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1. INTRODUCTION

1.1 Overview.

In the recent papers [1, 2], we presented a general theory of partition function zeros in models
with periodic boundary conditions and interaction depending on one complex parameter. The
analysis was based on a set of assumptions, called Assumptions A and B in [2], which are es-
sentially statements concerning differentiability properties of certain free energies supplemented
by appropriate non-degeneracy conditions. On the basis of these assumptions we characterized
the topology of the resulting phase diagram and showed that the partition function zeros are in
one-to-one correspondence with the solutions to specific (and simple) equations. In addition, the
maximal degeneracy of the zeros was proved to be bounded by the number of thermodynamically
stable phases, and the distance between the zeros and the corresponding solutions was shown to
be generically exponentially small in the linear size of the system.

The reliance on Assumptions A and B in [2] permitted us to split the analysis of partition
function zeros into two parts, which are distinct in both mathematical and physical content: one
concerning the zeros of a complex (in fact, analytic) function—namely the partition function
with periodic boundary conditions—subject to specific requirements, and the other concerning
the control of the partition function in a statistical mechanical model depending on one complex
parameter. The former part of the analysis was carried out in [2]; the latter is the subject of this
paper. Explicitly, the principal goal of this paper can be summarized as follows: We will define a
large class of lattice spin models (which includes several well-known systems, e.g., the Ising and
Blume-Capel models) and show that Assumptions A and B are satisfied for every model in this
class. On the basis of [2], for any model in this class we then have complete control of the zeros
of the partition function with periodic boundary conditions.

The models we consider are characterized by two properties: the existence of only a finite
number ofground statesnd the availability of @ontourrepresentation. In our setting, the term
ground state will simply mean a constant—or, after some reinterpretations, a periodic—infinite
volume spin configuration. Roughly speaking, the contour representation will be such that the
contours correspond to finite, connected subsets of the lattice where the spin configuration differs
from any of the possible ground states. A precise definition of these notions is a bit technical,
details will be provided in Section 3. Besides these properties, there will also be a few quantitative
requirements on the ground state energies and the scaling of the excess contour energy with the
size of the contour—the Peierls condition—see Sections 2.1 and 3.2.

These two characteristic properties enable us to apply Pirogov-Sinai theory—a general method
for determining low-temperature properties of a statistical mechanical model by perturbing about
zero-temperature. The first formulation of this perturbation technique [16, 17] applied to a class
of models with real, positive weights. The original “Banach space” approach of [16, 17] was
later replaced by inductive methods [9], which resulted in a complete classification of translation-
invariant Gibbs states [21]. The inductive techniques also permitted a generalization of the char-
acterization of phase stability/coexistence to models with complex weights [5]. However, most
relevant for our purposes are the results of [6], dealing with finite-size scaling in the vicinity of
first-order phase transitions. There Pirogov-Sinai theory was used to derive detailed asymptotics
of finite volume partition functions. The present paper provides, among other things, a variant of
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[6] that ensures appropriate differentiability of the so-called metastable free energies as required
for the analysis of partition function zeros.

The remainder of this paper is organized as follows. Section 1.2 outlines the class of models
of interest. Section 1.3 defines the ground state and excitation energies and introduces the torus
partition function—the main object of interest in this paper. Section 2.1 lists the assumptions
on the models and Section 2.2 gives the statements of the main results of this paper. These
immediately imply Assumptions A and B of [2] for all models in the class considered. Sections 3
and 4 introduce the necessary tools from Pirogov-Sinai theory. These are applied in Section 5 to
prove the main results of the paper.

1.2 Models of interest.

Here we define the class of models to be considered in this paper. Most of what is to follow in
this and the forthcoming sections is inspired by classic texts on spin models, Gibbs states and
Pirogov-Sinai theory, e.g., [8, 18, 20, 21].
We will consider finite-state spin models on theimensional hypercubic lattic&? for d > 2.

At each siter € Z? thespin denoted by, will take values in a finite sef. A spin configuration
o = (02).cza IS an assignment of a spin to each site of the lattice. The interaction Hamiltonian
will be described using a collection of potentiédsy, ), whereA runs over all finite subsets @¥.
The®, are functions on configurations froff" with the following properties:

(1) The valued,(c) depends only ol with x € A.

(2) The potential is translation invariant, i.e.¢ifis a translate of andA’ is the correspond-

ing translate of\, then®,/(c) = &5 (c').

(3) There exists akk > 1 such thab, = 0 for all A with diameter exceeding + 1.
Here thediameterof a cubic box withl. x - - - x L sites is defined to b& while for a generald C
Z% it is the diameter of the smallest cubic box containihgThe constanR is called therange
of the interaction

Remark 1 Condition (2) has been included mostly for convenience of exposition. In fact, all of
the results of this paper hold under the assumptiondhaire periodic in the sense thbk/ (o) =

@ (o') holds forA ando related ta\’ ando’ by a translation fronjaZ)? for some fixed integet.

This is seen by noting that the periodic cases can always be converted to translation-invariant ones
by considering block-spin variables and integrated potentials.

As usual, the energy of a spin configuration is specified by the Hamiltonian. Formally, the
Hamiltonian is represented by a collection of functigfi#i, ) indexed by finite subsets @,
whereH, is defined by the formula

BHA(0)= Y Do) (1.1)
A NNAAD
(The superfluoug, playing the role of the inverse temperature, appears only to maintain formal

correspondence with the fundamental formulas of statistical mechanics.) In light of our restriction
to finite-range interactions, the sum is always finite.

We proceed by listing a few well known examples of models in the above class. With the
exception of the second example, the range of each interaction is equal to
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Ising model. HereS = {—1,+1} and®,(c) # 0 only for A containing a single site or a
nearest-neighbor pair. In this case we have

—hoy, if A={x},
Ba(o) =1 7 TA=ta), B (1.2)
—Jogoy, if A={z,y} with |z —y| =1.

Here J is the coupling constank, is an external field ang: — y| denotes the Euclidean distance
betweenr andy.

Perturbed Ising model. Again S = {—1,+1}, but now we allow for arbitrary finite range
perturbations. Explicitly,

By (o) = —hog, if A= {x}, (1.3)
—Ja[lep 02 if [A]>2anddiamA < R+ 1. '

The coupling constant$, are assumed to be translation invariant (i/g.= Jy. if A andA’ are

translates of each other). The constaig again the external field.

Blume-Capel modelln this caseS = {—1,0,+1} and®, (o) = 0 unlessA is just a single site
or a nearest-neighbor pair. Explicitly, we have

Br(0) —Ao? — hoy, if A={z}, (1.4)
g)= .
A J(02 — 0y)2, if A= {z,y} with [z — y| = 1.

Here J is the coupling constanh, is a parameter favoringt1 against-spins and: is an external
field splitting the symmetry betweenl and—1.

Potts model in an external fieldThe state space haelementsS = {1,..., ¢} and®, is again
nontrivial only if A is a one-element set or a pair of nearest-neighbor sites. Explicitly,
—hds, 1, if A= ,
Bp(0) = el TA=to} (1.5)
~J00,,0y5 if A ={z,y}with |z —y| = 1.

Here d,, equals one ifr = o’ and zero otherwise/ is the coupling constant an is an
external field favoring spin value Actually, the results of this paper will hold only for the low-
temperature regime (which in our parametrization corresponds 1 log g); a more general
argument coveringll temperatures (but under the condition thas sufficiently large) will be
presented elsewhere [3, 4].

Any of the constants appearing in the above Hamiltonian can in principle be complex. How-
ever, not all complex values of, e.g., the coupling constant will be permitted by our additional
restrictions. See Section 2.3 for more discussion.

1.3 Ground states, excitations and torus partition function.

The key idea underlying our formulation is thainstantconfigurations represent the potential
ground states of the system. (A precise statement of this fact appears in Assumption C2 below.)
This motivates us to define the dimensionlggsund state energy denskity, associated with spin

m € S by the formula

€m = Z i(I)A(O-m)v (1.6)
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where|A| denotes the cardinality of the setand wheres™ is the spin configuration that is equal
to m at every site. By our restriction to finite-range interactions, the sum is effectively finite.
The constant configurations represent the states with minimal energy; all other configurations
are to be regarded as excitations. Given a spin configuratitet Br (o) denote the union of all
cubic boxes\ C Z4 of diameter2R + 1 such thaw is not constant in\. We think of Br(c) as
the set on whiclw is “bad” in the sense that it is not a ground state at séal@he setBr(o)
will be referred to as th&-boundaryof o. Then theexcitation energy® (o) of configurations
is defined by

E(o)= > Y, ’L@A(U). (1.7)
z€BR(o) A: z€A
To ensure that the sum is finite (and therefore meaningful) we will only consider the configura-
tionso for which Br(o) is a finite set.
The main quantity of interest in this paper is the partition function with periodic boundary

conditions which we now define. Ldt > 2R + 1, and letT, denote the torus of. x L x
... x L sites inZ?, which can be thought of as the factorZf with respect to the action of the
subgroup(LZ)?. Let us consider the Hamiltoniah, : STt — C defined by

BHL(o)= Y  ®x(0), o8, (1.8)
A: ACTy,

where®, are retractions of the corresponding potentials fi&shto T . (Here we use the trans-
lation invariance ofb,.) Then thepartition function with periodic boundary conditions T, is
defined by

78T =Y e, (1.9)
ceSTL
In general,Z}*" is a complex quantity which depends on all parameters of the Hamiltonian.
We note that various other partition functions will play an important role throughout this paper.

However, none of these will be needed for the statement of our main results in Section 2, so we
postpone the additional definitions and discussion to Section 4.

We conclude this section with a remark concerning the interchangeability of the various spin
states. There are natural examples (e.g., the Potts model) where several spin values are virtually
indistinguishable from each other. To express this property mathematically, we will consider the
situation where there exists a subgroipof the permutations of such that ifr € & then
ex(m) = em aNdE(r(0)) = E(o) for eachm € S and each configuratiom with finite Br(c),
wherer (o) is the spin configuration taking valu€c,,) at eache. (Note thatBgr(7(0)) = Br(o)
for any such permutation.) Then we call two spin states andn interchangeablef m andn
belong to the same orbit of the grodpon S.

While this extra symmetry has absolutely no effect on the contour analysis of the torus patrtition
sum, it turns out that interchangeable spin states cannot be treated separately in our analysis of
partition function zeros. (The precise reason is that interchangeable spin states would violate
our non-degeneracy conditions; see Assumption C3-C4 and Theorem A3-4 below.) To avoid this
difficulty, we will use the factor seR = S/& instead of the original index s& when stating
our assumptions and results. In accordance with the notation of [2], we will alsotaskenote
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the cardinality of the seR, i.e., R = {1,2,...,r}, andg,, to denote the cardinality of the orbit
corresponding ten € R.

2. ASSUMPTIONS AND RESULTS

In this section we list our precise assumptions on the models of interest and state the main results
of this paper.

2.1 Assumptions.

We will consider the setup outlined in Sections 1.2-1.3 with the additional assumption that the
parameters of the Hamiltonian depend on one complex parametbich varies in some open
subset” of the complex plane. Typically, we will take= ¢” or z = ¢2" whereh is an external
field; see the examples at the end of Section 1.2. Throughout this paper we will assume that the
spin spaceS, the factor seRR, the integers,,, and the range of the interaction are independent of
the parametet. We will also assume that the spatial dimensida no less than two.

The assumptions below will be expressed in terms of complex derivatives with respect to
For brevity of exposition, let us use the standard notation

9, =1(Z - 168) and 9; = ((%Hay) (2.1)

for the derivatives with respect to and z, respectively. Here = Rez andy = Smz. Our
assumptions will be formulated for the exponential weights

a0, 2) = e a2 ) (o) =e P2 and 6,,(z) = e (), (2.2)

where we have now made the dependence potationally explicit. In terms of thé,,’s and the
quantity

0(2) = max |0 (2)] (2.3)

we define the se¥, (m) by
Lo(m) ={2€ O: |0,(2)] > 0(2)e}. (2.4)

Informally, ., (m) is the set of for whichm is “almost” a ground state of the Hamiltonian.
Since we want to refer back to Assumptions A and B of [2], we will call our new hypothesis
Assumption C.

Assumption C. There exist a domai@’ c C and constants,, M, € (0, 0) such that the
following conditions are satisfied.

(0) For eachr € SZ and each finite\ C Z¢, the functionz — 4 (o, 2) is holomorphic ing.
(1) Forallm € S,all z € ¢ and alll = 0, 1, 2, the ground state weights obey the bounds

050, (2)| < M0(2) (2.5)

In addition, the quantity(z) is uniformly bounded away from zero .
(2) For every configuratiom with finite R-boundaryBr (o), the Peierls condition

02p-(0)| < (M|BR(o))) (e770(2)) """ (2.6)
holds for allz € & and¢ = 0, 1, 2.



PARTITION FUNCTION ZEROS AT FIRST-ORDER PHASE TRANSITIONS 7

(3) For all distinctm,n € R and allz € £, (m) N .Za(n), we have
0.0 (2) ‘

m(2) B

(4) If @ C RissuchthatQ| > 3, then for any: € ﬂmeg w(m) we assume that the complex

quantitiesv,,(z) = 0.,(2) "1 0.0,,(2), m € Q, regarded as vectors R?, are vertices of a
strictly convex polygon. Explicitly, we demand that the bound

inf{ ‘vm(z) — Z wnn(2) ‘: wp > 0, Z Wy, = 1} >« (2.8)

neQ~{m} ned~{m}

2.7)

holds for everym € Q and every: € [, .o Za(n).

Assumptions C0-2 are very natural; indeed, they are typically a consequence of the fact that the
potentialspy (o, z)—and hence alsé,,(z) and p.(c)—arise by analytic continuation from the
positive real axis. Assumptions C3-4 replace the “standard” multidimensional non-degeneracy
conditions which are typically introduced to control the topological structure of the phase dia-
gram, see e.g. [16, 17, 20]. (However, unlike for the “standard” non-degeneracy conditions, here
this control requires a good deal of extra work, see [2].) Assumption C4 is only important in the
vicinity of multiple coexistence points (see Section 3.2); otherwise, it can be omitted.

Remark 2 For many models, including the first three of our examples, the partition function has
both zeros and poles, and sometimes even involves non-integer poweeis dhis situation it is
convenient to multiply the partition function by a suitable powet ¢ obtain a function that is
analytic in a larger domain. Typically, this different normalization also leads to a larger démain

for which Assumption C holds. Taking, e.g., the Ising model with ¢?", one easily verifies that

for low enough temperatures, Assumption C holds everywhere in the complex plane—provided
we replace the term-ho, by —h(o, + 1). By contrast, in the original representation (where
¢ixy(0,2) = (v/2)77), one needs to take out a neighborhood of the negative real axis (or any
other ray from zero to infinity) to achieve the analyticity required by Assumption CO.

