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The linear mixed model (LMM) is now routinely used to estimate
heritability. Unfortunately, as we demonstrate, LMM estimates of
heritability can be inflated when using a standard model. To help
reduce this inflation, we used a more general LMM with two random
effects—one based on genomic variants and one based on easily mea-
sured spatial location as a proxy for environmental effects. We inves-
tigated this approach with simulated data and with data from a
Uganda cohort of 4,778 individuals for 34 phenotypes including anthro-
pometric indices, blood factors, glycemic control, blood pressure, lipid
tests, and liver function tests. For the genomic random effect, we
used identity-by-descent estimates from accurately phased genome-
wide data. For the environmental random effect, we constructed a
covariance matrix based on a Gaussian radial basis function. Across
the simulated and Ugandan data, narrow-sense heritability estimates
were lower using the more general model. Thus, our approach ad-
dresses, in part, the issue of “missing heritability” in the sense that
much of the heritability previously thought to bemissingwas fictional.
Software is available at https://github.com/MicrosoftGenomics/
FaST-LMM.

heritability estimation | linear mixed model | environment |
Gaussian radial basis function | model misspecification

An important causal question comes from the age-old debate
about nature versus nurture. For any phenotype such as height

or intelligence quotient, how much of the phenotype is inherited
and how much is determined by environment? This question was
made precise by Fisher (1) and Wright (2) almost a century ago:
Given observations of a phenotype from a population of individuals,
what is the fraction of variance of the phenotype that is caused by
inherited factors relative to the total variance of the phenotype due
to both inherited and environmental factors? This fraction, termed
“heritability,” has been the subject of intense study across various
phenotypes and populations since it was defined. Note that, in
contrast to how some interpret the informal question around the
nature-versus-nurture debate, heritability is not an absolute quantity
but rather a quantity relative to a given population. For example, a
phenotype in a population where environmental factors have large
variation will have a smaller heritability than in an otherwise similar
population where environmental factors have a small variation.
Over the years, many approaches have been developed to estimate

heritability from data (3, 4). Here, we concentrate on an approach
made possible by the recent ability to sequence genomes at a modest
cost (5, 6). The approach uses a linear mixed model (LMM), a form
of multivariate regression of the genomic and environmental factors
on the phenotype, which we examine in detail in the next section.
In the standard LMM approach, the effects of environmental

factors on the phenotype are modeled as noise. Specifically, the
phenotype of each individual is assumed to be the sum of two
random effects, one based on genomic factors and one based on
environmental factors, where the latter is assumed to be mutually
independent across individuals. As we shall see, this model for
environmental effects can lead to inflated estimates of heritability.

To avoid this inflation, we could measure and model envi-
ronmental effect explicitly (e.g., ref. 7). Unfortunately, in most
circumstances there are many environmental factors to be mea-
sured. Furthermore, some environmental factors may be un-
recognized and consequently are unmeasurable. In this work, we
investigate the use of an easy-to-measure surrogate for environ-
mental factors—namely, spatial location. We show how this surro-
gate can be incorporated into the LMM as an additional random
effect. We investigate our more general model with simulated data
and with data from a Ugandan cohort of about 5,000 individuals.

Results
Heritability Estimation. First, let us consider a standard approach
for estimating heritability using an LMM (6, 8). The estimate is
based on observations consisting of y, an N × 1 vector of phe-
notypes for the N individuals, and X, an N ×M matrix of causal
genomic variants for the N individuals and M variants. Note that
it is customary to normalize the causal variants so that each
one has a mean of zero and an SD of one across individuals.
Given these observations, we model y as a multivariate linear
regression on X:

y∼N �μ+Xβ;σ2r I
�
, [1]

where μ is an N × 1 vector of offsets that can include the effects
of covariates, β is the M × 1 vector of linear weights relating the
corresponding variants to the phenotype, I is the N ×N identity
matrix, and σ2r is the residual variance of the multivariate normal
distribution denoted by N (.; .). In addition, we assume that the
elements of β are mutually independent, each having a normal
distribution:

βi ∼N
 
0; 

σ2g
M

!
,   i= 1, . . . ,  M. [2]
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Plugging Eq. 2 into Eq. 1 and integrating out β, we obtain

y∼N
�
μ;σ2g

1
M

XXT + σ2r I
�
. [3]

Model 3 is known as a linear mixed model with a random effect
having the covariance matrix Kcausal = 1

