribution problem essentially be=oMi

way that it provides the same user quality experience as pure client- DR . . .
server distribution. We focus on the single-video approach, wheitgy sub-distribution problems, one for each video. Hencefortthis

a peer only redistributes a video that it is currently watching. We Paper, we focus on the design and analysis of peer-assisted V

first describe three natural prefetching policies for exploiting suplus ~ for single videos. The aggregation df videos is shown through

peer upload capacity. We then study the performance of peer-assted  the multiplexing of all individual ones.

VoD using stochastic simulation z_;md trace_—driven simulation, with In a peer-assisted VoD system, when the peers alone cannot

traces collected from the MSN Video service. The results of these —_ )

simulations show that peer-assisted VoD, with the proper prefeting r?d'smbme the video among themselyes, the s_erver makeélseu

policy, can dramatically reduce server bandwidth costs. difference, so that each peer still receives the video attiveded

rate. The server is only active when the peers alone cantistysa

the demand. When the peers alone can satisfy the demand, not

only is the server inactive, but the peers can potentialgfgich
Video-on-demand (VoD, also called on-demand video streamiedeo from each other using the peers’ surplus bandwidtls Th

ing) has become an extremely popular service in the Internptefetching allows the peers to build a reservoir of videbjol

For example, YouTube, a video-sharing service which stseaan be tapped when the aggregate upload bandwidth of peers

its videos to users on-demand, has about 20 million viewsbacomes less than the demand across all peers.

day with a total viewing time of over 10,000 years to date [1]. The contribution of this paper is as follows:

Other major Internet VoD publishers include MSN Video, Gleog , e introduce the peer-assisted VoD problem and isolate the

Video, Yahoo Video, CNN, and a plethora of copycat YouTube prefetching policy issue.

sites. « For the single-video approach, we describe three natural
Most of the VoD being streamed over the Internet today is  prefetching policies for exploiting surplus peer upload ca

encoded in the 200-400 kbps range. At these rates, ISPs (or pacity. These policies amo-prefetchingwater-leveling and

CDNs) typically charge video publishers 0.1 to 1.0 cent pee@ greedy We simulate each of the policies and show that

minute. It has been estimated that YouTube pays over 1 millio they can significantly reduce server bandwidth usage, with

dollars a month in bandwidth costs. These costs are expégted  prefetching providing dramatic gains.

go up, as demand increases and higher-quality videos (atésr , \We then investigate the three polices using traces cotlecte

up to 3 Mbps or more) are made available. from the MSN Video service. We examine traces from the
In this paper, we consider the design and potential benéfits 0 top two most popular videos. One has a high demand for a

peer-assisted VoDIn peer-assisted VoD, there is still a server relatively short period of time; the other has a more moderat

I. INTRODUCTION

(or server farm) which stores all of the publisher’'s videos a demand but for a relatively long period of time. We also
guarantees that users can playback the video at the playback examine the aggregation of the tap0 videos. The trace
rate without any quality degradation. But in peer-assisteD, analysis again shows that peer-assisted VoD with prefegchi
the peers that are viewing the publisher's videos also tassis can dramatically reduce server bandwidth costs.
redistributing the videos. Since peer-assisted VoD canersv

significant fraction of the uploading from the server to theers, Il. RELATED WORK

it can potentially dramatically reduce the publisher’s dhaiuth Most peer-assisted VoD solutions belong to the categorhef t
costs. single-video approach. Cui et al. [3] proposed oStreamchvhi

