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Fig. 1. Data panorama of the Titanic passenger data-set. (a) Map-view of passenger home towns. (b) Pie-chart of passenger distribution from 

North-America and Europe (filtered by selection in (a)) across passenger classes. (c) Annotated snapshot of average survival rate by 
passenger class. (d) Average survival rate for passenger age bins. Brushed by selections in (a) and (b). (e, bottom) Gender distribution for 

passengers selected in (d). (e, Top) Gender distribution for passengers not selected in (d). Dashed line indicates inversion of selection.  

Abstract—	
  Interactively exploring multidimensional datasets requires frequent switching among a range of distinct but inter-related 
tasks (e.g., producing different visuals based on different column sets, calculating new variables, and observing the interactions 
between sets of data). Existing approaches either target specific different problem domains (e.g., data-transformation or data-
presentation) or expose only limited aspects of the general exploratory process; in either case, users are forced to adopt coping 
strategies (e.g., arranging windows or using undo as a mechanism for comparison instead of using side-by-side displays) to 
compensate for the lack of an integrated suite of exploratory tools. PanoramicData (PD) addresses these problems by unifying a 
comprehensive set of tools for visual data exploration into a hybrid pen and touch system designed to exploit the visualization 
advantages of large interactive displays. PD goes beyond just familiar visualizations by including direct UI support for data 
transformation and aggregation, filtering and brushing. Leveraging an unbounded whiteboard metaphor, users can combine these 
tools like building blocks to create detailed interactive visual display networks in which each visualization can act as a filter for 
others. Further, by operating directly on relational-databases, PD provides an approachable visual language that exposes a broad 
set of the expressive power of SQL, including functionally complete logic filtering, computation of aggregates and natural table joins. 
To understand the implications of this novel approach, we conducted a formative user study with both data and visualization 
experts. The results indicated that the system provided a fluid and natural user experience for probing multi-dimensional data and 
was able to cover the full range of queries that the users wanted to pose. 
Index Terms—Visual analytics, pen and touch, user interfaces, interaction design, coordinated and multiple views

 

INTRODUCTION

Visual data analysis – gaining insights out of a dataset through 
visualizations – is an interactive and iterative process where users 
need to switch frequently among a range of distinct but interrelated 
tasks. The set of tasks that recur in visual data analysis, as well as the 
tools that support them, is well understood [2, 14]. However, 
designing a system that supports this diversity of tasks in a unified, 
understandable and approachable way is a non-trivial challenge itself.  

Design approaches for visual data analysis typically fall into either 
the rich-general or strong-specific categories. Rich general 
approaches are manifest in the form of programming languages, such 
as SQL or Python, possibly in combination with a general purpose 
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tool like Excel. The syntactic, programming nature of these rich 
general systems creates learning and performance barriers for all but 
the most dedicated users. Alternatively, strong specific approaches 
provide more accessible tools, albeit for some narrower problem 
domain, such as data-transformations [17], data presentations [19], or 
limited tasks within data exploration [27]. Unfortunately, this 
approach requires users to adopt cumbersome workarounds, such as 
exporting data to other programs, to complete many common tasks 
that fall outside the system’s target domain.  

Inspired by the metaphor of narrative panoramas, our research 
attempts an interactive rich-general approach by providing a small set 
of simple visualization primitives which can be linked in very direct, 
concrete ways through Boolean operations on an unbounded canvas 
to create sophisticated visualizations. These dynamic panoramas are 
expressive enough to represent interactive visualizations for the scope 
of tasks required for detailed exploratory analysis of multi-
dimensional structured data. Although this approach requires that 
users understand how to piecewise compose a complex visualization, 
we believe even beginning users can develop this mastery with 
minimal training because it corresponds to the incremental way in 
which questions generally form. For example, a complex query might 
germinate from a simple question about a dataset, such as “how many 
women died on the titanic?” Followed by, “show their age 
distribution,” and then by “compare those distributions by berthing 
class,” and so on. The totality of such a visualization chain can be a 
rather complex acyclic graph. However, the panoramic approach to 
visually representing this working set of composed queries is 
powerful [4, 9]. Not only is the step-by-step creation process 
approachable, but it also affords interactive “handles” at each query 
stage to explore tangential queries, such as switching from women to 
men in the example, or to simply verify that the question had been 
posed correctly. 

During our iterative design of PanoramicData (PD), our 
embodiment of this rich-general approach, we referred to Heer & 
Shneiderman’s [14] taxonomy of interactive dynamics for visual 
analytics as well as the analytical task taxonomy of Amar, Eagan & 
Stasko [2] as a guide to ensure that PD broadly covers exploration 
and analysis tasks. We observed that in order to support those tasks in 
a comprehensible and unified way our most effective design choices 
clustered around a set of four concepts (Derivable Visualizations, 
Exposing Expressive Data-Operations, Unbounded-Space, and 
Boolean Composition). These concepts, which all have been 
discussed to some extent in the literature, both guided and 
encapsulated the critical reasoning behind our design decisions. 
Although we found that each of these concepts typically allowed for 
multiple different equivalent designs, omitting any concepts had a 
significant negative impact on either usability or visualization power. 
The strength of PD lies within the effective combination of those four 
concepts. We discuss these concepts in detail and describe how these 
concepts, and compounds of them, provide a framework that supports 
a wide range of data-exploration and analysis tasks.  

A large part of our design efforts were targeted towards offering a 
fluid interaction model [10] which serves as the overarching structure 
of PD and unifies those four concepts in a comprehensible way. 
Inspired by recent work suggesting the benefits of pen and / or touch 
for analysis work [6, 8, 19, 34], we specifically designed PD for 
interactive whiteboards and pen-enabled tablets. By considering what 
can easily be accomplished through the use of pen and touch, we 
were able to combine the aforementioned concepts in a way that 
avoids explicit mode switching, minimizes UI cluttering, reduces 
indirection in the interface and provides effortless switching between 
the variety of interrelated tasks that data exploration and analysis 
require. Even though we emphasize the modalities of pen & touch, 
the entire UI could still be conveniently operated through standard 
mouse and keyboard interaction.  