M XXT (9). It is also known
as a Gaussian process with a linear covariance (or kernel) function
(10, 11). Note that element i,j of Kcausal is the dot productPM
k=1

XikXjk. The parameters of this model are typically fit by maxi-

mizing the restricted maximum likelihood (REML) of the data.
Narrow sense heritability, denoted h2, is the fraction of the

variance of y due to the genomic component. Given this model and
the assumption that genomic variants are mutually independent, it
follows that

h2 =
σ2g  

σ2g + σ2r
. [4]

Note that narrow-sense heritability accounts only for additive
genomic effects. Genomic effects can also exhibit nonlinear inter-
actions among each other (known as epistasis) and exhibit
dominance, neither of which is captured in the model of Eq. 3. The
term “heritability” without the modifier “narrow sense” is typically
reserved for the quantity that includes all genomic effects. Herein,
for simplicity, we will concentrate on the estimation of narrow-sense
heritability although, as we mention later, our approach can be
extended to estimate more general quantities.
In practice, we do not know which genomic variants are causal,

so we use an approximation for Kcausal. One commonly used
approximation—and one we will use in this work—is KIBD, where
element (i,j) is the fraction of the genome shared identical by de-
scent (IBD) among individuals i and j (6). That is, we use the model

y∼N
�
μ;σ2gKIBD + σ2r I

�
.

As noted in the introduction, the standard LMM represents
environmental effects as simple Gaussian noise. Here, let us
consider a more general model for environmental effects based
on the spatial location of individuals. Specifically, consider the
addition of a random effect with covariance matrix Kloc:

y∼N
�
μ;σ2gKIBD + σ2eKloc + σ2r I

�
. [5]

Assuming the genomic variants and spatial locations are
mutually independent, we get a new estimate for narrow-sense
heritability given by

h2 =
σ2g  

σ2g + σ2e + σ2r
. [6]

This model also allows us to estimate the fraction of variance of y
due to the location component, denoted e2:

e2 =
σ2e  

σ2g + σ2e + σ2r
. [7]

In our analysis of the Ugandan cohort, we use Klocði, jÞ=
expf−ðdij=αÞ2g, where dij is the distance between individuals i
and j, and α is a scaling parameter. Intuitively, the inclusion of
Kloc captures the notion that individuals physically closer to each
other are more likely to be influenced by the same environmental
factors and hence more likely to have similar phenotypes. Using
other types of proximity—for example, social proximity—is also
possible, but here we consider only physical proximity. The expo-
nential form we use for Klocði, jÞ is known as a Gaussian radial

basis function and is often used in spatial analyses (10, 11). (We
also tried the radial basis function expf−ðdij=αÞg but found it diffi-
cult to estimate α accurately.) The parameter α can be thought of as
the spatial range of the environmental effect. The larger the value
for α, the larger the range or extent of the effect. As in the standard
case, we fit all parameters, now including σ2e and α, with REML.
Recall that the standard LMM follows from modeling the phe-

notype as a regression on genomic variants. Similarly, Eq. 5 can be
interpreted as the result of modeling the phenotype as a multivariate
regression on both genomic variants and spatial location. In par-
ticular, Mercer’s theorem (10, 11) states that, if K(zi,zj) is a contin-
uous symmetric positive semidefinite function to R from zi and zj
each in a compact Hausdorff space, then there exists a set of
functions ϕk(z), k = 1,. . .,∞, such that K(zi,zj) is equal to the

dot product
P∞
k=1

ϕkðziÞϕkðzjÞ. Identifying zi as the spatial location

of individual i and K(zi,zj) as element i,j in Kloc, it follows that the
inclusion of Kloc in Eq. 5 is equivalent to conditioning on spatial
features ϕk(zi), i = 1,. . .,N, k = 1,. . .,∞. We note that the Gaussian
radial basis function is guaranteed to be positive semidefinite.
Finally, let us consider nonlinear interactions between genomic

and environmental components. We can model some of these in-
teractions by introducing a third random effect to the LMM:

y∼N
�
μ;σ2gKIBD + σ2eKloc + σ2gxeKGxE + σ2r I

�
, [8]

producing an estimate of the fraction of variance of y due to the
interaction component given by

gxe2 =
σ2gxe  

σ2g + σ2e + σ2gxe+ σ2r
. [9]

