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On the Power of Random Bases in Fourier Sampling:
Hidden Subgroup Problem in the Heisenberg Group

Jaikumar Radhakrishnan∗ Martin Rötteler† Pranab Sen‡

Abstract

The hidden subgroup problem (HSP) provides a unified framework to study problems of group-
theoretical nature in quantum computing such as order finding and the discrete logarithm problem. While
it is known that Fourier sampling provides an efficient solution in the abelian case, not much is known for
general non-abelian groups. Recently, some authors raisedthe question as to whether post-processing
the Fourier spectrum by measuring in a random orthonormal basis helps for solving the HSP. Several
negative results on the shortcomings of thisrandom strongmethod are known. In this paper however,
we show that the random strong method can be quite powerful under certain conditions on the groupG.
We define a parameterr(G) for a groupG and show thatO((log |G|/r(G))2) iterations of the random
strong method give enough classical information to identify a hidden subgroup inG. We illustrate the
power of the random strong method via a concrete example of the HSP over finite Heisenberg groups.
We show thatr(G) = Ω(1) for these groups; hence the HSP can be solved using polynomially many
random strong Fourier samplings followed by a possibly exponential classical post-processing without
further queries. The quantum part of our algorithm consistsof a polynomial computation followed
by measuring in a random orthonormal basis. This gives the first example of a group where random
representation bases do help in solving the HSP and for whichno explicit representation bases are known
that solve the problem with(logG)O(1) Fourier samplings. As an interesting by-product of our work, we
get an algorithm for solving thestate identification problemfor a set of nearly orthogonal pure quantum
states.

1 Introduction

The hidden subgroup problem (HSP) is defined as follows: We are given a functionf : G → S from a
groupG to a setS with the promise that there exists a subgroupH ≤ G such thatf is constant on the left
cosets ofH and takes distinct values on distinct cosets. In this paper,all groups and sets are finite and all
vector spaces are finite dimensional overC. The functionf is given via a black box, i. e., givenx ∈ G as
input, the black box outputsf(x). The task is to find a set of generators forH while making as few queries
to f as possible. We would also like our algorithm to be efficient in terms of total running time. The abelian
HSP (i. e.G is abelian) encompasses several interesting problems suchas finding the order of an element in
a group and the discrete logarithm problem. Factoring an integern can be reduced to order finding in the
groupZ

∗
n, the multiplicative group of integers modulon which are coprime ton. The problems of graph

isomorphism and graph automorphism can be cast as hidden subgroup problems over the non-abelian group
Sn, the group of permutations onn symbols.
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The classical query complexity of the HSP is|G|Ω(1) which is exponential in the input sizelog |G|.
This is true for many families of groups including several families of abelian groups. The biggest success
of quantum algorithms so far has been a polynomial time (bothquery complexity as well as total running
time) solution for the abelian HSP [Kit95, BH97, ME98]. The heart of this solution is Fourier sampling with
respect to the abelian groupG.

In sharp contrast to the abelian HSP, progress on the non-abelian HSP (i. e.G is non-abelian) has so
far been quite limited. Ettinger, Høyer and Knill [EHK04] prove that the quantum query complexity of
the non-abelian HSP isO(log |G|); however, their algorithm takes2O(log2 |G|) quantum operations. Ivanyos
et al. [IMS03] and Friedl et al. [FIM+03] apply abelian Fourier transform methods to give polynomial
quantum algorithms for the HSP for some special classes of non-abelian groups. Given the success of
Fourier sampling in solving the abelian HSP, one can similarly ask whether Fourier sampling over the non-
abelian groupG helps in solving the HSP overG. The Fourier transform over a (in general, non-abelian)
groupG gives us a superposition over(ρ, i, j) whereρ is an irreducible unitary representation ofG andi, j
are the row and column indices of the matrixρ. The choice of basis forρ gives us a degree of freedom
in defining the Fourier transform overG. This is in contrast to the abelian case, where all representations
are one-dimensional and hence only their namesρ matter. The algorthim starts out with a tensor product of
t = O(log |G|) superpositions over random cosets of the hidden subgroupH. Exploiting the symmetries
in these states, one can show that (see e.g. [Kup03, Ip03, MRS05]) the optimal measurement to recover
H consists of applying the Fourier transform to each coset state, measuring the names of thet irreducible
representations, followed by a joint POVM on the column spaces of the resultingt states. Instrong Fourier
sampling, one measures each of thet column spaces using an orthonormal basis, i. e., one performs a tensor
product oft complete von Neumann measurements instead of a joint POVM. In weak Fourier sampling, one
measures the names of thet representations only.

Hallgren, Russell and Ta-Shma [HRTS03] showed that polynomially many iterations of weak Fourier
sampling give enough information to reconstruct normal hidden subgroups. More generally, they show
that the normal corec(H) of the hidden subgroupH (i. e. the largest normal subgroup ofG contained
in H) can be reconstructed via the weak method. Grigni, Schulman, Vazirani and Vazirani [GSVV04]
and Gavinsky [Gav04] extended the weak method to find a hiddensubgroupH in G if [G : κ(G)H] =
(log |G|)O(1). Here,κ(G) is the Baer subgroup ofG defined asκ(G) =

⋂

K:K≤GN(K), whereN(K)
denotes the normaliser ofK in G. The main shortcoming of the weak method is that it gives exactly the
same probability distribution if the hidden subgroup isH or a conjugategHg−1 of H. This leads us to
consider thestrongmethod. The amount of additional information about the hidden subgroupH that can be
extracted by measuring the column space in an orthonormal basis depends, in general, on the particular basis.
In a recent paper, Moore, Russell and Schulman [MRS05] showed that for the symmetric groupSn, for any
choice of bases for the representations, there are order twosubgroups that require exponential number of
strong Fourier samplings in order to distinguish them from the identity subgroup. Grigni et al. [GSVV04]
study therandom strongmethod where a random measurement basis is used for each representationρ. They
define a group-theoretic parameterα depending onG andH and show that ifα is exponentially large,
the additional advantage of the random strong method over the weak method is exponentially small. In
particular, this is case whenG = Sn andH ≤ Sn, |H| = 2O(n log n).

1.1 Our contributions

In this paper, we analyse the power of the random strong method and show, for the first time, that under
certain (different) general conditions onG polynomially many iterations of the random strong method do
give enough classical information to identifyH. We illustrate the power of the random strong method via a
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concrete example of the HSP over finite Heisenberg groupsHp of orderp3, wherep ≥ 3 is a prime.Hp is
defined as the following set of upper triangular matrices:

Hp :=











1 x z
0 1 y
0 0 1



 : x, y, z ∈ Fp







. (1)

A convenient encoding for the elements ofHp is to write(x, y, z), wherex, y, z ∈ Fp match the components
in equation (1). The composition of two elements is then given by

(x1, y1, z1) ◦ (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2 + x1y2),

and the inverse of an element is given by(x, y, z)−1 = (−x,−y, xy − z). It is easy to see that the classical
randomised query complexity of the HSP onHp is θ(p). The generic quantum algorithm of Ettinger, Høyer
and Knill [EHK04] achievesO(log p) query complexity, but at the expense ofpO(log p) quantum operations.
An algorithm with2θ(

√
log p) quantum operations can be obtained by combining the ideas of[Kup03] and

[FIM+03]. However, the query complexity of this algorithm is also2θ(
√

log p). It seems non-trivial to design
a quantum algorithm with(log p)O(1) query complexity and total running timepO(1). In the following
paragraphs, we indicate how various existing methods for non-abelian HSP fail to achieve this goal. After
that, we show how the random strong method attains this goal,illustrating the power of random bases in
Fourier sampling.

It can be shown thatHp is a semidirect product of the formZp ⋉ (Zp ×Zp), where the normal subgroup
is given byN∞ := {(0, y, z) : y, z ∈ Fp} and the complement byA0,0 := {(x, 0, 0) : x ∈ Fp}. The
commutator subgroup ofHp is given by[Hp,Hp] = {(0, 0, z) : z ∈ Fp}, which is also the centreζ(Hp).
The commutator subgroup is isomorphic toZp; hence it is abelian but notsmoothly abelian(an abelian group
G is said to be smoothly abelian [FIM+03] if it is the direct product of a subgroup of bounded exponent and
a subgroup of size(log |G|)O(1)). The Baer subgroup turns out to beκ(Hp) = ζ(Hp). If A ≤ Hp, |A| = p,
then|κ(Hp)A| ≤ p2; therefore for such anA, [G : κ(Hp)A] ≥ p. In fact, we will see later that there are
(p2 + p + 1) orderp subgroups ofHp. Thus, the methods of [GSVV04, Gav04, IMS03, FIM+03] are not
applicable in order to solve the HSP forHp efficiently. For more details about the Heisenberg group, see
Section 2.