In this paper we present PD a novel pen & touch system for data 
exploration and analysis which is based on four core concepts, 
Derivable Visualizations, Exposing Expressive Data-Operations, 
Unbounded Space and Boolean Composition. The combination and 
interaction between those concepts presents an approachable interface 
that allows for incremental and piecewise query specification where 
intermediate visualizations serve as feedback as well as interactive 
handles to adjust query parameters. PD supports a wide range of 
common tasks.  

We evaluated PD through a formative user study with both data 
and visualization experts. The results support our belief that PD, and 
the combination of the design- concepts it embodies, provides a fluid 
and intuitive user experience while still being expressive enough to 
answer the range of queries that users are likely to pose.  

1 RELATED WORK 
We relate and contrast our work to research efforts in the areas of Pen 
& Touch Visualizations, Linked and Coordinated Views and 
Database Interaction.  

1.1 Pen & Touch Visualization 
Our work has been inspired by the research of Elmqvist et al. [10] 
and Lee et al. [18], which emphasize the importance of interaction to 
Information Visualization and propose to investigate new interaction 
models that go beyond traditional WIMP (windows, icons, menus, 
pointers) interfaces. More specifically, [6, 19, 34] have transposed 
insights about the usefulness of whiteboards in supporting thinking, 
collaborating and general problem solving processes [21, 33] to 
interactive whiteboards; an emerging class of hardware. SketchStory 
[19] focuses on the insight dissemination aspect of data-analysis. It 
supports presentation of pre-recorded data-related insights through a 
gestural pen & touch UI. Another pen & touch based whiteboard UI 
is presented in SketchVis [6]. It allows users to draw and label charts 
which the system fills in correspondingly and offers gestures to filter 
objects. Furthermore it offers a set of mnemonic gestures to specify 
data-transformations and mapping of visual elements. While similar 
to our work, we focus less on gestures for chart creation and more on 
gestural approaches to coordinate multiple visualizations.  

Another direction of recent research investigates the usefulness of 
touch interaction for data exploration and analysis tasks. The 
TouchViz paper [8] presents FLUID, a touch interface for 
manipulating data-visualizations. The techniques presented focus on 
a single visualization rather than on a network of linked and 
coordinated views and filters. 

1.2 Linked and Coordinated Views  
The notion of coordinating visualizations manually in order to 
construct custom exploration interfaces has been introduced by [22]. 
SnapTogether Visualization allows users to coordinate views in order 
to support a set of common tasks, such as Brushing-and-linking, 
Overview and detail view, Drill-down, Synchronized scrolling and 
Details on demand. While this idea serves as a fundamental building 
block in PD, we expanded this concept through exposing finer-
grained control in view coordination by allowing views to have 
multiple inputs that are combinable through Boolean operators and by 
propagating filtering operations across multiple hops. By rethinking 
the concept of snappable visualizations in terms of a gestural UI and 
by abstracting the underlying database-schema we are able to reduce 
the mental overhead that the heavy-weight view-coordination dialogs 
of SnapTogehter Visualization impose on users.  

GraphTrail [9] is a system that allows exploration of large network 
datasets while preserving exploration history. The system is 
optimized to work with network oriented data such as social networks 
and scientific collaborations. One of the core-concepts of Derivable 
Visualizations, being able to create visualizations out of existing ones 
in order to create query-chains, has been explored by GraphTrail. 
However, GraphTrail displays these chains statically whereas PD 
offers more flexibility through interactive modification of these 
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chains and their elements. DataMeadow [11] presents an interactive 
visual analytics system based on DataRoses; a parallel coordinate 
starplot that exposes filtering along its axes and linking. We expand 
on their notion of linking by providing different types of links and 
base our implementation on familiar charts that allow for a higher 
degree of customizability and data-transformations.  

Yuan et al [36] introduce a system that allows users to build up a 
visualization tree through a divide and conquer strategy. While this 
approach is similar to our piecewise query specification, it does not 
allow for manual rewiring of linked visualizations nor does it support 
data-transformations such as grouping or aggregation functions. Lark 
[29] links visual elements through a meta-visualizations which 
supports the creation of multiple variations of a view. However, 
linking between views from different data-attributes is not possible 
and it also supports limited data-types and operations. The 
“Stack’n’flip” UI presented in [28] uses links between visualization 
to show exploration histories and to guide users through an analysis 
based on a pre-defined setup model. VisLink [7] presents a 
visualization technique where 2D visualizations can be organized in 
3D planes and relationships between views are displayed through 
edges. VisLink however does not address view-creation or data-
transformation.   

PD’s filter-chains are comparable to dataflow networks. It is 
therefore similar to [1, 31], but offers specialized building-blocks 
which are targeted towards data-centered tasks. 

1.3 Database Interaction 
Tableau Software and its research predecessor Polaris [27] are 
systems to visually analyze large datasets. They offer support to 
create visually appealing and print-ready visualization of large 
datasets with a high degree of customizability, but have limited 
functionality to link multiple visualizations together.  

dbTouch [16] presents a UI that enables users to touch and 
manipulate data intuitively and suggests the need for new database 
systems which are optimized for fluid interaction with data. While its 
UI is limited in its support for common analysis tasks and does not 
expose familiar visualizations, it coins the term Schema-less 
Querying. PD supports this notion of abstracting the complexity of 
the underlying database schema by offering implicit table-joins.  

