
1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346293, IEEE Transactions on Visualization and Computer Graphics

PanoramicData: Data Analysis through Pen & Touch

Emanuel Zgraggen, Student Member, IEEE, Robert Zeleznik, and Steven M. Drucker, Member, IEEE

Fig. 1. Data panorama of the Titanic passenger data-set. (a) Map-view of passenger home towns. (b) Pie-chart of passenger distribution from

North-America and Europe (filtered by selection in (a)) across passenger classes. (c) Annotated snapshot of average survival rate by
passenger class. (d) Average survival rate for passenger age bins. Brushed by selections in (a) and (b). (e, bottom) Gender distribution for

passengers selected in (d). (e, Top) Gender distribution for passengers not selected in (d). Dashed line indicates inversion of selection.

Abstract—	
 Interactively exploring multidimensional datasets requires frequent switching among a range of distinct but inter-related
tasks (e.g., producing different visuals based on different column sets, calculating new variables, and observing the interactions
between sets of data). Existing approaches either target specific different problem domains (e.g., data-transformation or data-
presentation) or expose only limited aspects of the general exploratory process; in either case, users are forced to adopt coping
strategies (e.g., arranging windows or using undo as a mechanism for comparison instead of using side-by-side displays) to
compensate for the lack of an integrated suite of exploratory tools. PanoramicData (PD) addresses these problems by unifying a
comprehensive set of tools for visual data exploration into a hybrid pen and touch system designed to exploit the visualization
advantages of large interactive displays. PD goes beyond just familiar visualizations by including direct UI support for data
transformation and aggregation, filtering and brushing. Leveraging an unbounded whiteboard metaphor, users can combine these
tools like building blocks to create detailed interactive visual display networks in which each visualization can act as a filter for
others. Further, by operating directly on relational-databases, PD provides an approachable visual language that exposes a broad
set of the expressive power of SQL, including functionally complete logic filtering, computation of aggregates and natural table joins.
To understand the implications of this novel approach, we conducted a formative user study with both data and visualization
experts. The results indicated that the system provided a fluid and natural user experience for probing multi-dimensional data and
was able to cover the full range of queries that the users wanted to pose.
Index Terms—Visual analytics, pen and touch, user interfaces, interaction design, coordinated and multiple views

INTRODUCTION

Visual data analysis – gaining insights out of a dataset through
visualizations – is an interactive and iterative process where users
need to switch frequently among a range of distinct but interrelated
tasks. The set of tasks that recur in visual data analysis, as well as the
tools that support them, is well understood [2, 14]. However,
designing a system that supports this diversity of tasks in a unified,
understandable and approachable way is a non-trivial challenge itself.

Design approaches for visual data analysis typically fall into either
the rich-general or strong-specific categories. Rich general
approaches are manifest in the form of programming languages, such
as SQL or Python, possibly in combination with a general purpose

• Emanuel Zgraggen is with Brown University. E-mail: ez@cs.brown.edu.
• Robert Zeleznik is with Brown University. E-mail: bcz@cs.brown.edu.
• Steven M. Drucker is with Microsoft Research. E-mail:
sdrucker@microsoft.com.

Manuscript received 31 Mar. 2014; accepted 1 Aug. 2014; date of publication
xx xxx 2014; date of current version xx xxx 2014.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346293, IEEE Transactions on Visualization and Computer Graphics

tool like Excel. The syntactic, programming nature of these rich
general systems creates learning and performance barriers for all but
the most dedicated users. Alternatively, strong specific approaches
provide more accessible tools, albeit for some narrower problem
domain, such as data-transformations [17], data presentations [19], or
limited tasks within data exploration [27]. Unfortunately, this
approach requires users to adopt cumbersome workarounds, such as
exporting data to other programs, to complete many common tasks
that fall outside the system’s target domain.

Inspired by the metaphor of narrative panoramas, our research
attempts an interactive rich-general approach by providing a small set
of simple visualization primitives which can be linked in very direct,
concrete ways through Boolean operations on an unbounded canvas
to create sophisticated visualizations. These dynamic panoramas are
expressive enough to represent interactive visualizations for the scope
of tasks required for detailed exploratory analysis of multi-
dimensional structured data. Although this approach requires that
users understand how to piecewise compose a complex visualization,
we believe even beginning users can develop this mastery with
minimal training because it corresponds to the incremental way in
which questions generally form. For example, a complex query might
germinate from a simple question about a dataset, such as “how many
women died on the titanic?” Followed by, “show their age
distribution,” and then by “compare those distributions by berthing
class,” and so on. The totality of such a visualization chain can be a
rather complex acyclic graph. However, the panoramic approach to
visually representing this working set of composed queries is
powerful [4, 9]. Not only is the step-by-step creation process
approachable, but it also affords interactive “handles” at each query
stage to explore tangential queries, such as switching from women to
men in the example, or to simply verify that the question had been
posed correctly.

During our iterative design of PanoramicData (PD), our
embodiment of this rich-general approach, we referred to Heer &
Shneiderman’s [14] taxonomy of interactive dynamics for visual
analytics as well as the analytical task taxonomy of Amar, Eagan &
Stasko [2] as a guide to ensure that PD broadly covers exploration
and analysis tasks. We observed that in order to support those tasks in
a comprehensible and unified way our most effective design choices
clustered around a set of four concepts (Derivable Visualizations,
Exposing Expressive Data-Operations, Unbounded-Space, and
Boolean Composition). These concepts, which all have been
discussed to some extent in the literature, both guided and
encapsulated the critical reasoning behind our design decisions.
Although we found that each of these concepts typically allowed for
multiple different equivalent designs, omitting any concepts had a
significant negative impact on either usability or visualization power.
The strength of PD lies within the effective combination of those four
concepts. We discuss these concepts in detail and describe how these
concepts, and compounds of them, provide a framework that supports
a wide range of data-exploration and analysis tasks.

A large part of our design efforts were targeted towards offering a
fluid interaction model [10] which serves as the overarching structure
of PD and unifies those four concepts in a comprehensible way.
Inspired by recent work suggesting the benefits of pen and / or touch
for analysis work [6, 8, 19, 34], we specifically designed PD for
interactive whiteboards and pen-enabled tablets. By considering what
can easily be accomplished through the use of pen and touch, we
were able to combine the aforementioned concepts in a way that
avoids explicit mode switching, minimizes UI cluttering, reduces
indirection in the interface and provides effortless switching between
the variety of interrelated tasks that data exploration and analysis
require. Even though we emphasize the modalities of pen & touch,
the entire UI could still be conveniently operated through standard
mouse and keyboard interaction.

