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Pearl Causality and the Value of Control

R0OSSs SHACHTER AND DAVID HECKERMAN

1 Introduction

We welcome this opportunity to acknowledge the significance of Judea Pearl’s con-
tributions to uncertain reasoning and in particular to his work on causality. In
the decision analysis community causality had long been “taboo” even though it
provides a natural framework to communicate with decision makers and experts
[Shachter and Heckerman 1986]. Ironically, while many of the concepts and meth-
ods of causal reasoning are foundational to decision analysis, scholars went to great
lengths to avoid causal terminology in their work. Judea Pearl’s work is helping
to break this barrier, allowing the exploration of some fundamental principles. We
were inspired by his work to understand exactly what assumptions are being made
in his causal models, and we would like to think that our subsequent insights have
contributed to his and others’ work as well.

In this paper, we revisit our previous work on how a decision analytic perspective
helps to clarify some of Pearl’s notions, such as those of the do operator and atomic
intervention. In addition, we show how influence diagrams [Howard and Matheson
1984] provide a general graphical representation for cause. Decision analysis can be
viewed simply as determining what interventions we want to make in the world to
improve the prospects for us and those we care about, an inherently causal concept.
As we shall discuss, causal models are naturally represented within the framework
of decision analysis, although the causal aspects of issues about counterfactuals and
causal mechanisms that arise in computing the value of clairvoyance [Howard 1990],
were first presented by Heckerman and Shachter [1994, 1995]. We show how this
perspective helps clarify decision-analytic measures of sensitivity, such as the value
of control and the value of revelation [Matheson 1990; Matheson and Matheson
2005].

2 Decision-Theoretic Foundations

In this section we introduce the relevant concepts from [Heckerman and Shachter
1995], the framework for this paper, along with some extensions to those concepts.

Our approach rests on a simple but powerful primitive concept of unresponsive-
ness. An uncertain variable is unresponsive to a set of decisions if its value is
unaffected by our choice for the decisions. It is unresponsive to those decisions in
worlds limited by other variables if the decisions cannot affect the uncertain variable
without also changing one of the other variables.
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We can formalize this by introducing concepts based on Savage [1954]. We con-
sider three different kinds of distinctions, which he called acts, consequences, and
possible states of the world. We have complete control over the acts but no con-
trol over the uncertain state of the world. We might have some level of control
over consequences, which are logically determined, after we act, by the state of the
world. Therefore, a consequence can be represented as a deterministic function of
acts and the state of the world, inheriting uncertainty from the state of the world
while affected, more or less, by our choice of action.

In practice, it is convenient to represent acts and consequences with variables in
our model. We call a variable describing a set of mutually exclusive and collectively
exhaustive acts a decision, and we denote the set of decisions by D. We call a
variable describing a consequence uncertain, and we denote the set of uncertain
variables by U. At times we will distinguish between the uncertain variables that
serve as our objectives or value variables, V, and the other uncertain variables which
we call chance variables, C = U\ V. Finally, in this section we will use the variables
S to represent the possible states of the world. As a convention we will refer to
single variables with lower-case (x or d), sets of variables with upper-case (D or V),
and particular instances of variables with bold (x or D). In this notation, the set of
uncertain variables X takes value X[S, D] deterministically when D is chosen and
S is the state of the world.

DEFINITION 1 (Unresponsiveness). Given a decision problem described by uncer-
tain variables U, decision variables D, and state of the world S, and variable sets
X CUandY C DUU, X is said to be unresponsive to D, denoted X > D, if we
believe that

VS € §,D; € D,Dy € D: X[S,D;] = X[S, D]

and, if not, X is said to be responsive to D.

Furthermore, X is said to be unresponsive to D in worlds limited by Y, denoted
X >y D, if we believe that

vVSe S DyeD,DyeD: Y[S,Dl] = Y[S,Dz] - X[S,D]_] = X[S7D2]

and, if not, X is said to be responsive to D in worlds limited by Y.

The distinctions of unresponsiveness and limited unresponsiveness seem natural
for decision makers to consider. Unresponsiveness is related to independence, in that
any uncertain variables X that are unresponsive to decisions D are independent of
D. Although it is not necessarily the case that X independent of D is unresponsive
to D, that implication is often assumed [Spirtes, Glymour, and Scheines 1993]. In
contrast, there is no such general correspondence between limited unresponsiveness
and conditional independence.