Remark 3 If we replace the term-ho,, in (1.2-1.4) by—h(o,+1), Assumption C (withe = 2"

for the Ising models, and = " for the Blume Capel and Potts model) holds for all four examples
listed in Section 1.2, provided that the nearest-neighbor couplings are ferromagnetic and the
temperature is low enough. (For the perturbed Ising model, one also needs that the nearest-
neighbor coupling is sufficiently dominant.)

2.2 Main results.

Now we are in a position to state our main results, which show that Assumptions A and B from [2]

are satisfied and hence our conclusions concerning the partition function zeros hold. The structure
of these theorems parallels the structure of Assumptions A and B. We caution the reader that the
precise statement of these results is quite technical. For a discussion of the implications of these
theorems, see Section 2.3. The first theorem establishes the existence of metastable free energies
and their relation to the quantitiés, .
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Theorem A LetM € (0,00) anda € (0,00). Then there is a constamg depending on/, «,
the number of spin statés| and the dimensiod such that if Assumption C holds for the con-
stantsM, a, some open domai@® c C and somer > 719, then there are functiong,, : O — C,

m € R, for which the following holds:

(1) There are functions,,,: ¢ — C, m € R, such that,,,(z) can be expressed as
Cm(2) = O0m(2)e*™?)  and sy (2)| < e /2. (2.9)

In particular, the quantity((z) = max,er |(m(2)| is uniformly positive ing.

(2) Each functiorg,,, viewed as a function of two real variables= Rez andy = Smz, is twice
continuously differentiable o¥ and satisfies the Cauchy-Riemann equatiéns,(z) = 0
forall z € ., where

Fm=1{2€0: |(u(2)| = ((2)}. (2.10)
In particular, ¢, is analytic in the interior of7,,.
(3) For any pair of distinct indicesn, n € R and anyz € ., N ., we have
asz(Z> azCn(z) —7/2
— >a—2e /7. 2.11
e G 7 @10

(4) If @ c RissuchthatQ| > 3, then for anyz € N,,co “m.

9:Gm(2)

U (2) = ,

=) Cm(2)

are the vertices of a strictly convex polygorGn~ R2.

m € Q, (2.12)

Theorem A ensures the validity of Assumption A in [2] for any model satisfying Assumption C
with 7 sufficiently large. Assumption A, in turn, allows us to establish several properties of the
topology of the phase diagram, see Section 2.3 below for more detalils.

Following [2], we will refer to the indices irR asphasesand call a phase: € R stable
at z if | (2)| = ¢(z). We will say that a point € & is a point ofphase coexistendethere
are at least two phases € R which are stable at. In [2] we introduced these definitions
without further motivation, anticipating, however, the present work which provides the technical
justification of these concepts. Indeed, using the expansion techniques developed in Sections 3
and 4, one can show that, for eagh € S that corresponds to a stable phaséRinthe finite
volume states withn-boundary conditions tend to a unique infinite-volume lifajt,, in the
sense of weak convergence on linear functionals on local observables. (Here a local observable
refers to a function depending only on a finite number of spins). The limit state is invariant
under translations d¢&¢, exhibits exponential clustering, and is a small perturbation of the ground
states™ in the sense thab,, 1)m = dmi + O(e™7/2) for all = € Z°.

Remark 4 Note that two stateé),, and(-),,, are considered as two different versions of the
same phase ifn andm’ are indistinguishable, in accordance with our convention ®aand

not S, labels phases. Accordingly, the term phase coexistence refers to the coexistdisze of
tinguishablephases, and not to the coexistence of two states labelled by different indices in the
same orbitR. This interpretation of a “thermodynamic phase” agrees with that used in physics,
but disagrees with that sometimes used in the mathematical physics literature.
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While Theorem A is valid in the whole domaﬁ, our next theorem will require that we restrict
ourselves to a subsét C ¢ with the property that there exists some- 0 such that for each
point z € ¢, the discD,(z) of radiuse centered at is contained in7. (Note that this condition
requires? to be a strict subset af, unless¢ consists of the whole complex plane). In order
to state the next theorem, we will need to recall some notation from [2]. GivemaayR and
0 > 0, let.#5(m) denote the region where the phasés “almost stable,”

F5(m) = {2 € O: |Gn(2)| > e°¢(2)}. (2.13)

For anyQ C R, we also introduce the region where all phases f@mare “almost stable” while
the remaining ones are not,

= Zsm\ | F5(). (2.14)

meQ neQe
with the bar denoting the set closure.

Theorem B Let M, qa,e € (0,00), and letr > 7, wherer is the constant from Theorem A,
and letx = 7/4. Letd c Cand& C & be open domains such that that Assumption C holds
in ¢ andD¢(z) C ¢ forall z € . Then there are constants, (depending only od/), M,
(depending onM/ and ¢), and Ly (depending onl, M, T and¢) such that for eachm € R

and eachL > L there is a functior(fnL): “/r.(m) — C such that the following holds for all
L> Lo:

(1) The functionZp*" is analytic in&.

(2) Each(,(nL) is non-vanishing and analytic i’ ;1 (m). Furthermore,

L)
’10g CZn(S)) ‘ < e TH/B (2.15)
and (L) (L)
L L
(2) m (2) —7L/8
0, log 0z 1 < 2.16
Cm( ) " o8 Cm(2) = ( )

hold forallm € R and all z € .7, /. (m).
(3) Foreachm € R,all ¢ > 1,and allz € ., . (m), we have

AL (2)

o) < (02 M. (2.17)

Moreover, for all distinctn, n € R and all z € ., /.(m) N 7, /1.(n),

0.600(2) 0.0 (2)
o) @)
(4) ForanyQ C R, the difference
Eor(z) = 27 (2) = Y am [C( (2.19)

meQ

o—2e77/2, (2.18)
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satisfies the bound

\%%AMSN%HW%@”<ZM06”M (2.20)

meR
forall ¢ > 0andallz € %H/L(Q).

Theorem B proves the validity of Assumption B from [2]. Together with Theorem A, this in
turn allows us to give a detailed description of the positions of the partition function zeros for all
models in our class, see Section 2.3.

The principal result of Theorem B is stated in part (4): The torus partition function can be
approximated by a finite sum of terms—one for each “almost stable” phasék—which have
well controlled analyticity properties. As a consequence, the zeros of the partition function arise
as a result of destructive interference between almost stable phases, and all zeros are near to the
set of coexistence pointé = ,,, ., “m N #%; see Section 2.3 for further details. Representa-
tions of the form (2.19) were crucial for the analysis of finite-size scaling near first-order phase
transitions [6]. The original derivation goes back to [5]. In our case the situation is complicated
by the requirement of analyticity; hence the restriction © %, ,1,(Q) in (4).

2.3 Discussion.

As mentioned previously, Theorems A and B imply the validity of Assumptions A and B of [2],
which in turn imply the principal conclusions of [2] for any model of the kind introduced in
Section 1.2 that satisfies Assumption C witlsufficiently large. Instead of giving the full state-
ments of the results of [2], we will only describe these theorems on a qualitative level. Readers
interested in more details are referred to Section 2 of [2].

Ouir first result concerns the set of coexistence poiits; Um#n Sm Ny, giving rise to the
complex phase diagram. Here Theorem 2.1 of [2] assertsg4hsthe union of a set of simple,
smooth (open and closed) curves such that exactly two phases coexist at any interior point of the
curve, while at least three phases coexist at the endpoints—these analtipde points More-
over, in each compact set, any two such curves cannot get too close without intersecting and there
are only a finite number of multiple points. These properties are of course direct consequences of
the non-degeneracy conditions expressed in Theorem A3-4.

Having discussed the phase diagram, we can now turn our attention to the z&#S. 6fhe
combined results of Theorems 2.2-2.4 of [2] yield the following: First, all zeros lie withibi—)
of the set¥. Second, along the two-phase coexistence lines with stable phases R, the
zeros are withirO(e=<%), for somec > 0, of the solutions to the equations

0/ H 6 (2)] = 4 [¢a ()], (2.21)
Le Arg(¢m(2)/¢n(2)) = mmod 27, (2.22)

Consecutive solutions to these equations are separated by distances éf¢rdes., there are of
the otherL? zeros per unit length of the coexistence line. Scalind.ythis allows us to define
adensity of zeroalong each two-phase coexistence line, which in the limit- oo turns out to
be a smooth function varying only over distances of order one.
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FIGURE 1. A schematic figure of the solutions to (2.21-2.22) giving the approximate locations of
partition function zeros of the Ising model in parametewhich is related to the external field

by = = ¢2". The plot corresponds to dimensidn= 2 and torus side. = 8. The expansion used for
calculating the quantities: is shown in (2.23). To make the non-uniformity of the spacing between
zeros more apparent, the plot has been rendered for the affdice 2.5 even though this is beyond
the region where we can prove convergence of our expansions.

Near the multiple points the zeros are still in one-to-one correspondence with the solutions of
a certain equation. However, our control of the errors here is less precise than in the two-phase
coexistence region. In any case, all zeros are at ifnost1)-times degenerate. In addition, for
models with an Ising-like plus-minus symmetry, Theorem 2.5 of [2] gives conditions under which
zeros will lie exactly on the unit circle. This is the local Lee-Yang theorem.

Let us demonstrate these results in the context of some of our examples from Section 1.2. We
will begin with the standard Ising model at low temperatures. In this case there are two possible
phases, labeled- and —, with the corresponding metastable free energies given as functions
of z = 2 by

(+(2) = exp{xh + e 2dTF2h 4 O(e_(4d_2)‘7)}. (2.23)

Symmetry considerations now imply thigt. (z)| = |(—(2)| if and only if Reh = 0, i.e.,|z| =

1, and, as already known from the celebrated Lee-Yang Circle Theorem [11], the same is true
for the actual zeros af}". However, our analysis allows us to go further and approximately
calculate the solutions to the system (2.21-2.22), which shows that the z&f8% die near the

pointsz = e+, wherek = 0,1,..., L% — 1 and
2k +1 _ . (2k+1 _(4d—
0 = T4 T+ 2e 247 sm(Tﬂ) + O(e~Wd=2))y, (2.24)
Of course, ad. increases, higher and higher-order termsin are needed to pinpoint the location
of any particular zero (given that the distance of close zeros is of the brd@r Thus, rather than
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providing the precise location of any given zero, the above formula should be used to calculate
the quantityd;. .1 — 8, which is essentially the distance between two consecutive zeros. The
resulting derivation of theensity of zeross new even in the case of the standard Ising model. A
qualitative picture of how the zeros span the unit circle is provided in Fig. 1.

A similar discussion applies to the “perturbed” Ising model, provided the nearest-neighbor
coupling is ferromagnetic and the remaining terms in the Hamiltonian are small in some appro-
priate norm. In the case of general multi-body couplings, the zeros will lie on a closed curve
which, generically, is not a circle. (For instance, this is easily verified for the three-body inter-
action.) However, if only even terms ifw,,) appear in the Hamiltonian, the models have the
plus-minus symmetry required by Theorem 2.5 of [2] and all of the zeros will lie exactly on the
unit circle. This shows that the conclusions of the Lee-Yang theorem hold well beyond the set of
models to which the classic proof applies.

Finally, in order to demonstrate the non-trivial topology of the set of zeros, let us turn our
attention to the Blume-Capel model. In this case there are three possible stable phases, each
corresponding to a particular spin value. In terms of the complex parametet”, the corre-
sponding metastable free energies are computed from the formulas

Ci(2) = zetexp {Z—le—QdJ—)\ 4 dp2e(4d=2)J-2x | O(e—4dj)} ’
C_(2) = 2 letexp {Zef2djf)\ 1 dp2e—(4d=2)T-2) O(ef4dj)}, (2.25)

Co(2) = exp {(Z+Z—1)6—2dj+)\ Fd(2? 4 2—2)6—(4d—2)J+2>\ i 0(6—4(1{1)}‘

Here it is essential that the energy of the plus-minus neighboring pair exceeds that of zero-plus
(or zero-minus) by a factor of four.

A calculation [1] shows that the zeros lie on two curves which are symmetrical with respect to
circle inversion and which may coincide along an arc of the unit circle, depending on the value
of \; see Fig. 2. As\ increases, the shared portion of these curves grows and, for positive
exceeding a constant of order??”, all zeros will lie on the unit circle. Note that by the methods
of [13], the last result can be established [12] for all temperatures prowidesufficiently large,
while our results give the correct criticalbut only hold for low temperatures.

3. CONTOUR MODELS AND CLUSTER EXPANSION

Let us turn to the proofs. We begin by establishing the necessary tools for applying Pirogov-Sinai
theory. Specifically, we will define contours and show that spin configurations and collections of

matching contours are in one-to-one correspondence. This will induce a corresponding relation
between the contour and spin partition functions. We will also summarize the facts we will need

from the theory of cluster expansions.

3.1 Contours.

The goal of this section is to represent spin configurations in terms of contours. Based on the
fact—following from Assumption C—that the constant configurations are the only possible min-
ima of (the real part of) the energy, we will define contours as the regions where the spin config-
uration is not constant.
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FIGURE 2. A picture demonstrating the location of partition function zeros of the Blume-Capel model.
Here the zeros concentrate on two curves, related by the circle inversion, which may or may not coincide
along an arc of the unit circle. There are two critical values,adenoted byAZ, both of ordere =27, such

that for A < A\¢ < 0, the two curves do not intersect; see (a). Ondacreases through. , a common

piece starts to develop which grows Réncreases through the intervily , \{], see (b) and (c). Finally,

both curves collapse on the unit circle)at= A\ > 0 and stay there for alh > A\J. With the exception

of the “bifurcation” points, the zeros liexactlyon the unit circle along the shared arc. The non-uniform
spacing of the zeros in (b) comes from the influence of the “unstable” phase near the multiple points.

Recalling our assumptioh > 2R + 1, let o be a spin configuration ofi;, and letBg(o)
be theR-boundary ofc. We equipBg(c) with a graph structure by placing an edge between
any two distinct sites:, y € Bgr(o) wheneverr andy are contained in a cubic bakx c T, of
diameter2R + 1 whereo is not constant. We will denote the resulting graphdyy(o). Some of
our definitions will involve the connectivity induced by the gragh(o) but we will also use the
usual concept of connectivity oy, (or Z¢): We say that a set of sites C T, is connected if
every two sites from\ can be connected by a nearest-neighbor path.dxote that the connected
components 0B (o) and the (vertex sets corresponding to the) components of the Giagh)
are often very different sets.