There are two broad design approaches to peer-assisted Vexliended the application layer multicast to include bufifethe
In one approach, which we refer to as #ingle-video approach peer node to support VoD. Hamra et al. [2] proposed a treedbase
a peer only redistributes the video it is currently watchiitg approach to implement peer-assisted VoD. In their schethe, a
does not redistribute other videos that it may have watchmell gpeers form a distribution tree, and based on bandwidthadyiitly,
stored in the past. The single-video approach is similar toaanew coming peer is connected to a proper parent node in the
torrent in BitTorrent, in which all peers in the torrent shahe distribution tree. Shen et al. [5] combined multiple dgstoin
same file. In the second approach, which we refer to as tbeding (MDC) of video with data partitioning, and provided
multiple-video approacha peer can redistribute videos that it haa VoD solution with graceful quality degradation when peers
previously stored but is not actively viewing. Comparedhvitie fail and substreams of video are lost. Annapureddy et al. [6]
multiple-video approach, the single-video approach isp#min  studied using network coding in the VoD scenario. Li progbse
the client and tracker design, and involves a straightfoiveand- PeerStreaming [4] to support the multiple-video approdds:
user policy. In this paper, we focus on the single-video apph, ing erasure resilient coding (ERC), PeerStreaming mayigbigrt
which intuitively should provide good performance if, foaal cache previously viewed videos with the portion of the vileo



being cached proportional to the upload bandwidth of the;pesufficient. The demand of us@ris satisfied first by uset, user

which helps to reduce the overall cache requirement. 2 and then the server, and so on. The following example might
Peer-assisted video distribution is also catching up in thelp clarify the description.

industry. According to a market report [8], in China alongeeo . Forn = 1, we haves(u;) = r.

12 million Internet users have accessed peer-assisteairstrg o Forn =2, we haves(uy,us) = r + max(0,7 — u).

services or downloaded peer-assisted streaming softwates |, general, for a given state, the rate required from theesess

least 15 organizations are providing peer-assisted viddivery

services. Though most services are peer-assisted file dadnl . =

or peer-assisted broadcast, peer-assisted VoD is cgrigaiming s(u, g, o5 Un) = 1?;2(”(7. +max(0, (j — L)r — Z“"))' @

popularity. Roxbeam [9], used to be called CoolStreamind an ) =t )

regarded as the first practical P2P streaming system, hasthec ~ Note that in the above system, the upload bandwidth of the

added VoD in its service. UUSee [7], a new startup invest&gost recent user (usei) is not utilized. Furthermore, i, 1 >

by SIG, provides thousands of VoD programs on its website. the upload bandwidth portiom, ., —r of the next most recent

It has also signed a four-year contract with CCTV, the largedSer (usem — 1) is also wasted, as it can only uploado user

TV producer and broadcast network owner in China, to provide Alternatively, if each user adopts a sharing window and can

programs to all Internet users. tolerate slight delay, then users arrival very close (eigersn,
n—1,---, n—k, for somek) can potentially upload different
[1l. SURPLUS AND DEFICIT MODES blocks in their windows to each other. Then, all users’ ugloa

To gain insight into peer-assisted VoD, we begin with a Sénppandwidths could be fully utilizeq. This is especially tinamany
model. Let the length of the video (in seconds) be denoted’ byOther types of peer-to-peer applications, such as Mutisi{1a],

and the rate of the video be denoted byin bps). Let the user V€ streaming [11], etc. Nevertheless, the no-delay apsiom
arrive at the system in a Poisson process with parameteet serves as a good bound on how a simple and straightforware pee

M denote the number of user types, where the typaser is of assisted VoD syst_em might perform. Furthermore, our amalys
upload bandwidthu,, and appears with probabilify,,. Using the results show that it doesot ha_ve much impact on performance,
property of the compound Poisson process, the above us$al ar° long as the system s_cale IS not too small.

model is the same as if each type user arrives in a Poisson FOf Poisson user arrival, it can be shown that the average
process with independent parameger). Naturally, the average 2dditional server rate needed is given by

upload bandwidth of all users js=>" pw,. "™ _

It follows from Little’s law that inzsteady state the expatte ° > n C M bz ) s(un, uz, )
number of typem users in the system is given by, = p, AT " i @
Thus, in steady state, the average demand is r > p,, = 7AT  \here
and the average supply = > wp,pm = pAT. We say that the pur,uz, - ) = H p(uy),

system is in thesurplus modéf S > D; and in thedeficit mode

if S < D. That is, the system is in the surplus mode:it> r,

and in the deficit mode otherwise. It is important to note thAthough this result is not in closed forms can be readily
even if a system is in surplus mode, at any given instant Oé,tm{:alculated using Monte Carlo simulation (details are cdittiue