To illustrate these concepts graphically, we introduce influence diagrams [Howard
and Matheson 1984]. An influence diagram is an acyclic directed graph G with
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Figure 1. The treatment assignment only cures the patient if it affects whether the drug
is taken, but genotype does not have a causal effect unless it is responsive to decisions.

nodes corresponding to the variables, rectangles for decisions, ovals for chance vari-
ables, and rounded rectangles for value variables. Arcs into chance and value nodes,
are conditional. For each uncertain variable x there is a conditional probability
distribution for x given its parents, Pa(x). If the distribution is a deterministic
function, we represent that in the graph by a double oval or double rounded rect-
angle. Arcs into decisions are informational, representing that the parent variables
will be observed before the decision is made. Although there are significant issues
involving informational arcs, we will focus primarily on models in which there are
no informational arcs and all of the decisions could be made in any order, before
any of the uncertain variables are observed.

We allow multiple value nodes, all with no children, assuming that their values
will be summed. We assume that the criterion for making decisions is either the
total value or an increasing exponential utility function of the total. This simplifies
the valuation of a proposed change to a decision problem because the most a decision
maker should be willing to pay for the change is the difference in the values of the
diagrams with and without the proposed change.

Although we have defined unresponsiveness without regard to a graphical rep-
resentation, there is an intuitive graphical interpretation (with some technical ex-
ceptions described in Heckerman and Shachter [1985]). The uncertain descendants
of decisions are usually responsive to them, and the other uncertain variables are
usually unresponsive. Also, X is usually unresponsive to D in worlds limited by Y
if all of the directed paths from D to X include nodes in Y. When these rules of
thumb are all satisfied, we say that an influence diagram is causal.

DEFINITION 2 (Causal Influence Diagram). An influence diagram with graph G
and decision nodes D, chance nodes C, and value nodes V', is said to be causal if
we believe that uncertain variables X C C' UV are unresponsive to decisions D,
X +~ D, whenever there is no directed path from D to X, and X is unresponsive to
decisions D in worlds limited by Y, X <y D, whenever every directed path from
D to X includes a node from Y.

Consider the influence diagram shown in Figure la which we believe is causal.
In this case, we believe that Drug Taken and Cured are responsive to Treatment
Assigned while Genotype is unresponsive to Treatment Assigned. We also believe
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that Clured is unresponsive to Treatment Assigned in worlds limited by Drug Taken.
Note that Treatnent Assigned is not independent of Genotype or Cured given Drug
Taken.

The concept of limited unresponsiveness allows us to define how one variable can
cause another in a way that is natural for decision makers to understand.

DEFINITION 3 (Cause with Respect to Decisions). Given a decision problem de-
scribed by uncertain variables U and decision variables D, and a variable z € U,
the set of variables Y C DUU \ {z} is said to be a cause for x with respect to D if
Y is a minimal set of variables such that z ¥~y D.

Defining cause with respect to a particular set of decisions adds clarity. Consider
again the causal influence diagram shown in Figure 1a. With respect to the decision
Treatment Assigned, the cause of Cured is either {Treament Assigned} or {Drug
Taken}, while the cause of Genotype is {}. Because we believe that Genotype is
unresponsive to Treatment Assigned it has no cause with respect to D. On the
other hand, we believe that Cured is responsive to Treatment Assigned but not in
worlds limited by Drug Taken, so { Drug Taken} is a cause of Cured with respect to
D.

Consider now the causal influence diagram shown in Figure 1b, in which we have
added the decision Gene Therapy. Because Genotype is now responsive to D, the
cause of Genotype is {Gene Therapy} with respect to D. If the gene therapy has
some side effect on whether the patient is cured, then { Gene Therapy, Drug Taken}
but not {Genotype, Drug Taken} would be a cause of Cured with respect to the
decisions, because Cured is unresponsive to D in worlds limited by the former but
not the latter.

The concept of limited unresponsiveness also allows us to formally define direct
and atomic interventions. A set of decision [ is a direct intervention on a set of
uncertain variables X if the effects of I on all other uncertain variables are mediated
through their effects on X.

DEFINITION 4 (Direct Intervention). Given a decision problem described by un-
certain variables U and decision variables D, a set of decisions I C D is said to be

a direct intervention on X C U with respect to D if (1) x «= I for all x € X, and
(2)ysox Tloralyel.