Now we are ready to define contours. We start with contourZ%rand then define contours
on the torus in such a way that they can be easily embedde@fnto

Definition 1 A contouron Z? is a pairY’ = (supp Y, oy ) wheresupp Y is afinite connected
subset ofZ? and wherery is a spin configuration of“ such that the grapi z(oy) is connected
andBgr(oy) =suppY.

A contouron T, is a pairY” = (supp Y, oy ) wheresupp Y is a non-empty, connected subset
of T, with diameter strictly less thah/2 and wherery is a spin configuration ofii;, such that
the graphG'i(oy) is connected an@p(oy ) = supp Y.

A contour networlon Ty, is a pairN = (supp N, o), whereN is a (possibly empty or non-
connected) subset @f;, and wherery is a spin configuration ofi, such thatBr (o) = supp N
and such that the diameter of the vertex set of each componéhi @fy ) is at least /2.
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Note that each contour dfi; has an embedding intd¢ which is unique up to translation
by multiples of L. (Informally, we just need to unwrap the torus without cutting through the
contour.) As long as we restrict attention only to finite contours, the concept of a contour network
has no counterpart df?, so there we will always assume thét= (.

Having defined contours and contour networksTgnabstractly, our next task is to identify
the contoursyy, ..., Y, and the contour networky from a general spin configuration @fy,.
Obviously, the supports @fy, . .., Y, will be defined as the vertex sets of the components of the
graphG (o) with diameter less thah /2, while supp N will be the remaining vertices iBr (o).

To define the corresponding spin configurations we need to demonstrate that the restrigtion of
tosupp Y; (resp.supp N) can be extended to spin configuratiens (resp.,o) on T, such that
Bpr(oy,) = suppY; (resp.,Br(on) = supp N). It will turn out to be sufficient to show that is
constant on theoundaryof each connected component®f \ Bg(o).

Given a setA C Ty, (or A C Z9), let OA denote the external boundary af i.e., OA =
{z € Tr: dist(z,A) = 1}. For the purposes of this section, we also need to define th&°set
which is justA reduced by the boundary of its complemekit,= A \ 9(Tr, \ A). An immediate
consequence of Definition 1 (and the restrictio? o+ 1 > 3) is the following fact:

Lemma3.1 Let(A, o) be eitheracontour or a contour network @h, and letC' be a connected
component of';, \ A°. Thenc is constant orC. If (A, o) is a contour orZ?, theno is constant
on each connected componénbf Z¢ \ A°, with A° now defined ad° = A\ 9(Z% \ A).

Proof. Assume that is not constant or”. Then there must exist a pair of nearest-neighbor
sitesz,y € C such thab, # o,. But thenz and all of its nearest neighbors liedn= Br(o).
SinceC N A° = pandz € C, we are forced to conclude thate A\ A°. But that contradicts the
fact that all of the neighbors af also lie inA. The same proof applies to contours@h a

Definition 2 Let (A, o) be either a contour or a contour networkBpand letC' be a connected
component ofl';, \ A. The common value of the spin on this component in configuration
will be called thelabel of C. The same definition applies to contours®h and to connected
component€ of Z4 \ A.

Let A C Ty, be aconnected set with diameter less th#R. Since the diameter was defined by
enclosure into a “cubic” box (see Sect. 1.2), it follows that each duchs a well defined exterior
and interior. Indeed, any box of side less ttigi2 enclosingA contains less thafl./2)¢ < L4 /2
sites, so we can define tegteriorof A, denoted byExt A, to be the unique component®f, \ A
that contains more thah?/2 sites. Theinterior Int A is defined simply by puttingnt A =
Ty \ (AU ExtA). On the other hand, i\ is the union of disjoint connected sets each with
diameter at least /2 we defineExt A = () andInt A = Ty, \ A. These definitions for connected
sets imply the following definitions for contours iy,

Definition 3 Let Y be a contour or a contour network @fy,. We then define thexterior
of Y, denoted byExt Y, as the seExt supp Y, and theinterior of Y, denoted byint Y, as the
setIntsupp Y. For eachm € S, we letInt,, Y be the union of all components &fit Y with

labelm. If Y is a contour ori;,, we say thal” is am-contourif the label ofExt Y is m.
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Analogous definitions apply to contours @f, except that the exterior of a contoiris now
defined as the infinite component®f \ supp Y, while the interior is defined as the union of all
finite components aZ¢ \ supp Y.

While most of the following statements can be easily modified to hol@fas well as for the
torusT, for the sake of brevity, we henceforth restrict ourselves to the torus.

Lemma 3.2 LetR > 1 and fixL > 2R + 1. Leto be a spin configuration off';, and letA
be either the vertex set of a component of the gr@plio) with diameter less thai./2 or the
union of the vertex sets of all components with diameter at le4&t Let A’ be of the same form
with A’ £ A. Then exactly one of the following is true:

(1) AUInt A Cc Int A’ and A’ UExt A’ C Ext A, or
(2) NUInt A’ Cc Int AandA UExt A C Ext A/, or
(3) AUInt A C Ext A’ andA’ UInt A’ C Ext A.

Proof. It is clearly enough to prove the first half of each of the statements (1-3), since the
second half follow from the first by taking complements (for example in (3), we just use that
AUInt A C Ext A’ impliesT, \ (AUInt A) D Ty, \ Ext A/, which is nothing but the statement
thatA’ UInt A’ C Ext A by our definition of interiors and exteriors).

In order to prove the first halves of the statements (1-3), we first assume that bhothA’
are vertex sets of components of the grapt(o) with diameter less thah /2. Clearly, since\
andA’ correspond to different components®@f; (o), we haveA N A’ = (). Moreover,A andA’
are both connected (as subset¥gj so we have eithek C Int A’ or A C Ext A’ andvice versa
Hence, exactly one of the following four statements is true:

(@) A C Int A’ andA’ C Int A, or
(b) A Cc Int A" andA’ C Ext A, or
(c) A C Ext A andA’ C Int A, or
(d) A c Ext A’ andA’ C Ext A.

We claim that the case (a) cannot happen. Indeed, supposé thaint A’ and observe that
if B is a box of size less thah?/2 such that\’ C B, thenExt A’ > T, \ B. Hencelnt A’ C B.
But thenB also encloses and thusixt ANExt A’ D T\ B # (). Now A'UExt A’ is a connected
set intersectindgsxt A but not intersecting\ (because we assumed thiatc Int A’). It follows
thatA’ UExt A’ C Ext A, and hencént A’ © A UInt A. But then we cannot hav® C Int A as
well. This excludes the case (a) above, and also shows that (b) actually\gives A C Int A’,
which is the first part of the claim (1), while (c) givas U Int A’ C Int A, which is the first part
of the claim (2).

Turning to the remaining case (d), let us observe thlatc Ext A impliesInt A N A’ C
IntA NExtA = (. SinceA N A’ = () as well, this impliestA UIntA) N A" = (. But
A U Int A is a connected subset @f, so eitherA UInt A € Int A’ or AUInt A C ExtA’.
SinceA C Ext A’ excludes the first possibility, we have shown that in case (d), we necessarily
haveA UInt A C Ext A/, which is the first part of statement (3). This concludes the proof of the
lemma for the case when bothand A’ are vertex sets of components of the gréph(o) with
diameter less thah /2.
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Since it is not possible that both and A’ are the union of the vertex sets of all components
of diameter at leask /2, it remains to show the statement of the lemma for the case When
the vertex set of a component of the gragh (o) with diameter less thah /2, while A’ is the
union of the vertex sets of all components of diameter at |48t By definition we now have
Ext A’ = (, so we will have to prove thak U Int A C Int A/, or equivalently,A’ C Ext A.
To this end, let us first observe thatn A’ = (), sinceA has diameter less thaty2 while all
components ofA’ have diameter at leagt/2. Consider the sdint A. SinceA has diameter less
thanZ/2, we can find a box3 of side length smaller thah /2 that contains\, and hence also
Int A. But this implies that none of the componentsidfcan lie inInt A (their diameter is too
large). Since all these components are connected subdeits/of) Ext A, we conclude that they
must be part ofixt A. This gives the desired conclusian C Ext A. O

The previous lemma allows us to organize the component:db) into a tree-like structure
by regarding\’ to be the “ancestor” ol (or, equivalentlyA to be a “descendant” ot’) if the
first option in Lemma 3.2 occurs. Explicitly, 16Vz (o) be the collection of all setd C T,
that are either the vertex set of a connected componeaf¢f) with diameter less thah /2 or
the union of the vertex sets of all connected components of diameter aL|gasiVe use) to
denote the latter. If there is no component of diaméte2 or larger, we definéyy = () and set
Int Ag =Ty,

We now define gartial order on Wr(o) by settingA < A’ wheneverA UInt A C Int A’.
If A < A/, but there is na\” € Wg(o) such thatA < A” < A/, we say that\ is a child
of A" andA’ is a parent ofA. Using Lemma 3.2, one easily shows that no child has more than
one parent, implying that the parent child relationship leads to a tree structd#g;om), with
root Ag. This opens the possibility for inductive arguments from the innermost contours (the
leaves in the above tree) to the outermost contours (the children of the root). Our first use of such
an argument will be to prove that unique labels can be assigned to the connected components of
the complement oBr(o) .

Lemma 3.3 Leto be a spin configuration ofi;, and letA be either the vertex set of a component
of the graphG (o) with diameter less thah /2 or the set of sites iz (o) that are not contained
in any such component. @f is a connected component®f \ A°, theno is constant orC N A.

The proof is based on the following fact which is presumably well known:

Lemma 3.4 LetA C Z? be a finite connected set with a connected complement. TA&iis
x-connected in the sense that any two siteg € JA° are connected by a path ahA® whose
individual steps connect only pairs of sitesZsfwith Euclidean distance not exceedig@.

Proof. The proof will proceed in three steps. In the first step, we will prove thatdgeboundary
of A, henceforth denoted hyA, is aminimal cutset (Here we recall that a set of edgesin a
graphG = (V, E) is called a cutset if the grapi’ = (V, E \ E’) has at least two components,
and a cutseE’ is called minimal if any proper subset &f is not a cutset.) In the second step,
we will prove that the dual of the edge boundary is a connected set of facets, and in the third
step we will use this fact to prove thati® is x-connected.

Consider thus a set which is connected and whose complement is connectedi Ak the
edge boundary ofl and letE, be the set of nearest-neighbor edge&inThe set A is clearly a
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cutset since any nearest-neighbor path joininigp A® must pass through one of the edges.ih

To show thaty A is also minimal, letE’ be a proper subset 6f4, and lete € §A \ E’. Since
both A and A° are connected, an arbitrary pair of siteg € Z? can be joined by a path that uses
only edges infe} U (E4 \ 04) C E; \ E'. Hence suclE’ is not a cutset which implies thatd

is minimal as claimed.

To continue with the second part of the proof, we need to introduce some notation. As usual,
we use the symbdL*¢ to denote the set of all points iR¢ with half-integer coordinates. We
say that a set C Z*? is a k-cell if the vertices inc are the “corners” of &-dimensional unit
cube inRY%. A d-cell ¢ ¢ Z*! and a vertexe € Z¢ are called dual to each other.fis the
center ofc (considered as a subset®f). Similarly, a facetf (i.e., a(d — 1)-cell in Z*%) and a
nearest-neighbor edgec Z¢ are called dual to each other if the midpointeofconsidered as a
line segment ifRY) is the center off. The boundary)C of a setC' of d-cells inZ*? is defined
as the set of facets that are contained in an odd number of cellsand the boundarg F' of a
setF of facets inZ*“ is defined as the set ¢l — 2)-cells that are contained in an odd number of
facets inF. Finally, a set of facet$’ is called connected if any two facefsf’ € F can be joined
by a path of facety; = f,..., f, = f/in F such that for alk = 1,...,n — 1, the facetsf;
andf;,, share gd — 2)-cell in Z*<.

Note that an arbitrary finite set of facetshas empty boundary if and only if there exists a
finite set of cube€’ such thatF" = 9C, which follows immediately from the fad&? has trivial
homology. Using this fact, we now prove that the gebf facets dual taédA is connected. Let
W be the set ofi-cells dual toA, and letF" = 0T be the boundary oft’. We will now prove
that I is a connected set of facets. Indeed, sifice: 91V, we have that” has empty boundary,
OF = ). Assume thaf' has more than one component, andflet F be one of them. The&’
andF'\ F are not connected to each other, and hence shafé-n@)-cells. But this implies that
the boundary of* must be empty itself, so thdf is the boundary of some s&t. This in turn
implies that the dual of” is a cutset, contradicting the fact thiat is a minimal cutset.

Consider now two points,y € JA® C A. Then there are points,y € A° such that{z, z}
and{y, y} are edges in A. Taking into account the connectedness of the dudiofwe can find
a sequence of edges = {z,z}, ..., e, = {y,g} indA such thatforalk = 1,...,n — 1, the
facets dual te;, andey1 share gd—2) cell in 7*¢. As a consequence, the edgg®inde;, ., are
either parallel, and the four vertices in these two edges form an elementary plaquette of the form
{z,z+n1,x+ns, z+n; +ny} wheren; andn; are unit vectors in two different lattice directions,
or e, andey 1 are orthogonal and share exactly one endpoint. Sincedacdhde;, are edges
in § A, each of them must contains a pointiA®, and by the above case analysis, the two points

are at mosk/2 apart. The sequenes, . .., e, thus gives rise to a sequence of (not necessarily
distinct) pointszy, ..., z, € 0A® such thatr = z1, y = z,, anddist(x, zp11) < V2 for all
k=1,...,n— 1. This proves thad A® is x-connected. O

Proof of Lemma 3.3.Relying on Lemma 3.2, we will prove the statement by induction from
innermost to outermost components of diameter less fhyén Let A be the vertex set of a
component of the grapfi (o) with diameter less thah /2 and suppos@r (o) NInt A = . (In
other words A is an innermost component &z (o).) Then the same argument that was used in
the proof of Lemma 3.1 shows that all connected componentstdf clearly have the desired
property, so we only need to focus Bt A.
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Let us pick two sitese,y € 0ExtA = AN OExtA and letA’ = A UIntA. ThenA’ is
connected with a connected complement and sintes a diameter less thdry/2, we may as
well think of A’ as a subset dZ¢. Now Lemma 3.4 guarantees thatA’')® = O Ext A is *-
connected and henaeeandy are connected by-aconnected path entirely containeddrxt A.

But the spin configuration must be constant on any Gox [—R, R]?) N Z2 with z € 9 Ext A
and thus the spin is constant along the path. It followsdhat o,,.