The chief obstacle to finding hidden subgroups inHp arises from the orderp subgroups ofHp other
than its centre. There are(p2 + p) such orderp subgroups; we shall call themAi,j, i ∈ Fp ∪ {∞}, j ∈ Fp.
The forgetful abelian method(i. e. Fourier sampling over the abelian groupZp × (Zp × Zp) instead of
the non-abelian groupHp

∼= Zp ⋉ (Zp × Zp)), weak Fourier sampling, strong Fourier sampling in the
natural representation basis ofHp (i. e. the representation basis adapted to the distinguisedsubgroup tower
{1}⊳N∞⊳Hp) as well as strong Fourier sampling in theZp-Fourier transform of the natural representation
basis give exponentially small information about the indexi of Ai,j. For more details, see Section 2.4. For
now, we give an intuitive description of the main difficulty posed by these subgroups. Suppose the hidden
subgroup isAi,j for somei ∈ Fp ∪ {∞}, j ∈ Fp. With exponentially high probability, Fourier sampling
overHp gives us a representation uniformly at random from one of the(p−1) irreducible representationsρk

of degreep for k = 1, . . . , p− 1 of Hp. Suppose one such representationρk shows up. The state essentially
collapses to a vector|ψk,i,j〉 ∈ C

p, i. e.,(Hp, Ai,j) is a Gelfand pair for alli,j (see also [MR05] for Gelfand
pairs in the context of the HSP). The vectors|ψk,i,j〉 have the property that

|〈ψk,i,j |ψk,i′,j′〉| =

{

1√
p : i 6= i′, for all j, j′,

δj,j′ : i = i′,
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i. e., they form a set of(p + 1) mutually unbiased bases [WF89] ofC
p. The main difficulty is that it is not

clear a priori that there is any orthonormal basis that can pairwise distinguish between these(p2 +p) vectors
with inverse polynomial probability. Note that the so-called hidden conjugate problem[MRRS04] is easy
to solve information-theoretically forHp; the conjugacy classes of the orderp subgroups are defined byi
and the above property says that{|ψk,i,j〉}j is an orthonormal basis ofCp, so given the conjugacy classi
one can measure in this orthonormal basis to determine the actual hidden subgroupAi,j . In view of this, the
main challenge in solving the HSP forHp is to identify the conjugacy classi.

In this paper however, we show that a random representation basis forρk does in fact pairwise distinguish
between|ψk,i,j〉 with constant probability. In fact, we refine the method of random measurement bases to
distinguish between families of nearly orthogonal subspaces. We combine the geometric ideas of random
measurement bases together with representation-theoretic techniques to obtain a parameterr(G;H1,H2) of
a groupG and subgroupsH1,H2 ≤ G. We show thatr(G;H1,H2) is a lower bound on the total variation
distance between the distributions on pairs(ρ, j) of representation names and column indices obtained by
the random strong method for candidate hidden subgroupsH1,H2. The parameterr(G;H1,H2) is defined
in terms of the ranks and overlaps of the projectors obtainedby averaging representationsρ overH1,H2.
Definer(G) := minH1,H2

r(G;H1,H2), whereH1,H2 range over all pairs of subgroups ofG. We show

thatO
(

log s(G)
r2(G)

)

iterations of the random strong method give sufficient classical information to identify the

hidden subgroupH, wheres(G) denotes the number of distinct subgroups ofG. Note thats(G) ≤ 2log2 |G|

for any groupG.
We will see later in Section 2 thats(Hp) = O(p2). In Section 4, we show thatr(Hp) = Ω(1), implying

thatO(log p) iterations of the random strong method give sufficient information to extract the hidden sub-
group inHp. This gives us an algorithm solving the HSP overHp withO(log p) query complexity,O(log3 p)
quantum operations for implementing the non-abelian Fourier transforms (see Section 2.5),Õ(p2) quantum
operations to measure in a random basis, andÕ(p4) classical post-processing operations. This gives the first
example of a group where random representation bases do helpin solving the HSP and for which no explicit
representation bases are known that solve the problem with(log p)O(1) Fourier samplings.

As an interesting by-product of our work, we get an algorithmfor solving the followingquantum state
identificationproblem: Consider a set of pure quantum states{|ψ1〉, . . . , |ψm〉} ∈ C

n with the property that
|〈ψi|ψj〉| ≤ δ for all i 6= j, whereδ is a sufficiently small constant (and typicallym ≫ n). We are given
t independent copies of|ψi〉. The task is to identify the indexi. We show thatt = O(logm) independent
random complete von Neumann measurements inC

n suffice to identifyi with high probability.

1.2 Relation to other work

Moore, Rockmore, Russell and Schulman [MRRS04] use non-abelian strong Fourier sampling to give an
efficient algorithm for the HSP over theq-hedral groupZq ⋉ Zp when p, q are prime,q | (p − 1) and
(p − 1)/q = (log p)O(1). Our techniques show that forp, q prime,q | (p − 1), q = Ω(

√
p), r(Zq ⋉ Zp) =

Ω(1), which proves that polynomially many random strong Fouriersamplings suffice to find an arbitrary
hidden subroup ofZq ⋉ Zp in this case. For primep, q | (p− 1), q = Ω(p3/4), subgroupsH1,H2 conjugate

to Zq ≤ Zp−1, our techniques show thatr(Zp−1 ⋉ Zp;H1,H2) = Ω
(
√

q
p

)

. Moore et al. [MRRS04] prove

a nearly matching upper bound ofr(Zp−1 ⋉ Zp;H1,H2) = O
(
√

q
p log p

)

. Thus, a polynomial amount of

random strong Fourier sampling can solve the hidden conjugate problem for subgroupZq ≤ Zp−1 of the
affine groupZp−1 ⋉ Zp if and only if p/q = (log p)O(1).

In this paper, we confine ourselves to random strong Fourier sampling. Our quantum operations always
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factor into a tensor product over the coset states obtained by querying the function oracle. This distinguishes
the Heisenberg group from the symmetric group for which Moore, Russell and Schulman [MRS05] show
that tensor product Fourier sampling is not sufficient to solve the HSP. The quantum part of our algorithm
consists of a polynomial computation followed by measuringin a random orthonormal basis. In fact, if a
suitable kind of pseudo-random unitary transformation canbe generated and implemented efficiently, then
the quantum part of the algorithm can be made fully polynomial. Various notions of pseudo-random unitary
transformations have been studied (see e.g. [EWS+03, Eme04]), but it has to be investigated whether they
are sufficient for our purposes.

2 Heisenberg groups overFp

The groupsHp, wherep ≥ 3 is prime, are discrete versions of the continuous Heisenberg groups studied in
physics in the context of conjugate observables. Abstractly, Hp is isomorphic to the following group given
in terms of generators and relations:Hp

∼= 〈x, y, z : xp = yp = zp = 1, xy = zyx, xz = zx, zy = yz〉.

2.1 The subgroup lattice

Since the order ofHp is p3 we can expect to find subgroups of orderp andp2 besides the trivial subgroup
{1} andHp. The centre ofHp is given by

ζ(Hp) = 〈(0, 0, 1)〉 = {(0, 0, z) : z ∈ Fp}.

Note that|ζ(Hp)| = p. There arep+ 1 subgroupsNi of orderp2, wherei ∈ Fp ∪ {∞}. They are given by

Ni := 〈(1, i, 0), (0, 0, 1)〉 = {(x, xi, z) : x, z ∈ Fp}, ∀i ∈ Fp.

The groupN∞ is given byN∞ := 〈(0, 1, 0), (0, 0, 1) = {(0, y, z) : y, z ∈ Fp}; N∞ ∼= Zp × Zp. It is
easy to see that for alli ∈ Fp ∪ {∞}, ζ(Hp) ⊳ Ni. Furthermore theNi are normal subgroups,Ni ⊳ Hp

andNi
∼= Zp × Zp. For eachi ∈ Fp ∪ {∞}, we have thatNi containsp subgroupsAi,j for j ∈ Fp. The

subgroupsAi,j satisfy|Ai,j | = p, whenceAi,j
∼= Zp. Fori, j ∈ Fp we have the following explicit desciption

of the elements ofAi,j:

Ai,j := 〈(1, i, j)〉 = {(µ, µi,
(

µ

2

)

i+ µj) : µ ∈ Fp}.

For i = ∞, j ∈ Fp we obtainA∞,j := 〈(0, 1, j)〉 = {(0, µ, µj) : µ ∈ Fp}. It is easy to see thatAi,j 6≤ Ni′

if i 6= i′, and the normaliser is given byNHp(Ai,j) = Ni. The above groups form a complete list of distinct
subgroups ofHp. The following table summarizes the subgroup structure ofHp.