In a causal influence diagram every node in I has children only in X and there
is a directed path from I to every node in X. In the causal influence diagram
shown in Figure 1b, Treatment Assigned is a direct intervention on Drug Taken,
and the set of decisions is a direct intervention on all three uncertain variables.
Note that whether a decision is a direct intervention depends on the underlying
causal mechanism. If the gene therapy had no side effect then Gene Therapy would
be a direct intervention on Genotype, but regardless whether there is a side effect,
Gene Therapy is a direct intervention on { Genotype, Cured}.
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Figure 2. We believe that a system upgrade will affect system quality by fixing bugs
unless new bugs are introduced in the process.

DEFINITION 5 (Atomic Intervention). Given a decision problem described by un-
certain variables U and decision variables D, a decision do(x) € D is said to be a
atomic intervention on x € U with respect to D if (1) do(x) is a direct invention on
x with respect to D, and (2) do(z) has precisely the instances (a) idle, which cor-
responds to no intervention, and (b) do(x) for every instance x of x, where z = x
whenever do(z) = do(x).

This is precisely the atomic intervention described without definition in Pearl
[1993]. The assumptions underlying it are quite strong. The causal influence dia-
gram shown in Figure 2a assumes that we can upgrade our system and improve the
quality by fixing the bugs, but the diagram shown in (b) illustrates the all too fa-
miliar situation when new bugs are introduced in the process, compromising system
quality. In that case, System Upgrade is not a direct intervention on Bugs Fized
and {Bugs Fized} is not a cause of System Quality with respect to D. Although the
system upgrade was intended to be an atomic intervention, it can have unintended
and undesirable consequences.

We can now represent the relationship between an uncertain variable x and other
variables Y, such as its parents in a causal influence diagram. We consider the
uncertain function z(Y) as a variable, and now z is a deterministic function of
Y and z(Y). In fact, if Y is a cause of & with respect to D then z(Y) must be
unresponsive to D.

DEFINITION 6 (Mapping Variable). Given a decision problem described by un-
certain variables U and decision variables D, x € U and variables Y such that for
every y € YNU there exists an atomic intervention do(y) € D, the mapping variable
2(Y") is the chance variable that represents all possible mappings from Y to z.

Finally, we have developed the machinery to characterize a Pearl causal model
and structural equations [Pearl 1993]. Given uncertain variables U, suppose the
decisions D comprise an atomic intervention do(x) on every z € U. Given a graph
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Figure 3. The partial influence diagram for z in a causal model, shown in (a) with parents

Y, becomes the diagram shown in (b) explicitly representing the structural equation for z,
and, when Y is nonempty, the diagram shown in (c) with an explicit atomic intervention
on the mapping variable.

G with nodes U, such that Pa(z)U{do(z)} is a cause for x with respect to D. Then
z = fo(Pa(z),do(z), z(Pa(x)))

for all z € U where f, is a deterministic function such that = = x if do(z) = do(x).

We can extend this to allow manipulation of a mapping variable for x € U
with parents to obtain a Pearl causal model with an atomic intervention for map-
ping variable x(Pa(x)). The decisions D now also include a atomic intervention
do(z(Pa(x))). As a result, Pa(z)U{do(z),do(z(Pa(x)))} is now a cause for z with
respect to D and z(Pa(x)) = x(Pa(z)) when do(z(Pa(z))) = do(x(Pa(z))).

The causal model is represented by the partial influence diagrams shown in Fig-
ure 3 with Y = Pa(z) C C in the graph G. We assume in (a) that there are atomic
interventions do(y) on each y € Y represented as do(Y'). The diagram shown in
(b) explicitly represents the structural equation for z as a deterministic function of
Y, an atomic intervention, do(z), and the mapping variable, 2(Y"). The influence
diagram is causal, showing that Y U {do(z)} is a cause for z with respect to D. We
can extend the model by adding an atomic intervention for the mapping variable,
do(z(Y)). If Y is empty then nothing needs to be added, as do(x) is the same
atomic intervention as do(z()), but otherwise we obtain the diagram shown in (c).
Now Y U {do(z),do(x(Y"))} is a cause for = with respect to D.

An influence diagram is said to be in canonical form if each uncertain variable
responsive to a decision is a descendant of that decision and represented as a de-
terministic node. Each decision, including atomic interventions, is explicit. Each
uncertain variable that is responsive to D is a deterministic function of its parents,
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including any decisions that are direct interventions on it, and a mapping variable.
As an example, the influence diagram shown in Figure 3b is in canonical form.