In this paper we present PD a novel pen & touch system for data
exploration and analysis which is based on four core concepts,
Derivable Visualizations, Exposing Expressive Data-Operations,
Unbounded Space and Boolean Composition. The combination and
interaction between those concepts presents an approachable interface
that allows for incremental and piecewise query specification where
intermediate visualizations serve as feedback as well as interactive
handles to adjust query parameters. PD supports a wide range of
common tasks.

We evaluated PD through a formative user study with both data
and visualization experts. The results support our belief that PD, and
the combination of the design- concepts it embodies, provides a fluid
and intuitive user experience while still being expressive enough to
answer the range of queries that users are likely to pose.

1 RELATED WORK
We relate and contrast our work to research efforts in the areas of Pen
& Touch Visualizations, Linked and Coordinated Views and
Database Interaction.

1.1 Pen & Touch Visualization
Our work has been inspired by the research of Elmqvist et al. [10]
and Lee et al. [18], which emphasize the importance of interaction to
Information Visualization and propose to investigate new interaction
models that go beyond traditional WIMP (windows, icons, menus,
pointers) interfaces. More specifically, [6, 19, 34] have transposed
insights about the usefulness of whiteboards in supporting thinking,
collaborating and general problem solving processes [21, 33] to
interactive whiteboards; an emerging class of hardware. SketchStory
[19] focuses on the insight dissemination aspect of data-analysis. It
supports presentation of pre-recorded data-related insights through a
gestural pen & touch UI. Another pen & touch based whiteboard UI
is presented in SketchVis [6]. It allows users to draw and label charts
which the system fills in correspondingly and offers gestures to filter
objects. Furthermore it offers a set of mnemonic gestures to specify
data-transformations and mapping of visual elements. While similar
to our work, we focus less on gestures for chart creation and more on
gestural approaches to coordinate multiple visualizations.

Another direction of recent research investigates the usefulness of
touch interaction for data exploration and analysis tasks. The
TouchViz paper [8] presents FLUID, a touch interface for
manipulating data-visualizations. The techniques presented focus on
a single visualization rather than on a network of linked and
coordinated views and filters.

1.2 Linked and Coordinated Views
The notion of coordinating visualizations manually in order to
construct custom exploration interfaces has been introduced by [22].
SnapTogether Visualization allows users to coordinate views in order
to support a set of common tasks, such as Brushing-and-linking,
Overview and detail view, Drill-down, Synchronized scrolling and
Details on demand. While this idea serves as a fundamental building
block in PD, we expanded this concept through exposing finer-
grained control in view coordination by allowing views to have
multiple inputs that are combinable through Boolean operators and by
propagating filtering operations across multiple hops. By rethinking
the concept of snappable visualizations in terms of a gestural UI and
by abstracting the underlying database-schema we are able to reduce
the mental overhead that the heavy-weight view-coordination dialogs
of SnapTogehter Visualization impose on users.

GraphTrail [9] is a system that allows exploration of large network
datasets while preserving exploration history. The system is
optimized to work with network oriented data such as social networks
and scientific collaborations. One of the core-concepts of Derivable
Visualizations, being able to create visualizations out of existing ones
in order to create query-chains, has been explored by GraphTrail.
However, GraphTrail displays these chains statically whereas PD
offers more flexibility through interactive modification of these

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346293, IEEE Transactions on Visualization and Computer Graphics

chains and their elements. DataMeadow [11] presents an interactive
visual analytics system based on DataRoses; a parallel coordinate
starplot that exposes filtering along its axes and linking. We expand
on their notion of linking by providing different types of links and
base our implementation on familiar charts that allow for a higher
degree of customizability and data-transformations.

Yuan et al [36] introduce a system that allows users to build up a
visualization tree through a divide and conquer strategy. While this
approach is similar to our piecewise query specification, it does not
allow for manual rewiring of linked visualizations nor does it support
data-transformations such as grouping or aggregation functions. Lark
[29] links visual elements through a meta-visualizations which
supports the creation of multiple variations of a view. However,
linking between views from different data-attributes is not possible
and it also supports limited data-types and operations. The
“Stack’n’flip” UI presented in [28] uses links between visualization
to show exploration histories and to guide users through an analysis
based on a pre-defined setup model. VisLink [7] presents a
visualization technique where 2D visualizations can be organized in
3D planes and relationships between views are displayed through
edges. VisLink however does not address view-creation or data-
transformation.

PD’s filter-chains are comparable to dataflow networks. It is
therefore similar to [1, 31], but offers specialized building-blocks
which are targeted towards data-centered tasks.

1.3 Database Interaction
Tableau Software and its research predecessor Polaris [27] are
systems to visually analyze large datasets. They offer support to
create visually appealing and print-ready visualization of large
datasets with a high degree of customizability, but have limited
functionality to link multiple visualizations together.

dbTouch [16] presents a UI that enables users to touch and
manipulate data intuitively and suggests the need for new database
systems which are optimized for fluid interaction with data. While its
UI is limited in its support for common analysis tasks and does not
expose familiar visualizations, it coins the term Schema-less
Querying. PD supports this notion of abstracting the complexity of
the underlying database schema by offering implicit table-joins.

Approaches to create visual query languages have been an active
research topic [1, 35]. Those systems have limited ability to
incorporate interactive visualizations or coordinate visualizations and
often require users to understand the underlying database-schema in
detail.

2 CORE CONCEPTS
PD’s design emerged from a series of implementation iterations in
which we explored the relative value of exposing different levels of
data functionality, and of different interaction styles and techniques
for creating customized, interactive and coordinated visualizations.
Our intent was to create a system that was approachable and
predictable for untrained users yet comprehensive enough to support
the complex queries of advanced users. Over time, we observed that
our more effective design choices clustered around a handful of
concepts, all of which have been discussed to some degree in the
literature, and that by being aware of these patterns, we were better
able to identify and prune design alternatives. Ultimately, we
resolved upon a set of four core concepts which we feel depict the
fundamentally important characteristics of our approach.

2.1 Derivable Visualizations (C1)
Since visualizations are the focal components of any visual analysis
system, users spend significant effort creating views of underlying
data attributes. While several methods address this view-specification
step [14], each with their own set of benefits and trade-offs, we
believe, similar to approaches exposed in GraphTrail [9], that
visualizations must additionally be derivable. Derivable
visualizations are new, tangential visualizations made by directly

referencing or reusing part of existing visualizations. By effortlessly
deriving visualizations from existing ones, users can fluidly explore
what-if scenarios of related data without disrupting the relevant
context of their existing visualizations. In addition, derivable
visualizations can reduce the complexity of creating an initial
visualization, since modifying is typically easier than creating. In
some ways, they become a form of “suggested visualization” [12].
An important consideration for derivable visualizations is to maintain
visual consistency (e.g., same color or size) between data attributes
that are shared in different visualizations.