the server may need to be active and supply video to peers. -IIFﬁ;pace constr%mt). its for th tetchi oy, W
is becausgi) although on average the system is in the surplys ow we provide results for the no-prefetching policy. We are

mode, due to fluctuation, at a given instant of time the supgly interested in two aspects of a system: 1) the server rate wi_th
become less than the demand:; & it may not be possible to respect to the supply-demand ratio; and 2) the server rate wi

use all of the supply bandwidth at any given instant of timee T respeclt to the syste:cn scale.. F?]r simplicity, we assumekhleaet
latter point will become more clear when considering théedént are only two types of users in the system, whetie= 768 kbps,
prefetching policies subsequently. we = 256 kbps,r = 512 kbps andI’ = 300s.

1<j<n

IV. NoO-PREFETCHINGPOLICY A. Surplus System

We start with the simplest scenario in which all users adoptWe tune the percentage of the typeand 2 users to drive
a no-prefetchingpolicy. Under this policy, users only downloadthe operation of the VoD system into surplus or deficit. Feglir
content in real-time (the download rate equa)sand donot shows the server rate in a surplus system. Each curve in il fig
prefetch for future needs. corresponds to a fixed supply-demand ratio and differentitpoi

Suppose at a particularly instant of time there aresers in on a particular curve correspond to different number of corent
the system. Order theseusers so that user is the most recent users in the system.
to arrive, usem — 1 is the next most recent, and so on. Thus user We make the following observations. First, when the sugply
1 has been in the system the longest. Lgtj = 1,...,n, be the is greater than the demaudel by a substantial margir(D = 1.4
upload bandwidth of thg'" user and its probability b@(u;). and above), the server rate is very close to the video bitirate

Recall that userj is of type m with probability p,,,, sop(u; = and doesnot increase as the system scales (i.e., the number of
wy,) = pm- Let the state of the system Be;, us, -+ ,u,) and users grows). In other words, when there is sufficient awerag
the rate required from the server 9@, us, - - - ,u,). Since there surplus in the system, an approach as simple as the no-grifgt

is no prefetching, the demand of uskecan only be satisfied by policy can be adopted and the server rate will remain very low
the server, which is the video rate Then, the demand of userAbsurd as it sounds, this condition is totally realistic.dag’s
2 will be satisfied first by uset and then the server if; is not online video offerings typically use an encoding ratéhat puts



ool o1 oo In summary, the no-prefetching policy provides insighbittie

—— S/D=1.001 ] surplus/deficit modes of peer-assisted VoD, and perfornas-ne
w0l —— 2182%1884 1 optimal in the high-surplus and high-deficit modes. It does$

—=— S/D=1.04
S/D=1.1

perform well in the balanced mode, where the average supply i
20T approximately equal to the average demand. This motivatds u

10 W consider more advanced prefetching policies.

4l V. WATER-LEVELING PoLicy

server rate / content rate

) The performance deviation from the bound in the balanced
mode reveals a fundamental limitation of the no-prefetghin
policy. Due to the arrival/departure dynamics, at any gitiere,
a balanced system (on average) might be instantaneously in a
surplus or deficit state. When the system is in a surplus stae,
no-prefetching policy doesot use the surplus upload bandwidth
that might be available. When the system enters a deficit, $tete
server needs to supplement the peers’ uploading in ordetisis
systems in the surplus mode (the argument will become mdhe real-time demands. Intuitively, if users prefetch aasle for
convincing after we present the real-world data in a latetiee). a rainy day the server contribution can potentially be reduced. In
Second, even with little average surplus, the simple amprean this section, we consideraater-leveling policyfor which users
greatly reduce the server rate. For instance, wigh = 1.04 prefetch content and buffer data for their future needs.dDfse,
and the number of concurrent users3is 000, the server rate is to keep the server rate low, we assume usemsalprefetch from
about3.8r. Compared to traditional client-server models, wherhe server. A peer only prefetches from those peers thatedrri
the server streams all data and thus its rate would be abbafore it and have sufficient upload bandwidth for distridnoit
30, 000r, the bandwidth saving is significant. Third, the server rat&lso, since users might haveavingsin their buffer, they can
increases significantly aS/D — 1. The simple no-prefetching drain their buffer before they request any new data. Heree, t
policy shows its weakness when the system operates closer emand of each user might vary depending on its buffer lagel,
balanced system. opposed to the constant demand with the no-prefetchingypoli