We use a particular form for KGxE where element i,j is the
product of elements i,j from Kcausal and Kloc (i.e., the Handa-
mard product of Kcausal and Kloc). Using the nomenclature we
have defined, it follows that element i,j of  KGxE is given byPM
k=1

P∞
l=1

XikϕlðziÞXjkϕlðzjÞ. Consequently, inclusion of KGxE into

the LMM is equivalent to conditioning on the features Xik ϕl(zi),
i = 1,. . .,N, k = 1,. . .,M, l = 1,. . .,∞. Product features such as
these are often used to model nonlinear interactions (12). In our
analysis of the Ugandan cohort, we use this instance of KGxE,
except we replace Kcausal with KIBD as an approximation.
We note that the standard model given by Eq. 3 is nested in the

model given by Eq. 5, which in turn is nested in the model given
by Eq. 8.

Heritability Analysis on Simulated Data. We first applied our ap-
proach to the analysis of simulated data. We generated from the
Balding–Nichols model (13) with a 50:50 population ratio, a baseline
minor allele frequency (MAF) sampled uniformly from [0.05, 0.5],
and a value for Wright’s FST equal to 0.1. We generated a spatial
location for each individual by sampling randomly from one of two
spherical Gaussian distributions with SD 625,000 and separation
between Gaussian centers equal to 4 × 625,000. This procedure
produced a distribution of spatial locations similar to the real data
and satisfied an assumption underlying Eqs. 6 and 7 that genomic
variants and spatial locations are independent. We next generated
the phenotype using Eq. 5 with KIBD replaced with Kcausal, and with
σ2g = σ2e = σ2r = 1, and α = 4 × 625,000. We generated 50 datasets
and then, for each one, computed uncorrected and corrected heri-
tability estimates, based on Eqs. 3 and 5, respectively, with KIBD
replaced with Kcausal. For each dataset, we generated 1,000 causal
SNPs for 5,000 individuals to mimic the real data.
The estimates of h2 and e2 based on the corrected model are

unbiased, having mean (± SE) of 0.33 ± 0.01 and 0.35 ± 0.02,
respectively. In contrast, the estimates of h2 based on the standard

7378 | www.pnas.org/cgi/doi/10.1073/pnas.1510497113 Heckerman et al.

www.pnas.org/cgi/doi/10.1073/pnas.1510497113


or uncorrected model were inflated (0.42 ± 0.01). This inflation is
not unexpected, because the “signal” produced by the spatial ran-
dom effect needs to be accounted for by either the genomic random
effect or the noise component, and there is no reason to expect that
the noise component would account for all of it. Any leakage of the
signal arising from the spatial random effect to the genomic random
effect would yield inflated estimates of heritability. That is, model
misspecification can lead to substantial bias in heritability estimates.
As mentioned, Eqs. 6 and 7 were derived under an assumption

that genomic and spatial factors are independent. In practice,
however, this assumption may not hold. To investigate the ro-
bustness of these estimates to nonindependence, we modified the
above data-generation procedure to create a dependence between
genomic and spatial variation. In particular, the spatial locations of
all individuals from the same Balding–Nichols population were
drawn from the same spherical Gaussian. Despite this relatively
strong dependence, estimates of h2 (corrected) and e2 remained
unbiased (0.33 ± 0.01 and 0.35 ± 0.02, respectively). Uncorrected
estimates of h2 were similarly inflated in the presence of de-
pendence (0.46 ± 0.01).
Sample code for these experiments in the form of an iPython

notebook can be found in SI Appendix.

Heritability Analysis on the Ugandan Cohort. We next applied our
approach to an analysis of a Ugandan cohort (Methods) across 34
phenotypes including anthropometric indices, blood factors,
glycemic control, blood pressure, lipid tests, and liver function
tests. A description of phenotypes can be found in Table 1. Not

unexpectedly, heritability estimates varied widely, with corrected
estimates ranging from 0.55 for mean platelet volume (MPV) to
0.10 for levels of alkaline phosphatase (Table 2).
Consistent with our studies on simulated data, uncorrected heri-

tability estimates were inflated. The inflation was significant for 14 of
the 34 phenotypes (Fig. 1). In addition, 23 phenotypes had a value for
e2 significantly greater than zero (Table 2). In general, we would
expect that e2 > 0 would be a necessary but not sufficient condition
for a difference in corrected and uncorrected heritabilities. Consistent
with this expectation, these 23 phenotypes are a superset of the 14.
We note that for 11 of the phenotypes, e2 was not significantly greater
than zero. In these cases, the standard model, which is nested in our
more general model, provided an adequate model for heritability.
For each phenotype, we were also able to determine the geo-