Size Subgroup Number Containment

p3 Hp 1

p2 Ni, i ∈ Fp ∪ {∞} p+ 1 Ni ⊳ Hp

p ζ(Hp), Ai,j, i ∈ Fp ∪ {∞}, j ∈ Fp p2 + p+ 1 Ai,j ⊳Ni, ζ(Hp) ⊳Nk,∀k ∈ Fp ∪ {∞}
1 {1} 1 {1} ⊳ ζ(Hp), {1} ⊳Ai,j

For i, i′ ∈ Fp ∪ {∞} where i 6= i′ we have thatNi ∩ Ni′ = ζ(Hp). This shows thatκ(Hp) =
⋂

K:K≤Hp
N(K) = ζ(Hp). Also, it is easy to check that the commutator subgroup is given by[Hp,Hp] =

ζ(Hp).
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2.2 The irreducible representations ofHp

Since we want to perform Fourier analysis on the groupsHp we have to determine the irreducible repre-
sentations ofHp. The reader not familiar with the standard notations of representation theory is referred
to standard references like [CR62] or [Ser77]. Observe thatHp = A0,0 ⋉ N∞ ∼= Zp ⋉ (Zp × Zp). This
semidirect product structure can be used to construct the irreducible representations ofHp. First, there are
p2 one-dimensional representationsχa,b for a, b ∈ Fp which come from the factor groupHp/ζ(Hp) ∼= Z

2
p.

In the following, letω denote a fixedpth root of unity in the complex numbers. Then the one-dimensional
irreducible representations ofHp are given by

χa,b((x, y, z)) := ωax+by a, b ∈ Fp.

Let F∗
p denote the group of non-zero elements ofFp under multiplication. There arep−1 irreducible rep-

resentationsρk, k ∈ F
∗
p of degreep. They are obtained in the following way: Take a nontrivial character of

the centreζ(Hp), extend it to the abelian groupN∞, and induce it toHp. Explicitly, we obtain the following
representations: For eachk ∈ F

∗
p, we have a nontrivial characterφk of ζ(Hp) given byφk((0, 0, z)) := ωkz.

Sinceζ(Hp) ⊳ N∞ andN∞ is abelian, we can extendφk to a characterφk of N∞ by simply defining
φk((0, y, 0)) := 1. We choose the elements ofA0,0 as transversals forN∞ in Hp. Thenρk is defined to
be the inductionρk := φk ↑A0,0

Hp. On the generators ofHp, we find thatρk takes the following values:
ρk((1, 0, 0)) =

∑

a∈Fp
|a〉〈a + 1|, ρk((0, 1, 0)) =

∑

a∈Fp
ωka|a〉〈a| andρk((0, 0, 1)) = ωk11p, where11p

denotes the identity operator inCp. Since(x, y, z) = (0, 0, z)(0, y, 0)(x, 0, 0) for all x, y, z ∈ Fp, we obtain
that

ρk((x, y, z)) = ωkz
∑

a∈Fp

ωkya|a〉〈a + x|.

It can be readily checked that theχa,b, for a, b ∈ Fp andρk, for k ∈ F
∗
p form a complete set of inequivalent

irreducible representations ofHp.

2.3 Ranks and overlaps of various projectors

DefinePk;i,j := 1
p

∑

a∈Ai,j
ρk(a). It is easy to see thatPk;i,j is an orthogonal projection operator. In

order to calculate the parameterr(Hp) (see Section 4 for the details of the calculation) we have to compute
the ranks ofPk;i,j and pairwiseoverlaps‖Pk;i,jPk;i′,j′‖ (the reason for the nomenclature ofoverlap will
be made clear in Section 3.1). Fori, j ∈ Fp, we obtain by a straightforward computation thatPk;i,j =

1
p

∑

µ,ν∈Fp
ω

k((µ
2
)i+µj−(ν

2
)i−νj)

p |ν〉〈µ|. Hence,Pk;i,j = |ψk;i,j〉〈ψk;i,j|, where

|ψk,i,j〉 =
1√
p

∑

µ∈Fp

ω−k((µ
2
)i+µj)|µ〉, i, j ∈ Fp, k ∈ F

∗
p.

In the casei = ∞, j ∈ Fp, we getPk;∞,j = |ψk;∞,j〉〈ψk;∞,j|, where|ψk;∞,j〉 = | − j〉 j ∈ Fp, k ∈ F
∗
p.

Thus for allk ∈ F
∗
p, i ∈ Fp ∪ {∞}, j ∈ Fp, rank(Pk;i,j) = 1 andPk;i,j is an orthogonal projection onto

|ψk;i,j〉. Forj, j′ ∈ Fp, we get‖Pk;∞,jPk;∞,j′‖ = δj,j′. For i, i′, j′ ∈ Fp, we get‖Pk;i,jPk;∞,j′‖ = 1√
p . For

i, i′, j, j′ ∈ Fp, we get

‖Pk;i,jPk;i′,j′‖ = |〈ψk;i,j|ψk;i′,j′〉| =
1

p

∑

µ∈Fp

ωk((µ
2
)(i−i′)+µ(j−j′)).

To evaluate the last term above, we need the following fact about quadratic Weil sums inFp.
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Fact 1 ([LN94, Theorem 5.37]) Leth(X) ∈ Fp[X] be a degree two polynomial. Then,

∣

∣

∣

∣

∣

∣

∑

x∈Fp

ωh(x)

∣

∣

∣

∣

∣

∣

=
√
p.

By Fact 1, if i 6= i′, |〈ψk;i,j|ψk;i′,j′〉| = 1√
p irrespective ofj and j′. If i = i′, it is easy to see that

|〈ψk;i,j|ψk;i′,j′〉| = δj,j′ . To summarise, we have shown the following result:

Lemma 1 Supposep is an odd prime. Leti, i′ ∈ Fp ∪ {∞}, j, j′ ∈ Fp andAi,j , Ai′,j′ be two orderp
subgroups ofHp other than the centreζ(Hp). Let ρk, wherek ∈ F

∗
p, be an irreducible representation of

Hp of degreep. LetPk;i,j be defined byPk;i,j := 1
p

∑

a∈Ai,j
ρk(a) and letPk;i′,j′ be defined similarly. Then

Pk;i,j, Pk;i′,j′ are rank one orthogonal projections, and their overlap is given by

‖Pk;i,jPk;i′,j′‖ =

{

1√
p : i 6= i′, for all j, j′,

δj,j′ : i = i′.

Thus, for anyk ∈ F
∗
p, the vectors|ψk;i′,j′〉 form a set of(p+ 1) mutually unbiased bases forC

p.

2.4 Failure of existing methods to solve the HSP overHp

A straightforward classical randomised algorithm for the HSP overHp is as follows: Queryf : Hp → S at
O(p) random elements ofHp. If we do not finda1, a2 ∈ Hp, a1 6= a2 such thatf(a1) = f(a2), we declare
{1} to be the HSP off . Suppose we do find such a paira1, a2. Then there is a unique orderp subgroupA
of Hp such thata−1

1 a2 ∈ A. f can now be thought of as a function onHp/A. Queryf atO(
√
p) random

elements ofHp/A. If we do not findb1, b2 ∈ Hp/A, b1 6= b2 such thatf(b1) = f(b2), we declareA to be
the HSP off . Suppose we do find such a pairb1, b2. LetB = 〈A, b−1

1 b2〉. If |B| = p3, declare the HSP to
beHp. If |B| = p2, queryf at an elementc ∈ Hp, c 6∈ B. If f(c) = f(B), declare the HSP to beHp, else
declare the HSP to beB. The correctness of the algorithm follows from the subgroupstructure ofHp and
the birthday paradox. A matching lower bound ofΩ(p) for classical randomised algorithms can be proved
using the subgroup structure ofHp and Yao’s minimax principle.

Suppose the HSP isAi,j, for somei ∈ F
∗
p, j ∈ Fp. It can be shown (see Section 3.3 for details)

that Fourier sampling gives ap-dimensional representation with probability1 − 1
p , and eachp-dimensional

representation has equal probability to show up. Suppose one such representationρk, k ∈ F
∗
p shows up. The

natural representation basis|a〉, a ∈ Fp is the basis|ψk;∞,j〉, wherej ∈ Fp. TheZp-Fourier transform of
the natural representation basis is the basis|ψk;0,j〉, wherej ∈ Fp. By Lemma 1, the probability distribution
obtained by measuring the columns ofρk in the natural representation basis or in theZp-Fourier transform of
the natural representation basis is the uniform distribution. This shows that weak Fourier sampling, strong
Fourier sampling in the natural representation basis ofHp as well as strong Fourier sampling in theZp-
Fourier transform of the natural representation basis giveexponentially small information about the indexi
of Ai,j .