The outcome of the previous argument is that now we can “rewrite” the configuratidn on
without changing the rest @8z (o). The resulting configuration will have fewer connected com-
ponents of diameter less tha&rf2 and, proceeding by induction, the proof is reduced to the cases
when there are no such components at all. But then we are down to the case\ \sireply
equalsBg(o). Using again the argument in the proof of Lemma 3.1, the spin must be constant
on each connected componénbf Ty, \ Br(o)°. O

The previous lemma shows that each component of the graglr) induces a unique label
on every connected componériof its complement. Consequently, if two contours share such a
component—which includes the case when their supports are adjacent to each other—they must
induce the same label on it. A precise statement of this “matching” condition is as follows. (Note,
however, that not all collections of contours will have this matching property.)

Definition 4 We say that the paifY, N)—whereY is a set of contours aniy is a contour
network onT ;—is acollection of matching contouithe following is true:

(1) suppY NsuppY’ = O for any two distinctY,Y’ € Y andsuppY N suppN = 0 for
anyY €Y.

(2) If C'is a connected component®f, \ [(supp N)° U [y cy(supp Y)°], then the restrictions
of the spin configurationsy (andoy) to C are the same for all contou¥s € Y (and contour
networkN) with suppY N C # 0 (supp N N C # 0). In other words, the contours/contour
network intersecting’ induce the same label ari.

Here we use the convention that there are altogethledistinct pairs(Y, N) with bothY = ()
andN = (), each of which corresponds to onec S.

Definition 4 has an obvious analogue for s&t®f contours onZ¢, where we require that
(1) suppY NsuppY’ = 0 for any two distinctY, Y’ € Y and (2) all contours intersecting a
connected componenit of Z¢ \ [y .y (supp Y)°] induce the same label @f.

It remains to check the intuitively obvious fact that spin configurations and collections of
matching contours are in one-to-one correspondence:

Lemma 3.5 For each spin configuratioa € STz, there exists a unique collectidiy, N) of
matching contours offf;, and for any collectior{Y, N') of matching contours offi;,, there exists
a unique spin configuration € ST* such that the following is true:

(1) The supports of the contoursn(of the contour networly) are the vertex sets (the union of
the vertex sets) of the connected components of the gragh) with diameter strictly less
than (at least)L/2.

(2) The spin configuration corresponding to a collectidf ') of matching contours arise by
restricting oy for eachY € Y as well asoy to the support of the corresponding contour
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(contour network) and then extending the resulting configuration by the common label of the
adjacent connected components.

Proof. Let o be a spin configuration and Iatbe a component of the graghg (o) with diameter
less tharl./2. Then Lemma 3.3 ensures thais constant on the boundady”' of each component
C of A®. Restrictingo to A and extending the resulting configuration in such a way that the new
configurationg, restricted to a component componéhbf A€, is equal to the old configuration
on dC, the pair(A, &) thus defines a contour. Similarly, A is the union of all components of
the graphG'r (o) with diameter at least /2 andC' is a connected component®f, \ A°, theno
is, after removal of all contours, constant@h The contours/contour netwo(R, N') then arise
from o in the way described. The supports of these objects are all disjoint, so the last property to
check is that the labels induced on the adjacent connected components indeed match. But this is
a direct consequence of the construction.

To prove the converse, I€l, N) denote a set of matching contours andaddie defined by
the corresponding contour configuration on the support of the contours (or contour network) and
by the common value of the spin in contour configurations for contours adjacent to a connected
component oflz, \ [(suppN)° U Uy cy(supp Y)°]. (If at least one ofy, N is nonempty, then
this value is uniquely specified because of the matching condition; otherwise, it follows by our
convention that emptyY, N') carries an extra label.)

It remains to show thal’ are the contours and is the contour network of. Let A be
a component of the grapiz(c). We have to show that it coincides wittupp Y for some
Y € Y or with a component ofupp N (viewed as a graph). We start with the observation
that A C suppN U (UycysuppY’). Next we note that for eacH € Y, the graphGr(oy) is
connected. Since the restriction®f to supp Y is equal to the corresponding restrictionogf
we conclude thatuppY N A # ) impliessuppY C A, and similarly for the components of
supp N. To complete the proof, we therefore only have to excludedtpp Y C A for more
than one contouY” € Y, or thatA C A for more than one componeftof supp N, and similarly
for the combination of contours iYi and components cfupp N.

Let us assume thatipp Y C A for more than one contodr € Y. SinceA is a connected
component of the grapfi g (), this implies that there exists a bdx = (z + [~ R, R]?) N Z¢
and two contourd7, Y> € Y such that is not constant o3, supp Y; Usupp Ys C A andB,
is intersecting botlkupp Y7 andsupp Y>. But this is in contradiction with the fact that is
a collection of matching contours (and a configuration on any such box not contained in the
support of one of the contours nor in a component ofupp N must be constant). In the same
way one excludes the case combiniupp Y with a component ofupp N or combining two
components ofupp N. Having excluded everything else, we thus have shown Ahisteither
the support of one of the contours¥n or one of the components sfipp N. O

3.2 Partition functions and Peierls’ condition.

A crucial part of our forthcoming derivations concerns various contour partition functions, so our
next task will be to define these quantities. We need some notatior(:YL.&f) be a collection

of matching contours offf;,. A contourY € Y is called anexternal contour inY if suppY C

Ext Y’ for all Y’ € Y different fromY’, and we will call two contourd, Y’ € Y mutually
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externalif suppY C ExtY’ andsuppY’ C ExtY. Completely analogous definitions apply
to a set of matching contouf§ on Z? (recall that onZ¢, we always seN = ()). Note that,
by Lemma 3.2, two contours of a configuratieron T, are either mutually external or one is
contained in the interior of the other. Inspecting the proof of this Lemma 3.2, the reader may
easily verify that this remains true for configurationsZh provided the seBr(o) is finite.

Given a contou®t” = (suppY,oy) or a contour networkN = (supp N, oy) let E(Y, z)
andE (N, z) denote the corresponding excitation enerdi¢sy-, z) andE (o, z) from (1.7). We
then introduce exponential weighis(Y") andp..(N), which are related to the quantitiéXY’, z)
andE(N, z) according to

p=(Y) = e P and p.(N) = e PO, (3.1)

The next lemma states that the exponential weights), p.(Y) andp.(N) are analytic func-
tions of z.

Lemma 3.6 Suppose that Assumption CO holdsglet S, letY be ag-contour and letN be a
contour network. Thef,(z), p-(Y) andp,(N) are analytic functions of in &.

Proof. By assumption CO, the functions — ¢p(c,z) = exp{—®x(c,z)} are holomorphic
in & To prove the lemma, we will show théj(z), p.(Y) andp. () can be written as products
over the exponential potentials, (o, z), with o = ¢, 0 = oy ando = oy, respectively.

Let us start withd,(z). Showing tha¥, is the product of exponential potentiatg (c9, z) is
clearly equivalent to showing thaj can be rewritten in the form

eg= Y Pa(0?), (3.2)

A€V,

whereV. is a collection of subsetd C Ty,. But this is obvious from the definition (1.6) ef:
just chooséV. in such a way that it contains exactly one representative from each equivalence
class under translations.
Consider now a contolr” = (supp Y, oy ) and the corresponding excitation enetgyy’, z).
We will want to show tha# (Y, z) can be written in the form

E(Y,z)= ) ®aloy), (3.3)

AeVy

whereVy is again a collection of subsetsC Ty. LetA; = ExtY UlInt, Y, andA,, = Int,,, Y
for m # ¢. Consider a point: € A,,,. Sincex ¢ suppY = Bgr(oy), the configuratiorry must
be constant on any subsktC Ty that has diamete2R + 1 or less and contains the point
implying that

3 @,@A(ay): 3 |L¢A<om>:em (3.4)
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whenever: € A,,. Using these facts, we now rewrit(Y, z) as

E(Y,2) = BHi(oy)— >, Y, /1\’<I>A(UY)

z€Tr ~suppY A:x€A

= > Oaloy) = > [Amlem

ACT, mes (3.5)
= Y ®ploy)+ Z{( > @A(gm)> _ yAm\em}.
ACsuppY meS ACTy,
APA 0

To complete the proof, we note that the sum ovenallith A N A,,, # () contains at leagt\,,, |
translates of each C Ty, contributing to the right hand side of (3.2). As a consequence, the
difference on the right hand side of (3.5) can be written in the form (3.3), provinditiatz) is
of the form (3.3). The proof that, (V') is an analytic function of is virtually identical. O

Next we define partition functions in finite subsetsZft Fix an indexq € S. LetA ¢ Z¢
be a finite set and le¥1(A, ¢) be the set of all collection¥ of matching contours iZ? with the
following properties:

(1) For eachty € Y, we havesupp Y UInt Y C A.
(2) The external contours il areq-contours.

Note thatsupp Y UIntY C A is implied by the simpler condition thatpp Y C A if Z4\ A is
connected, while in the case wh%é\ A is not connected, the conditienpp Y UIntY C A
is stronger, since it implies that none of the contayirs Y contain any hole of\ in its interior.
(Here a hole is defined as a finite componenZ6f\, A.) In the sequel, we will say thaf is a
contour inA wheneverY” obeys the conditiosupp Y UInt Y C A.

Thecontour partition functiorin A with boundary conditior is then defined by

Zyd) = 3 [T (2O T pa), (3.6)

YEM(A,q) meS Yey

where A,,,(Y) denotes the union of all components &f\ J,.y supp Y with label m, and
|A (Y)] stands for the cardinality of,,, (Y).

If we add the condition that the contour netwykis empty, the definitions of the sat((A, q)
and the partition functiot¥, (A, z) clearly extends to any subs&tC T, because off';, every
contour has a well defined exterior and interior. However, our goal is to have a contour repre-
sentation for the full torus partition function. Létt;, denote the set of all collection®’, ') of
matching contours iff';, which, according to our convention, include an extra labet S when
bothY andN are empty. IfY,N) € M is such a collection, lek,,, (Y, N) denote the union of
the components 6f ., \ (supp N U Uy ¢y supp Y') with labelm. Then we have:

Proposition 3.7(Contour representation)The partition function on the torug;, is given by

7P (2) = Z [H Hm(z)|Am(Y,N)|i| p-(N) H p(Y). (3.7)

(Y N)eM meS Yey
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In particular, we have
72 = Y pN) [ Zn(An(0.N),2). (3.8)
(mvN)EML meS

Proof. By Lemma 3.5, the spin configuratioasare in one-to-one correspondence with the pairs
(Y,N) € M. Let(Y,N) be the pair corresponding to Rewriting (1.8) as

BHL() =5 3 Lwa), (39)
zeTy, A:/{\BCI’]I‘L

we can now split the first sum into several parts: one for eack S corresponding ta: €
A (Y, N), one for eacl” € Y corresponding ta: € supp Y, and finally, one for the part of
the sum corresponding to € supp N. Invoking the definitions of the energies,(z), E(Y, z)
andE(N, z), this gives

BHL(0) = Y em(2)|Am(Y,N)| + Y E(Y,2) + E(N, 2). (3.10)
meS YeY

Strictly speaking, the fact that the excitation energy factors (technically, sums) over contours and
contour networks requires a proof. Since this is straightforward using induction as in the proof of
Lemma 3.3, starting again with the innermost contours, we leave the formal proof to the reader.
Using the definitions of,,(2), p.(Y") andp.(N) and noting that, by Lemma 3.5, the sum ower
can be rewritten as the sum ov@&f, N) € M, formula (3.7) directly follows.

The second formula, (3.8), formally arises by a resummation of all contours that can contribute
together with a given contour netwof¥. It only remains to check that i¥,,, C Y is the set
of Y € YwithsuppY C A,,, = A (0, N), thenY,, can take any value iM (A,,, m). But this
follows directly from Definition 4 and the definition d¥1(A,,, m). O

In order to be useful, the representations (3.7) and (3.8) require that contours and contour
networks are sufficiently suppressed with respect to the maximal ground state weighis
is ensured by Assumption C2, which guarantees fihat’)| < 6(z)Yle="VI and|p.(N)| <
0(z)Nle=7NI where we used the symbdlg| and|N| to denote the cardinality ofupp Y and
supp N, respectively.

3.3 Cluster expansion.

The last ingredient that we will need is tbkister expansignwhich will serve as our principal

tool for evaluating and estimating logarithms of various partition functions. The cluster expansion
is conveniently formulated in the context of so-called abstract polymer models [19, 10, 7, 14].
Let K be a countable set—the set of ptllymers—and let£ be therelation of incompatibility
which is a reflexive and symmetric binary relation ién For eachA C K, let M(A) be the set

of multi-indicesX: K — {0} U N that are finite,}__ ., X(v) < oo, and that satisfX(y) = 0
whenevery ¢ A. Further, leC(A) be the set of all multi-indiced € M(A) with values in{0,1}

that satisfyX(+)X(v") = 0 whenevery £ ~" and~y # +'.
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Let: K — C be a polymer functional. For each finite sub&et K, let us define the polymer
partition functionZ(A) by the formula
= > TI:w (3.11)

XEC(A) YEK

In the most recent formulation [7, 14], the cluster expansion corresponds to a multidimensional
Taylor series for the quantityg Z(A), where the complex variables are #{e). Hereclusters
are simply multi-indiceX € M (K) for which any nontrivial decomposition ofleads to incom-
patible multi-indices. Explicitly, ifX can be written aX; + Xy with X1, Xy # 0, then there exist
two (not necessary distinct) polymers, v2 € K, 1 7 72, such thaiX (y1)Xa(y2) # 0.

Given a finite sequende = (71, ...,7v,) of polymers inK, letn(I") = n be the length of the
sequencé’, letG(I") be the set of all connected graphs{dn. .., n} that have no edge between
the verticesi andj if v; ~ v;, and letXp be the multi-index for whictXr(v) is equal to the
number of times that appears id". For a finite multi-indexX, we then define

=3 n(lr), S (-1, (3.12)

I:Xp=X " geg ()

with |g| denoting the number of edgesg’nand
) [T37) X, (3.13)

vEK

Note thatG(T") = 0 if Xr is not a cluster, implying, in particular, that(X) = 0 wheneveiX is
not a cluster. We also use the notatkn¢ v wheneverX is a cluster such tha€(+') > 0 for at
least oney’ « ~.

The main result of [14] (building upon [7]) is then as follows:

Theorem 3.8(Cluster expansion)Leta: K — [0,00) be a function and lejo: K — [0, c0) be
polymer weights satisfying the bound

Z 30(v) ) < a(y), v € K. (3.14)

v ek

¥y
ThenZ(A) # 0 for any finite selA C K and any collection of polymer weighgs K — C in the
multidiscDa = {(3(7)): [3(7)| < 30(7), v € A}. Moreover, if we defineg Z(A) as the unique
continuous branch of the complex logarithm®fA) on D, normalized so thalog Z(A) = 0
whenj(v) = 0 for all v € A, then

log Z(A)= > 3'( (3.15)
XeEM(A)

holds for each finite s&t C K. Here the power series on the right hand side converges absolutely
on the multidisd,. Furthermore, the bounds

STl Y. XT3 |e*™ (3.16)

XeM(K) XeEM(K)
X(v)>1
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and

Y X)) <av) (3.17)
XeEM(K)
Xoby

hold for eachy € K.