Approaches to create visual query languages have been an active 
research topic [1, 35]. Those systems have limited ability to 
incorporate interactive visualizations or coordinate visualizations and 
often require users to understand the underlying database-schema in 
detail. 

2 CORE CONCEPTS 
PD’s design emerged from a series of implementation iterations in 
which we explored the relative value of exposing different levels of 
data functionality, and of different interaction styles and techniques 
for creating customized, interactive and coordinated visualizations. 
Our intent was to create a system that was approachable and 
predictable for untrained users yet comprehensive enough to support 
the complex queries of advanced users. Over time, we observed that 
our more effective design choices clustered around a handful of 
concepts, all of which have been discussed to some degree in the 
literature, and that by being aware of these patterns, we were better 
able to identify and prune design alternatives. Ultimately, we 
resolved upon a set of four core concepts which we feel depict the 
fundamentally important characteristics of our approach.  

2.1 Derivable Visualizations (C1) 
Since visualizations are the focal components of any visual analysis 
system, users spend significant effort creating views of underlying 
data attributes. While several methods address this view-specification 
step [14], each with their own set of benefits and trade-offs, we 
believe, similar to approaches exposed in GraphTrail [9], that 
visualizations must additionally be derivable. Derivable 
visualizations are new, tangential visualizations made by directly 

referencing or reusing part of existing visualizations. By effortlessly 
deriving visualizations from existing ones, users can fluidly explore 
what-if scenarios of related data without disrupting the relevant 
context of their existing visualizations. In addition, derivable 
visualizations can reduce the complexity of creating an initial 
visualization, since modifying is typically easier than creating. In 
some ways, they become a form of “suggested visualization” [12]. 
An important consideration for derivable visualizations is to maintain 
visual consistency (e.g., same color or size) between data attributes 
that are shared in different visualizations.  

2.2 Exposing Expressive Data-Operations (C2) 
Manipulating data into a format capable of visualization requires data 
transformation (e.g., aggregation, grouping-operations) and 
derivation tools (e.g., calculating new field values from existing data) 
tools [27]. Further, these tools need to be available directly in the 
context where they are needed to avoid the cognitive disruption of 
searching. In the limit, every possible transformation could be needed 
at any point, requiring the full power of a complete scripting or 
programming language. Although such completeness should be a 
goal, providing a sufficiently large subset of possible data-operations 
may be sufficient, particularly if achieving completeness comes at the 
cost of obscuring or confounding the more frequent simple tasks. 

2.3 Unbounded Space (C3) 
Managing display space is a requirement of any interactive system. 
However, for cognitively heavyweight tasks, the distraction of having 
to switch between views to see the components of a working set of 
information can significantly impact task performance [4]. By 
providing unbounded space including simple techniques for 
managing that space, several critical analytic tasks can be simplified 
to implicit, familiar activities. Multiple visualizations can simply be 
juxtaposed for comparison; reasoning chains can be reviewed to 
validate results; and maintaining prior queries in the periphery 
provides temporal context [3, 9].  

2.4 Boolean Composition (C4) 
They key concept for creating visualization networks is that each 
visualization’s output must be combinable with the output of other 
visualizations [22]. We believe that having simple operations 
between visualizations affords complex results while imposing only 
the cognitive burden of understanding basic Boolean logic [25].  

This requirement is not equivalent to typical data flow because 
what flows between visualizations is not data records themselves, but 
rather the data selection specifications used by the visualizations. 
That is, one visualization showing a filtered selection of data column 
“x”, could be linked to another visualization showing data column 
“y”. With data flow, this wouldn’t make sense, but with our notion of 
composition, the second visualization would do the equivalent of a 
database join of column “y” with column “x” and then apply the “x” 
column filter before projecting to just column “y”. This approach 
allows for multiple visualizations to be linked to a single new 
visualization, where Boolean logic operators determine which data 
records the new visualization receives. For generality and in 
particular to support the notion of visualization brushing, we extend 
this composition requirement to include an operator for preserving all 
the input data selection specifications as an array instead of always 
combining them with Boolean logic into single data selection 
specification. 

3 THE PANORAMICDATA PROTOTYPE SYSTEM 
We developed PD, the embodiment of a rich-general approach to data 
analysis which unifies the aforementioned four design concepts in a 
comprehensible way, through an iterative process in which we 
steadily added and refined features in order to support a wide range 
of  exploration  and  analysis tasks.  We  will  motivate  our  approach  
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Fig. 2. Different parts of a data panorama create by a user exploring Census data. The different parts are described in Section 3.1. 

through an introductory use-case and will then highlight PD’s key 
features in the context of their relation to the four concepts and how 
they are used to perform common exploration and analysis tasks. We 
will point directly to specific items of Heer & Shneiderman’s (HS) 
taxonomy of interactive dynamics for visual analysis [14] (Table 1).  

3.1 Introductory Use-Case 
Figure 2 shows different parts of a rich, dynamic visualization 
panorama that a user constructed with PD while exploring and 
analyzing a random sample of census data (10,000 records). By 
double-tapping on the background the user opens up the schema-
viewer which displays all the attributes of the data-set (Figure 2 (a)). 
The user drags two attributes, marital-status and salary-over-50K, out 
of the schema-viewer and drops them anywhere on the 2D canvas 
(C3). To analyze the relationship between the two attributes the user 
uses the pen to connect the two (C4) (Figure 2 (b)). Tapping on a 
slice in the marital-status pie-chart filters the second pie-chart to only 
show those records that satisfy the marital-status selected in the first 
chart. He toggles through the different marital statuses to observe if 
any of those have a higher chance of earning more than $50K 
annually than the rest. By dragging and dropping he derives two new 
visualizations and connects them again by using the pen (C1) (Figure 
2 (c)). He has now arranged (C3, C4) a custom exploration interface 
that lets him analyze the correlation between employer-type and 
marital-status and how those reflect on people’s annual salaries. He 
gains the insight that people who are married and work for the federal 
government have a significantly higher chance of earning more than 
$50K than other groups. By flipping one of the visualizations around 

and using handwritten input he tags people in that group with the 
keyword “rich” (C2). This will facilitate later referral to this insight.  