Recall thatHp = A0,0 ⋉N∞ ∼= Zp ⋉ (Zp × Zp). Suppose we try to perform Fourier sampling over the
abelian groupA0,0 ×N∞ ∼= Zp × Zp × Zp (the forgetful abelian method) instead of the non-abelian group
Hp. LetF denote the Fourier transform overZp × Zp × Zp, i. e.,

F = p−3/2
∑

a,b,c,x,y,z∈Fp

ωax+by+cz|a, b, c〉〈x, y, z|.

For abelian groupsG, the probability distributions obtained by Fourier sampling overG are independent of
the actual coset of the hidden subgroup that arises on measuring the function value; however, they depend
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of course on the hidden subgroup. But since now we are doing abelian Fourier sampling over a non-abelian
group, we have to consider the effect of applyingF to a coset oftAi,j , wheret = (0, 0, τ) andτ ∈ Fp. Note
thattAi,j = {(µ, µi,

(µ
2

)

i+ µj + τ) : µ ∈ Fp}. We obtain

F |tAi,j〉 =
1

p2

∑

a,b,c∈Fp

ωcτ





∑

µ∈Fp

ω(a+bi+cj− ci
2

)µ+ciµ2



 |a, b, c〉.

Hence, the probability of observing a particular triple(a, b, c) is p−4|∑µ∈Fp
ω(a+bi+cj−(ci)/2)µ+ciµ2 |2. If

c 6= 0, this is a quadratic Weil sum and we can use Fact 1 to conclude that the probability of observing
(a, b, c) is given byp−3, independent ofi, j. The probability of observing(a, b, c), c 6= 0 is 1 − 1

p . If
c = 0, only terms of the form(−bi, b, 0) show up. These terms do give information abouti; however, the
probability of observing such a term is1p . Thus, the forgetful abelian method gives exponentially small
information abouti.

2.5 Efficient quantum circuits for the Fourier Transform on Hp

The fact that anyQFT for any finite group is a unitary matrix (when properly normalized) makes this
class of transformations an important source of transformations a quantum computer can carry out. The
problem of finding efficient implementations ofQFTs in terms of quantum circuits was studied previously,
see [Høy97, Bea97, PRB99, HRTS03, MRR04]. From [MRR04, Theorem 2] it follows that for any prime
p theQFT for the Heisenberg groupHp can by computed inpolylog(p) operations. In the following we
give an explicit description of an efficient quantum circuitwhich computesQFTHp

. First, note that we are
interested in a realization on a quantum computer which works on qubits. This means that we have to embed
the states and transformations into a register of size2n for some positive integern. In the following we will
assume thatn is the smallest integer such thatp < 2n and we will identify the group elements(x, y, z) ∈ Hp

with a subset of the binary strings of length3n: in each of the three components we choose the basis vectors
|0〉, . . . , |p − 1〉 to represent the respective component of the element(x, y, z). The following proposition
shows that aQFT for Hp can be implemented efficiently in terms of elementary quantum gates.

Proposition 1 Letp be prime, letHp be the Heisenberg group of orderp3 and letIrr(Hp) = {χa,b : (a, b) ∈
F

2
p} ∪ {ρk : k = 1, . . . , p − 1} denote the irreducible representations ofHp. Then theQFT for Hp with

respect toIrr(Hp) can be computed usingO(log3 p) elementary quantum gates.

Proof: First we consider the normal subgroupN∞ ⊳ Hp and compute a Fourier transform for this abelian
group. This group is isomorphic to a direct product of two cyclic groups, i. e.,N∞ ∼= Zp×Zp. The elements
of N∞ are given byN∞ = {(0, y, z) : y, z ∈ Zp}, i. e., we can identify the elements ofN∞ with those
binary strings of length3n which have trivial support on the firstn positions. Note that the irreducible
representations ofN∞ are given byψa,b for a, b ∈ Zp, where

ψa,b(0, y, z) := exp(2πi/p(ay + bz)) = ωay+bz
p .

SinceN∞ is normal the groupHp operates on the irreducible representations [CR62]. We denote this action
by “∗”, i. e., we have a map∗ : Hp × Irr(Hp) → Irr(Hp) which is explicitly given by(x, y, z) ∗ ψa,b =
ψa,b−ax.

Next, we choose as a transversal forN∞ ⊳ Hp the ordered listT = [(x, 0, 0) : x ∈ Zp]. We have
to be able to efficiently implement the images of all irreducible representations ofHp evaluated at the
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elements ofT . This is required for the so-called ‘twiddle factors’ in thedecomposition ofQFTHp
along

the subgroup tower{1} ⊳ N∞ ⊳ Hp. Indeed, we construct aQFT adapted to this subgroup tower, see
also [PRB99, MRR04]. We now use the following formula for implementing aQFTG which holds in the
situation where we have an abelian normal subgroupN and an abelian factor groupG/N :

QFTHp
=
(

11|G/N | ⊗ QFTN

)

(

⊕

t∈T

Φ(t)

)

(

QFTG/N ⊗ 11|N |
)

.

Here Φ denotes an extension of the decomposition of the regular representation ofN into irreducibles.
Denoting this direct sum byΛ, i. e.,Λ :=

⊕

t∈T Φ(t), this means that we have to implement the following
transformation:

Λ : |x〉|a〉|b〉 7→
{

|x〉|a〉|b− ax〉 : if a 6= 0,
ωxb

p |x〉|0〉|b〉 : if a = 0.

It is straightforward to implementΛ using classical efficient circuits for modular addition andmultiplica-
tion. HenceΛ can be implemented usingO(log3(p)) quantum gates. Note thatQFTN∞

= QFTZp
⊗QFTZp

and QFTG/N∞
= QFTZp

, both of which can be either implemented approximately [Kit95] or exactly

[MZ04] on a quantum computer usingO(log2 p) many elementary quantum gates. Hence the claimed com-
plexity for computing a quantum Fourier transform forHp follows.

3 Random bases and Fourier sampling

3.1 Nearly orthogonal vectors

In this subsection, we state some results about sets of nearly orthogonal unit vectors in a Hilbert space. We
use‖·‖ to denote theℓ2-norm of vectors as well as theℓ2-induced operator norm of matrices. We use‖v‖1

to denote theℓ1-norm of a vectorv. We let‖M‖tr = Tr
√
M †M denote the trace norm of a matrixM . For

subspacesV1, V2 having trivial intersection, theiroverlap is defined asovlap(V1, V2) = maxv1,v2
|〈v1|v2〉|,

wherevi range over unit vectors inVi. Let Πi denote the orthogonal projection operator ontoVi. It is easy
to see thatovlap(V1, V2) = ‖Π1Π2‖.

Proposition 2 Let V1, V2 be subspaces of a Hilbert space having trivial intersection. Let σ2 denote the
totally mixed state inV2. Let V ′

2 denote the orthogonal complement ofV1 in V1 + V2 and σ′2 denote the
totally mixed state inV ′

2 . Letδ = ovlap(V1, V2). Then,

‖σ2 − σ′2‖tr ≤ 2δ1/2(1 − δ2)−1/4.

Proof: Let d = dimV2 anda1, . . . , ad be an orthonormal basis forV2. Leta′1, . . . , a
′
d be the Gram-Schmidt

orthonormalisation ofa1, . . . , ad with respect toV1. Hence,a′1, . . . , a
′
d is an orthonormal basis forV ′

2 . We
will show that‖|ai〉〈ai| − |a′i〉〈a′i|‖tr ≤ 2δ1/2(1 − δ2)−1/4 for all 1 ≤ i ≤ d. Sinceσ2 = 1

d

∑d
i=1 |ai〉〈ai|

andσ′2 = 1
d

∑d
i=1 |a′i〉〈a′i|, we will get

‖σ2 − σ′2‖tr ≤
1

d

d
∑

i=1

‖|ai〉〈ai| − |a′i〉〈a′i|‖tr ≤ 2δ1/2(1 − δ2)−1/4.
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Fix somei, 1 ≤ i ≤ d. Let bi + ci denote the orthogonal projection ofai onto the space spanned byV1

anda1, . . . , ai−1, wherebi ∈ V1 andci ∈ span{a1, . . . , ai−1} ⊆ V2. Then,

1 ≥ ‖bi + ci‖2 ≥ ‖bi‖2 + ‖ci‖2 − 2|〈bi|ci〉|
≥ ‖bi‖2 + ‖ci‖2 − 2δ‖bi‖‖ci‖
= (1 − δ2)‖bi‖2 + (δ‖bi‖ − ‖ci‖)2

≥ (1 − δ2)‖bi‖2,

i. e. ‖bi‖ ≤ 1√
1−δ2

. Now,

‖bi + ci‖2 = 〈ai|bi + ci〉 = 〈ai|bi〉 + 〈ai|ci〉 = 〈ai|bi〉 ≤
δ√

1 − δ2
,

i. e. ‖bi + ci‖ ≤ δ1/2(1 − δ2)−1/4. The third equality above follows from the fact thata1, . . . , ai−1, ai are
pairwise orthogonal. Now〈ai|a′i〉 = ‖ai − bi − ci‖ =

√

1 − ‖bi + ci‖2, and hence,

‖|ai〉〈ai| − |a′i〉〈a′i|‖tr = 2
√

1 − |〈ai|a′i〉|2 = 2‖bi + ci‖ ≤ 2δ1/2(1 − δ2)−1/4.