Proof. This is essentially the main result of [14] stated under the (stronger) condition (3.14),
which is originally due to [15, 10]. To make the correspondence with [14] explicit, let

() = log(1 + |3(7)]e*™) (3.18)

and note thag(y) < [3(7)]e®) < 30(7)e®). The condition (3.14) then guarantees that we
haved_ .. nu(7') < a(v) and hence

50 = (@ = 1)em < (0 —exp{= " u(v) }. (3.19)
el
This implies that any collection of weights K — C such that3(v)| < 30(y) for all v € K will
fulfill the principal condition of the main theorem of [14]. Hence, we can conclude#baj # 0
in D, and that (3.15) holds. Moreover, as shown in [14], both quantities on the left-hand side of
(3.16) are bounded by*(") — 1 which simply equal$(v)|e*?). The bound (3.16) together with
the condition (3.14) immediately give (3.17). O

To facilitate the future use of this result, we will extract the relevant conclusions into two
lemmas. Given a spin stagec S, letK, denote the set of afl-contours inZe IfY,Y’ € Kg, let
us callY” andY” incompatiblef supp Y Nsupp Y’ # (. If A is a finite set of;-contours, we will
let Z(A) be the polymer sum (3.11) defined using this incompatibility relation. Then we have:

Lemma 3.9 There exists a constany = co(d, |S|) € (0,00) such that, for ally € S and all
contour functionalg : K, — C satisfying the condition
3(Y)| < 30(Y) = et forall v ek, (3.20)
for somen > 0, the following holds for alk > 1:
(1) Z(A) # 0 for all finite A C K, withlog Z(A) given by(3.15) and
Yoo BT <e™ (3.21)

XEM(Kq)
V(X)20, [IX[| >k

Here V(X) = Uy, xyyso V(Y) With V(Y) = supp Y Unt Y and [X|| = Sy e, X(Y)[Y.

(2) Furthermore, if the activitieg(Y") are twice continuously differentiable (but not necessarily
analytic) functions of a complex parametesuch that the bounds

hold for anyw, w" € {z,z} and anyY” € K, then
> |ows’(X)] <e™  and > 0w0wd (X)] < e (3.23)
XEM(Kq) XEM(Kq)

V(X)30, [XlI=k V(X)20, [XlI=k
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foranyw, v’ € {z, z}.

Using, for any finiteA C Z4, the notatiork, » = {Y € K,: suppY UIntY C A} anddA
for the set of sites ifZ¢ \ A that have a nearest neighborAnwe get the following lemma as an
easy corollary:

Lemma 3.10 Suppose that the weighfssatisfy the bound3.20)and are invariant under the
translations ofZ¢. Then thepolymer pressure, = lim ;74 |A| 7! log Z(Kg,a) exists and is
given by

1
Sq = > 31 (X). (3.24)
V(X)|
XEM(Kq): V(X)20

Moreover, the bounds

|sq| < €7 (3.25)
and

llog Z(Kg,a) — sqlAl| < e "|OA] (3.26)

hold. Finally, if the condition§3.22)on derivatives of the weigh$$Y") are also met, the polymer
pressures, is twice continuously differentiable mwith the bounds

0wsq| < e and  |9y0ursq| < e, (3.27)

valid for anyw, w’ € {z, z}.

Proof of Lemma 3.9Let us consider a polymer model where polymers are either a single site
of Z? or ag-contour fromK,. (The reason for including single sites as polymers will become
apparent below.) Let the compatibility between contours be defined by disjointness of their sup-
ports while that between a contodrand a siter by disjointness of 2} andsuppY UInt Y. If

we let3(~) = 0 whenevery is just a single site, this polymer model is indistinguishable from the
one considered in the statement of the lemma. Let us chgasethat

Z eZeolYl < 1, (3.28)
YeKq: V(Y)30

To see that this is possible with a constantiepending only on the dimension and the cardinality
of S, we note that each polymer is a connected subsgt'ofAs is well known, the number of
such sets of size containing the origin grows only exponentially with Since there are only
finitely many spin states, this shows that it is possible to chogsas claimed.

Defininga(y) = 1if v is a single site and(Y") = |Y'| if Y is ag-contour inK,, the assump-
tion (3.14) of Theorem 3.8 is then satisfied. (Note that assumption (3.14) requires slightly less
than (3.28), namely the analogue of (3.28) with the exponefit-efy)|Y | instead 0f2—c¢)|Y|;
the reason why we chosgg such that (3.28) holds will become clear momentarily.) Theorem 3.8
guarantees thaf(A) # 0 and (3.15) holds for the corresponding cluster weightsActually,
assumption (3.14) is, for aly > 0, also satisfied wheg(Y") is replaced by (Y )e!(Y) with
b(Y) = n|Y]|, yielding

Y. M) < ay) (3.29)
XeM(K)
Xoby
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with b(X) = n||X|| instead of (3.17). Using (3.29) withchosen to be the polymer represented by
the site at the origin and observing that the quariij) exceeds)k for any cluster contributing
to the sumin (3.21), we get the bound

ety TS Y BT <1, (3.30)
XEM(Kq) XEM(Kq)
V(X)20, X[ >k V(X)20

i.e., the bound (3.21).
In order to prove the bounds (3.23), we first notice that, in view of (3.13) and (3.22) we have

10037 ()| < IXI1[35(X)| < ™35 (x)] (3.31)
and
00003 (X)] < IXI2[35 )| < ™[35(X)]. (3:32)

Using (3.29) withb(Y') = (n+ 1)|Y'| (which is also possible since we choegesuch that (3.28)
holds as stated, instead of the weaker condition wierecy)|Y | is replaced byl — cy)|Y'|) we
get (3.23) in the same way as (3.21). d

Proof of Lemma 3.10The bound (3.21) fok = 1 immediately implies that the sum in (3.24)
converges withs,| < e~". Using (3.15) and standard resummation techniques, we rewrite the
left hand side of (3.26) as

VIX)NA
‘logZ(Kq,A) — sq\AH = ‘ Z ’(V)‘gT(X) ) (3.33)
XErTKe) [V(X)]
V(X)ZA

Next we note that for any cluster € M(K,), the setV/(X) is a connected subset @f, which
follows immediately from the observations thafpp Y U Int Y is connected for all contours,
and that incompatibility of two contours, Y’/ implies thatsupp Y N supp Y’ # . Since only
clusters withV'(X) N A # @ andV(X) N A® # ) contribute to the right hand side of (3.33), we
conclude that the right hand side of (3.33) can be bounded by a sum over ckisteks with
V(X) N A # 0. Using this fact and the bound (3.21) with= 1, (3.26) is proved.

Similarly, using the bounds (3.23) in combination with explicit expression (3.24) in terms of
absolutely converging cluster expansions, the claims (3.27) immediately follow. O

Remark 5 The proof of Lemma 3.9 holds without changes if we replace the set @fcalhtours

in Z% by the set of all-contours on the toru$ . This is not true, however, for the proof of the
bound (3.26) from Lemma 3.10 since one also has to take into account the difference between
clusters wrapped around the torus and clustet&?inThe corresponding modifications will be
discussed in Section 4.4.

4. PROGOVW-SINAI ANALYSIS

The main goal of this section is to develop the techniques needed to control the torus partition
function. Along the way we will establish some basic properties of the metastable free energies
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which will be used to prove the statements concerning the quangjtiesMost of this section
concerns the contour model @f4. We will return to the torus in Sections 4.4 and 5.

All of the derivations in this section are based on assumptions that are slightly more general
than Assumption C. Specifically, we only make statements concerning a contour model satisfying
the following three conditions (which depend on two parameteasd M):

(1) The partition functionsZ,(A, z) and ZP(z) are expressed in terms of the energy vari-
ablesd,, (z) and contour weightg, as stated in (3.6) and (3.7), respectively.

(2) The weightsp, of contours and contour networks are translation invariant and are twice
continuously differentiable functions afi. They obey the bounds

|008%. (V)| < (MY ) e TV Ig ()Y, (4.1)

and
|0L8%0. (N)| < (MIN]) e N9 ()N (4.2)

aslongag,/>0andl + /¢ < 2. )
(3) The energy variableg,, are twice continuously differentiable functions éhand obey the
bounds

100020, ()| < (M)*+16(2) (4.3)

aslong ag, / > 0 and/+ ¢ < 2. We will assume thad(z) is bounded uniformly from below
throughouts’. However, we allow that some of tfig, vanish at some € &.

In particular, throughout this section we will not require that any of the quantities.(Y)
or p.(N) is analytic inz.

4.1 Truncated contour weights.

The key idea of contour expansions is that, for phases that are thermodynamically stable, contours
appear as heavily suppressed perturbations of the corresponding ground states. At the points of
the phase diagram where all ground states lead to stable phases, cluster expansion should then
allow us to calculate all important physical quantities. However, even in these special circum-
stances, the direct use of the cluster expansion on (3.6) is impeded by the presence of the energy
terms#,, (z)/A» (Ml and, more seriously, by the requirement that the contour labels match.

To solve these problems, we will express the partition function in a form which does not involve
any matching condition. First we will rewrite the sum in (3.6) as a sum over mutually external
contoursY®times a sum over collections of contours which are contained in the interior of one
of the contours ifY®, For a fixed contout” € Y®, the sum over all contours insidet,,, Y’
then contributes the factdf,, (Int,, Y, z), while the exterior of the contours i¥i®! contributes
the factord,, () ¢/, whereExt = Exts (Y®Y) = )y cyec(Ext Y N A). As a consequence, we
can rewrite the partition function (3.6) as

=202 ™ T { p-0) [] Zon(1ntin v, )}, @49
yext Yy eyext m

where the sum goes over all collections of compatible extertaintours inA.
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At this point, we use an idea which originally goes back to [9]. Let us multiply each term in
the above sum by in the form

Ze(Int, Y, 2)
1= L e 4.5
H H Zy(Inty, Y, 2) (4.5)
Yeyet m
Associating the partition functions in the denominator with the corresponding contour, we get
=20, T (6K (Y. )2, (It Y, 2) ), (4.6)
YEXI YeYext

whereK, (Y, z) is given by

Zp(Inty, Y, 2)
K, (Y,2) = —Yl 47
q( 7Z) pZ H Z Int Y Z) ( )
Proceeding by induction, this leads to the representatlon
Z4(A, 2) AP T Ka(a2), (4.8)
YeC(Aq) YEY

whereC(A, q) denotes the set of all collections of non-overlappjpgpntours inA. Clearly, the
sum on the right hand side is exactly of the form needed to apply cluster expansion, provided the
contour weights satisfy the necessary convergence assumptions.

Notwithstanding the appeal of the previous construction, a bit of caution is necessary. Indeed,
in order for the weightd{,(Y, z) to be well defined, we are forced to assume—or prove by
cluster expansion, provided we somehow know that the weightsave the required decay—that
Zy(Int,, Y, 2) # 0. In the “physical” cases when the contour weights are real and positive (and
the ground-state energies are real-valued), this condition usually follows automatically. However,
here we are considering contour models with general complex weights and, in fact, our ultimate
goal is actually to look at situations where a partition function vanishes.

Matters get even more complicated whenever there is a ground state which fails to yield a stable
state (which is what happens at a generic point of the phase diagram). Indeed, for such ground
states, the occurrence of a large contour provides a mechanism for flipping from an unstable to
a stable phase—which is the favored situation once the volume gain of free energy exceeds the
energy penalty at the boundary. Consequently, the relative weights of (large) contours in unstable
phases are generally large, which precludes the use of the cluster expansion altogether. A classic
solution to this difficulty is to modify the contour functionals for unstable phases [21, 5, 6]. We
will follow the strategy of [6], where contour weights are truncated with the aid of a smooth
mollifier.

To introduce the truncated contours weights, let us consid&(R)-functionz +— x(z), such
that0 < x(-) <1, x(z) =0forz < —2andy(x) = 1 forz > —1. Let ¢y be the constant from
Lemma 3.9. Usingy as a regularized truncation factor, we shall inductively define new contour
weights K (-, 2) so that| K}(Y, z)| < e~(«0*7/2¥| for all g-contoursY’. By Lemma 3.9, the
assomated partition functlo@ z) defined by

Zh(A2) = 0,(x)M > T Ki(v.2) (4.9)

YeC(A,q) YEY
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can then be controlled by cluster expansion. (Of course, later we will shoml?tg(a;z) =
K,(-,z) andZ(A, z) = Z,(A, z) whenever the ground stajegives rise to a stable phase.)

Let 6,(z) # 0, letY be ag-contour inA, and suppose that/, (A’, z) has been defined by
(4.9)forallm € SandallA’ G A. Let us further assume by induction thg(A’, z) # 0 for all
m € Sand allA” & A. We then define a smoothed cutoff function(Y, z) by

@Z)q(}/a Z) = H Xq;m(K Z), (410)
meS
where
Z! (Int Y,2)04(2)!Y
Z! (Int Y,2)0,m (2)Y]

T 1
Xam (Y5 2) = X < + %] log ) : (4.12)

4
Herexq.m (Y, z) is interpreted as if 6,,(z) or Z], (Int Y, z) is zero.
As a consequence of the above definitions and the faciithaty ; A forallm € S, the
expressions

Zm(Int,, Y, 2)

' — Iy
Kq(Y,2) = p=(Y) 04(2) ¥ 16g(Y, 2) ,gs Z (It Y. 2) (4.12)
and
N / it ! < o—(cotT/2)|Y]
Ky(Y,2) = {KQ(Y’ 2 (Y z)<e ’ (4.13)
0, otherwise

are meaningful for alt with 6,(2) # 0. By Lemma 3.9 we now know thaf, (A, z) # 0 and the
inductive definition can proceed.

In the exceptional cagg(z) = 0, we Iet[?{](-, z) = K;(-,2) = 0andZ,(-, z) = 0. Note that
this is consistent witlp, (Y, z) = 0.

Remark 6 Theorem 4.2 stated and proved below will ensure thgtY, z)| < e~ (c0+7/2I¥] for

all g-contoursY and allg € S, providedr > 4¢y + 16. Hence, as it turns owt posteriori the

second alternative in (4.13) never occurs and, once we are done with the proof of Theorem 4.2, we
can safely repIacéN((’I everywhere byK{I. The additional truncation allows us to define and use

the relevant metastable free energies before stating and proving the (rather involved) Theorem 4.2.
An alternative strategy would be to define scale dependent free energies as was done e.g. in [6].