2.2 Exposing Expressive Data-Operations (C2)
Manipulating data into a format capable of visualization requires data
transformation (e.g., aggregation, grouping-operations) and
derivation tools (e.g., calculating new field values from existing data)
tools [27]. Further, these tools need to be available directly in the
context where they are needed to avoid the cognitive disruption of
searching. In the limit, every possible transformation could be needed
at any point, requiring the full power of a complete scripting or
programming language. Although such completeness should be a
goal, providing a sufficiently large subset of possible data-operations
may be sufficient, particularly if achieving completeness comes at the
cost of obscuring or confounding the more frequent simple tasks.

2.3 Unbounded Space (C3)
Managing display space is a requirement of any interactive system.
However, for cognitively heavyweight tasks, the distraction of having
to switch between views to see the components of a working set of
information can significantly impact task performance [4]. By
providing unbounded space including simple techniques for
managing that space, several critical analytic tasks can be simplified
to implicit, familiar activities. Multiple visualizations can simply be
juxtaposed for comparison; reasoning chains can be reviewed to
validate results; and maintaining prior queries in the periphery
provides temporal context [3, 9].

2.4 Boolean Composition (C4)
They key concept for creating visualization networks is that each
visualization’s output must be combinable with the output of other
visualizations [22]. We believe that having simple operations
between visualizations affords complex results while imposing only
the cognitive burden of understanding basic Boolean logic [25].

This requirement is not equivalent to typical data flow because
what flows between visualizations is not data records themselves, but
rather the data selection specifications used by the visualizations.
That is, one visualization showing a filtered selection of data column
“x”, could be linked to another visualization showing data column
“y”. With data flow, this wouldn’t make sense, but with our notion of
composition, the second visualization would do the equivalent of a
database join of column “y” with column “x” and then apply the “x”
column filter before projecting to just column “y”. This approach
allows for multiple visualizations to be linked to a single new
visualization, where Boolean logic operators determine which data
records the new visualization receives. For generality and in
particular to support the notion of visualization brushing, we extend
this composition requirement to include an operator for preserving all
the input data selection specifications as an array instead of always
combining them with Boolean logic into single data selection
specification.

3 THE PANORAMICDATA PROTOTYPE SYSTEM
We developed PD, the embodiment of a rich-general approach to data
analysis which unifies the aforementioned four design concepts in a
comprehensible way, through an iterative process in which we
steadily added and refined features in order to support a wide range
of exploration and analysis tasks. We will motivate our approach

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346293, IEEE Transactions on Visualization and Computer Graphics

Fig. 2. Different parts of a data panorama create by a user exploring Census data. The different parts are described in Section 3.1.

through an introductory use-case and will then highlight PD’s key
features in the context of their relation to the four concepts and how
they are used to perform common exploration and analysis tasks. We
will point directly to specific items of Heer & Shneiderman’s (HS)
taxonomy of interactive dynamics for visual analysis [14] (Table 1).

3.1 Introductory Use-Case
Figure 2 shows different parts of a rich, dynamic visualization
panorama that a user constructed with PD while exploring and
analyzing a random sample of census data (10,000 records). By
double-tapping on the background the user opens up the schema-
viewer which displays all the attributes of the data-set (Figure 2 (a)).
The user drags two attributes, marital-status and salary-over-50K, out
of the schema-viewer and drops them anywhere on the 2D canvas
(C3). To analyze the relationship between the two attributes the user
uses the pen to connect the two (C4) (Figure 2 (b)). Tapping on a
slice in the marital-status pie-chart filters the second pie-chart to only
show those records that satisfy the marital-status selected in the first
chart. He toggles through the different marital statuses to observe if
any of those have a higher chance of earning more than $50K
annually than the rest. By dragging and dropping he derives two new
visualizations and connects them again by using the pen (C1) (Figure
2 (c)). He has now arranged (C3, C4) a custom exploration interface
that lets him analyze the correlation between employer-type and
marital-status and how those reflect on people’s annual salaries. He
gains the insight that people who are married and work for the federal
government have a significantly higher chance of earning more than
$50K than other groups. By flipping one of the visualizations around

and using handwritten input he tags people in that group with the
keyword “rich” (C2). This will facilitate later referral to this insight.

The user wants to explore some more attributes of this data-set; age
and education-level (Figure 2 (d)). He draws an “L” type-shape
(indicating X and Y axes) on the canvas and drops attributes from the
schema-viewer to label the axes of his graph. By writing a “C” onto
the label of the Y-axis he transforms the data to display the
aggregate-count of the attribute instead of the raw value (C2). He
changes the grouping context of this aggregate function to use a
binning strategy instead of distinct values. He now sees the
distribution of people’s ages. By dropping another attribute onto the
graph’s color drop-target he splits the rendering into separated series.
Now the chart visualizes age histograms for each education-level in a
different color. To understand the meaning of the colors and to be
able to filter on specific series he derives a legend-visualization by
dragging off the color icon. Once again, he connects the
visualizations with the pen so that he brushes the chart to see the
probability of earning more than $50K individually for each data-
point (C4). Doctorates are above this threshold even early-on in their
career, while most High-school graduates are below it.

Our user creates another similar chart by first using a multi-touch
copy gesture and then modifying it through drag and drop operations.
He has colored this second chart by dropping his previously created
“rich” tag onto the color-drop target. He now sees two age
distributions, as a running total after applying a data-transformation
through a radial menu accessible on the Y-axis (C2) (Figure 2 (e)
top), one for people that match his tag and the second one for people
who do not match his tag. By additionally selecting people who are

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346293, IEEE Transactions on Visualization and Computer Graphics

self-employed in the tagged query he updates his definition of the
“rich” tag and the age-histogram chart updates accordingly (C2, C4).
To preserve an interesting insight seen in this chart he creates a static
snapshot of it (C1) and annotates it with handwriting ((Figure 2 (e)
bottom).

3.2 Pen & Touch and Gestural Interaction
Many analysis systems [27] offer a rich set of functionality that is
exposed trough traditional WIMP (Windows, Icons, Menus, Pointer)
interfaces and are prone to come with the drawbacks of this UI-
metaphor [32]. The interaction design of a data analysis system
should reduce the mental overhead and should not distract from the
fundamental task. As others have argued for Information
Visualization in general [10, 18], we believe that especially visual
data analysis systems could heavily benefit from advances made in
interaction technologies. Being able to offload user interface
reasoning (e.g., when searching for a tool) to sub-conscious natural
interactions promises a significant benefit for data analysis work
which is already cognitively overloaded. Gestural interactions for
managing space with touch gestures are well known and effective.
However, touch alone is not expressive enough to disambiguate
certain interactions, such as performing a selection on data vs.
moving the container of the data. By combining both pen and touch
in the UI, we believe expressive power can be enhanced without
increasing cognitive load since users can learn to subconsciously
associate certain interaction, such as manipulation with touch, and
others such as region selection with the pen. In addition, pen gestures
offer the possibility of affording very efficient, easily remembered
modeless shortcuts for abstract operations, such as writing a sigma
symbol over a column of data to view its sum (C2). To achieve the
cognitive offloading benefits of gesturing, interactions must be
consistent across the entire system so that users will feel comfortable
performing interactions with just muscle memory.