In the water-leveling policy, we defing;(t), d;(t) and b;(t),
respectively, as the playback point, the demand and thestbuff
point of user: at timet. The buffer point;(¢) is the total amount
of content downloaded by usémup to timet. We always ensure
that the buffer points of all peers follow its arrival ordee.,
b, > b;, for all ¢ < j. We also define itbuffer levelas B;(t) =
b;(t) — p;(t). Each user must maintairi3;(¢) > 0 for continuous
real-time playback. For simplicity, let the demand of usée 0,
if its buffer level is above), andr otherwise.

If all users maintain their buffer level abowe the server rate
would be0, as the demands of all users dreat the moment.
This observation leads to an insight that the server ratehimig

3 6 12 30 60 120 300
avg. concurrent users (p, + p,) (x 100)

Fig. 1. Server rate in a surplus system

B. Deficit System

server rate / content rate (10”)

D/S=1.004 be reduced if all users accumulate a high buffer level when th
ey system is in surplus mode. Treating all users’ buffervaser

0 ‘ ‘ ‘ —— bounds (©-5) tanks thewater-filling strategy naturally suggests to fill the lowest
3 6 12 30 60 120 300 buffer level first. Although this policy is sub-optimal, aseus’

avg. conaurrent users (py + po) (x 100) arrival order also comes into play, it nevertheless, appéar

be a very reasonable heuristic. The water-leveling polaxy be
implemented via the following three steps.

Figure 2 shows the server rate of a deficit system under v&riou
supply-demand ratios and number of concurrent users in the Satisfying Real-Time Demands
system. We have the following observations. First, when theAt some timet, assume there are users in the system. The
supply S is less than the deman® by a substantial margin demand of each user sor r, depends on whether its buffer is

(S/D < 1.4), the server rate almost always equals/fo- 5. empty. As in the no-prefetching policy, we pass through aéira

This means when the sys_te_m IS in this high—deficit mode, USEiSorder and determine the required server rate. This essalle
do not need to adopt sophisticated prefetching approaches €ither, ime demands are satisfied. During the process, wadeco

Note that the high deficit system is not the dominant opematio how much upload bandwidth remains at each user (denoted by
mode for today’s peer-assisted VoD yet. Second, the seater rl_)

deviates fromD — S as .S/D — 1. Third, the gap between the

server rate and the bourid — S shrinks as the number of users )

in the system increases. Nevertheless, if we consider thalwte B- Allocating Growth Rates

value between the server rate abd— S, it is not negligible as  After the first pass through all users, the water-levelinticgo
the system scales up. allocates remaining upload bandwidths to users with thdlesta

Fig. 2. Server rate in a deficit system



buffer levels. It is easy to see thgf ; (remaining bandwidth correct this behavior, in this section we considegreedy policy
at usern — 1) can only be allocated to user, while [; can where each user simply dedicates its remaining upload bialtialw
be allocated to any users frothto n. Due to this asymmetry, to the next user right after itself.
we perform the allocation of the remaining upload bandwidta The greedy policy works in the following two steps: The first
backward manner, from user1 to userl. There is no user later step is similar to the no-prefetching policy and the firsippsoé
than usem, so its remaining upload bandwidth is not utilized. the water-leveling policy. We pass through all users in patel