The user wants to explore some more attributes of this data-set; age 
and education-level (Figure 2 (d)). He draws an “L” type-shape 
(indicating X and Y axes) on the canvas and drops attributes from the 
schema-viewer to label the axes of his graph. By writing a “C” onto 
the label of the Y-axis he transforms the data to display the 
aggregate-count of the attribute instead of the raw value (C2). He 
changes the grouping context of this aggregate function to use a 
binning strategy instead of distinct values. He now sees the 
distribution of people’s ages. By dropping another attribute onto the 
graph’s color drop-target he splits the rendering into separated series. 
Now the chart visualizes age histograms for each education-level in a 
different color. To understand the meaning of the colors and to be 
able to filter on specific series he derives a legend-visualization by 
dragging off the color icon. Once again, he connects the 
visualizations with the pen so that he brushes the chart to see the 
probability of earning more than $50K individually for each data-
point (C4). Doctorates are above this threshold even early-on in their 
career, while most High-school graduates are below it.  

Our user creates another similar chart by first using a multi-touch 
copy gesture and then modifying it through drag and drop operations. 
He has colored this second chart by dropping his previously created 
“rich” tag onto the color-drop target. He now sees two age 
distributions, as a running total after applying a data-transformation 
through a radial menu accessible on the Y-axis (C2) (Figure 2 (e) 
top), one for people that match his tag and the second one for people 
who do not match his tag. By additionally selecting people who are 
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self-employed in the tagged query he updates his definition of the 
“rich” tag and the age-histogram chart updates accordingly (C2, C4). 
To preserve an interesting insight seen in this chart he creates a static 
snapshot of it (C1) and annotates it with handwriting ((Figure 2 (e) 
bottom). 

3.2 Pen & Touch and Gestural Interaction 
Many analysis systems [27] offer a rich set of functionality that is 
exposed trough traditional WIMP (Windows, Icons, Menus, Pointer) 
interfaces and are prone to come with the drawbacks of this UI-
metaphor [32]. The interaction design of a data analysis system 
should reduce the mental overhead and should not distract from the 
fundamental task. As others have argued for Information 
Visualization in general [10, 18], we believe that especially visual 
data analysis systems could heavily benefit from advances made in 
interaction technologies. Being able to offload user interface 
reasoning (e.g., when searching for a tool) to sub-conscious natural 
interactions promises a significant benefit for data analysis work 
which is already cognitively overloaded. Gestural interactions for 
managing space with touch gestures are well known and effective. 
However, touch alone is not expressive enough to disambiguate 
certain interactions, such as performing a selection on data vs. 
moving the container of the data. By combining both pen and touch 
in the UI, we believe expressive power can be enhanced without 
increasing cognitive load since users can learn to subconsciously 
associate certain interaction, such as manipulation with touch, and 
others such as region selection with the pen. In addition, pen gestures 
offer the possibility of affording very efficient, easily remembered 
modeless shortcuts for abstract operations, such as writing a sigma 
symbol over a column of data to view its sum (C2). To achieve the 
cognitive offloading benefits of gesturing, interactions must be 
consistent across the entire system so that users will feel comfortable 
performing interactions with just muscle memory. 

By considering what can easily be accomplished through the use of 
pen and touch, we were able to focus on an uninterrupted experience. 
Having two input modes eliminates the need for many mode changes 
and provides a consistent selection metaphor. Recognizing pen-input 
also obviates keyboard-input and reinforces PD’s whiteboard 
metaphor. Using a pen to handwrite annotations on the background or 
on a snapshot of a visualization feels natural (HS “Annotate”). The 
pen is also used when precise control is needed, for example when 
selecting only a few data-points within a large scatterplot or when 
pointing to a narrow slice in a pie-chart (HS “Select”, “Filter”) We 
also use the pen to enable fluid interactions through shortcuts of 
commonly used actions within the system. Two visualizations can be 
linked together by drawing a line between them (C4, HS 
“Coordinate”) or sorting within a table-view is performed by 
performing an up- or down-flick gesture (HS “Sort”) similar to [23]. 
Additionally, selections within a visualization can be inverted by 
using a flick-gesture or transformations to data-attributes can be 
performed through a set of symbolic gestures (C4, HS “Filter”, 
“Select”, “Derive”). Similar to [6] PD offers pen-gestures to create 
new views. An “L”-shape drawing on the background is used to 
create scatter-, line- or bar-charts, a circle gesture for pie-charts and a 
rectangular gesture for tables. Finally, PD uses a scribble-erase 
gesture as a way to support deletion of unwanted content or links 
[38].  

Touch allows for a fluid interaction with all visual elements within 
PD. For example all the drag & drop operations that PD expose can 
be performed through touch-interactions. We make extensive use of 
drag & drop operations in order to create, derive or modify 
visualizations (HS “Visualize”). Additional touch gestures include, a 
double-tap gesture anywhere on the 2D canvas go gain access to all 
attributes of the dataset, a press-and-hold gesture to get quick-
previews of visualizations within a table-viewer or a two-finger 
gesture to create copies of visualizations. We also expose well-known 
direct-manipulation touch gestures to pan and zoom the 2D canvas or 

to change the viewports of visualizations (C3, HS “Navigate”, 
“Organize”). 

Table 1: Taxonomy of interactive dynamics for visual analysis [14]  

Data & View 
Specification  

Visualize data by choosing visual encodings. 
Filter out data to focus on relevant items. 
Sort items to expose patterns. 
Derive values or models from source data. 