By considering what can easily be accomplished through the use of
pen and touch, we were able to focus on an uninterrupted experience.
Having two input modes eliminates the need for many mode changes
and provides a consistent selection metaphor. Recognizing pen-input
also obviates keyboard-input and reinforces PD’s whiteboard
metaphor. Using a pen to handwrite annotations on the background or
on a snapshot of a visualization feels natural (HS “Annotate”). The
pen is also used when precise control is needed, for example when
selecting only a few data-points within a large scatterplot or when
pointing to a narrow slice in a pie-chart (HS “Select”, “Filter”) We
also use the pen to enable fluid interactions through shortcuts of
commonly used actions within the system. Two visualizations can be
linked together by drawing a line between them (C4, HS
“Coordinate”) or sorting within a table-view is performed by
performing an up- or down-flick gesture (HS “Sort”) similar to [23].
Additionally, selections within a visualization can be inverted by
using a flick-gesture or transformations to data-attributes can be
performed through a set of symbolic gestures (C4, HS “Filter”,
“Select”, “Derive”). Similar to [6] PD offers pen-gestures to create
new views. An “L”-shape drawing on the background is used to
create scatter-, line- or bar-charts, a circle gesture for pie-charts and a
rectangular gesture for tables. Finally, PD uses a scribble-erase
gesture as a way to support deletion of unwanted content or links
[38].

Touch allows for a fluid interaction with all visual elements within
PD. For example all the drag & drop operations that PD expose can
be performed through touch-interactions. We make extensive use of
drag & drop operations in order to create, derive or modify
visualizations (HS “Visualize”). Additional touch gestures include, a
double-tap gesture anywhere on the 2D canvas go gain access to all
attributes of the dataset, a press-and-hold gesture to get quick-
previews of visualizations within a table-viewer or a two-finger
gesture to create copies of visualizations. We also expose well-known
direct-manipulation touch gestures to pan and zoom the 2D canvas or

to change the viewports of visualizations (C3, HS “Navigate”,
“Organize”).

Table 1: Taxonomy of interactive dynamics for visual analysis [14]

Data & View
Specification

Visualize data by choosing visual encodings.
Filter out data to focus on relevant items.
Sort items to expose patterns.
Derive values or models from source data.

View
Manipulation

Select items to highlight, filter, or manipulate them.
Navigate to examine high-level patterns and low-level detail.
Coordinate views for linked, multi-dimensional exploration.
Organize multiple windows and workspaces.

Process &
Provenance

Record analysis histories for revisitation, review and sharing.
Annotate patterns to document findings.
Share views and annotations to enable collaboration.
Guide users through analysis tasks or stories.

3.3 SQL Mapping
PD operates directly on relational-databases. To make a dataset
accessible within PD it needs to be annotated with a small set of
meta-data. This includes explaining relationships between different
tables (cardinality of relationship, primary and foreign keys),
providing some information about the columns of the tables (data-
types, preferred visualizer, aliases and human-understandable labels
if needed) and meta-data about the tables themselves (aliases). All the
data-related operations within PD are mapped to their corresponding
SQL function. PD is therefore a visual language to SQL that exposes
a broad set of its expressive power (C2, HS: “Derive”). Database-
joins are done implicitly when needed and rely on the meta-data
information (i.e., primary-foreign key relationships between tables).
Users do not need to struggle with the complexity of SQL-joins, but
this also limits PD to only expose part of the full expressive power of
SQL (i.e., only natural joins). Different join types or joins on non-
key-columns of tables are not supported yet. We plan to expose that
functionality as part of our future modifications.

Within the system each visualization is represented as an abstracted
model. This model includes the data-attributes needed to construct
the visualization, the transformation applied to them, the incoming
filtering or brushing relations, the items currently selected in the
visualization, as well as a few visual properties that do not affect the
SQL layer (e.g., rendering style or color mappings). It is important to
note that no data flows between linked visualizations; instead they
share information contained in their abstract visualization models.
Triggering operations that affect the abstract model forces a particular
visualization to refresh by generating and executing SQL queries. PD
does not perform any data-related computations in memory; all
computations are delegated to the underlying database system.

3.4 Schema-Viewer

Fig: 3. Simplified database-schema for sports statistics

Users need to be able to access attributes of the data-set. While being
widely used and powerful, relational databases come with the
potential caveat of having a complex schema that are hard to grasp
for untrained users. Finding an intuitive and approachable way to
expose the structure of the underlying database-schema has been a
challenging aspect of the PD’s design. Since database-schemas are
essentially graphs, there could be multiple ways to “connect” two
attributes from different tables. This ambiguity needs to be solved in

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346293, IEEE Transactions on Visualization and Computer Graphics

order for the system to automatically assemble SQL joins. Consider
the database-schema in Figure 3. Imagine a user wants to create a
visualization that displays an attribute from the “Player” table and an
attribute from the “Team” table. Without specifying a path that
encapsulates how the two tables should be connected the system does
not know which of the three possible options the user intended
(Player – Contract –Team, Player – Game – Team (Home) or Player
– Game – Team (Away)). Each of the paths has a semantically
significant different meaning. The same problem arises and is further
complicated when linking two visualizations together. In the case that
a user is looking at two visualizations - one that displays a list of
players and one that displays a list of teams - the user must connect
the two together to perform a filter or brushing operation. Without
further specification the meaning of this connection is again
ambiguous.

In our current version we address this problem by presenting the
database-schema in a tree-view that is always rooted at the same
table. If a user now drags an attribute out of this tree-view the path of
how to connect the root table to the table from which the attribute
comes is unambiguous. The same applies for linked visualizations.
Because they are initially created by dragging attributes from the
schema tree-view we can always use the root-table as the lowest
common denominator when performing SQL joins. This approach
offloads the problem to choosing a root table. Databases that are laid
out in star-schema form, with a single fact-table, are therefore a
naturally good fit for PanoramicData. It intuitively makes sense to
use such a fact-table as the starting point and therefore as the root
element in our schema-viewer. In other cases, we let the user choose
a root-table at the beginning of an exploration or analysis session.
Our current prototype does not support re-rooting during a session
and therefore diminishes some of the expressiveness of SQL in order
to reduce the cognitive burden on users.