In the next section we apply these concepts to define and contrast different mea-
sures for the value to a decision maker of manipulating (or observing) an uncertain
variable.

3 Value of Control

When assisting a decision maker developing a model, sensitivity analysis measures
help the decision maker to validate the model. One popular measure is the value
of clairvoyance, the most a decision maker should be willing to pay to observe a
set of uncertain variables before making particular decisions [Howard 1967]. Our
focus of attention is another measure, the value of control (or wizardry), the most a
decision maker should be willing to pay a hypothetical wizard to optimally control
the distribution of an uncertain variable [Matheson 1990], [Matheson and Matheson
2005]. We consider and contrast the value of control with two other measures, the
value of do, and the value of revelation, and we develop the conditions under which
the different measures are equal.

In formalizing the value of control, it is natural to consider the value of an atomic
intervention on uncertain variable z, in particular do(x*), that would set it to x*
the instance yielding the most valuable decision situation, rather than to idle. We
call the most the decision maker should be willing to pay for such an intervention
the value of do and compute it as the difference in the values of the diagrams.

DEFINITION 7 (Value of Do). Given a decision problem including an atomic in-
tervention on uncertain variable x € U, the value of do for x, denoted by VoD (x*),
is the most one should be willing to pay for an atomic intervention on uncertain
variable z to the best possible deterministic instance, do(x*), instead of to idle.

Our goal in general is to value the optimal manipulation of the conditional distri-
bution of a target uncertain variable x in a causal influence diagram, P{z|Y'}, and
the most we should be willing to pay for such an intervention is the value of control.
The simplest case is when {do(z)} is a cause of z with respect to D, Y = {}, so the
optimal distribution is equivalent to an atomic intervention on z to x*, and control
and do are the same intervention. Otherwise, the do operation effectively severs the
arcs from Y to x and replaces the previous causal mechanism with the new atomic
one. By contrast, the control operation is an atomic intervention on the mapping
variable z(Y") to its optimal value do(x*(Y)) rather than to idle.

DEFINITION 8 (Value of Control). Given a decision problem including variables
Y, a mapping variable z(Y") for uncertain variable x € U, and atomic interventions
do(z) and do(z(Y")) such that Y U {do(z),do(z(Y))} is a cause of & with respect
to D, the value of control for x, denoted by VoC(x*(Y)), is the most one should
be willing to pay for an atomic intervention on the mapping variable for uncertain
variable x to the best possible deterministic function of Y, do(x*(Y")), instead of
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to idle.
If Y = {}, then do(z) is the same atomic intervention as do(z(Y")), and the values
of do and control for z are equal, VoD(x*) = VoC(x*()).

In many cases, while it is tempting to assume atomic interventions, they can be
cumbersome or implausible. In an attempt to avoid such issues, Ronald A. Howard
has suggested an alternative passive measure, the value of revelation: how much
better off the decision maker should be by observing that the uncertain variable
in question obtained its most desirable value. This is only well-defined for vari-
ables unresponsive to D, except for those atomic interventions that are set to idle,
because otherwise the observation would be made before decisions it might be re-
sponsive to. Under our assumptions this can be computed as the difference in value
between two situations, but it is hard to describe it as a willingness to pay for this
difference as it is more passive than intentional. (The value of revelation is in fact
an intermediate term in the computation of the value of clairvoyance.)

DEFINITION 9 (Value of Revelation). Given a decision problem including uncer-
tain variable € U and a (possibly empty) set of atomic interventions, A, that is a
cause for z with respect to D, the value of revelation for uncertain variable x € U,
denoted by VoR(x*), is the increase in the value of the situation with d = idle
for all d € A, if one observed that uncertain variable z = x*, the best possible
deterministic instance, instead of not observing x.

To illustrate these three measures we, consider a partial causal influence diagram
including = and its parents, Y, which we assume for this example are uncertain
and nonempty, as shown in Figure 4a. There are atomic interventions do(z) on
z, do(z(Y')) on mapping variable z(Y’), and do(y) on each y € Y represented as
do(Y). The variable z is a deterministic function of Y, do(z) and z(Y). In this
model, Y U {do(z),do(x(Y))} is a cause of x with respect to D. The dashed line
from z to values V suggests that there might be some directed path from z to V.
If not, V' would be unresponsive to do(z) and do(z(Y)) and the values of do and
control would be zero.