View 
Manipulation  

Select items to highlight, filter, or manipulate them. 
Navigate to examine high-level patterns and low-level detail. 
Coordinate views for linked, multi-dimensional exploration. 
Organize multiple windows and workspaces. 

Process & 
Provenance 

Record analysis histories for revisitation, review and sharing. 
Annotate patterns to document findings. 
Share views and annotations to enable collaboration. 
Guide users through analysis tasks or stories. 

3.3 SQL Mapping 
PD operates directly on relational-databases. To make a dataset 
accessible within PD it needs to be annotated with a small set of 
meta-data. This includes explaining relationships between different 
tables (cardinality of relationship, primary and foreign keys), 
providing some information about the columns of the tables (data-
types, preferred visualizer, aliases and human-understandable labels 
if needed) and meta-data about the tables themselves (aliases). All the 
data-related operations within PD are mapped to their corresponding 
SQL function. PD is therefore a visual language to SQL that exposes 
a broad set of its expressive power (C2, HS: “Derive”). Database-
joins are done implicitly when needed and rely on the meta-data 
information (i.e., primary-foreign key relationships between tables). 
Users do not need to struggle with the complexity of SQL-joins, but 
this also limits PD to only expose part of the full expressive power of 
SQL (i.e., only natural joins). Different join types or joins on non-
key-columns of tables are not supported yet. We plan to expose that 
functionality as part of our future modifications.  

Within the system each visualization is represented as an abstracted 
model. This model includes the data-attributes needed to construct 
the visualization, the transformation applied to them, the incoming 
filtering or brushing relations, the items currently selected in the 
visualization, as well as a few visual properties that do not affect the 
SQL layer (e.g., rendering style or color mappings). It is important to 
note that no data flows between linked visualizations; instead they 
share information contained in their abstract visualization models. 
Triggering operations that affect the abstract model forces a particular 
visualization to refresh by generating and executing SQL queries. PD 
does not perform any data-related computations in memory; all 
computations are delegated to the underlying database system.  

3.4 Schema-Viewer 

 
Fig: 3. Simplified database-schema for sports statistics 

Users need to be able to access attributes of the data-set. While being 
widely used and powerful, relational databases come with the 
potential caveat of having a complex schema that are hard to grasp 
for untrained users. Finding an intuitive and approachable way to 
expose the structure of the underlying database-schema has been a 
challenging aspect of the PD’s design. Since database-schemas are 
essentially graphs, there could be multiple ways to “connect” two 
attributes from different tables. This ambiguity needs to be solved in 
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order for the system to automatically assemble SQL joins. Consider 
the database-schema in Figure 3. Imagine a user wants to create a 
visualization that displays an attribute from the “Player” table and an 
attribute from the “Team” table. Without specifying a path that 
encapsulates how the two tables should be connected the system does 
not know which of the three possible options the user intended 
(Player – Contract –Team, Player – Game – Team (Home) or Player 
– Game – Team (Away)). Each of the paths has a semantically 
significant different meaning. The same problem arises and is further 
complicated when linking two visualizations together. In the case that 
a user is looking at two visualizations - one that displays a list of 
players and one that displays a list of teams - the user must connect 
the two together to perform a filter or brushing operation. Without 
further specification the meaning of this connection is again 
ambiguous.  

In our current version we address this problem by presenting the 
database-schema in a tree-view that is always rooted at the same 
table. If a user now drags an attribute out of this tree-view the path of 
how to connect the root table to the table from which the attribute 
comes is unambiguous. The same applies for linked visualizations. 
Because they are initially created by dragging attributes from the 
schema tree-view we can always use the root-table as the lowest 
common denominator when performing SQL joins. This approach 
offloads the problem to choosing a root table. Databases that are laid 
out in star-schema form, with a single fact-table, are therefore a 
naturally good fit for PanoramicData. It intuitively makes sense to 
use such a fact-table as the starting point and therefore as the root 
element in our schema-viewer. In other cases, we let the user choose 
a root-table at the beginning of an exploration or analysis session. 
Our current prototype does not support re-rooting during a session 
and therefore diminishes some of the expressiveness of SQL in order 
to reduce the cognitive burden on users. 

The schema-viewer in PD (Figure 2 (a)) is brought up by a double-
tap gesture anywhere on the 2D canvas. This allows users to quickly 
gain access to the underlying dataset in whatever context they 
currently are. Dragging and dropping data-attributes from the 
schema-viewer is used throughout the system to create or modify 
visualizations. 

3.5 Data-Transformers 
Data-transformers, such as group-by aggregates (e.g., sum, count, 
max, min, avg) or sorting operators, are applied directly to every 
data-attribute in PD and can immediately update the rendering of a 
visualization (C2, HS: “Derive”). PD exposes data attributes 
wherever it makes intuitive sense for a given visualization. Scatter-
plots for example place visual handles to their data-attributes on the 
X- and Y-axis, whereas table-viewers expose them as column-
headers. Common transformers can be triggered through a set of 
gestures (see section 3.2) but are also accessible through a more 
traditional radial-menu for discoverability. 

Additionally each visualization exposes two drop targets: a group 
target and a color target. Dropping attributes on the group target 
specifies the context of aggregate calculations (e.g., what are we 
summing over?), whereas the color target is used to specify coloring 
of data-points within the visualization.  