This completes the proof of the proposition.

Proposition 3 Letv′1, . . . , v
′
n be unit vectors in a Hilbert space. Let0 ≤ δ < 1

2n . Suppose for alli, j, i 6= j,
|〈vi|vj〉| ≤ δ. Letv1, . . . , vn be unit vectors obtained by Gram-Schmidt orthonormalisingv′1, . . . , v

′
n. Then

for anyi, 1 ≤ i ≤ n,
‖|vi〉〈vi| − |v′i〉〈v′i|‖tr < 2

√
6 · δ

√
n.

Proof: Fix somei, 1 ≤ i < n. Let ai+1 =
∑i

j=1 αjv
′
j be the orthogonal projection ofv′i+1 onto the

subspace spanned byv′1, . . . , v
′
i. Then for allk, 1 ≤ k ≤ i, 〈v′k|v′i+1 − ai+1〉 = 0 i .e. 〈v′k|v′i+1〉 =

∑i
j=1 αj〈v′k|v′j〉. Supposek, 1 ≤ k ≤ i is such that|αk| = maxj:1≤j≤i |αj |. Then,

δ ≥ |〈v′k|v′i+1〉| ≥ |αk||〈v′k|v′k〉| −
∑

j:1≤j≤i

j 6=k

|αj ||〈v′k|v′j〉|

≥ |αk| −
∑

j:1≤j≤i

j 6=k

|αk||〈v′k|v′j〉|

≥ |αk|(1 − (i− 1)δ)

> |αk| ·
1

2
,

i .e. maxj:1≤j≤i |αj | < 2δ. Now,

‖ai+1‖2 ≤
i
∑

j=1

|αj |2‖vj‖2 +
∑

j,j′:1≤j,j′≤i

j 6=j′

|αj ||αj′ ||〈vj |vj′〉|

< 4δ2n+ 4δ3n2

< 4δ2n+ 2δ2n

= 6δ2n.
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Reasoning as at the end of the proof of Proposition 2, we get

‖|vi+1〉〈vi+1| − |v′i+1〉〈v′i+1|‖tr = 2
√

1 − |〈vi+1|v′i+1〉|2

= 2
√

1 − ‖v′i+1 − ai+1‖2

= 2
√

1 − (1 − ‖ai+1‖2)

= 2‖ai+1‖
< 2

√
6 · δ

√
n.

This completes the proof of the proposition.

3.2 Random orthonormal vectors

In this subsection, we state some facts about random orthonormal sets of vectors inCd. One way of generat-
ing a random unit vector inCd is as follows: Consider(y1, . . . , y2d) ∈ R

2d, where eachyi is independently
chosen according to the one dimensional Gaussian distribution with mean0 and variance1 (i. e. yi is a
real valued random variable with probability density function 1√

2π
exp(−y2/2)). Normalise to get the unit

vector(x1, . . . , x2d), wherexi = yi√
y2

1
+···+y2

2d

(note that anyyi = 0 with zero probability). We thus get a

random unit vector inR2d. Identifying a pair of real numbers with a single complex number, we get a ran-
dom unit vector(z1, . . . , zd) in C

d. To generate a random orthonormal ordered set{v1, . . . , vm} of vectors
in C

d, we can first samplem unit vectors{v′1, . . . , v′m} in C
d and then do Gram-Schmidt orthonormalisation

on them to get{v1, . . . , vm} (note that with probability1, {v′1, . . . , v′m} are linearly independent).
The following fact can be proved by combining Theorem 14.3.2and Proposition 14.3.3 of [Mat02,

Chapter 14] and using the concavity of the square-root function.

Fact 2 Let t > 0, and|v〉, |w〉 independent random unit vectors inC
d. Then,

Pr

[

|〈v|w〉| > t+
10√
d

]

≤ 2 exp(−t2d).

We will require the following upper and lower bounds on the tails of the chi-square distribution (the
chi-square distribution withd degrees of freedom is the sum of squares ofd independent Gaussians with
mean0 and variance1). The upper bound can be proved via Chernoff-style arguments on the moment
generating function of the chi-square distribution. The lower bound follows, for example, from the central
limit theorem in probability theory. One can also give a direct proof of the lower bound using the probability
density function of the chi-square distribution and estimating it via Stirling’s approximation of the gamma
function.

Fact 3 Let (X1, . . . ,Xd) be independent random variables such thatXi is one-dimensional Gaussian with
mean0 and variance1. LetX2 = X2

1 + · · · + X2
d . Let 0 ≤ ǫ < 1/2. There exists a universal constant

γ > 0 such that

1. Pr[|X2 − d| > dǫ] < 2 exp(−dǫ2/6),

2. Pr[X2 > d+
√
d] > γ, Pr[X2 < d−

√
d] > γ.

The following result follows easily from Fact 3. A similar result appears as Lemma 2 in [MRRS04].
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Fact 4 Let V = {a1, . . . , ap} be a random orthonormal set ofp vectors inC
d. Let ai

j denote thejth

coordinate of vectorai. Define thed-dimensional probability vectorS as follows:Sj = 1
p

∑p
i=1 |ai

j|2. Let

0 ≤ ǫ < 1/2. Supposep = Ω(ǫ−2 log d). LetU denote the uniform probability distribution on{1, . . . , d}.
Then, with probability at least1 − exp(−Ω(ǫ2p)) over the choice ofV , ‖S − U‖1 ≤ ǫ.

We will also need the following Chernoff upper bounds on the tail of the sum ofd independent identically
distributed binary random variables.

Fact 5 ([AS00, Cor. A.7, Theorem A.13])Let(X1, . . . ,Xd) be independent binary random variables such
thatPr[Xi = 1] = p. LetX = X1 + · · · +Xd. Let0 ≤ ǫ < 1/2. Then,

1. Pr
[∣

∣

X
d − p

∣

∣ > ǫ
]

< 2 exp(−2ǫ2d),

2. Pr[X < dp
2 ] < exp(−dp/8).

3.3 Hidden subgroup problem and Fourier sampling

In this subsection, we recall the standard approach to solving the hidden subgroup problem based on Fourier
sampling. Ad-dimensional unitary representation ofG is a group homomorphismρ : G → U(d), where
U(d) is the group ofd × d complex unitary matrices under multiplication. LetC[G] denote the group
algebra; it is a|G|-dimensional Hilbert space overC with group elements|g〉, g ∈ G as an orthonormal
basis. LetR[G] denote the|G|-dimensional Hilbert space overC spanned by the orthonormal basis vectors
|ρ, i, j〉, whereρ runs over inequivalent irreducible unitary representations ofG andi, j run over the row
and column indices ofρ. The quantum Fourier transform overG, QFTG, is the followingC-linear map
from C[G] toR[G] defined as follows:

|g〉 7→
∑

ρ

√

dρ

|G|

dρ
∑

i,j=1

ρij(g)|ρ, i, j〉,

wheredρ denotes the dimension ofρ. QFTG is an inner product preserving map fromC[G] to R[G].
For a subsetT ⊆ G, define|T 〉 = 1√

|T |
∑

t∈T |t〉 to be the uniform superposition over elements of

T . For a representationρ, define the matrixρ(T ) = 1√
|T |
∑

t∈T ρ(t). If H ≤ G, it can be shown (see

e.g. [HRTS03]) that 1√
|H|
ρ(H) is an orthogonal projection onto the subspaceV ρ

H of the representation

space ofρ consisting of all vectors|v〉 such thatρ(h)|v〉 = |v〉 for all h ∈ H. Thus,rank(ρ(H)) = dimV ρ
H .

In the strong Fourier sampling method for the hidden subgroup problem, we begin by forming the uni-
form superposition 1√

|G|
∑

g∈G |g〉|0〉 and then queryf to get the superposition 1√
|G|
∑

g∈G |g〉|f(g)〉. We

then measure the second register to get a uniform mixture over vectors|gH〉 in the first register. Assuming
the first register is in state|gH〉 for some particularg ∈ G, its state after the application ofQFTG becomes

1
√

|G||H|
∑

ρ,i,j

√

dρ

∑

h∈H

ρij(gh)|ρ, i, j〉.