To obtain the reference diagram for our proposed changes, we set all of the atomic
interventions to idle as shown in Figure 4bl. We can compute the value of this
diagram by eliminating the idle decisions and absorbing the mapping variable into
z, yielding the simpler diagram shown in (b2). To compute the value of do for x,
we can compute the value of the diagram with do(x*) by setting the other atomic
interventions to idle, as shown in (c1). But since that is making the optimal choice
for  with no interventions on Y or z(Y), we can now think of z as a decision
variable as indicated in the diagram shown in (c2). We shall use this shorthand
in many of the examples that we consider. To compute the value of control for
x, we can compute the value of the diagram with do(x*(Y)) by setting the other
atomic interventions to idle, as shown in (d1). But since that is making the optimal
choice for z(Y") with none of the other interventions, we can compute its value with
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do(x(Y)) do(x)

set to
dO(Y) idle

Figure 4. Partial causal influence diagrams to compute the values of do, control, and

revelation for x when Y is nonempty.
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Figure 5. Unless the intervention is direct there can be disastrous side effects.

the simpler influence diagram shown in (d2), again using our shorthand. Finally, to
compute the value of revelation for x, we can compute the value of the diagram with
z = z* and all of the atomic interventions idle, as shown in (el). The observation
is well-defined because all of the interventions are idle, but that also means that
we can compute its value with the simpler influence diagram shown in (e2).

Each of the three measures requires evaluation of two influence diagrams to de-
termine its value, the reference diagram with all of the atomic interventions set
to idle and a revised one, a diagram with either an atomic intervention or an ob-
servation. The values of these diagrams can be computed using simpler influence
diagrams, with either one new decision, an atomic one made with no observations,
or a new observation made before any decision, and the simpler diagram for the
reference value has neither new decisions nor observations. These simpler diagrams
are well-defined even if there are other decisions elsewhere and some observations
prior to some of the other decisions [Shachter 1986]. Note that care must be taken
in computing the value of control because there can be an exponential number of
instances for the mapping variable.

The assumption of a direct intervention is crucial. Matheson and Matheson
[2005]( refer to it as “pure” and to an atomic intervention as “perfect”.) There is a
classic horror story of a man granted three wishes on a monkey’s paw [Jacobs 1902].
He chooses to be wealthy and his wish is granted, tragically, through the death of
his son. This corresponds to the causal influence diagrams shown in Figure 5. The
value of his situation with no intervention is represented by the diagram in (a).
The atomic intervention on Wealth he intends would yield the same value as a
diagram in which Wealth is a decision as in (b), but the value with his intervention
actually equals the value of the diagram shown in (c). The wish decision he actually
made was not the direct intervention on Wealth he desired. The lesson is clear: in
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Figure 6. When we intervene on a forecast, we want to improve its quality, rather than
to obtain a single most desirable instance.

manipulating our situation, we must beware of the unintended consequences.

Suppose the uncertain variable is being used to provide information, such as a
forecast. Consider the causal influence diagram shown in Figure 6. This situation
corresponds to one in which inventory decisions must be made before demand is
observed, but a forecast relevant to demand will be observed before choosing inven-
tory as shown in (a). Alas, an atomic intervention setting the forecast to our most
desirable value (“highest demand”) as in (b) does not improve profit since it tells us
nothing about the real demand. What we would like to manipulate is the quality
of the forecast, having it represent the best possible signal about demand as in (c).
In this case, the value of do for Forecast is zero, but the value of control for Forecast
should be positive. In fact, if there are as many instances for Forecast as there are
for Demand, the highest quality forecast possible is clairvoyance on the demand,
and the value of control would be equal to the value of clairvoyance. In the diagram
Forecast Quality might not be an atomic intervention, both because there might
only be a choice among imperfect information sources, and because there might be
different costs associated with those different information sources.

Consider the causal influence diagrams shown in Figure 7, in which we believe
that Product Quality is unresponsive to direct interventions (not shown) on Sales
or Profit. We would like to understand how much we would improve our profit
by manipulating our product quality. The diagram shown in (a) treats quality
and sales as uncertain with its atomic interventions set to idle, and its value is
the reference for any changes. The diagram shown in (b) has the same value as
an atomic intervention on Product Quality to its optimal instance, and because
that intervention is the cause of Product Quality with respect to D, the difference
in values of this diagram relative to the one in (a) is both the value of do and the
value of control for Product Quality. Alternatively, in (c) if we observed that Product
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Figure 7. In this causal influence diagram the values of do, control, and revelation for
Product Quality are equal.
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Figure 8. The values of do, control, and revelation for Sales might not be equal.