graphical range of the environmental effect (i.e., the optimized
value of the scaling parameter α), which varied by more than three
orders of magnitude across the phenotypes (Table 2).
Interestingly, corrections were most substantial for anthropo-

metric indices, lipid tests, and measures of liver function. This
pattern, which may or may not be real, is under investigation. We
are also working to identify specific environmental effects re-
sponsible for the large heritability corrections. For the phenotype
mean corpuscular hemoglobin concentration (MCHC), which had
the largest correction, we ruled out several factors as substantial
sources of environmental effects. In particular, elevation was ex-
cluded because the terrain of the study is essentially flat. Also, the
heritability corrections were about the same for males and females,
which we would not expect if iron was a contributor. In addition,

Table 1. A description of the phenotypes measured in the Ugandan cohort

Phenotype Category Description

BMI Anthropometric index Body mass index
Height Anthropometric index Height
HIP Anthropometric index Hip circumference
Waist Anthropometric index Waist circumference
Weight Anthropometric index Weight
WHR Anthropometric index Waist–hip ratio
Basophils Blood factor Basophil count
Eosinophils Blood factor Eosinophil count
Hematocrit Blood factor Hematocrit
Hemoglobin Blood factor Hemoglobin
Lymphocytes Blood factor Lymphocyte count
MCH Blood factor Mean corpuscular hemoglobin
MCHC Blood factor Mean corpuscular hemoglobin concentration
MCV Blood factor Mean corpuscular volume
Monocytes Blood factor Monocyte count
MPV Blood factor Mean platelet volume
Neutrophils Blood factor Neutrophil count
Platlets Blood factor Platelet count
RBC dstr width Blood factor Red blood cell distribution width
RBCs Blood factor Red blood cell count
WBC Blood factor White blood cell count
DBP Blood pressure Diastolic blood pressure
SBP Blood pressure Systolic blood pressure
HbA1c2 Glycemic control HbA1c2
Cholesterol Lipid test Total cholesterol
HDL Lipid test High-density lipoprotein
LDL Lipid test Low-density lipoprotein
Triglycerides Lipid test Triglycerides
Alanine Liver function Alanine aminotransferase test
Albumin Liver function Serum albumin test
Alkaline Liver function Alkaline phosphatase test
Aspartate Liver function Aspartate aminotransferase test
Bilirubin Liver function Bilirubin
Gamma Liver function Gamma-glutamyl transpeptidase test
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heritability correction remained high when MCHC was adjusted for
primary occupation and alcohol consumption. On examining this
spatial effect in more detail, we found that MCHC varied sub-
stantially from one village to the next. Previously, we have shown
substantial variation in urbanicity indicators among these villages
(14), consistent with this observation. We further explored the
possibility of this spatial variation arising because villages were
sampled in batches over time. We observed significant improve-
ment in the model on inclusion of sampling date as a covariate.
Nonetheless, even with this inclusion, the ratio of uncorrected to
corrected h2 remained almost the same. Our findings suggest that
environmental factors influencing traits are complex, and un-
derstanding them will require further exploration in future studies
with the relevant environmental phenotypic data.
Finally, we estimated the variance of the phenotypes due to in-

teractions between genomic and environmental components, fitting
the three random effects corresponding to KIBD, Kloc, and KGxE

simultaneously. The variance σ2gxe for three phenotypes—hemato-
crit, red-blood-cell distribution width, and waist-to-hip ratio—was
significantly greater than zero (Table 2).