Let g; be thegrowth rateof useri, which represents the extraprocess each of them to determine the server rate thatysatisf
upload bandwidths assigned to ugdreyond satisfying its real- the real-time demands. We again record the remaining baitilwi
time demand. We start with user— 1, and assign its remaining at each user during the process. The second step of the greedy
bandwidthi,_, to usern, i.e., g, = l,—1. Then, we examine policy passes through all users in order and allocates a1 muc
usern — 2. The allocation of the remaining bandwidth at usdsandwidth as possible to the next user. We still need to ensur

n — 2 can be calculated as (goes to user 1 or n): that the growth rate of usér+ 1 doesnot exceed usek, when
o Gno1 =1ly_o, if By_1 < By; their buffer points become the same.
o Gn = 0n+lp_o, if Bo_1 > By; The second step can be further explained in the following
¢ g1 = min("=2n 1 o) g, = gn + lua — gn_1, if PSeUdo code block. Note that the growth rate of the buffentpoi

B,_1 = By.
If B,_, # By, thenl,_» is assigned to whoever has smalleft!90 12nd Step - Greedy Policy
buffer level. Otherwise, fol3,_; = B,, the bandwidth assign- 1: budget :=0
ment is to ensure that the growth rates of the user1 andn 2 for k=1:n—1do

are equal after the allocation. 3:  budget := budget + li;
After the remaining bandwidth of user — 2 is completely 4 if bx = i1 @nd di + g < di41 + budget then
assigned, we move to process user 3 in a similar way. Note ° Gk+1 7= d + gr — dra
that the entire backward allocation can be completed with) 6 else
time, as long as we maintain a simple auxiliary data strectar 7 Jk+1 = budget
keep track of groups containing neighboring users with trees 8 budget := budget — gi11
buffer level. 9: return
C. Adjusting Growth Rates (demand + growth rate) is compared between udsand i + 1.

o i The allocation doesot use the buffer level at all.
The growth rate allocation in the above step is purely based o

the users’ buffer levels. If the buffer point (note: not lauffevel) VII. SIMULATION RESULTS
of userk+1 catches up with usék (i.e., by11(t) = b (¢)), while
userk+1 is assigned a higher growth rate than usére., gx+1 >
gx). Then, the buffer point of usér+1 will surpass usek. In such
a case, we need to decrease the growth gate to g,. Hence,
the third step is to pass through all users again in ordershret
off the growth rates of those users who have already caught
with earlier users, and re-assign extra bandwidths to laders.
Again, as long as we update the auxiliary data structured(irse zgégfy.‘:ﬁ'n“é
the second step as well) properly, this process can be ctedples
with O(n) time. 2
In short, the bandwidth allocation in the water-levelindi
consists three steps: 1) pass through all the users in ondetle; -
termine the required server rate to support real-time @elp2) ,: gosa,
process all the users backwards to assign remaining batftid °; ez o tor 10z 100 110 120 140  1oor100100s 101 107 104 110 120 1t
and 3) traverse all the users again in order and adjust thetiyro (a) Slrpius mode (b) Deficit mode (x-axis logscale)
rates. The complexity of the entire allocation(gn).

We developed a discrete-event simulator to study the perfor
mance of the water-leveling and greedy policies. Because no
prefetching is shown to be close to optimal in high-surplod a
high-deficit modes, we focus on the cases that the averagdysup
aLPporoximater equals the average demand (the balanced)mode

100

40
20

10
4

r raEe / contel

server rate / content rate

—— no prefetching
—— water-leveling

/

Fig. 3. Comparison of Three Prefetching Policies
VI. GREEDY PoLIcY

We carefully examined the simulation traces of the water- We fix the user arrival rate ak = 1 and vary the supply-
leveling policy. Typically when the server rate is positithe demand ratio betweeh/1.4 to 1.4. We use a relatively low user
buffer levels of earliest users (useér 2, 3, etc.) are usually). arrival rate as such systems fluctuate more between inetmia
This implies that data demands imposed on the server ardyususurplus and instantaneous deficit state in the balanced .mode
generated by the earliest users. Due to the asymmetry ofdBe From Figure 3, we see that the prefetching policies can tresul
system, only earlier users can upload to later users, anydattee in dramatically lower average server rates. For examplehén
more likely to be assigned lower growth rates than later suseperfectly balanced mode, prefetching can reduce the amerag
Hence, the actual behavior of the system is that later usatstb  server rate by a factor of five or more. In the surplus modes, th
have higher buffer levels than earlier users, and earliersusave server rate actually goes tbwhen users are allowed to prefetch
a higher risk of running out of buffer. Whenever that happenspntent. The buffer built up during the surplus state alldies
these users will have to request data directly from the sefee systems to sustain streaming without using the server bilttdw