3.6 Calculated Fields 
PD offers support to use well-known mathematical notations [37] to 
create calculated fields from any attribute (C2, HS: “Derive”). This 
functionality is exposed through the schema-viewer. A calculated 
field is no different than other attributes and can be used in exactly 
the same way as data-attributes to create or modify visualizations or 
to calculate group-by aggregates. PD further allows the user to create 
new attributes by transforming a chain of visualizations into a 
Boolean attribute that indicates if a data-record is part of this sub-set. 
This technique, described as tagging in the introduction use-case, is 
useful to create custom groupings within a visualization or to 

condense a complicated filtering operation into a single attribute. 
Again, such set-attributes can be used as any other data-attribute, for 
example for coloring a graph or for filtering or brushing a 
visualization. 

3.7 Zoomable Canvas 
PD features an unbounded pan- and zoom 2D Canvas in which visual 
elements can be arranged in a free-form fashion (C3, HS: 
“Coordinate”, “Organize”). Such a 2D canvas offers a couple of 
advantages. Firstly, users can manifest their elements in a way that 
matches their mental model. Secondly, logically corresponding 
elements can be arranged spatially near each-other without forcing 
them into a limited area. Furthermore, open space to fluidly explore 
what-if scenarios or tangentially related data-attributes is available 
within a set of simple pan and zoom gestures. Finally, this whiteboard 
metaphor offers an intuitive way to label findings or important parts 
of the exploration or analysis process by using handwritten 
annotations on the background (HS: “Annotate”). Figure 1 (c) 
provides examples of such annotations. This approach also offers a 
way to record the user’s exploration history. The filter-chains that are 
constructed during the exploration process can be conveniently 
revisited by locating them on the 2D canvas (HS: “Record”). While 
this is not as structured or automated as [13, 26] it enables users to 
decide which part of the exploration history they want to keep and 
allows them to layout and annotate exploration histories in a free-
form fashion. 

Even though PD works well on pen-enabled tablets, it leverages 
this whiteboard metaphor best when used on an interactive 
whiteboard. In a single-user scenario the extra screen-real-estate is 
useful for exploring visualizations in full detail. Furthermore, in 
collaborative-scenarios a whiteboard offers a natural way of 
compiling or discussing data insights (HS: “Share”) and it turns PD 
into a tool to disseminate knowledge in presentation scenarios while 
benefiting from its interactive nature to quickly answer questions 
from the audience similar to [19]. 

 
Fig: 4. Scatter-plot with interactive legend directly derived from plot. 

3.8 Creating Visualizations 
PD’s central visual elements are visualizations and creating them is 
one of the most common tasks within the visual data analysis process 
(HS: “Visualize”). We encourage fast and easy creation of 
visualization through drag & drop interaction (C1). Every visual 
element that represents a data-attribute can be dropped anywhere on 
the 2D canvas to create a default visualization of its values. Similar to 
[20], the default visualizations are based on simple heuristics such as 
the data-type of the attribute and the number of unique elements in 
the data and can be changed by adding hints to the pre-defined meta-
data information. A geographic attribute, for example, is displayed in 
a map-visualization whereas a categorical or binary attribute gets 
rendered as a histogram showing the distribution of its unique values. 
PD supports a manageable set of familiar visualizations such as pie-, 
bar-, scatter- and line-charts as well as table- and map-viewers, but 
other visualizations could be included. Each visualization can be 
customized through dropping data-attributes on pre-defined drop 
targets. 2D plots for example expose drop targets on their X- and Y-
axis or on a special color shelf. On the other hand, a table -viewer 
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allows dropping of attributes anywhere on its column-headers to 
extend the columns they show.  

Following our design concept of “Derivable Visualizations” (C1) 
led to some interesting design choices. For example we completely 
eliminate any sort of built-in legends within a visualization. Legends 
instead are visualizations themselves and can be derived from an 
existing visualization by dragging from its color drop-target. Legends 
are therefore fully interactive [24] and can be further customized if 
needed. This function works in part because PD offers consistent 
coloring of data-points across the system even for visualizations that 
are not linked. Figure 4 exemplifies such a legend.  

Since Grammel et al. [12] showed that users of visualization 
systems often thought about data without any “processed” visual 
structures or visual attributes, we also include a gesture for deriving a 
table-view from any visualization (C1). Exposing the raw-data can 
serve as a valuable validation mechanism to avoid misinterpreting 
complex visualizations, and can be a more effective way to identify 
certain patterns or to perform computations. 

3.9 Linking 
Being able to coordinate views is a powerful tool that addresses a lot 
of different common exploration and analysis tasks (C4, HS: 
“Coordinate”) In PD two visualizations can be linked through a one-
way directed connection. Links indicate that the target visualization is 
influenced in some form by the source visualizations. A link can be in 
one of two states: filtering or brushing. When using filter-links the 
target visualization is filtered to the set of items that is selected in the 
source visualization. A visualization can have multiple incoming 
filter-links and the user can choose how to combine filters (AND or 
OR). Additionally the output of any filter is invertible (NOT). Thus 
PD offers functionally complete visual filtering logic. In Figure 2 (c), 
the bottom right pie-chart displays the distribution of salaries for 
people that are NOT married (selection in the bottom left pie-chart 
and inverted filter-link visible by the dashed line) AND are working 
for the federal government. Brushing-links are used to highlight the 
same data within a different context. In simple cases, for example 
when two scatter-plots showing the same data points but on different 
axes are linked together, this enables standard brushing and linking, 
where a selection in one chart highlights the corresponding data 
points in the other. Figure 2 (d) shows a more complex example. The 
top plot is brushed by the red pie-chart on the bottom. Notice that 
because the plot displays aggregated data-points (people are binned 
by age ranges) brushing is more nuanced. It reveals what percentage 
of the people within the aggregation would fit the query specified by 
the red filter. It is also important to mention that the red visualization 
is fully interactive and that a selection change would automatically 
update the dependent visualization. A user can switch between those 
two link states (filter or brushing) through simple touch or pen 
gestures. 