The schema-viewer in PD (Figure 2 (a)) is brought up by a double-
tap gesture anywhere on the 2D canvas. This allows users to quickly
gain access to the underlying dataset in whatever context they
currently are. Dragging and dropping data-attributes from the
schema-viewer is used throughout the system to create or modify
visualizations.

3.5 Data-Transformers
Data-transformers, such as group-by aggregates (e.g., sum, count,
max, min, avg) or sorting operators, are applied directly to every
data-attribute in PD and can immediately update the rendering of a
visualization (C2, HS: “Derive”). PD exposes data attributes
wherever it makes intuitive sense for a given visualization. Scatter-
plots for example place visual handles to their data-attributes on the
X- and Y-axis, whereas table-viewers expose them as column-
headers. Common transformers can be triggered through a set of
gestures (see section 3.2) but are also accessible through a more
traditional radial-menu for discoverability.

Additionally each visualization exposes two drop targets: a group
target and a color target. Dropping attributes on the group target
specifies the context of aggregate calculations (e.g., what are we
summing over?), whereas the color target is used to specify coloring
of data-points within the visualization.

3.6 Calculated Fields
PD offers support to use well-known mathematical notations [37] to
create calculated fields from any attribute (C2, HS: “Derive”). This
functionality is exposed through the schema-viewer. A calculated
field is no different than other attributes and can be used in exactly
the same way as data-attributes to create or modify visualizations or
to calculate group-by aggregates. PD further allows the user to create
new attributes by transforming a chain of visualizations into a
Boolean attribute that indicates if a data-record is part of this sub-set.
This technique, described as tagging in the introduction use-case, is
useful to create custom groupings within a visualization or to

condense a complicated filtering operation into a single attribute.
Again, such set-attributes can be used as any other data-attribute, for
example for coloring a graph or for filtering or brushing a
visualization.

3.7 Zoomable Canvas
PD features an unbounded pan- and zoom 2D Canvas in which visual
elements can be arranged in a free-form fashion (C3, HS:
“Coordinate”, “Organize”). Such a 2D canvas offers a couple of
advantages. Firstly, users can manifest their elements in a way that
matches their mental model. Secondly, logically corresponding
elements can be arranged spatially near each-other without forcing
them into a limited area. Furthermore, open space to fluidly explore
what-if scenarios or tangentially related data-attributes is available
within a set of simple pan and zoom gestures. Finally, this whiteboard
metaphor offers an intuitive way to label findings or important parts
of the exploration or analysis process by using handwritten
annotations on the background (HS: “Annotate”). Figure 1 (c)
provides examples of such annotations. This approach also offers a
way to record the user’s exploration history. The filter-chains that are
constructed during the exploration process can be conveniently
revisited by locating them on the 2D canvas (HS: “Record”). While
this is not as structured or automated as [13, 26] it enables users to
decide which part of the exploration history they want to keep and
allows them to layout and annotate exploration histories in a free-
form fashion.

Even though PD works well on pen-enabled tablets, it leverages
this whiteboard metaphor best when used on an interactive
whiteboard. In a single-user scenario the extra screen-real-estate is
useful for exploring visualizations in full detail. Furthermore, in
collaborative-scenarios a whiteboard offers a natural way of
compiling or discussing data insights (HS: “Share”) and it turns PD
into a tool to disseminate knowledge in presentation scenarios while
benefiting from its interactive nature to quickly answer questions
from the audience similar to [19].

Fig: 4. Scatter-plot with interactive legend directly derived from plot.

3.8 Creating Visualizations
PD’s central visual elements are visualizations and creating them is
one of the most common tasks within the visual data analysis process
(HS: “Visualize”). We encourage fast and easy creation of
visualization through drag & drop interaction (C1). Every visual
element that represents a data-attribute can be dropped anywhere on
the 2D canvas to create a default visualization of its values. Similar to
[20], the default visualizations are based on simple heuristics such as
the data-type of the attribute and the number of unique elements in
the data and can be changed by adding hints to the pre-defined meta-
data information. A geographic attribute, for example, is displayed in
a map-visualization whereas a categorical or binary attribute gets
rendered as a histogram showing the distribution of its unique values.
PD supports a manageable set of familiar visualizations such as pie-,
bar-, scatter- and line-charts as well as table- and map-viewers, but
other visualizations could be included. Each visualization can be
customized through dropping data-attributes on pre-defined drop
targets. 2D plots for example expose drop targets on their X- and Y-
axis or on a special color shelf. On the other hand, a table -viewer

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346293, IEEE Transactions on Visualization and Computer Graphics

allows dropping of attributes anywhere on its column-headers to
extend the columns they show.

Following our design concept of “Derivable Visualizations” (C1)
led to some interesting design choices. For example we completely
eliminate any sort of built-in legends within a visualization. Legends
instead are visualizations themselves and can be derived from an
existing visualization by dragging from its color drop-target. Legends
are therefore fully interactive [24] and can be further customized if
needed. This function works in part because PD offers consistent
coloring of data-points across the system even for visualizations that
are not linked. Figure 4 exemplifies such a legend.

Since Grammel et al. [12] showed that users of visualization
systems often thought about data without any “processed” visual
structures or visual attributes, we also include a gesture for deriving a
table-view from any visualization (C1). Exposing the raw-data can
serve as a valuable validation mechanism to avoid misinterpreting
complex visualizations, and can be a more effective way to identify
certain patterns or to perform computations.

3.9 Linking
Being able to coordinate views is a powerful tool that addresses a lot
of different common exploration and analysis tasks (C4, HS:
“Coordinate”) In PD two visualizations can be linked through a one-
way directed connection. Links indicate that the target visualization is
influenced in some form by the source visualizations. A link can be in
one of two states: filtering or brushing. When using filter-links the
target visualization is filtered to the set of items that is selected in the
source visualization. A visualization can have multiple incoming
filter-links and the user can choose how to combine filters (AND or
OR). Additionally the output of any filter is invertible (NOT). Thus
PD offers functionally complete visual filtering logic. In Figure 2 (c),
the bottom right pie-chart displays the distribution of salaries for
people that are NOT married (selection in the bottom left pie-chart
and inverted filter-link visible by the dashed line) AND are working
for the federal government. Brushing-links are used to highlight the
same data within a different context. In simple cases, for example
when two scatter-plots showing the same data points but on different
axes are linked together, this enables standard brushing and linking,
where a selection in one chart highlights the corresponding data
points in the other. Figure 2 (d) shows a more complex example. The
top plot is brushed by the red pie-chart on the bottom. Notice that
because the plot displays aggregated data-points (people are binned
by age ranges) brushing is more nuanced. It reveals what percentage
of the people within the aggregation would fit the query specified by
the red filter. It is also important to mention that the red visualization
is fully interactive and that a selection change would automatically
update the dependent visualization. A user can switch between those
two link states (filter or brushing) through simple touch or pen
gestures.