If we now measure the representation name and column index, we sample(ρ, j) with probability

PG
H (ρ, j) =

dρ

|G|
∑

i

|ρij(gH)|2 =
dρ

|G| ‖ρ(gH)|j〉‖2 =
dρ

|G|‖ρ(H)|j〉‖2.
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The third equality above follows from the fact that‖ρ(gH)|j〉‖ = ‖ρ(g)ρ(H)|j〉‖ = ‖ρ(H)|j〉‖, since
ρ(g) is unitary. Thus, as long as we measure just the representation name and column index(ρ, j), the
probabilities are independent of the actual cosetgH that we find ourselves in. This fact can be viewed as
the non-abelian generalisation of the fact that in abelian Fourier sampling the probability distribution on the
characters is independent of the actual coset that we land upin. Also, it can be shown that (see [GSVV04])

PG
H (ρ) =

dρ
∑

j=1

dρ

|G| ‖ρ(H)|j〉‖2 =
dρ|H|
|G| rank(ρ(H)) =

dρ|H|
|G| dimV ρ

H .

In weak Fourier sampling, we only measure the namesρ of the representations and ignore the column indices
j. It can be shown (see e.g. [HRTS03]) that for normal hidden subgroupsH, no more information about
H is contained in the column space of the resulting state afterthe measurement ofρ. Thus, weak Fourier
sampling is the optimal measurement to recover a normal hidden subgroup starting from the uniform mixture
of coset states.

Define a distance measurew(G;H1,H2) =
∑

ρ |PG
H1

(ρ) − PG
H2

(ρ)| between subgroupsH1,H2 ≤ G.
w(G;H1,H2) is the total variation distance between the probability distributions, when the hidden subgroup
isH1 orH2, on the names of the representations obtained via weak Fourier sampling. [HRTS03, GSVV04]
show thatO(log |G|) weak Fourier samplings suffice to reconstruct thenormal corec(H) of the hidden
subgroupH, wherec(H) is the largest normal subgroup ofG contained inH. Adapting their arguments,
we prove the following result.

Proposition 4 LetH1,H2 ≤ G. Supposec(H1) 6= c(H2). Then,w(G;H1,H2) ≥ 1/2.

Proof: Let N1 = c(H1) andN2 = c(H2). Without loss of generality,N1 6≤ N2. Define the kernel of a
representationker ρ = {g ∈ G : ρ(g) = 11dρ

}; ker(ρ) ⊳ G. It can be shown (see e.g. [HRTS03]) for an
irreducible representationρ and a subgroupH ≤ G, that if rank(ρ(H)) > 0, c(H) ⊳ ker ρ. Hence,

1 =
∑

ρ

PG
H2

(ρ) =
∑

ρ

dρ|H2|
|G| · rank(ρH2) =

∑

ρ:N2⊳ker ρ

dρ|H2|
|G| · rank(ρ(H2)).

SinceN1 ⊳ G, N1H2 is a subgroup ofG. Hence,N1 ⊳ c(N1H2) andN2 ⊳ c(N1H2). SinceN1 6≤ H2,
|N1H2| ≥ 2 · |H2|. For an irreducible representationρ such thatN1 ⊳ ker ρ,

rank(ρ(N1H2)) = rank(ρ(N1)ρ(H2)) = rank(ρ(H2)).

Also,

1 =
∑

ρ:N1,N2⊳ker ρ

dρ|N1H2|
|G| · rank(ρ(N1H2)) ≥ 2 ·

∑

ρ:N1,N2⊳ker ρ

dρ|H2|
|G| · rank(ρ(H2)),

i .e.
∑

ρ:N1,N2⊳ker ρ

dρ|H2|
|G| · rank(ρ(H2)) ≤

1

2
.

Finally,

w(G;H1,H2) =
∑

ρ

dρ

|G| · ||H1| rank(ρ(H1)) − |H2| rank(ρ(H2))|
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≥
∑

ρ:N2⊳ker ρ,N1 6⊳ ker ρ

dρ

|G| · |H2| rank(ρ(H2))

≥ 1 −
∑

ρ:N1,N2⊳ker ρ

dρ

|G| · |H2| rank(ρ(H2))

≥ 1

2
.

This completes the proof.
For a normal subgroupN ⊳ G, define thenormal core familyof N , ncf(N) = {H : H ≤ G, c(H) =

N}. In view of Proposition 4, the remaining challenge is to distinguish between subgroupsH1,H2 from the
same normal core family.

The success of strong Fourier sampling depends on how much statistical information aboutH is present
in the probability distributionPG

H (ρ, j). The amount of information, in general, depends on the choice of
basis for each representationρ, i. e., on the choice of basis forj; see [MRRS04] for more details. Grigni et
al. [GSVV04] show that under certain conditions onG andH, therandom strongFourier sampling method,
where a random choice of basis is made for each representation, gives exponentially small information about
distinguishingH from the identity subgroup. In the next section, we prove a complementary result viz.
under different conditions onG, (log |G|)O(1) random strong Fourier samplings do give enough information
to reconstruct the hidden subgroupH with high probability.

4 Power of the random strong method

In this section, we define a parameterr(G) on a groupG which, if at least(log |G|)−O(1), suffices for the
random strong method to identify the hidden subgroup with(log |G|)O(1) Fourier samplings. LetH1,H2 ≤
G. We first define a distance measurer(G;H1,H2) betweenH1,H2. In what follows, we use the notation
of Section 3.3.

Definition 1 (r(G;H1,H2; ρ)) Supposeρ is an irreducibledρ-dimensional unitary representation ofG. Let
Πi denote the orthogonal projection ontoV ρ

Hi
i. e. Πi = 1

|Hi|
∑

h∈Hi
ρ(h). LetΠ1,2 denote the orthogonal

projection ontoV ρ
H1

∩ V ρ
H2

. It is easy to check thatV ρ
H1

∩ V ρ
H2

= V ρ
〈H1,H2〉, where〈H1,H2〉 denotes the

subgroup ofG generated byH1 andH2. Thus,Π1,2 = 1
|〈H1,H2〉|

∑

h∈〈H1,H2〉 ρ(h). DefineΠ′
i = Πi − Π1,2.

Π′
i is the orthogonal projection onto the subspaceV ′

i defined as the orthogonal complement ofV ρ
H1

∩ V ρ
H2

in V ρ
Hi

. V ′
1 and V ′

2 have trivial intersection. Defineri = rank(Πi) and r′i = rank(Π′
i). Defineĥ =

max{|H1|r1, |H2|r2}, h̃ = |(|H1|r1 −|H2|r2)| andδ = ‖Π′
1Π

′
2‖. Recall thatδ = ovlap(V ′

1 , V
′
2). Consider

the following three cases:

1. When
√

dρ

log |G| = Ω((r1 + r2)
3/2). Loosely speaking,r1, r2 are both small. In this case, define

r(G;H1,H2; ρ) = max

{

ĥ

2

(

Ω

(

√

r′1
r1

+

√

r′2
r2

)

− 2δ1/2(1 − δ2)−1/4

)

, h̃

}

.

2. When
√

dρ

log |G| = Ω(r1) and r2

r1
= Ω(log2 |G|). Loosely speaking,r1 is small andr2 is relatively large

with respect tor1. In this case, define

r(G;H1,H2; ρ) = max

{

ĥ

2
· Ω
(

1√
r1

)

, h̃

}

.
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3. Otherwise, definer(G;H1,H2; ρ) = h̃.

Definition 2 (r(G;H1,H2), r(G)) LetH1,H2 ≤ G. Definer(G;H1,H2) =
∑

ρ
dρ

|G| · r(G;H1,H2; ρ) and

r(G) = minH1,H2
r(G;H1,H2).

From the above definition, it is easy to see thatr(G;H1,H2) ≥ w(G;H1,H2).

Definition 3 (PG
H,B) LetB be a set of orthonormal bases for the irreducible unitary representations ofG.

SupposeH ≤ G. PG,B
H denotes the probability distribution on the representation names and column indices

(ρ, j) got by strong Fourier sampling the state|H〉 according toB.

The significance ofr(G;H1,H2) arises from the following theorem.

Theorem 1 With probability at least1−exp(−Ω(log2 |G|)) over the choice of random representation bases
B for Fourier sampling,

‖PG,B
H1

− PG,B
H2

‖tr ≥ r(G;H1,H2).

Using this theorem, we can apply a ‘minimum-finding-like’ algorithm to identify the hidden subgroup.

Corollary 1 Let s(G) denote the number of distinct subgroups ofG. With probability at least2/3 over

the choice of random bases for representations ofG, Fourier samplingO
(

log s(G)
r2(G)

)

times in a random

basis gives enough classical information to identify a hidden subgroup inG. In particular,O

(

(

log |G|
r(G)

)2
)

random strong Fourier samplings suffice.