4.2 Metastable free energies.

Let us rewriteZ, (A, z) as

ZI(A, z) = 0,(2) M Z1(A, 2) (4.14)
where
ZiN2) = > ] K. (4.15)
YeC(A,q) YEY

We then define
(q(2) = Og(2)e?), (4.16)
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where

sq(2) = lim 1 log Z; (A, z) (4.17)

[A|—o0, %HO |A|

By Lemma 3.10, the partition functior; (A, z) and the polymer pressusg(z) can be analyzed
by a convergent cluster expansion, leading to the following lemma.

Lemma 4.1 For eachq € S and eachz € ¢, the van Hove limi(4.17)exists and obeys the
bound

|sq(2)] < e T/2. (4.18)
If A is afinite subset ot andf,(z) # 0, we further have thag/ (A, z) # 0 and

llog (Gq(2) M ZL(A, 2))| < e77/2|8A, (4.19)
while {,(z) = 0and Z; (A, z) = 0if 0,(z) = 0.

Proof. Recalling the definition of compatibility betweencontours from the paragraph before
Lemma 3.9,C(A, q) is exactly the set of all compatible collections @tontours inA. Using
the bound (4.13), the statements of the lemma are now direct consequences of Lemma 3.10, the
definition (4.16), the representation (4.14) (A, z) and the fact that we sé?(’l(Y, 2) =0if
04(z) = 0. O

The logarithm of,(z)—or at least its real part—has a natural interpretation astastable
free energyof the ground state. To state our next theorem, we actually need to define these (and
some other) quantities explicitly: For eacke ¢ and eachy € S with 04(2) # 0, let

fo(2) = —log (4 (2)],
f(z) = min fr,(2), (4.20)

aq(2) = fq(2) = f(2).

If 6,(z) = 0, we setf,(z) = oo anda, = oco. (Note thatsup,_; f(z) < oo by (4.16), the bound
(4.18) and our assumption th(tz) = max, |04(2)| is bounded away from zero.)

In accord with our previous definition, a phages stable at if a,(z) = 0. We will also say
that ag-contourY is stable atz if K (Y,z) = K,(Y, z). As we will see, stability of the phage
implies that allg-contours are stable. Now we can formulate an analogue of Theorem 3.1 of [5]
and Theorem 1.7 of [21].

Theorem 4.2 Suppose that > 4¢y + 16 whgreco is the constant from Lemma 3.9, and let
¢ = ¢~"/2. Then the following holds for all € &-

(i) Forall ¢ € S and allg-contoursY’, we have K/ (Y, z)| < e~ (72| and, in particular,
Ky(Y,2) = Kj(Y, 2).
(i) 1fY is ag-contour witha,(z) diamY < 7, thenK (Y, z) = K,(Y, 2).

(iii) If ag(z)diam A < 7, thenZ (A, z) = Zy(A, ) # 0 and

|Zq(A, 2)| > e FaPIAZEOAL (4.21)
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(iv) If m € S, then
| Zm (A, 2)| < e~/ 2EOA] (4.22)

Before proving Theorem 4.2, we state and prove the following simple lemma which will be
used both in the proof of Theorem 4.2 and in the proof of Proposition 4.5 in the next subsection.

Lemma 4.3 Letm,q € S, letz € ¢ and letY be ag-contour.
(i) If ¢q(Y,2) >0, then

ag(| Tt Y| +|Y]) < (7/4+ 2+ 4e77/2)|Y]. (4.23)
(i) If ¢q(Y,2) > 0andxgm(Y,2) <1, then
am(|Int Y|+ [Y]) < (14 8¢~ 7/2)|Y]. (4.24)

Proof of Lemma 4.3By the definitions (4.10) and (4.11), the conditiof(Y, z) > 0 implies that

Z! (IntY, 2)0, ()Y
ZH(Int Y, z)0,(2)1Y]

<2+ 7/4)Y]. (4.25)

max lo
nes &

Next we observe that, (Y, z) > 0 impliesé,(z) # 0. Since the maximum in (4.25) is clearly
attained for somex with 6,,(z) # 0, we may use the bound (4.19) to estimate the partition
functions on the left hand side of (4.25). Combined with (4.16), (4.18), (4.20) and the estimate
|0Int Y| < |Y|, thisimmediately gives the bound (4.23).

Next we use that the conditiop,;,» (Y, z) < 1 implies that

Z! (IntY, 2)0, ()Y
ZH(Int Y, z)0,(2)1Y

Since (4.26) is not consistent with), (z) = 0, we may again use (4.19), (4.16), (4.18) and (4.20)
to estimate the left hand side, leading to the bound

> (1+7/4)|Y]. (4.26)

(fg = f) (It Y| 4 |Y]) > (7/4+1 — 4 /)|Y]. (4.27)
Combining (4.27) with (4.23) and expressimg asa, — (f; — fm), one easily obtains the bound
(4.24). O

As in [5], Theorem 4.2 is proved using induction on the diameteA @ndY. The initial
step for the induction, namely, (i-ii) fodiam Y = 1—which is trivially valid since no such
contours exist—and (iii-iv) forliam A = 1, is established by an argument along the same lines
as that which drives the induction, so we just need to prove the induction stefV et and
suppose that the claims (i-iv) have been established (or hold automatically) 16f, all with
diam Y’ , diam A’ < N. Throughout the proof we will omit the argumenin f,,,(z) anda,(z).

The proof of the induction step is given in four parts:

Proof of (i). Let Y be such thatliamY = N. First we will show that the second alternative in
(4.13) does not apply. By the bounds (4.1) and (4.18), we have that

Y|
p-(1)8y(2) 1| < eV (, y ((?)‘) < e -2 |ganlY], (4.28)
q
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while the inductive assumption (iv), the bound (4.19) and the factXhgt| Int,,, Y| = |Int Y|
and)_, |0Int,, Y| = |0IntY| < |Y|, imply that

I Zn(Itm Y, 2) | oyt y| 3y (4.29)

Z;(Int,, Y, 2)

meS

Assuming without loss of generality that(Y, z) > 0 (otherwise there is nothing to prove), we
now combine the bounds (4.28) and (4.29) with (4.23) and the facé that /2 < 2/7 < 1/8,
3

to conclude thatK, (Y, z)| < e~ (173 799] < =79 By the assumption > 4c; + 16,
this is bounded by~ («0+7/2)¥l as desired. O

Proof of (ii). LetdiamY = N and suppose that is ag-contour satisfying:, diamY" < 7/4.
Using the bounds (4.18) and (4.19), the definitions (4.16) and (4.20), and the fgotlinat”| <
|Y'| we can conclude that

Z! (IntY, )0, ()Y |suppY UInt Y] T
—1 L T < 46 < —+1. 4.30
M Y] | 2t Y, )8, ()T | S Y] TAES T (4.30)

In the last inequality, we used the boupdipp Y UInt Y| < |Y|diam Y, the assumption that
agdiamY < 7/4 and the fact thaté < 1. We also used that, < oo impliesé, # 0, which
justifies the use of the bound (4.19). By the definitions (4.10) and (4.11), the bound (4.30) implies
that¢,(Int Y, ) = 1. On the other hand?,(Int,, Y, z) = Z;(Int,, Y, ) for all m € S by the
inductive assumption (iii) and the fact thditam Int,,, Y < diamY = N. Combined with the
inductive assumption (i), we infer th;ﬁé(Y, z) = K (Y, 2) = K (Y, 2). O

Proof of (jii). Let A C Z? be such thafliam A = N anda, diam A < 7/4. By the fact that (ii) is
known to hold for all contoury” with diam Y < N, we have thaf (Y, z) = K,(Y, z) forall Y’

in A, implying thatZ, (A, 2) = Z;(A, z). Invoking (4.19) and (4.20), the bound (4.21) follows
directly. a

Proof of (iv). Let A be a subset of? with diam A = N. Following [21, 5], we will apply the
cluster expansion only to contours that are sufficiently suppressed and handle the other contours
by a crude upper bound. Given a compatible collection of confdurscall thainternal contours
are those contained imt Y of some othe®y” € Y while the others arexternal Let us call
anm-contourY smallif a,,, diamY" < 7/4; otherwise we will call ilarge. The reason for this
distinction is that ifY” is small then it is automatically stable.

Bearing in mind the above definitions, let us partition any collection of con®ursM (A, m)

into three sety MUY U Ygﬁtge of internal, small-external and large-external contours, respec-

tively. Fixing Y& _and resumming the remaining two families of contours, the partition function

large
Zm(A, z) can be recast in the form
Zu(A,2) =Y Z5m N Ext, 2) [ { p-(Y) [ Zn(Int, Y)}. (4.31)

Y Yey nes

Here the sum runs over all sefsof mutually external largen-contours inA, the symbolExt =
Ext, (Y) denotes the s€,, _ (Ext Y NA) andZ5"(Ext, 2) is the partition sum ifixt induced
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by Y. Explicitly, zsmall A 2) is the quantity from (3.6) with the sum restricted to the collections
Y € M(A, m) for which all external contours are small according to the above definition.
In the special case wheég,(z) = 0, all contours are large by definition (recall that = oo
if 6,, vanishes) and the partition functigff™@'(A, z) is defined to be zero unlegs = (), in
which case we set it to one. We will not pay special attention to thetase 0 in the sequel of
this proof, but as the reader may easily verify, all our estimates remain true in this case, and can
be formally derived by considering the limit, — oc.
Using the inductive assumption (iv) to estimate the partition functign@nt,, Y), the Peierls
condition (4.1) to bound the activitigs,(Y), and the bound (4.18) to estimatéz) by e~ /¢,

we get
H {pZ(Y) H Z(Int, Y) } H{ —7|Y] - \IntY|+\Y\)+3e\Y\}
Yey nes Yey (4.32)
_ o~ fIA\Ext| H (r=38)|Y]
vey

Next we will estimate the partition functiaBS™(Ext, z). Since all smalin-contours are stable

by the inductive hypothesis, this partition function can be analyzed by a convergent cluster ex-
pansion. Let us consider the ratio8f"(Ext, 2) andZ/, (Ext, z). Expressing the logarithm of

this ratio as a sum over clusters we obtain a sum over clusters that contain at least one contour of
size|lY| > diamY > 7/a,, > 2/a.,. Using the bound (3.21) with = 7/2 we conclude that

Zsma”(EXt Z T/a
Im A < | Ext |[e~7/am )
Z! (Ext, z) ‘ (4.33)
Combined with Lemma 4.1 and the definitions (4.20), this gives
‘ernmall(Esz)‘ < e*(fm*e*f/amﬂExt\ eé\aA\ H eg\Y\. (434)
Yey
We thus conclude that the left hand side of (4.31) is bounded by
[ Zm (A, 2)] < max< (am /2)| Ext | H 7/4)|Y|>
¢
vev (4.35)
% €_f|A| e\aA\Z —b| Ext | H —(37/4—4¢) |Y\
vey

whereb = a,,/2 — e~7/*m. Note thath > e~7/% which is implied by the fact thate—7/m <
A, /T < am.

For the purposes of this proof, it suffices to bound the first factor in (4.35). by a later
proof, however, we will use a more subtle bound. To bound the second factor, we will invoke
Zahradiik's method (see [21, Main Lemma] or [5, Lemma 3.2]): Consider the contour model with
weightsK (Y) = e~ G7/4=9IY1if v is a largem-contour andk (Y') = 0 otherwise. LetZ(A) be
the corresponding polymer partition functionAn—see (3.11)—and lepb be the corresponding
free energy. CIearIﬁ(A) > 1 so that—p > 0. Since3r/4 — 4 > ¢y + 7/2, we can use
Lemmas 3.9 and 3.10 to obtain further bounds. For the free energy, this@ives—¢ <
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min{é,e~7/%m} because the weights of contours smaller tBam,, identically vanish. Since
b > e~7/am this allows us to bound the sum on the right hand side of (4.35) by

Zewmxu H —(3r/4-49)Y| < Zewmxt\ H{eW‘ —(37/4— 5e>|Y|} (4.36)

Y Yev Yey

Using Lemma 3.10 once more, we have thdint Y)e?! ™t Y1edYl > 1. Inserting into (4.36),
we obtain

Ze—b|Ext| H —(3r/4-49)Y| < Zé@ (1Ext [+ y cq (| Int Y[+[Y])) H {Z(Int Y)IA((Y)}

Yyey Yey

_ewlA\Z H{ IntY )}

Yey
(4.37)

Consider, on the other hand, the polymer partition func]fcm) in the representation (3.11).
Resuming all contours but the external ones, we obtain precisely the right hand side of (4.37),
except for the factoe#IAl. This shows that the right hands side of (4.37) is equd (ta)e#!?!
which—again by Lemma 3.10—is bounded &I, Putting this and (4.35) together we obtain

the proof of the claim (iv). O

4.3 Differentiability of free energies.

Our next item of concern will be the existence of two continuous and bounded derivatives of the
metastable free energies. To this end, we first prove the following proposition, which establishes
a bound of the form (4.22) for the derivatives of the partition functiBRg A, z).

Proposition 4.4 Letr and M be the constants fro.1)and (4.3), leté = e~ /2, and suppose
thatT > 4¢y + 16 wherec is the constant from Lemma 3.9. Then

OLOLZn (A, 2)| < e~ PIAl (01| A ) 210N (4.38)

holds forallz € &, all m € S, and all¢, ¢ > 0 with ¢ + ¢ < 2.

Proof. Again, we proceed by induction on the diameterofWe start from the representation

(4.4) which we rewrite as
=> I] om(2) ] 2(v.2) (4.39)
Yext zeExt YeYext

where we abbreviated (Y, z) = p.(Y) [],, Zn(Int, Y, 2). Let1 < £ < oo be fixed (later, we
will use that actuallyf < 2) and let us consider the impact of applyifigon Z,,,(A, z). Clearly,
each of the derivatives acts either on somé#,98, or on some of theZ(Y, z)’s. Let k, be the
number of times the terré,,(2) is differentiated “atc,” and letiy be the number of times the
factor Z(Y, z) is differentiated. Lek = (k,) andi = (iy) be the corresponding multiindices.
The resummation of all contouis for whichiy = 0 andk, = Oforallx € suppY UIntY
then contributes a factdf,,, (Ext, (Y )\A’ z), where we use® " to denote the set of all those

Y € Ye*'forwhichiy > 0, Exts(Y™) = A\Uy ogen(supp Y UInt Y), andA’ = {z: k, > 0}.
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(Remember the requirement that no contouEitt (Y ) \ A’ surrounds any of the “holes.”)
Using this notation, the result of differentiating can be concisely written as

A=Y Y ZuExta(YT)\ A, 2)

~e><t A/ CExtn (Yext)
kz )
x Ej kw [T 050m(z) J[ 02 2(v,2).  (4.40)

cN/ <ext
k+z y x YeyY
Here the first sum goes over all collections (including the empty &ﬁ’ét)of mutually external

contours inA and the third sum goes over all pairs of multiindi¢gsz), k, = 1,2,...,z € A/,
ext

iy = 1,2,...,Y € Y . (The terms with/A’| + |YeXt| > ¢ vanish.) We writek +¢ = ¢
to abbreviatezx ke + ZY iy = ¢ and use the symbolg! andi! to denote the multi-index
factorials] [, k! and] [y iy!, respectively.