at all. In a deficit system, the server rate is much closer éo tmuch higher upload bandwidths than &8 kbps assumed here.
boundD — S. This is true in both the water-leveling policy and\evertheless, a benign peer-assisted VoD system may nattavan
the greedy policy. Moreover, the greedy policy appears hiexe fully exploit the bandwidth of the high capacity users, asndo

slightly lower server rates than the water-leveling policyder all so might greatly deter their participation.
the examined conditions.

VIII. REAL-WORLD CASE STUDY B. Trace Simulation Results

In this section, we use real-world traces to study peestssi . MSN served over2, 000 on-demanq videos that month. We
VoD and the three prefetching polices. We use a set of traférét study the top two m_ost popu_lar videos. Each of the stream
records collected from the MSN Video service, which cossisgt atiracted abogBO0,000 VIews during the month. We plot the
all the on-demand streaming requests during the entire mafnt server-rate_ using the pure client-server deplqyment agdnhéZP
April 2006. Each trace record contains the start/end tirhes(t curve in Figure 5. Bec"’?“se the server rate is proportionghdo
the duration) of a streaming session and the name/lengghddi number_ of users watching Fhe video, Fhls curve also refléws t
the accessed media file. All video streams were served by MgRlpularlty change of the V|de_o_ over t_|me. The request paster
servers (via a CDN, to be precise). Although these trace® wéf these “’YO streams are strikingly different. The most tarp_u
generated from a client-server video streaming deploymeat ngam' Wh.'Ch we call thgold stream was released on April
can use them to drive a simulation and assess how well a pé5er— and qupkly attractgd a large nqmber of requests. However,
assisted VoD would have performed to save the server batfiwid™® populanty also declined very quickly, and afterdays only

A large number of videos offered by MSN Video are ver cca;lonal views were Qbservgd. The second most poptMnsir'
popular, typically being viewed by many users simultangous he silver stream remains quite popular throughout the entire
which makes them good candidates for the single-video peg}Qnth' We gbserve that its popularity goes through a peak and

assisted VoD distribution valley cycle each day. Interestingly, its popularity alsas a7-
| day cycle as well, where the valley matches nicely with weaeke
times.

A. Inferring Users’ Upload Bandwidths We use these traces to drive the simulation and study the

performance of the proposed policies. We first examine the pu

100 ‘ ‘ ‘ ‘ ‘ ‘ client-server model and the peer-assisted model usingréedy
policy. The performance of both gold and silver streams dswsh
80 in Figure 5. The server rate in the peer-assisted model iteplo
s 60 // —
S L no ]
E 12 —— P2P (3x quality)
S . // | —— P2P (current quality) |
pd 2
20 e
/ 2
‘ —+— down link BW distribution ?
0 : : ‘ : ; ; g
0 0.5 1 15 2 25 3 35 s
bandwidth (Mbps) ®
Fig. 4. User download link bandwidth distribution
Each trace record contains the download bandwidth of the i m - - .
corresponding user machine, which is measured by the Wisdow 5 6 7 8 9
. . . . . dateéApr. 2006)
Media Server whenever a connection is established. Figure 4 (a) gold stream
shows the distribution of these measured download banbs:idt
Note the streaming media server daows distinguish user down- —noPap
load bandwidth greater thah5 Mbps, thus all such measure- 50 R i) |1
ments collapse to a single point to the right of Figure 4. By
using a simple mapping table based on available DSL/Cable &
offerings, we can infer the upload bandwidths of the usess, a %
shown in Table I. Note that we are making very conservative g
[
>
modem | ISDN | DSL1 | DSL2 Cable | Ethernet 3
downland | 64 256 | 768 | 1500 | 3000 | > 3000
upload 64 256 | 128 | 384 | 768/384| 768
share @) | 2.84 | 4.34 | 1426 | 2328 18.0 | 37.27 i
TABLE | 10" 15" 20"
USER BANDWIDTH BREAKDOWN (KBPS) date (Apr. 2006)

(b) silver stream

assumptions on the users’ upload bandwidth. For instanaaym ™9 5 Trace-driven simulation
users, whose download bandwidths are ab8v&lbps, might
actually be on university campus networks and thereforee haas theP2P (current quality)curve. We also consider the case



when the video is distributed with peer assistance at mughehi 100 f
quality (its bitrate tripled), as shown in tiR2P (3x quality)curve.