This feature of PD provides a powerful tool for fluid data-analysis. 
Even just two simple visualizations of two attributes can be examined 
in a variety of ways. Consider a user trying to find an unknown 
relationship between two attributes, age and passenger-class, of 
passengers on the Titanic (Figure 5). The user starts with two 
visualizations (Figure 5 (a)), one showing the age histogram of all 
passengers and the other depicting their distribution according to 
passenger-classes. These are the default-visualizations for those 
attributes, which were attained by dragging the corresponding 
attributes from the schema-viewer. A pen gesture connects the two 
visualizations. Touching the slices of the pie-chart selects them and 
filters the age-histogram. After swiftly toggling through all the 
different passenger-classes the user thinks they noticed a slight shift 
in distributions for the first class (Figure 5 (b)). The user changes the 
link to a brushing-link and one now sees the age histogram of first 
class passengers relative to all passengers (Figure 5 (c)),. Indeed, it 
seems that there may be a shift in the distribution. With another pen-
gesture the link flips in the opposite direction and the user pen lasso-

select the passengers over 40. The little bars on the side of the pie-
slices show the number of passengers within the class that the 
selection in the age histogram (Figure 5 (d)). It appears that older 
passengers were most likely in the first class.  

Notice that PD allows configuration of these transformations 
within this scenario with one or two touch and pen gestures. 

 
Fig. 5. Four ways to compose two visualizations to show different 
relationships between attributes. (a) No relationship. (b) Top filters 

bottom. (c) Bottom brushes top. (d) Top brushes bottom. 

3.10 Copying and Snapshotting 
PD offers two ways to create copies of visualizations. The first-one 
derives an exact live copy of the visualization that is fully interactive. 
The second-one takes a static snapshot of the visualization that can 
then be annotated (HS: “Annotate”, “Record”). We included this 
feature based on feedback we received through our user-study. In 
some cases user wanted to “keep” or “save” a visualization and 
disable automatic updating through filtering or selection changes.  

3.11 Selections 
All visualizations manage selection states. Selections in PD are 
represented as queries over the data (HS: “Select”). For 2D plots 
those queries are represented as ranges over the space of the data-
attributes. This allows the system to keep selections even if the 
underlying data has changed (e.g., through a filtering operation). To 
speed up the calculation of those selection queries, especially for 
multi-dimensional-charts (X, Y and color) with a large number of 
data-points, we use spatial data-structures (i.e., Octrees). 2D chart 
types, such as scatter-plots or maps, allow free-form lasso selection 
with the pen to allow for fine-grained selection control  



1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346293, IEEE Transactions on Visualization and Computer Graphics

3.12 Scalability 
Our system currently works best for databases up to 30,000 records. 
Performance of rendering and database querying, especially for large 
visualization networks across multiple database-tables, drops to a 
non-interactive level for data-sets with over 80,000 rows.  

4 EVALUATION 
We evaluated PD through a formative user study with both data and 
visualization experts. The goal of this study was to understand PD’s 
utility and its approachability, to gain some insight about how its 
features are used and to explore the type of queries user pose. The 
study involved five participants, three PhD students (conducting 
research in the fields of Databases or Visualization) and two 
advanced Undergraduates (Teaching Assistants for a Data Science 
class). None of the participants had any prior knowledge of our tool.  
The results of this study support our belief that PD, and the design- 
concepts it embodies, provides a fluid and intuitive user experience 
while still being expressive enough to answer the range of queries 
that users are likely to want to pose. The study also suggests that 
users are able to use the system with a minimal training amount.  

4.1 Procedure 
Our participants were given a 10 minute introduction to PD. In this 
introduction we used a small example data-set and gave the 
participants a brief overview of all the features and gestures in the 
system. After that we briefly allowed the participants to familiarize 
themselves with the tool and the UI, before we exposed them to the 
Titanic dataset. This dataset contains 14 attributes about the 
passengers of the Titanic [15]. We instructed the participants to freely 
explore the dataset and to use a “think-aloud” protocol. This open-
ended exploration lasted 40 minutes on average. The examiner 
provided suggestion in cases where the users did not know what 
aspects of the data to look at. The participants were also instructed to 
explain and present any interesting findings to the examiner. At the 
end we asked them to reflect on their experience with PD and to 
answer a set of questions, either targeted towards specific features in 
PD (e.g., How did you like the pen and touch interface?) or more 
free-form questions about their experience with data-analysis tasks 
(e.g., Do you have any data, work or private, that you analyze or 
explore? What tools do you currently use to do so?).  

4.2 Results 
During the opened-ended exploration phase of our study all the 
participants were able answer the questions they posed with the help 
of PD. They created sophisticated queries even within the limited 
amount of time (Figure 6, 7). All users mentioned that they 
particularly liked the fact that visualizations can be linked together to 
create filters. However, only two of our participants made use of 
brushing-links. Two of the users initially mentioned that they have 
problems distinguishing when to use the pen and when touch. This 
confusion was cleared up by telling them that touch is used to 
“move” objects while the pen allows for shortcut gestures or fine-
grained selections. All of the users valued the fluid nature of the UI. 
More specifically, they thought that the UI was not distracting them 
from the question they wanted to answer and that it was easy to 
switch between different tasks (e.g., creating a visualization and 
linking / filtering). The mnemonic pen gestures for fast access of 
data-transformation operations were rarely used, while others, such as 
scribble-delete, the linking of visualization gesture or lasso-selection, 
were adopted instantaneously by all users. Three of the participants 
mentioned that they forgot how to perform those mnemonic gestures 
but would have liked to use them. Discoverability of gestures is a 
point that we would like to address in future versions of the system 
[5]. Four out of five participants indicated that they would use PD for 
their own analysis tasks. One user pointed out that the lack of 

statistical hypothesis-testing and machine learning methods lessens 
the value of PD for his own work.  