We now use (4.3) and (4.18) to boufitf=6,,(z)| by (M)*=efe=/(2). Employing (4.1) and
(4.18) to bound the derivatives pf(Y’), and the |nduct|ve hypothesis to bound the derivatives of
Zm(Int,, Y, 2), we estimatgd?y Z(Y, z)| by [2M |V (Y)[]?Y e~ (730 e~/ GVl (recall that
V(Y') was defined asupp Y U Int Y'). Finally, we may use the bound (4.22) to estimate

| Zn (Bxcta (T \ A, 2)] < 2000 TN o= f (@ Bxta (TN, (4.41)
Combining these estimates and invoking the inequality
O(Exta (YY) \ A < [0A] + N[+ D Y], (4.42)
vey™
we get
4 26|8A| —f(2)|A|
0z Zm (A, Z)‘ se Z Z Z klzl
g A CEx tA(YEXt) k_{_c: ;
< [T (me®e T (M v (y)])™ e 5911, (4.43)
$EAI YGYGXI

Let us now consider the cage= 1 and/ = 2. For/{ = 1, the sum on the right hand side of
(4.43) can be rewritten as

Z<M63€ + Z 2Me—(7—5€)IY\)7 (4.44)
xEA Y:zeV(Y)CA
while for ¢ = 2, it becomes

3 ((M63€)2+2Me3€2M Yoo e a2y ] e—<7—55>|Y|), (4.45)

z,geA YizeA\V(Y) 7y er™
yeV(Y)CA

where the last sum goes over sets of mutually external contBUrsn A such that{z,y} C
Uy cqen V(Y) and{z,y} N V(Y) # 0 for eachy” € Y*. Note that the last condition can only
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be satisfied ift ™ contains either one or two contours. Introducing the shorthand
S= > e (4.46)
Y:0€V (Y)czd
we bound the expression (4.44) by 4+ 25)M|A|, and the expression (4.45) B¢ 4 4¢3¢S +
4(S + S?))M?|A|%. Recalling thaty was defined in such a way that the bound (3.28) holds, we
may now use the fact that— 5¢ — ¢y > %’7’ to boundsS by e~2¢. Sinceé < 1/8, this implies that
the above two terms can be estimated &Y® + 1e=2)M|[A| < 2M|A| and(e5/8 + Le3/8-2 +
$(e72 + fe 1) M?|A]> < AM?|A[%, as desired.
This completes the proof for the derivatives with respect.td’ he proof for the derivatives
with respect taz and the mixed derivatives is completely analogous and is left to the reader.

Next we will establish a bound on the first two derivatives of the contour weig’l[}tsBe-
fore formulating the next proposition, we recall the definitions of the polymer partition function
Z,(A, z) and the polymer pressusg in (4.17) and (4.15) .

Proposition 4.5 LetrT and M be the constants froif@.1) and (4.3), let ¢y be the constant from
Lemma 3.9, and let = ¢ 7/2. Then there exists a finite constant > 4cy + 16 depending
only onM, d and|S| such that ifr > 71, the contour weightd(, (Y, -) are twice continuously

differentiable in&. Furthermore, the bounds
|00 (v, 2)| < em(eorm/2Y] (4.47)

and _ ; .
|0L0LZ) (A, 2)| < |A|FHesaIAIHEON] (4.48)

hold for all ¢ € S, all z € &, all g-contoursY’, all finite A ¢ Z% and all ¢, 7 > 0 with ¢ + 7 < 2.

Proposition 4.5 immediately implies that the polymer presssy@se twice continuously dif-
ferentiable and obey the bounds of Lemma 3.10. For future reference, we state this in the follow-
ing corollary.

Corollary 4.6 Letr; be as in Proposition 4.5. if > 71 andq € S, thens, is a twice continu-
ously differentiable function i’ and obeys the bounds

|0wsq| < e7™/? and |0u0ursq| < e/, (4.49)
valid for anyw, w’ € {z, 2} and anyz € 0.

Proof of Proposition 4.5Let 7 > 71 > 4co + 16. Then Theorem 4.2 is at our disposal. It will be
convenient to cover the sét by the open sets

69 = {2 € 6:|0,(2)| < e T/HH2H69 ()} (4.50)
and 3 B i

G0 = {2 € 6: |04(2)| > e~ /442489 (1)} (4.51)
We first note thaf; (Y, z) = 01if z € 5@. Indeed, assuming; (Y, z) # 0 we necessarily have
¢q(Y, z) > 0, which, by (4.23), implies that, < 7/4 + 2 + 4¢€ and thudog (z) — log |0,(2)| <
7/4 + 2 + 6¢, which is incompatible with, € 6'?). Hence, the claims trivially hold i#*) and
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it remains to prove thaK’( -) is twice continuously differentiable ier? ), and that (4.47) and
(4.48) hold for allz ﬁ( ) As in the proof of Theorem 4.2 we will proceed by induction on the

diameter ofY” andA. Let N > 1 and suppose thad (Y, -) € 02(6’5‘1)) and obeys the bounds
(4.47) for allg € S and allg-contoursY with dlamY < N and that (4.48) holds for all € S
and allA ¢ Z? with diam A < N — 1.

We start by proving thak(; (Y, -) € CQ(ﬁ( )) wheneverY” is ag-contourY” of diameterN. To
this end, we first observe that ﬁéq , we have thab,(z) # 0 and hence alsd@,(Int Y’ z) # 0.
Using the inductive assumption, this implies that the quotient

Z! (IntY, 2)0,,(2)"

Qmy(2) = Z!(Int Y, 2)8,(2)1Y

(4.52)

is twice continuously differentiable i, which in turn implies thai,.., (Y, z) is twice con-
tinuously differentiable. Combined with the corresponding continuous differentiability(df),
04(2), Zm(Int,, Y, 2), andZ; (Int,, Y, 2), this proves the existence of two continuous derivatives
of z — K (Y, z) with respect to botkr andz.

Next we prove the bound (4.48) fdiam A = N — 1. As we will see, these bounds follow im-
mediately from the inductive assumptions (4.47) and Lemma 3.10. Indegg(¥et= K (Y, 2)
if dlamY < N — 1, and3,(Y) = 0if diamY > N — 1. The inductive assumptions (4.47)
then guarantee the conditions (3.22) of Lemma 3.10. Combining the representation (3.15) for
log Z, (A, z) with the estimate (3.23) from Lemma 3.10 we thus conclude that

|0L0810g ZL (A, 2)| < A, (4.53)
while (3.26) gives the bound
|ZL(A, 2)| < esalAITEOAL (4.54)

Combining these bounds with the estimatgs| < |A| andé?|A|2 + € A| < |A|?, we obtain the
desired bounds (4.48).

Before turning to the proof of (4.47) we will show that for= ﬁ(q), the bound (4.48) implies
0+ _
020821 (A, 2)| < (MleT/4+3’A|> e~ fa(2)IAI+EOA| (4.55)

with M; = 1 + M. Indeed, invoking the assumption (4.3), the definitiorﬁé?), and the fact
thaté < 1/8, we may estimate the first and second derivativé,6f)/*! by

6(z)
104(2)]
Combined with (4.14) and (4.48) this gives (4.55).

Let Y be ag-contour withdiam Y = NN, and let us consider the derivatives with respect;to

the other derivatives are handled analogously. By the assumption (4.1) and the bound (4.18), we
have

0+L 7
) < (e ) . s

‘oo, \AI) < (MA]

‘ ’ < |Y|€M€ —(7—=29)|Y]| aq\Y\w ( )|\Y\’ (457)
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while (4.3) and the assumption that 6’ (cf (4.56)) yields

004 (=) 7M1 < (I |+ 1) (Me/ 4510, (=) . (4.58)

Further, combining the bound (4.55) with Theorem 4.2 and Proposition 4.4 we have

m (Int Yz)
Y4 m
o' H Z

< |Int Y|€(2M + 2M162€me3+7/4)£egglyle“‘”IntYl. (4.59)
(Int,, Y,

Finally, let us consider one of the factoys.,,(Y, z). To bound its derivative, we may assume
thatz is an accumulation point of with x,., (Y, 2’) < 1 (otherwise its derivative is zero), so by
Lemma 4.3(ii) we have that,, < 1+8¢ and thudog 6(z)—1log|0,,(2)| < 1410 < 7/4+2+8¢,

implying thatz € ﬁz(m). We may therefore use the bounds (4.56) and (4.55) to estimate the
derivatives ofy,..» (Y, z), yielding the bound
IR
10X gm (Y 2)| < C(| It Y] + |V])" (4Mle3+7/4626|”) (4.60)

where( is a constant bounding both the first and the second derivative of the mollifier fuction
Combining all these estimates, we obtain a bound of the form

laﬁK;(Y, z)| < C(|Int Y| 4 [Y])fe!T/ e (T gaq(|IntY|H+Y]) (4.61)

with a constantC' that depends o/ and the number of spin statgS|, and a constant that
depends only ohS|. Using the bound (4.23) and the fact thé&t/* < e("/3I¥1 (note thafy’| >
(2R + 1)¢ > 4 by our definition of contours), we conclude that

0LK.(Y, 2)] < O(|Int Y| + [Y]) e~ /873N, (4.62)
Increasingr; if necessary to absorb all of the prefactors, the bound (4.47) follows. O

We close the subsection with a lemma concerning the Lipschitz continuity of real-valued func-
tionsz — f(z) andz +— e~%(%) on o

Lemma 4.7 Letr; be as in Proposition 4.5 and Ié\t{i =4M + 1. If7 > 7,q € S, and if
z,z9 € O are such thafzp, z] = {sz+ (1 — $)29: 0 < s < 1} C O, then

[f(20) = f(2)| < Mi]z — (4.63)
and N
‘e_aq(z) - e_a‘I(ZO)| < 2M |z — zg| eMalz—2o0l, (4.64)

Proof. Let {,(z) be the quantity defined in (4.16), and et e~7/2. Combining the assumption
(4.3) with the bounds (4.49) and (4.18), we get the estimate

|8qu(z)| < (]\Je2€ + €)e_f(z), w,w' € {z, z}. (4.65)
With the help of the bound/e* + & < 2M + 1/2 = M; /2, we conclude that

[zlsz}
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where|dz’| denotes the Lebesgue measure on the intéeyat]. Using thatf = max, f,, this
implies

le™f(z) — o= f(z2)) < Ml/ e/ d), 21, 22 € [20, 2] (4.67)

[21,22]

Now if (4.63) is violated, i.e., whetf(z) — f(z0)| > (M + €)|z — 20|, then the same is true
either about the first or the second half of the segmgnt| . This shows that there is a sequence
of intervals(z ,,, 22 ,,] Of length27"|zp — z| where|f(z1,,) — f(z2n)| > (M1 + €)|2z1n — 22.n]-
But that would be in contradiction with (4.67) which implies that

1i |f(z10) — fl220)] 1; le=f(z1n) — g=F(z2n))|
e _ i —f&) |dz’
‘Zl,n ZQ,n’ ‘ﬁzl,n7z2,n] € ‘ “ ’

< M, (4.68)

where we use the mean-value Theorem and a compactness argument to infer the first equality.
Hence, (4.63) must be true after all.

To prove (4.64), we combine the triangle inequality and the baytg) > f(zo) with (4.66)
and (4.67) to conclude that

‘e—aq(z) _ 6—aq(20)| — lef(z)e_fQ(Z) _ ef(ZO)e—fq(ZO)’

—fq(20)
F@)|e=tfa@) _ g=falzo)) L € T ) —f(z0) _ o—f(2)
< elPen I — e+ ey e = e (a69)
< ol / ! =1 |d)
20
Boundingf(z) — f(z) by M|z — z|, we obtain the bound (4.64). O

4.4 Torus partition functions.

In this subsection we consider the partition functidghgA, z), defined forA c Ty, in (3.6).

Since all contours contributing td,(A, z) have diameter strictly less thaty2, the partition
function Z, (A, z) can be represented in the form (4.8), wit)(Y, z) defined by embedding the
contourY” into Z<. Let Zy(A, z) be the corresponding truncated partition function, defined with
weightsk (Y, z) given by (4.12). Notice, however, that even though every coritoar A can be
individually embedded int@?, the relation of incompatibility is formulated on torus. The poly-
mer partition functionzy (A, z) and Z; (A, z) can then again be analyzed by a convergent cluster
expansion, bearing in mind, however, the torus incompatibility relation. The torus analogue of
Lemma 4.1 is then as follows:

Lemma {.8 Assume that > 7, wherer is the constant from Proposition 4.5 and g S
andz € ¢ be such thad,(z) # 0. Then

)afv log (gq(z)—lA\Z;(A, z))) < e T/2|9A| + 2| Al L/ (4.70)
foranyA c Ty, anyz € 0,0 =0,1, andw € {z, z}.

Proof. Let us write Z; (A, ) in the form (4.14). Taking into account the torus compatibility
relation when comparing the cluster expansionlﬁgZ{z(A, z) with the corresponding terms
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contributing tos,|A|, we see that the difference stems not only from clusters passing through the
boundaryo A, but also from the clusters that are wrapped around the torus in the former as well
as the clusters that cannot be placed on the torus in the latter. For such clusters, however, we
necessarily havg_,- X(Y)|Y'| > L/2. Since the functiongd(Y") = K (Y, 2) satisfies the bound

(3.20) withn = 7/2, we may use the bound (3.21) to estimate the contribution of these clusters.
This yields

log ZL(A, 2) — sq|A|| < e 2OA] + 2|Ale"TE/, (4.71)

which is (4.70) forr = 0. To handle the cage= 1, we just need to recall that, by Proposition 4.5,
the functional3(Y") = K (Y, z) satisfies the bounds (3.22) with= 7/2. Then the desired
estimate for = 1 follows with help of (3.23) by a straightforward generalization of the above
proof of (4.71). O

Next we provide the corresponding extension of Theorem 4.2 to the torus:

Theorem 4.9 Letr > 4cp + 16 wherecy is the constant from Lemma 3.9, and let us abbreviate
E=¢ /2 Forall z € 0, the following holds for all subsets of the torusT.:

() Ifaq(z)diam A < 7, thenZ, (A, 2) = Z;(A, z) # 0 and

|Z4(A, 2)| > e~ fa(2)Alg—ElOAI-2|Ale=TE/%. (4.72)

(i) If m e S, then
1 Zm(A, 2)| < o~ S (2)|A[+2E[0A|+4|AleTH/4 (4.73)

(iii) Ifm € S, then
| Zn(TL, 2)| < e~ f)L? max{e—am(z)Ld/27e—TLd71/4}e4Lde*TL/4. (4.74)

Remark 7 The bounds (4.72) and (4.73) are obvious generalizations of the corresponding bounds
in Theorem 4.2 to the torus. But unlike in Proposition 4.5, we will not need to prove the bounds
for the derivatives with respect ta When such bounds will be needed in the next section, we
will invoke analyticity inz and estimate the derivatives using Cauchy’s Theorem.