We make the following observations. First, it is clear tha t 80
MSN Video offering is currently operating in a surplus mode //
due to the relatively low bitrates of the video. We believatth = 60
this applies to other major VoD sites as well. Hence, if a peer :D: //
assisted VoD system were to replace the client-serverrayste O 4
server rate would be dramatically reduced. In fact, Figusad&ws {/
a 1000-fold server rate reduction! Second, the occasioatict 20 —— noP2P

. . . —=— P2P (3x quality)
often occurs at times when the video popularity enters yslle é —=— P2P (current quality)
which corresponds to small numbers of concurrent usersen th 0 ‘ ‘ 95 _percentile cut
0 0.2 0.4 0.6 0.8 1

system. This conforms quite well with our analysis. When the
number of concurrent users is small, the peer-assisted ¥oD i
more likely to run into a temporary deficit state and requiré:ég' 6.
server participation. Third, when a peer-assisted VoD tgwmiu

is deployed, we can easily offer much higher streaming tyuali . . o )
(e.g. tripling the content bitrate) and still trim the servate quality and using P2P with times quality. The average aggregate

significantly. Finally, peer-assistance benefits both thshficrowd S€"Ver rate is .measured eve?yminutes_. Then, the Cumulative
(gold stream) and the long-lasting (silver stream) scesari ~ D€nsity Function (CDF) over the entig) days is plotted for

We now compare the performance of all three prefetchir‘?@Ch scenario. We then calculate 9" percentile bandwidth
policies using the MSN Video traffic, as shown in Table II. ThEY Making a cut abs% on each curve.

system operates in the surplus mode with the current qualit s shown |n.F|gure 6, the Server ra.teh wnhout using PZF;_ IS
and in the deficit mode witt8 times quality. We report the 670.7 Mbps. Using peer-assisted VO[_) without Incréasing qua ity,
the server rate becom@s’2 Mbps. It is 280.3 Mbps using P2P

with 3 times quality. Hence, by using peer assistance, the server

server rate (Gbps)

System wide savings (aggregation of 100 videos)

gold stream silver stream . h .
serv. rate (bps) [ N.P. [ W.L. | greedy | N.P. [ W.L. | greedy bandwidth can potentially be trimmed down ©9.6% at current
[ bitrate (kbps) | 206 [ 206 ] quality level. Alternatively, peer-assisted solution daiple the
[ no P2P (Mbps) | 20.9 [ 36.0 | video rate (with a corresponding improvement in qualityyd an
cur. qual. (kbps)| 225 | 173 172 | 258 | 11.9 0 still trim the server bandwidth b§8.2%.
3x qual. (Mbps) | 7.03 | 7.00 | 7.00 | 7.60 | 7.25 | 7.19

IX. CONCLUSION

We considered the design and potential benefits of peestedsi
video-on-demand. Using real-world data, we have shown that
peer-assisted VoD can dramatically reduce the distributast of
video publishers. There remains a number of open issuesein pe
assisted VoD, including how close the proposed water-ilegel

results using the5!” percentile bandwidth rule, which works : - .
as follows. An average server bandwidth is measured eS/eryand greedy prefetching policies are to optimal, and how much

minutes. All bandwidth points in the month form a set, and ﬂpotentlal improvement can be gained using the multiplesid

e
S . approach.
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TABLE Il
TRACE-DRIVEN COMPARISON OF THREE POLICIE§USE THE95 PERCENTILE
RULE, A COMMON INDUSTRY MEASURE). N.P. -NO-PREFETCHING POLICY
AND W.L. - WATER-LEVELING POLICY.