Quality takes the best possible value, this diagram has the same value as the one
in (b). As a result, the value of revelation is equal to the other two values. Finally,
in (d) we could contemplate a research and development effort that might lead to
higher product quality. Because the diagram in (d) is causal, { Product Quality} is
a cause of Sales with respect to D.

Now consider the causal influence diagrams shown in Figure 8, in which we are
manipulating sales rather than product quality to improve our profit. We obtain
the diagram shown in (a) by assuming that Product Quality is unresponsive to an
atomic intervention on Sales. In (b) we could observe that Sales takes that same
value, but this observation updates our belief about the Product Quality, and the
value of this diagram might not be equal to the value of the diagram in (a). We
obtain the diagram shown in (c¢) by an atomic intervention on the mapping variable
for Sales, not determining sales but rather how it depends on quality (assuming that
there is an atomic intervention on Product Quality). In this situation the values of
do, control, and revelation could all be different! Finally, in (d) we consider offering
incentives to boost sales, recognizing that it might affect our profits both directly
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Figure 9. The values of do, control, and revelation are different for Income Taz.

and indirectly.

There can be a significant difference between passive observation of uncertain
variable x and intervention on x. Consider the causal influence diagrams shown
in Figure 9 representing disposable income after taxes. We believe that Income
is unresponsive to a direct intervention on Income Tax, but Income Tax might
be responsive to a direct intervention on Income. However, the value of do, the
difference between the values of the diagrams in (b) and (a), is quite different from
the value of revelation based on (c) and (a). Being able to choose not to pay any
tax is quite different from learning that you will pay no tax, since it is more likely
in the latter case that you have lost your job. Alternatively, we can consider setting
the income tax rate as shown in (d), which would lead to the value of control. In
this case, we can simplify the calculation in (d) that searches all possible mapping
variable instances, to a simpler decision shown in (e), recognizing that in this case
there is no interaction among the components of the mapping variable, and therefore
we can independently search for the best possible instance for Income Tax for each
possible instance of Income.

The correspondence between passive observation and intervention has been stud-
ied, primarily to identify causal effects from observational data [Robins 1986], [Pearl
1993] and [Spirtes, Glymour, and Scheines 1993]. In our framework, a set of vari-
ables Y is said to satisfy the back door condition for x if Y is unresponsive to do(z)
while do(x) is d-separated from V by {x} UY. When Y satisfies the back door
condition, there is a correspondence among the values of do, control and revelation,
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in that
P{V|Y,x*} = P{V|Y,do(x*)} = P{V|Y,do(x*"(Y))}.

However, in valuing the decision situation we do not get to observe Y and thus
P{V|x*} might not be equal to P{V|do(x*)}. Consider the diagrams shown in
Figure 9. Because Income satisfies the back door criterion relative to Income Taz,
the values of do, control and revelation on Income Tax would all be the same if we
observed Income. But we do not know what our Income will be and the values of
do, control, and revelation can all be different.

Nonetheless, if we make a stronger assumption, that Y is d-separated from V by
x, the three measures will be equal. The atomic intervention on x or its mapping
variable only affects the value V' through the descendants of z in a causal model,
and all other variables are unresponsive to the intervention in worlds limited by .
However, the atomic interventions might not be independent of V' given z unless Y’
is d-separated from V' by x. Otherwise, observing x or an atomic intervention on
the mapping variable for z can lead to a different value for the diagram than an
atomic intervention on x.

We establish this result in two steps for both general situations and for Pearl
causal models. By assuming that do(x) is independent of V' given x, we first show
that the values of do and revelation are equal. If we then assume that Y is d-
separated from V by x, we show that the values of do and control are equal. The
conditions under which these two different comparisons can be made are not iden-
tical either. To be able to compute the value of revelation for x we must set to idle
all interventions that x is responsive to, while to compute the value of control for
x we need to be ensure that we have an atomic intervention on a mapping variable
for x.

THEOREM 10 (Equal Values of Do and Revelation). Given a decision problem
including uncertain variable x € U, if there is a set of atomic interventions A,
including do(z), that is a cause of x with respect to D, and do(x) is independent of V
given x, then the values of do and revelation for x are equal, VoD(x*) = VoR(x").