This feature of PD provides a powerful tool for fluid data-analysis.
Even just two simple visualizations of two attributes can be examined
in a variety of ways. Consider a user trying to find an unknown
relationship between two attributes, age and passenger-class, of
passengers on the Titanic (Figure 5). The user starts with two
visualizations (Figure 5 (a)), one showing the age histogram of all
passengers and the other depicting their distribution according to
passenger-classes. These are the default-visualizations for those
attributes, which were attained by dragging the corresponding
attributes from the schema-viewer. A pen gesture connects the two
visualizations. Touching the slices of the pie-chart selects them and
filters the age-histogram. After swiftly toggling through all the
different passenger-classes the user thinks they noticed a slight shift
in distributions for the first class (Figure 5 (b)). The user changes the
link to a brushing-link and one now sees the age histogram of first
class passengers relative to all passengers (Figure 5 (c)),. Indeed, it
seems that there may be a shift in the distribution. With another pen-
gesture the link flips in the opposite direction and the user pen lasso-

select the passengers over 40. The little bars on the side of the pie-
slices show the number of passengers within the class that the
selection in the age histogram (Figure 5 (d)). It appears that older
passengers were most likely in the first class.

Notice that PD allows configuration of these transformations
within this scenario with one or two touch and pen gestures.

Fig. 5. Four ways to compose two visualizations to show different
relationships between attributes. (a) No relationship. (b) Top filters

bottom. (c) Bottom brushes top. (d) Top brushes bottom.

3.10 Copying and Snapshotting
PD offers two ways to create copies of visualizations. The first-one
derives an exact live copy of the visualization that is fully interactive.
The second-one takes a static snapshot of the visualization that can
then be annotated (HS: “Annotate”, “Record”). We included this
feature based on feedback we received through our user-study. In
some cases user wanted to “keep” or “save” a visualization and
disable automatic updating through filtering or selection changes.

3.11 Selections
All visualizations manage selection states. Selections in PD are
represented as queries over the data (HS: “Select”). For 2D plots
those queries are represented as ranges over the space of the data-
attributes. This allows the system to keep selections even if the
underlying data has changed (e.g., through a filtering operation). To
speed up the calculation of those selection queries, especially for
multi-dimensional-charts (X, Y and color) with a large number of
data-points, we use spatial data-structures (i.e., Octrees). 2D chart
types, such as scatter-plots or maps, allow free-form lasso selection
with the pen to allow for fine-grained selection control

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346293, IEEE Transactions on Visualization and Computer Graphics

3.12 Scalability
Our system currently works best for databases up to 30,000 records.
Performance of rendering and database querying, especially for large
visualization networks across multiple database-tables, drops to a
non-interactive level for data-sets with over 80,000 rows.

4 EVALUATION
We evaluated PD through a formative user study with both data and
visualization experts. The goal of this study was to understand PD’s
utility and its approachability, to gain some insight about how its
features are used and to explore the type of queries user pose. The
study involved five participants, three PhD students (conducting
research in the fields of Databases or Visualization) and two
advanced Undergraduates (Teaching Assistants for a Data Science
class). None of the participants had any prior knowledge of our tool.
The results of this study support our belief that PD, and the design-
concepts it embodies, provides a fluid and intuitive user experience
while still being expressive enough to answer the range of queries
that users are likely to want to pose. The study also suggests that
users are able to use the system with a minimal training amount.

4.1 Procedure
Our participants were given a 10 minute introduction to PD. In this
introduction we used a small example data-set and gave the
participants a brief overview of all the features and gestures in the
system. After that we briefly allowed the participants to familiarize
themselves with the tool and the UI, before we exposed them to the
Titanic dataset. This dataset contains 14 attributes about the
passengers of the Titanic [15]. We instructed the participants to freely
explore the dataset and to use a “think-aloud” protocol. This open-
ended exploration lasted 40 minutes on average. The examiner
provided suggestion in cases where the users did not know what
aspects of the data to look at. The participants were also instructed to
explain and present any interesting findings to the examiner. At the
end we asked them to reflect on their experience with PD and to
answer a set of questions, either targeted towards specific features in
PD (e.g., How did you like the pen and touch interface?) or more
free-form questions about their experience with data-analysis tasks
(e.g., Do you have any data, work or private, that you analyze or
explore? What tools do you currently use to do so?).

4.2 Results
During the opened-ended exploration phase of our study all the
participants were able answer the questions they posed with the help
of PD. They created sophisticated queries even within the limited
amount of time (Figure 6, 7). All users mentioned that they
particularly liked the fact that visualizations can be linked together to
create filters. However, only two of our participants made use of
brushing-links. Two of the users initially mentioned that they have
problems distinguishing when to use the pen and when touch. This
confusion was cleared up by telling them that touch is used to
“move” objects while the pen allows for shortcut gestures or fine-
grained selections. All of the users valued the fluid nature of the UI.
More specifically, they thought that the UI was not distracting them
from the question they wanted to answer and that it was easy to
switch between different tasks (e.g., creating a visualization and
linking / filtering). The mnemonic pen gestures for fast access of
data-transformation operations were rarely used, while others, such as
scribble-delete, the linking of visualization gesture or lasso-selection,
were adopted instantaneously by all users. Three of the participants
mentioned that they forgot how to perform those mnemonic gestures
but would have liked to use them. Discoverability of gestures is a
point that we would like to address in future versions of the system
[5]. Four out of five participants indicated that they would use PD for
their own analysis tasks. One user pointed out that the lack of

statistical hypothesis-testing and machine learning methods lessens
the value of PD for his own work.

We observed that none of the users had any issues with the touch-
gestures. Even without prior demonstration, most users would walk
up to the whiteboard and naturally expected that they could drag
visualizations around with their fingers or perform pinch-zoom
gestures within graphs or maps. Users were able to decompose
compound queries into sequences of simple linked visualization,
which was a strategy we never explicitly explained. Users rarely
created visualizations form scratch and instead modified
visualizations that they derived from existing ones. The notion of
deriving a visualization in order to display its legend was initially not
clear to participants (e.g., “What do the colors in this graph mean?”,
“How can I display a legend for this graph?”) but especially the
reusability of those visualization-legends was appreciated after
comprehending the concept (“Ah, now I can just use my legend to
filter this other visualization.”).