Proof of (i). Since all contours can by definition be embedded ZftoTheorem 4.2(ii) guarantees
that K (Y, z) = K (Y, z) for all g-contours inA and henceZ, (A, z) = Z,(A, z). Then (4.72)
follows by Lemma 4.8 and the definition ¢f. O

Proof of (ii). We will only indicate the changes relative to the proof of part (iv) of Theorem 4.2.
First, since all contours can be embedded #tpwe have that a corresponding bound— namely,
(4.22)—holds for the interiors of all contours fn This means that all of the derivation (4.31—
4.35) carries over, with the exception of the faatof! in (4.34) and (4.35) which by Lemma 4.8
should now be replaced kyl?A1+21Ale™™/* "y order to estimate the last sum in (4.35), we will

again invoke the trick described in (4.36—4.37). This brings in yet another t&&or-214le /",
From here (4.73) follows. O

Proof of (iii). The estimate is analogous to that in (ii); the only difference is that now we have to
make use of the extra decay from the maximum in (4.35). (Note thét ferT; we haveOA| =



PARTITION FUNCTION ZEROS AT FIRST-ORDER PHASE TRANSITIONS 41

0 and|A| = L%.) Following [5], this is done as follows: I is a contour, a standard isoperimetric
inequality yields

1 _
Y] > ol0(suppY UIntY)| > |suppY UInt Y|“7". (4.75)

Hence, ifY is a collection of external contours iy, andExt is the corresponding exterior set,
we have

d—1
d—
d

_ d d—1
S =Y [supp YUInt YT > (Z |SuppYUIntY|> = (L~ |Ext|)"7 . (4.76)
Yey Yey Yey

Writing | Ext | = (1 — )L wherex € [0, 1], the maximum in (4.35) is bounded by

sup exp{—a—de(l —x)— ILd_lx%}. 4.77)
z€[0,1] 2 4

The function in the exponent is convex and the supremum is thus clearly dominated by the bigger
of the values at = 0 andx = 1. This gives the maximum in (4.74). a

Apart from the partition function&,,, (T, z), we will also need to deal with the situations
where there is a non-trivial contour network. To this end, we need a suitable estimate on the
difference

Z9%(z) = 28 (2) = Y Zm(TL,2). (4.78)
meS
This is the content of the last lemma of this section.

Lemma4.10 There exists a constang depending only od and |S| such that forr > 4¢p + 16
and allz € 0, we have

1259(2)| < Lhem L/ e T e ()1 (4.79)
Proof. Let ¢y be the constant from Lemma 3.9, anddgt= ¢y(d, |S|) > ¢y be such that

> (|Slem )M < L7, (4.80)

ACTL

where the sum goes over all connected subSetithe torusT, (the existence of such a constant
follows immediately from the fact that the number of connected suldsetsZ¢ that contain a
given pointz and have sizé is bounded by @-dependent constant raised to the power

The proof of the lemma is now a straightforward corollary of Theorem 4.9. Indeed, invoking
the representation (3.8) we have

Zgig(z) = Z pz(N) H Zm(Am(@7N)7z)7 (4.81)
(V),J;f\f)ié\AL meS
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whereA,,, (0, N) is defined before Proposition 3.7. Using (4.2) and (4.73) in conjunction with the
boundsd(z) < ((z)e* and",, .5 [0AR (0, N)| < |N|, we get
Z29)] < ()T BT et (4.82)
(@,N)EML
N#0

Taking into account that each connected componenih N has size at leadt/2, the last sum
can be bounded by

> e TN <Y Lgn < Se° (4.83)
n!
(B N)eM n=1
N£D
where A
s= 3 (ISl (4.84)
ACTL
AI>L/2

is a sum over connected setsc T, of size at least./2. Extracting a factoe~"%/* from the
right hand side of (4.84), observing that2 — 4¢ > ¢, and recalling that, was defined in such
a way that (4.80) holds, we get the estimate< Le~7L/%. Combined with (4.82) and (4.83)
this gives the desired bound (4.79). a

5. PROOFS OF MAIN RESULTS

We are finally in a position to prove our main results. Unlike in Section 4, all of the deriva-
tions will assume the validity of Assumption C. Note that the assumptions (4.1-4.3) follow from
Assumptions C0-C2, so all results from Section 4 are at our disposal. Note alse. {hgt
p-(N) andé,, (=) are analytic functions of by Lemma 3.6, implying that the partition functions
Zm (A, ) andZP" are analytic functions of.

We will prove Theorems A and B for

70 = max{7y, 4¢ + 16,2log(2/c)} (5.1)

wherer; is the constant from Proposition 45, is the constant from Lemma 4.10 ands the
constant from Assumption C. Recall that> 4c¢y + 16, so forr > 7, we can use all results of
Section 4.
First, we will attend to the proof of Theorem A:
Proof of Theorem AMost of the required properties have already been established. Indegd, let
be as defined in (4.16). Then (2.9) is exactly (4.18) which proves part (1) of the Theorem A.
In order to prove thab:(,(z) = 0 wheneverz € .7, we recall that,(z) = 6,(z)e% ()
whered, (z) is holomorphic ing ands,(z) is given in terms of its Taylor expansion in the contour
activities K (Y, z). Now, if a,(2) = 0—whichisimplied byz € .7,—thenK (Y, z) = K,(Y, 2)
for anyg-contourY” by Theorem 4.2. Bub: K, (Y, z) = 0 by the fact thap,(Y'), Z,(Int,, Y, z)
and Z,,(Int,, Y, z) are holomorphic an&,(Int,, Y, z) # 0. Sinces, is given in terms of an
absolutely converging power series in thg’s, we thus also have thatess(*) = 0. Hence
0:(4(z) =0forall z € .7.
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To prove part (3), let € .7, N.#, for some distinct indices:, n € R. Using Lemma 4.1 we
then have

On(2) > B(2)e 2 (5.2)

and similarly forn. Sincea > 2e~7/2 > 2¢~7/2 we thus have € .Z,(m) N.%,(n). Using the
first bound in (4.49), we further have

06nl2) 0G| 1 o e
) ale) |2 [0em(2) — Been(2)] 2775 (5.3)

Applying Assumption C3, the right hand side is not less than 2¢~7/2. Part (4) is proved
analogously; we leave the details to the reader. O

Before proving Theorem B, we prove the following lemma.

Lemmab5.1 Lete > 0, let; be the constant from Proposition 4.5, and let
1

s\ (2) N log Z/(T, 2) (5.4)
and
(P (2) = y(2)e ). (5.5)
Then there exists a constahfy depending only oa and M such that
0557 (2)] < ()% (Mo) [P ()] (5.6)

holds forallg € S,all ¢ > 1,all 7 > r,all L > r/2and all z € O with aq(z) < 7/(4L) and
dist(z, 0°) > e.

Proof. We will prove the lemma withe the help of Cauchy’s theorem. Starting with the derivatives

of 6, leteg = min{e, 1/(4M;)} whereM,; = 1 + 4M is the constant from Lemma 4.7, and let
2’ be a point in the dis®,,(z) of radiusey aroundz. Using the bounds (4.18) and (4.63), we
now bound

‘Oq(zl)} < 1) < e+ Mico ,—f(2) < of+Micotaq(2) p—fo(2) < ‘eq(z)|625+]\7160+aq(z)' (5.7)
With the help of Cauchy’s theorem and the estimates1 /8, ]\716 < 1/4anday(z) < 1/2, this
implies

‘aﬁgq(z)‘
‘Gq(z)‘
In order to bound the derivatives 93”, let us consider a multiindex contributing to the cluster
expansion o%f,L), and letk = maxy.x(y)so diam Y. Defining

< Oeg bl A2 < (2651 (5.8)

e = min{e, (20eM1k) "'}, (5.9)

where)M; = 1 + 4M is the constant from Lemma 4.7, we will show that the weightY, -) of
any contoury” with X(Y’) > 0 is analytic inside the dis®, (z) of radiuse;, aboutz. Indeed, let
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|z — 2/| < e,. Combining the assumptian,(z) < 7/(4L) < 1/2 with Lemma 4.7, we have

e—aq(z’) > e—aq(z) _ QQMIEIC >1-— aq(z) _ 2€M1€k
_ _ (5.10)
>1- gmax{aq(z), 10eMiey} > e 2 max{aq(2),10eMrer}

Here we used the fact thatt y < g max{z, 5y} whenever, y > 0 in the last but one step, and
the fact that=2* <1 — (1 — e !)2z < 1 — Sz wheneverr < 1/2in the last step. We thus have
proven that

aq(2') < max{2aq(z),2OeM16k} < max{g,}} < i, (5.11)

so by Theorem 4.2K(Y,2') = K,(Y,2') and Z,(Int,, Y,2") # 0 forall m ¢ S andz’ ¢
D¢, (). As a consequencés, (Y, -) is analytic inside the disB,, (), as claimed.

At this point, the proof of the lemma is an easy exercise. Indeed, combining Cauchy’s theorem
with the bound K/ (Y, 2/)| < e~ (7/2+e)lY] < e=eolVle—(r/2) diamY" '\ye get the estimate

oL T K4y, 2/ )"
Y

< N H e (cotT/AVIXY) < 5162567(7/2% H e olYIX(Y) - (5.12)
Y Y

Boundinge; ‘e (/2% by e kfeF < (Le~ e t)!, we conclude that

o H K, (Y, z')x(y)’ < (e teht H e~ colYIX(Y), (5.13)
Y Y

Inserted into the cluster expansion ﬁé\w, this gives the bound

‘aﬁsgL)(z)‘ < ote eV, (5.14)
which in turn implies that

8tes” )| < (e eyt e ). (5.15)
Combining this bounqvwith the bound (5.8), we obtain the bound (5.6) with a conglattiat
depends only om and M, and hence only oaand M. O

Next we will prove Theorem B. Recall the definitions of the setgm) and %.(Q) from
(2.13) and (2.14) and the fact that in Theorem B, wexsetr /4.
Proof of Theorem B(1-3Rart (1) is a trivial consequence of the fact hatz), p.(N) andp. (V)
are analytic functions of throughout?'.

In order to prove part (2), we note thatc .7, /1 (q) implies thata,(z) < /L = 7/(4L)
and hence by Theorem 4.2(ii) we have thdl(Y, ) = K,(Y, z) for any g-contour contributing

to Z,(Ty, z). This immediately implies that the functiomé” and(CSL)(z) defined in (5.4) and
(5.5) are analytic function it} ;1,(¢). Next we observe that > 4¢, + 16 implies thatr /8 >
7/8 > log4 and hencele "L/* < ¢=7L/8. Sincez € .7, 1(q) impliesay(z) < oo and hence
04(z) # 0, the bounds (2.15-2.16) are then direct consequences of Lemma 4.8 and the fact
that@']l‘L = @

The bound (2.17) in part (3) finally is nothing but the bound (5.6) from Lemma 5.1, while he
bound (2.18) is proved exactly as for Theorem A. Note that so far, we only have usedthat
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except for the proof of (2.17), which through the conditions from Lemma 5.1 reqlires /2,
and give a constant/, depending or and M. O

Proof of Theorem B(4)We will again rely on analyticity and Cauchy’s Theorem. I@&tC R
and letQ’ c S be the set of corresponding interchangeable spin states. Clearhaiifdn are

interchangeable, theﬁf) = QﬁL) and, recalling thaty,,, denotes the set of spins corresponding
tom € R, we have

d
So(x) = 28(2) = D[P = 227() = Y Zy(Te,2). (516
neQ’ neQ’
Pick azy € %,1,(Q). Forn € Q', we then have,,(20) < 7/(4L), and by the argument leading
to (5.11) we have thai,(z) < 7/(2L) providedr/(4L) < 1/2 and2eMi|z — z| < L1
On the other hand, ifn € S\ Q', thenay,(z) > 7/(8L), and by a similar argument, we get
thata,,(z) > 7/(16L) if 7/(8L) < 1 and2eM;|z — zy| < %8% Noting thatr > 7, implies
T > 4co + 16 > 16, we now set
eP) = min{e, (10€M1Ld)_1}. (5.17)

Forz € D ) (20) andn € Q', we then have.,(z)% < /4 and henceZ,, (T, z) = Z,(Ty, 2),
implying in particular that

(1

o(2) =Z0%(2) + > Z(Ty,2). (5.18)
meS~Q’
Note that this implies, in particular, thaty(-) is analytic inD, ) (2o).

Our next goal is to prove a suitable bound on the right hand side of (5.18). By Lemma 4.10, the
first term contributes no more thad ¢ (z)L"e~7L/4, providedr > 4,+16 andL is so large that
5L%~7L/4 < log2. On the other hand, sincec D (1) (z) implies that that,,, () > 7/(16L)
for all m ¢ @', the bound (4.74) implies that eac¢h, (T, z) on the right hand side of (5.18)
contributes less tha2( (z)X"e~72""'/32 onceL is so large thatLle~2/4 < log 2. By putting
all of these bounds together and using thiat)Z" < ((zp)L" eMilz=20lL? < ¢1/(10)¢ () 1" py
the bound (4.63) and our definition &f*), we get that

1Z0(2)] < 5IS| LU (z9) e TH /32 (5.19)

whenever: € D) (z) and[ is so large tha, > 7/2 and5L%~"%/* < log 2. IncreasingL if

necessary to guarantee thét) = (1OeM1Ld)‘1 and applying Cauchy’s theorem to bound the
derivatives of=o(z), we thus get

0L20(z)

< 01(10eM)'5|S| LAY ¢ (zg) L e L1 /32 (5.20)
0

providedL > Lo, whereLy = Lo(d, M, 1, ¢€) is chosen in such a way that fér> L, we have
L > 7/2,5L% /% < log2 and(10eM;L%)~! < e. Sincez, € %,.1,(Q) was arbitrary and
|S| = >",,cr @m. this proves the desired bound (2.20) with = 10eM; = 10e(1 +4M). O
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