Proof: From Theorem 1, we get that for all pairs of subgroupsH1,H2 ≤ G, with probability at least
1 − exp(−Ω(log2 |G|)) over the choice of random basesB for representations ofG, ‖PG,B

H1
− PG,B

H2
‖tr ≥

r(G). Call a set of representation basesB good if ‖PG,B
H1

− PG,B
H2

‖tr ≥ r(G) for all pairs of subgroups
H1,H2 ≤ G. By the union bound on probabilities, a random choice of representation bases gives a goodB
with probability at least1 − s(G) exp(−Ω(log2 |G|)) = 1 − exp(−Ω(log2 |G|)). Suppose we have such a
goodB. Under the promise that the hidden subgroup is eitherH1 orH2, B recognises which one it is with
confidence at least1/2 + r(G)/4 using Bayes’s rule. Using Fact 5, the confidence can be boosted to at least

1 − 1
4s(G) by Fourier samplingO

(

log s(G)
r2(G)

)

times withB. We can now run a classical ‘minimum-finding-

like’ algorithm on the measured samples, comparing two subgroupsH1,H2 ≤ G at a time, to discover the
actual hidden subgroupH in G with confidence at least1 − s(G)

4s(G) = 3/4. The overall confidence bound

becomes(1 − exp(−Ω(log2 |G|))) · 3
4 ≥ 2

3 . The second bound follows from the fact thats(G) ≤ 2log2 |G|,
since any group of sizea has at mostlog a generators.

The rest of the section is devoted to proving Theorem 1. We first prove some necessary technical lemmas.

Lemma 2 LetW = {a1, . . . , ap} ∪ {b1, . . . , bq} ∪ {c1, . . . , cr} be a random orthonormal set ofp+ q + r
vectors inC

d. Letai
j denote thejth coordinate of vectorai; similar notations will be used for the vectors

bi, ci too. Define twod-dimensional probability vectorsS, T as follows:

Sj =
1

p+ r

(

p
∑

i=1

|ai
j |2 +

r
∑

i=1

|cij |2
)

, Tj =
1

q + r

(

q
∑

i=1

|bij |2 +

r
∑

i=1

|cij |2
)

.
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Then there existsδ = θ((p+ q+ r)−3/2) such that the following holds: Defineα = dδ2 − 2 log(p+ q+ r).
Supposeα = Ω(1). Then, with probability at least1 − exp(−Ω(α)) over the choice ofW ,

‖S − T‖1 = Ω

( √
p

p+ r
+

√
q

q + r

)

.

Proof: Generate a setW ′ = {a′1, . . . , a′p}∪{b′1, . . . , b′q}∪{c′1, . . . , c′r} of p+ q+ r random independent
unit vectors inCd as described in Section 3.2. Letα′i

j , β′ij , γ′ij , j = {1, . . . , d} denote the Gaussians used to
generate the random unit vectorsa′i, b′i, c′i respectively. Then,

a′ij =
α′i

j
∑d

l=1 |α′i
l |2

, b′ij =
β′ij

∑d
l=1 |β′il |2

, c′ij =
γ′ij

∑d
l=1 |γ′il |2

.

By Fact 3, with probability at least1− 2 exp(−dδ2) over the choice of the Gaussians, the normalisation
factor in the denominator of a given vector inW ′ is

√

(1 ± ǫ)d whereǫ = O(δ). LetE0 be the event that
the normalisation factors in the denominators of all vectors inW ′ are

√

(1 ± ǫ)d. By the union bound on
probabilities,E0 occurs with probability at least1 − 2 exp(−α) over the choice of the Gaussians.

Sinceα = Ω(1), δ > 10√
d
. By Fact 2, for anyw′i, w′j ∈ W ′, i 6= j, |〈w′i|w′j〉| ≤ δ + 10√

d
< 2δ

with probability at least1 − 2 exp(−dδ2) over the choice of the Gaussians. LetE1 denote the event that
|〈w′i|w′j〉| < 2δ for all w′i, w′j ∈ W ′, i 6= j. By the union bound on probabilities,E1 occurs with
probability at least1 − 2 exp(−α) over the choice of the Gaussians.

Using Fact 3 we see that for any fixed coordinatej, with constant probability at leastθ over the choice
of the Gaussians, each of the following three events occurs :

p
∑

i=1

|α′i
j |2 > p+

√
p,

q
∑

i=1

|β′ij |2 < q −√
q,

r
∑

i=1

|γ′ij |2 > r + 1.

Since these are independent events, all three of them hold atcoordinatej simultaneously with constant
probability at leastθ3. Call such a coordinatej good. LetE2 denote the event that more thandθ3

2 coordinates
j are good. By Fact 5,E2 occurs with probability at least1− exp(dθ3/8) over the choice of the Gaussians.

Now suppose that all three eventsE0, E1, E2 occur. We Gram-Schmidt orthonormaliseW ′ to get the
random orthonormal setW = {a1, . . . , ap} ∪ {b1, . . . , bq} ∪ {c1, . . . , cr}. Let S′, T ′ be the analogous
probability vectors defined with respect toW ′ instead ofW . From Proposition 3, we see that

‖|w〉〈w| − |w′〉〈w′|‖tr < 20 · δ · (p+ q + r) = O((p+ q + r)−1)

for corresponding vectorsw ∈W , w′ ∈W ′. Define density matrices

σ =
1

p+ r

(

p
∑

i=1

|ai〉〈ai| +
r
∑

i=1

|ci〉〈ci|
)

, σ′ =
1

p+ r

(

p
∑

i=1

|a′i〉〈a′i| +
r
∑

i=1

|c′i〉〈c′i|
)

,

τ =
1

q + r

(

q
∑

i=1

|bi〉〈bi| +
r
∑

i=1

|ci〉〈ci|
)

, τ ′ =
1

q + r

(

q
∑

i=1

|b′i〉〈b′i| +
r
∑

i=1

|c′i〉〈c′i|
)

.

Then,S, S′, T, T ′ are the probability distributions got by measuring the statesσ, σ′, τ, τ ′ in the standard
basis ofCd. By triangle inequality,‖σ − σ′‖tr = O((p + q + r)−1) and‖τ − τ ′‖tr = O((p + q + r)−1).
Hence,‖S − S′‖1 = O((p+ q + r)−1) and‖T − T ′‖1 = O((p+ q + r)−1).
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For agoodcoordinatej

|S′
j − T ′

j| >
p

(p + r)(1 + ǫ)d
− q

(q + r)(1 − ǫ)d
+

r + 1

(1 + ǫ)d

(

1

p+ r
− 1

q + r

)

+

√
p

(p + r)(1 + ǫ)d
+

√
q

(q + r)(1 − ǫ)d

=
−2qǫ

(q + r)(1 − ǫ2)d
+

q − p

(p+ r)(q + r)(1 + ǫ)d
+

√
p

(p + r)(1 + ǫ)d
+

√
q

(q + r)(1 − ǫ)d

> −O
(

1

(p+ q + r)1/2(q + r)(1 −O((p + q + r)−3))d

)

+ Ω

(

1

d

( √
p

p+ r
+

√
q

q + r

))

= Ω

(

1

d

( √
p

p+ r
+

√
q

q + r

))

.

The first, third and fourth steps above follow from the fact that ǫ = O(δ) = O((p + q + r)−3/2) andp ≤ q
without loss of generality.

Now,

‖S′ − T ′‖1 ≥
∑

j:j good

|S′
j − T ′

j | >
dθ3

2
· Ω
(

1

d

( √
p

p+ r
+

√
q

q + r

))

= Ω

( √
p

p+ r
+

√
q

q + r

)

.

Finally,

‖S − T‖1 ≥ ‖S′ − T ′‖1 − ‖S − S′‖1 − ‖T − T ′‖1

= Ω

( √
p

p+ r
+

√
q

q + r

)

− 2 ·O
(

1

p+ q + r

)

= Ω

( √
p

p+ r
+

√
q

q + r

)

.

The confidence bound is

Pr[E0 ∧ E1 ∧ E2] > 1 − 4 exp(−α) − exp(dθ3/8) = 1 − exp(−Ω(α)),

sinceδ = O(1). This completes the proof of the lemma.
We can prove the following lemma in a similar fashion as Lemma2.

Lemma 3 LetW = {a1, . . . , ap} be a random orthonormal set ofp vectors inC
d. Letai

j denote thejth
coordinate of vectorai. Define thed-dimensional probability vectorS as follows:Sj = 1

p

∑p
i=1 |ai

j |2. Then

there existsδ = θ(p−1) such that the following holds: Defineα = dδ2 − 2 log p. Supposeα = Ω(1). LetU
denote the uniform probability distribution on{1, . . . , d}. Then, with probability at least1 − exp(−Ω(α))
over the choice ofV , ‖S − U‖1 = Ω(p−1/2).