Discussion
We have introduced an LMM approach that includes explicit
representation of spatial location in estimates of narrow-sense
heritability. Spatial location is presumably a surrogate for (some)
environmental effects and, unlike many environmental variables, is
easy to measure. On simulated data, we have shown that estimates
of heritability based on the more general model seem to be un-
biased, whereas the estimates based on the standard model are
inflated for some phenotypes. Similarly, in an analysis of 34 phe-
notypes in a Ugandan cohort, we have found that the uncorrected
estimates of heritability based on the standard model are inflated
relative to corrected estimates based on the newmodel. Furthermore,
on simulated data, we have shown that the degree of bias is not

Table 2. Results from an analysis of the Ugandan cohort

Uncorrected (uncorr) and corrected (corr) heritability estimates and estimates of e2 and gxe2 are shown along with their SEs. All SEs were computed from a
500-group jackknife. The P value testing the null that there is no difference between the uncorrected and corrected heritability estimates was a based on a
two-sided test from a 500-group jackknife on the difference. The P values testing the null hypotheses that σ2e = 0 and σ2gxe = 0 were based on a one-sided test
with 10,000 permutations (Methods). The values for α are in arbitrary units. The cells in green indicate statistical significance after Bonferroni correction.
Columns 2–9 and 10–13 correspond to an analysis without and with the gxe variance component, respectively.
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substantially influenced by the absence or presence of dependence
between genomic and environmental factors. Overall, we have
demonstrated that estimates of heritability can depend on the
nature of environmental variation.
The corrections were substantial, emphasizing the importance of

explicitly modeling environmental effects in the estimation of her-
itability. Furthermore, the amount of inflation varied considerably
across the 34 phenotypes, being the greatest for anthropometric
indices, lipid tests, and measures of liver function. Presumably in
this study, and perhaps in others, spatially related environmental
factors affect these phenotypes more. A better understanding of
differential bias across traits will require further exploration in
cohorts with the relevant environmental phenotypic data.
Our approach has been applied only to the analysis of simulated

data and the Ugandan cohort. Nonetheless, if the inflation seen
here is typical, then this work offers a new interpretation of results
of genome-wide association studies (GWAS). In particular, GWAS
studies have so far revealed consistent “missing heritability,” where
the variability explained by SNPs identified as associated with a
phenotype has been far less than the variability identified in heri-
tability estimates (15). This work suggests that much of this missing
heritability was not missing in the first place.

An important lesson from this work is that model mis-
specification can lead to substantial bias in heritability estimates.
Because our use of the Gaussian radial basis function to quantify
spatial similarity is itself likely to be misspecified, our corrected
estimates of heritability on the Ugandan cohort may remain biased
to some degree. Thus, we are investigating alternative similarity
functions and methods to select the best one based on data.
We are also investigating modifications to the model beyond the

form of the similarity function. One potential modification is based
on the well-known fact that narrow-sense heritability estimates will be
inflated when the data contains closely related individuals due to
effects of dominance and epistasis (3, 4). This inflation could be
mitigated by including variance components reflecting IBD2 (both
alleles shared) (e.g., see ref. 16) and epistasis (e.g., ref. 17). In ad-
dition, one could include a variance component based on whether
individuals are in the same household or a variance component based
whether individuals are in the same village. As another example, one
could include a variance component based on social connectivity,
which is known to affect various phenotypes, including obesity (18).
Finally, in addition to heritability estimation, LMMs are also

commonly used for identifying associations between genomic vari-
ants and phenotypes (e.g., genome-wide association studies) and for

Fig. 1. Uncorrected and corrected estimates of narrow-sense heritability for phenotypes from the Ugandan cohort. The height of the blue and red bar
combined corresponds to the uncorrected heritability estimate (based on Eq. 3). The height of the blue bar corresponds to the corrected heritability estimate
(based on Eq. 5). Asterisks denote differences that are statistically significant after Bonferroni correction based on a two-sided test on the difference between
uncorrected and corrected estimates from a 500-group jackknife.
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prediction. The LMM models described in this work could be ap-
plied to these applications as well.

Methods
We collected data for 5,000 individuals from nine ethnolinguistic groups from
the General Population Cohort (GPC), Uganda (19). The GPC is a population-
based open cohort study established in 1989 by the Medical Research Council in
collaboration with the Uganda Virus Research Institute (UVRI) to examine
trends in prevalence and incidence of HIV infection and their determinants.
Samples were collected from individuals during a survey from the study area
located in southwestern Uganda in Kyamulibwa subcounty of Kalungu district,
∼120 km from Entebbe town. The study area is divided into villages defined by
administrative boundaries varying in size from 300 to 1,500 residents and in-
cludes families living within households. Data on health and lifestyle were
collected using a standard individual questionnaire, blood samples obtained,
and biophysical measurements taken, when necessary, as described previously
(19). Spatial location was recorded in Global Positioning System coordinates.
The measurements were translated and scaled to mitigate privacy concerns.