If {do(z)} is a cause of x with respect to D, then they are also equal to the value
of control for x, VoC(x*()) = VoD(x*) = VoR(x*).

Proof. Consider the probability of V after the intervention do(x*) with all other
interventions in A set to idle. Because z is determined by do(x*), and do(z) is
independent of V' given z,

P{V|do(x*)} = P{V|x",do(x*)} = P{V|x"} = P{V|x*,do(z) = idle}.

If {do(x)} is is a cause of x with respect to D then the values of do and control for
x are equal. a

COROLLARY 11. Given a decision problem described by a Pearl causal model in-
cluding uncertain variable x € U, if Pa(x) is d-separated from V by x, then the
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values of do and revelation for x are equal, VoD(x*) = VoR(x*). If x has no

parents, then the the values of do, control, and revelation for x are equal,

VoD(x*) = VoC(x*()) = VoR(x™).

THEOREM 12 (Equal Values of Do and Control). Given a decision problem de-
scribed by an influence diagram including uncertain variable x € U, and nonempty
set of variables Y. If there are atomic interventions do(x) for x, do(y) for every
yeYNU, and do(z(Y"))) for the mapping variable x(Y'), Y U {do(x),do(x(Y))} is
a cause of x with respect to D, and Y is d-separated from V by x, then the values
of do and control are equal,

VoD(x*) = VoC(x*(Y)).

Proof. We know that Y U {do(x),do(z(Y))} is independent of V given z, be-
cause otherwise Y would not be d-separated from V' by z. Because do(z) is an
atomic intervention on x and do(x) is independent of V given z, as in Theorem 10,
P{V]do(x*)} = P{V|x*,do(x*)} = P{V|x*}. Now consider the probability of V'
after the intervention do(x*(Y)). Because z = x*(Y) is determined by do(x*(Y))
and Y, and Y U {do(x(Y))} is independent of V given z,

P{V]do(x*(Y)),Y}

P{Vl]z = x*(Y),do(x*(Y)),Y}
P{V|z =x*(Y)},

The optimal choice of z(Y") does not depend on YV, x*(Y) = x*, yielding
P{V]do(x*(Y)),Y} = P{V|x*}.
As a result,

P{V|do(x*(Y))}

Y P{V.Y|do(x"(Y))}
Y

Y P{VIdo(x*(Y)), Y}P{Y|do(x"(Y))}
Y

Y P{VIx"}P{Y|do(x"(Y))}
Y

P{V[x*} ) P{Y|do(x"(Y))}
Y

P{VIx"}

g

COROLLARY 13. Given an uncertain variable x € U with parents in a decision
problem described by a Pearl causal model with an atomic intervention for mapping



Ross Shachter and David Heckerman

Figure 10. The values of do, control, and revelation are equal for each uncertain variable.

variable x(Pa(x)), if Pa(x) is d-separated from V by x, then the values of do,
control, and revelation for x are equal, VoD (x*) = VoC(x*(Pa(z))) = VoR(x*).

Consider the causal influence diagrams shown in Figure 10, concerning a com-
municable disease, for which we believe that Exposure is unresponsive to any direct
intervention on Infection, and both of them are unresponsive to any direct interven-
tion on Health, but all of the uncertain variables might be responsive to a direction
intervention on Exposure. Because Exrposure has no parents, the values of do, con-
trol, and revelation for it will be equal. Furthermore, in this case, even though
Infection has a parent, the values of do, control, and revelation for it will be also
equal, because Fzposure is independent of Health given Infection. Likewise, there
will be equal values of do, control, and revelation for Health.

4 Conclusions

We have sharpened the distinctions underlying the value of control and related value
of revelation and value of do, and shown that they are equivalent when the target
variable x in a causal influence diagram either has no parents, or its parents, Pa(x)
are d-separated from the value V by z.

The general problem, which have only touched upon, permits multiple decisions
and information sets at those other decisions. In that case, there is a question of how
to recognize when Pa(x) in d-separated from V by x. We can address this in general
by either constructing the normal form diagram [Bhattacharjya and Shachter 2007]
or by building a policy diagram, iteratively substituting deterministic policies for
decisions starting with the latest decision [Shachter 1999]. These approaches exploit
the causal structure and the separable value function represented in the influence
diagram.
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