We observed that none of the users had any issues with the touch-
gestures. Even without prior demonstration, most users would walk 
up to the whiteboard and naturally expected that they could drag 
visualizations around with their fingers or perform pinch-zoom 
gestures within graphs or maps. Users were able to decompose 
compound queries into sequences of simple linked visualization, 
which was a strategy we never explicitly explained. Users rarely 
created visualizations form scratch and instead modified 
visualizations that they derived from existing ones. The notion of 
deriving a visualization in order to display its legend was initially not 
clear to participants (e.g., “What do the colors in this graph mean?”, 
“How can I display a legend for this graph?”) but especially the 
reusability of those visualization-legends was appreciated after 
comprehending the concept (“Ah, now I can just use my legend to 
filter this other visualization.”).  

4.3 Anecdotal Insights 
We would like to point to two anecdotal instances where participants 
used a table-view as a fallback solution. In one example our user tried 
to validate his hypothesis that people from less wealthy countries 
were more likely to be staying in the third class. He approached this 
by creating a map-visualization showing the passengers home 
countries, selected countries that he conceived as being less wealthy 
and linked it to a pie-chart showing the passenger distribution 
according to classes. The pie-chart showed that most of those 
passenger were staying in either the first or second class and therefore 
our user discarded his hypothesis. He noted that in the general 
population of all passengers is heavily biased towards the third class. 
Our participant wanted to find out where those third-class passengers 
came from. Different selections of countries still all offered a similar 
passenger class distribution (mostly first and second class). After 
quibbling with this for a while and expressing distrust in what the 
visualization was showing him, he decided to use a table-view to 
calculate the exact count of passengers per passenger-class and 
country. He then realized there was no record of where a majority of 
the passengers came from and that most of those unknowns were 
actually staying in the third class. We are planning to address this 
flaw (not dealing with unknown values properly) in a future version.  

In a second example, this time from our pilot-study, a user wanted 
to display average survival rates for passengers in different age-bins. 
Furthermore he wanted to see two series that were colored differently 
for male and female passengers. He expressed concerns that he did 
not know how to create this plot. However, he said that he knew 
exactly what data he would like to have plotted. He started to create a 
table-view with the two columns and applied the appropriate 
operations to transform the data and color the rows. After finishing, 
his table-view depicted the data he was interested in and he realized 
that it should be simple to plot it now (“Maybe I can actually just plot 
those two columns against each-other…”). He used the axis-gesture, 
labeled the X- and Y-axis by dragging and dropping columns from 
his table and got the visualization he initially intended (Figure 7).  
Those two anecdotes provide some interesting insight. They hint at a 
concept discussed by [12] and that we summarized as “Data Duality”. 
Users frequently think about data in its raw form and tend to separate 
data from visual elements. In cases where they either do not trust a 
visualizations or have problem formulating a visualizations they use 
raw-data views as a fallback approach. 

5 CONCLUSIONS AND FUTURE WORK 
PD supports a limited set of chart types (bar-, pie-, scatter-, line-
charts, table- and map-views), but it could be extend to include 
others. The current version PD also only exposes a subset of data-
operations. Calculated fields in PD are based on mathematical 
expressions but there is no way to specify more involved operations 
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(e.g., if, else statements). Additionally, users within PD are limited to 
compute aggregates over either distinct groups or evenly-spaced bins. 
More complex grouping schemes such as user-defined or data-type 
specific groups (e.g., grouping by state or county in geographic 
attributes or grouping by day, month or year in dates) are not 
supported yet. There are some exploration interface patterns (e.g., 
small-multiples of charts [30]) that are used commonly in the set of 
tasks that PD tries to support. While users in PD could technically 
layout such interfaces manually through a set of view-creation, 
linking and filtering operations, it would be a cumbersome task. We 
are planning to include shortcuts to such patterns in future version so 
PD.  

While some more complete or commercial systems, like Tableau, 
do address some of the limitations mentioned above, they often lack 
support for simultaneous viewing and creation of custom exploration 
interfaces through flexible view-coordination. Furthermore they do 
not expose a model to incrementally build up complex and 
modifiable queries where intermediate views serve as interactive 
handles. 

In this paper we introduced PanoramicData (PD), a novel pen & 
touch interface for exploring and analyzing multi-dimensional data-

sets. PD is based on a set of four core-concepts: Derivable 
Visualizations, Exposing Expressive Data-Operations, Unbounded 
Space and Boolean Composition. By unifying these concepts through 
a gestural pen & touch UI we are able support a wide range of 
common exploration and analysis tasks in a way that avoids explicit 
mode switching, minimizes UI cluttering, reduces indirection in the 
interface and provides effortless switching between the variety of 
interrelated tasks that data exploration and analysis require. PD 
allows for incremental and piecewise query specification where 
intermediate visualizations serve as feedback as well as interactive 
handles to adjust query parameters. A formative user study indicates 
that our approach provides a fluid and intuitive user experience while 
exposing a comprehensive set of tools to answer a wide range of 
data-related questions.  
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Fig: 6. Data panorama that a user built up during our evaluation to investigate different aspects of the Titanic data-set. (a) The user started of 
exploring the relationship between passengers that survived and their passenger class. (b) He then tested different hypothesis (i.e., are there 

correlations between survival and home towns of passengers (b), their ages (c) and their gender (d). He kept an unfiltered distribution of gender 
(d) to compare the ratios. (f) In order to obtain more accurate numbers and to confirm what he visually inferred, he built a table containing average 

survival rates for each passenger class and gender combination. 

 
Fig: 7. An example from our evaluation where a user first described the data he wanted to see in tabular form (a) and then created a chart by 

dragging and dropping the column headers to the x and y axis (b). To understand the colors he derived a legend (c) from his char
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