4.3 Anecdotal Insights
We would like to point to two anecdotal instances where participants
used a table-view as a fallback solution. In one example our user tried
to validate his hypothesis that people from less wealthy countries
were more likely to be staying in the third class. He approached this
by creating a map-visualization showing the passengers home
countries, selected countries that he conceived as being less wealthy
and linked it to a pie-chart showing the passenger distribution
according to classes. The pie-chart showed that most of those
passenger were staying in either the first or second class and therefore
our user discarded his hypothesis. He noted that in the general
population of all passengers is heavily biased towards the third class.
Our participant wanted to find out where those third-class passengers
came from. Different selections of countries still all offered a similar
passenger class distribution (mostly first and second class). After
quibbling with this for a while and expressing distrust in what the
visualization was showing him, he decided to use a table-view to
calculate the exact count of passengers per passenger-class and
country. He then realized there was no record of where a majority of
the passengers came from and that most of those unknowns were
actually staying in the third class. We are planning to address this
flaw (not dealing with unknown values properly) in a future version.

In a second example, this time from our pilot-study, a user wanted
to display average survival rates for passengers in different age-bins.
Furthermore he wanted to see two series that were colored differently
for male and female passengers. He expressed concerns that he did
not know how to create this plot. However, he said that he knew
exactly what data he would like to have plotted. He started to create a
table-view with the two columns and applied the appropriate
operations to transform the data and color the rows. After finishing,
his table-view depicted the data he was interested in and he realized
that it should be simple to plot it now (“Maybe I can actually just plot
those two columns against each-other…”). He used the axis-gesture,
labeled the X- and Y-axis by dragging and dropping columns from
his table and got the visualization he initially intended (Figure 7).
Those two anecdotes provide some interesting insight. They hint at a
concept discussed by [12] and that we summarized as “Data Duality”.
Users frequently think about data in its raw form and tend to separate
data from visual elements. In cases where they either do not trust a
visualizations or have problem formulating a visualizations they use
raw-data views as a fallback approach.

5 CONCLUSIONS AND FUTURE WORK
PD supports a limited set of chart types (bar-, pie-, scatter-, line-
charts, table- and map-views), but it could be extend to include
others. The current version PD also only exposes a subset of data-
operations. Calculated fields in PD are based on mathematical
expressions but there is no way to specify more involved operations

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346293, IEEE Transactions on Visualization and Computer Graphics

(e.g., if, else statements). Additionally, users within PD are limited to
compute aggregates over either distinct groups or evenly-spaced bins.
More complex grouping schemes such as user-defined or data-type
specific groups (e.g., grouping by state or county in geographic
attributes or grouping by day, month or year in dates) are not
supported yet. There are some exploration interface patterns (e.g.,
small-multiples of charts [30]) that are used commonly in the set of
tasks that PD tries to support. While users in PD could technically
layout such interfaces manually through a set of view-creation,
linking and filtering operations, it would be a cumbersome task. We
are planning to include shortcuts to such patterns in future version so
PD.

While some more complete or commercial systems, like Tableau,
do address some of the limitations mentioned above, they often lack
support for simultaneous viewing and creation of custom exploration
interfaces through flexible view-coordination. Furthermore they do
not expose a model to incrementally build up complex and
modifiable queries where intermediate views serve as interactive
handles.

In this paper we introduced PanoramicData (PD), a novel pen &
touch interface for exploring and analyzing multi-dimensional data-

sets. PD is based on a set of four core-concepts: Derivable
Visualizations, Exposing Expressive Data-Operations, Unbounded
Space and Boolean Composition. By unifying these concepts through
a gestural pen & touch UI we are able support a wide range of
common exploration and analysis tasks in a way that avoids explicit
mode switching, minimizes UI cluttering, reduces indirection in the
interface and provides effortless switching between the variety of
interrelated tasks that data exploration and analysis require. PD
allows for incremental and piecewise query specification where
intermediate visualizations serve as feedback as well as interactive
handles to adjust query parameters. A formative user study indicates
that our approach provides a fluid and intuitive user experience while
exposing a comprehensive set of tools to answer a wide range of
data-related questions.

ACKNOWLEDGMENTS
The authors wish to thank Andries van Dam, David Laidlaw, Stan
Zdonik and Joseph J. LaViola Jr. as well as the anonymous reviewers
for their comments and suggestions. This work was funded by
Microsoft Research.

Fig: 6. Data panorama that a user built up during our evaluation to investigate different aspects of the Titanic data-set. (a) The user started of
exploring the relationship between passengers that survived and their passenger class. (b) He then tested different hypothesis (i.e., are there

correlations between survival and home towns of passengers (b), their ages (c) and their gender (d). He kept an unfiltered distribution of gender
(d) to compare the ratios. (f) In order to obtain more accurate numbers and to confirm what he visually inferred, he built a table containing average

survival rates for each passenger class and gender combination.

Fig: 7. An example from our evaluation where a user first described the data he wanted to see in tabular form (a) and then created a chart by

dragging and dropping the column headers to the x and y axis (b). To understand the colors he derived a legend (c) from his char

1077-2626 (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See
http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/TVCG.2014.2346293, IEEE Transactions on Visualization and Computer Graphics

REFERENCES
[1] Abouzied, A., J. Hellerstein, and A. Silberschatz, DataPlay: interactive

tweaking and example-driven correction of graphical database queries.
Proceedings of the 25th annual ACM symposium on User interface
software and technology, 2012: p. 207-218.

[2] Amar, R., J. Eagan, and J. Stasko, Low-Level Components of Analytic
Activity in Information Visualization. Proceedings of the Proceedings of
the 2005 IEEE Symposium on Information Visualization, 2005: p. 15.

[3] Bederson, B.B. and J.D. Hollan, Pad++: a zooming graphical interface
for exploring alternate interface physics. Proceedings of the 7th annual
ACM symposium on User interface software and technology, 1994: p.
17-26.

[4] Bragdon, A., R. Zeleznik, S.P. Reiss, S. Karumuri, W. Cheung, J.
Kaplan, C. Coleman, F. Adeputra, and J. Joseph J. LaViola, Code
bubbles: a working set-based interface for code understanding and
maintenance. Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, 2010: p. 2503-2512.

[5] Bragdon, A., R. Zeleznik, B. Williamson, T. Miller, and J. Joseph J.
LaViola, GestureBar: improving the approachability of gesture-based
interfaces. Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, 2009: p. 2269-2278.

[6] Browne, J., B. Lee, S. Carpendale, N. Riche, and T. Sherwood, Data
analysis on interactive whiteboards through sketch-based interaction.
Proceedings of the ACM International Conference on Interactive
Tabletops and Surfaces, 2011: p. 154-157.

[7] Collins, C. and S. Carpendale, VisLink: Revealing Relationships
Amongst Visualizations. Visualization and Computer Graphics, IEEE
Transactions on, 2007. 13(6): p. 1192-1199.