The GPC study was approved by the Uganda Virus Research Institute, Science
and Ethics Committee (Ref. GC/127/10/10/25), the Uganda National Council for
Science and Technology (Ref. HS 870), and the U.K. National Research Ethics
Service, Research Ethics Committee (Ref. 11/H0305/5). Care was taken to obtain
genuine informed consent from participants, including the use of reliable
intermediaries as appropriate to ensure that the implications of participation
were fully understood. Consent forms were translated from English into Lu-
ganda and checked for accuracy. The Lugandan translation was given to par-
ticipants to read themselves, or was read out aloud to them by study staff.
Participants could choose to consent to all, or just selected parts, of the survey.
The informed consent of participants was obtained with a signature on the
consent forms or a thumb print if the participant was unable to write. For
participants aged 13–17 y, parental consent as well as child formal assent were
collected. The immediate counter signature of a witness was then obtained.
The APCDR committees are responsible for curation, storage, and sharing of
the data under managed access. The genomic data have been deposited at the
European Genome-phenome Archive (EGA, https://www.ebi.ac.uk/ega/) under
accession number EGAS00001001558. Requests for access to phenotype data
may be directed to data@apcdr.org.

We genotyped 5,000 samples from the Ugandan Survey on the Illumina
HumanOmni 2.5M BeadChip array at the Wellcome Trust Sanger Institute.
Sequenom quality control and gender checks were carried out before geno-
typing. A total of 2,314,174 autosomal and 55,208 X-chromosomemarkers were
genotyped on the HumanOmni2.5–8 chip. Of these, 39,368 autosomal markers
were excluded because they did not pass the quality thresholds for the SNP
called proportion (<97%, 25,037 SNPs) and Hardy–Weinberg equilibrium (HWE)
(P < 10−8, 14,331 SNPs). HWE testing was only carried out on the founders for
autosomes, and female unrelated individuals for the X chromosome defined by
an IBD threshold <0.10 as estimated by PLINK. A total of 91 samples were
dropped during sample quality control because they did not pass the quality
thresholds for proportion of samples called (>97%) or heterozygosity (outliers:

mean ± 3 SD), or the gender inferred from the X-chromosome data did not
match the supplied gender. Three additional samples were dropped because of
high relatedness (i.e., IBD >0.90). Principal component analysis was carried out
on unrelated individuals projecting onto related individuals, for SNPs LD pruned
at an r2 threshold of 0.2, with a MAF threshold of >5%. No samples were
identified as population/ancestry outliers based on this analysis.

To generate the phased dataset, we first mapped pedigrees within our
dataset based on relationships provided in the data. To detect any errors in these
pedigrees, we ran KING (20) on each cohort and also used the results to identify
any cryptic first-degree relationships that had not been mapped. We further
removed pedigrees where age information was inconsistent with the pedigree
specified. In addition to the quality control described, we also removed SNPs
with a minor allele frequency in the founders less than 5%, or with more than
1%Mendelian errors. We set all remaining Mendelian errors to missing, as well
as any genotypes flagged as unlikely by the detection algorithm Merlin (21).
SNPs with more than 1% missingness were then removed. We phased this cu-
rated dataset of 1,340,101 SNPs using SHAPEIT2 (22), first phasing the samples
ignoring family information, and then running a hidden Markov model on
every parent–child duo. This procedure corrects phasing errors inconsistent with
the pedigree structure, further improving phasing accuracy. We have previously
shown this method produces highly accurate results in our cohort with negli-
gible switch error rates (22). To construct KIBD from these phased data, we used
the method outlined in ref. 23.

Phenotypes were transformed before analysis. Residuals were obtained fol-
lowing regression of the trait on age, age squared, and sex. Residuals were then
inverse-normally transformed for analysis. For HbA1c, regression was carried out
onage, age squared, sex, andmonthof sample collection (as an indicator variable)
to account for seasonal trends in HbA1C that have been described previously (24).

Heritability estimationwas performedwith the FaST-LMMtoolset available at
https://github.com/MicrosoftGenomics/FaST-LMM. To determine a P value for
the null hypothesis σ2e = 0, we performed a permutation test wherein the en-
tries of Kloc were permuted by randomly shuffling the identifiers of the indi-
viduals. A P value for the null hypothesis σ2gxe = 0 was determined similarly by
permuting the entries of KGxE. In both cases, 10,000 permutations were used.
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