[8] Drucker, S.M., D. Fisher, R. Sadana, J. Herron, and m.c. schraefel.
TouchViz: A Case Study Comparing Two Interfaces for Data Analytics
on Tablets. 2013.

[9] Dunne, C., N.H. Riche, B. Lee, R. Metoyer, and G. Robertson,
GraphTrail: analyzing large multivariate, heterogeneous networks while
supporting exploration history. Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 2012: p. 1663-1672.

[10] Elmqvist, N., A.V. Moere, H.-C. Jetter, D. Cernea, H. Reiterer, and T.
Jankun-Kelly, Fluid interaction for information visualization.
Information Visualization, 2011. 10(4): p. 327-340.

[11] Elmqvist, N., J. Stasko, and P. Tsigas, DataMeadow: a visual canvas for
analysis of large-scale multivariate data. Information Visualization,
2008. 7(1): p. 18-33.

[12] Grammel, L., M. Tory, and M.-A.D. Storey, How Information
Visualization Novices Construct Visualizations. IEEE Transactions on
Visualization and Computer Graphics, 2010. 16(6): p. 943-952.

[13] Heer, J., J. Mackinlay, C. Stolte, and M. Agrawala, Graphical Histories
for Visualization: Supporting Analysis, Communication, and Evaluation.
Visualization and Computer Graphics, IEEE Transactions on, 2008.
14(6): p. 1189-1196.

[14] Heer, J. and B. Shneiderman, Interactive Dynamics for Visual Analysis.
Queue, 2012. 10(2): p. 30-55.

[15] Hind, P. Encyclopedia Titanica. Available from:
http://www.encyclopedia-titanica.org/.

[16] Idreos, S. and E. Liarou, dbTouch: Analytics at your Fingertips.
Proceedings of the 7th International Conference on Innovative Data
Systems Research (CIDR), 2013.

[17] Kandel, S., A. Paepcke, J. Hellerstein, and J. Heer, Wrangler: interactive
visual specification of data transformation scripts. Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, 2011: p.
3363-3372.

[18] Lee, B., P. Isenberg, N.H. Riche, and S. Carpendale, Beyond Mouse and
Keyboard: Expanding Design Considerations for Information
Visualization Interactions. Visualization and Computer Graphics, IEEE
Transactions on, 2012. 18(12): p. 2689-2698.

[19] Lee, B., R.H. Kazi, and G. Smith, SketchStory: Telling More Engaging
Stories with Data through Freeform Sketching. Visualization and
Computer Graphics, IEEE Transactions on, 2013. 19(12): p. 2416-2425.

[20] Mackinlay, J., P. Hanrahan, and C. Stolte, Show Me: Automatic
Presentation for Visual Analysis. Visualization and Computer Graphics,
IEEE Transactions on, 2007. 13(6): p. 1137-1144.

[21] Mynatt, E.D., The Writing on the Wall. IFIP Conference on Human-
Computer Interaction, 1999.

[22] North, C. and B. Shneiderman, Snap-together visualization: a user
interface for coordinating visualizations via relational schemata.

Proceedings of the working conference on Advanced visual interfaces,
2000: p. 128-135.

[23] Rao, R. and S.K. Card, The table lens: merging graphical and symbolic
representations in an interactive focus + context visualization for
tabular information. Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, 1994: p. 318-322.

[24] Riche, N.H., B. Lee, and C. Plaisant, Understanding Interactive
Legends: a Comparative Evaluation with Standard Widgets. Computer
Graphics Forum, 2010. 29(3): p. 1193-1202.

[25] Shneiderman, B., Visual User Interfaces for Information Exploration.
54th Annual Meeting, Washington, DC, October 27-31, 1991., 1991.

[26] Shrinivasan, Y.B. and J.J.v. Wijk, Supporting the analytical reasoning
process in information visualization. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, 2008: p. 1237-
1246.

[27] Stolte, C., D. Tang, and P. Hanrahan, Polaris: a system for query,
analysis, and visualization of multidimensional relational databases.
Visualization and Computer Graphics, IEEE Transactions on, 2002.
8(1): p. 52-65.

[28] Streit, M., H. Schulz, A. Lex, D. Schmalstieg, and H. Schumann, Model-
Driven Design for the Visual Analysis of Heterogeneous Data.
Visualization and Computer Graphics, IEEE Transactions on, 2012.
18(6): p. 998-1010.

[29] Tobiasz, M., P. Isenberg, and S. Carpendale, Lark: Coordinating Co-
located Collaboration with Information Visualization. Visualization and
Computer Graphics, IEEE Transactions on, 2009. 15(6): p. 1065-1072.

[30] Tufte, E.R. and P. Graves-Morris, The visual display of quantitative
information. Vol. 2. 1983: Graphics press Cheshire, CT.

[31] Upson, C., T.A. Faulhaber, Jr., D. Kamins, D. Laidlaw, D. Schlegel, J.
Vroom, R. Gurwitz, and A. Van Dam, The application visualization
system: a computational environment for scientific visualization.
Computer Graphics and Applications, IEEE, 1989. 9(4): p. 30-42.

[32] van Dam, A., Post-WIMP user interfaces. Commun. ACM, 1997. 40(2):
p. 63-67.

[33] Walny, J., S. Carpendale, N.H. Riche, G. Venolia, and P. Fawcett,
Visual Thinking In Action: Visualizations As Used On Whiteboards.
Visualization and Computer Graphics, IEEE Transactions on, 2011.
17(12): p. 2508-2517.

[34] Walny, J., B. Lee, P. Johns, N.H. Riche, and S. Carpendale,
Understanding Pen and Touch Interaction for Data Exploration on
Interactive Whiteboards. Visualization and Computer Graphics, IEEE
Transactions on, 2012. 18(12): p. 2779-2788.

[35] Young, D. and B. Shneiderman, A graphical filter/flow representation of
Boolean queries: A prototype implementation and evaluation. Journal of
the American Society for Information Science, 1993. 44(6): p. 327-339.

[36] Yuan, X., D. Ren, Z. Wang, and C. Guo, Dimension Projection
Matrix/Tree: Interactive Subspace Visual Exploration and Analysis of
High Dimensional Data. Visualization and Computer Graphics, IEEE
Transactions on, 2013. 19(12): p. 2625-2633.

[37] Zeleznik, R., T. Miller, C. Li, and J.J. Laviola Jr. Mathpaper:
Mathematical sketching with fluid support for interactive computation.
in Smart Graphics. 2008. Springer.

[38] Zeleznik, R.C., A. Bragdon, C.-C. Liu, and A. Forsberg. Lineogrammer:
creating diagrams by drawing. in Proceedings of the 21st annual ACM
symposium on User interface software and technology. 2008. ACM.