Proof: (Sketch)Generate a setW ′ = {a′1, . . . , a′p} of p random independent unit vectors inC
d as described

in Section 3.2. Letα′i
j , j = {1, . . . , d} denote the Gaussians used to generate the random unit vectors

a′i. Then,a′ij =
α′i

j
∑d

l=1
|α′i

l
|2 . We Gram-Schmidt orthonormaliseW ′ to get the random orthonormal set

W = {a1, . . . , ap}. Let E0 be the event that the normalisation factors in the denominators of all vectors
in W ′ are

√

(1 ± ǫ)d, whereǫ = O(δ). E0 occurs with probability at least1 − 2 exp(−α)) over the
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choice of the Gaussians. LetE1 denote the event that|〈w′i|w′j〉| < 2δ for all w′i, w′j ∈ W ′, i 6= j. E1

occurs with probability at least1− 2 exp(−α) over the choice of the Gaussians. Call a coordinatej goodif
∑p

i=1 |α′i
j |2 > p +

√
p. LetE2 denote the event that more thandθ

2 coordinatesj are good.E2 occurs with
probability at least1 − exp(dθ/8) over the choice of the Gaussians.

Now suppose that all three eventsE0, E1, E2 occur. LetS′ be the analogous probability vector defined
with respect toW ′ instead ofW . Then,‖S − S′‖1 = O(p−1/2). For agoodcoordinatej

∣

∣

∣

∣

S′
j −

1

d

∣

∣

∣

∣

=
1

(1 + ǫ)d
− 1

d
+

1√
p(1 + ǫ)d

=
−ǫ

(1 + ǫ)d
+

1√
p(1 + ǫ)d

= −O
(−1

dp

)

+ Ω

(

1

d
√
p

)

= Ω

(

1

d
√
p

)

.

The third step above follows from the fact thatǫ = O(δ) = O(p−1). Hence,

‖S′ − U‖1 ≥
∑

j:j good

|S′
j − T ′

j | >
dθ

2
· Ω
(

1

d
√
p

)

= Ω

(

1√
p

)

.

Finally,
‖S − U‖1 ≥ ‖S′ − U‖1 − ‖S − S′‖1 = Ω(p−1/2) −O(p−1) = Ω(p−1/2).

The confidence bound is

Pr[E0 ∧ E1 ∧ E2] > 1 − 4 exp(−α) − exp(dθ/8) = 1 − exp(−Ω(α)),

sinceδ = O(1). This completes the proof of the lemma.
We are now in a position to finally prove Theorem 1.

Proof: (of Theorem 1) Let ρ be an irreducibledρ-dimensional unitary representation ofG. We follow
the notation of Definition 1 forρ. Let V ′′

2 denote the orthogonal complement ofV ′
1 in V ′

1 + V ′
2 . Let σi

denote the totally mixed state inVi andσ′′2 denote the totally mixed state inV ′′
2 + (V1 ∩ V2). By Proposi-

tion 2, ‖σ2 − σ′′2‖tr < 2δ1/2(1 − δ2)−1/4. Let Bρ be a random orthonormal basis forρ. Let Pi := P
G,Bρ

Hi

denote the probability distributions on the vectors ofBρ got by Fourier sampling the states|Hi〉 respec-
tively, conditioned onρ being observed. ThenPi is the probability distribution got by measuringσi in
the basisBρ. Let P ′′

2 denote the probability distribution got by measuringσ′′2 in the basisBρ. Then,
‖P2 − P ′′

2 ‖1 < 2δ1/2(1 − δ2)−1/4. Definer1,2 = rank(Π1,2). Note thatri = r′i + r1,2.
Suppose case 1 of Definition 1 applies. LetW be a random orthonormal set ofr′1 + r′2 + r1,2 vectors

in Cdρ . Define probability distributionsS, T with respect toW as in Lemma 2. By symmetry,P1 = S and
P ′′

2 = T . Note thatr′1 + r′2 + r1,2 ≤ r1 + r2 andr′1 + r′2 + r1,2 ≤ dρ <
√

|G|. Hence,dρ · θ((r′1 + r′2 +
r1,2)

−3) − 2 log(r′1 + r′2 + r1,2) = Ω(log2 |G|). The conditions of Lemma 2 are satisfied, and we get, with

probability at least1 − exp(−Ω(log2 |G|)) over the choice ofBρ, that‖P1 − P ′′
2 ‖1 = Ω

(√
r′
1

r1
+

√
r′
2

r2

)

.

Thus with probability at least1 − exp(−Ω(log2 |G|)) over the choice ofBρ,

‖P1 − P2‖1 ≥ ‖P1 − P ′′
2 ‖1 − ‖P2 − P ′′

2 ‖1 ≥ Ω

(

√

r′1
r1

+

√

r′2
r2

)

− 2δ1/2(1 − δ2)−1/4.
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Suppose case 2 of Definition 1 applies. LetW be a random orthonormal set ofr1 vectors inCdρ .
Define probability distributionS with respect toW as in Lemma 3. By symmetry,P1 = S. Note that
r1 ≤ dρ <

√

|G|. Hence,dρ ·θ(r−2
1 )−2 log r1 = Ω(log2 |G|). The conditions of Lemma 3 are satisfied, and

we get, with probability at least1− exp(−Ω(log2 |G|)) over the choice ofBρ, that‖P1 − U‖1 = Ω
(

1√
r1

)

.

Also, r2 = Ω(r1 log dρ). The conditions of Fact 4 are satisfied, and we get, with probability at least

1 − exp(−Ω(log2 |G|)) over the choice ofBρ, that‖P2 − U‖1 = O
(

1√
r1

)

. Thus with probability at least

1 − exp(−Ω(log2 |G|)) over the choice ofBρ,

‖P1 − P2‖1 ≥ ‖P1 − U‖1 − ‖P2 − U‖1 = Ω

(

1√
r1

)

.

Suppose|H1|r1 ≥ |H2|r2 i. e. ĥ = |H1|r1. Then,

‖PG,B
H1

− PG,B
H2

‖1 =
∑

ρ

‖PG
H1

(ρ)P
G,Bρ

H1
− PG

H2
(ρ)P

G,Bρ

H2
‖1 =

∑

ρ

dρ

|G| · ‖H1r1P
G,Bρ

H1
−H2r2P

G,Bρ

H2
‖1.

Now,

‖H1r1P
G,Bρ

H1
−H2r2P

G,Bρ

H2
‖1 = ‖H1r1(P

G,Bρ

H1
− P

G,Bρ

H2
) + (H1r1 −H2r2)P

G,Bρ

H2
‖1

≥ H1r1
2

· ‖PG,Bρ

H1
− P

G,Bρ

H2
‖1.

The last step above follows from the factsH1r1 −H2r2 ≥ 0, ‖v‖1 ≥ ‖v+‖1 where(v+)i := vi if vi ≥ 0,
(v+)i := 0 otherwise, and‖P1 − P2‖1 = 2‖(P1 − P2)+‖1 for probability vectorsP1, P2. Also note that
for any choice of representation basesB, ‖H1r1P

G,Bρ

H1
−H2r2P

G,Bρ

H2
‖1 ≥ |H1r1 −H2r2|. Hence,

‖PG,B
H1

− PG,B
H2

‖1 ≥
∑

ρ

dρ

|G| · max

{

H1r1
2

· ‖PG,Bρ

H1
− P

G,Bρ

H2
‖1, |H1r1 −H2r2|

}

≥
∑

ρ

dρ

|G|r(G;H1,H2; ρ)

= r(G;H1,H2).

For each representationρ, the confidence bound in applying the above random basis arguments is at
least1 − exp(−Ω(log2 |G|)). Since there are at most|G| representations, the total confidence bound is at
least1 − |G| exp(−Ω(log2 |G|)) = 1 − exp(−Ω(log2 |G|)). This completes the proof of the theorem.

We now have all the tools to prove thatr(Hp) = Ω(1). In fact, we can now prove the following theorem.

Theorem 2 The random strong method is sufficient to solve the hidden subgroup problem in the Heisenberg
groupHp. The query complexity of this algorithm isO(log p). The quantum part of the algorithm consists
of a circuit of sizeO(log4 p) followed by a circuit of sizẽO(p2) for implementing the measurement in a
random orthonormal basis. The classical post-processing does not make any queries and has a running
time ofÕ(p4).

Proof: First, we characterize the normal core families in the Heisenberg group. We have that

ncf(Hp) = {Hp}, ncf(ζ(Hp)) = {ζ(Hp)}, ncf(Ni) = {Ni}, for i ∈ {0, . . . , p− 1,∞}
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are families of size1 each. For the trivial group we get that

ncf({1}) = {Ai,j : i ∈ {0, . . . , p− 1,∞}, j ∈ {0, . . . , p− 1}} ∪ {{1}}.

If H1 andH2 are candidate hidden subgroups from different normal core families, then by Proposition 4
we get thatr(Hp;H1,H2) ≥ w(Hp;H1,H2) ≥ 1/2. We now consider the situation where bothH1,H2 ∈
ncf({1}). We fix an irreducible representationρ = ρk (for k = 1, . . . , p− 1) of degreedeg ρ = p. Now, we
distinguish two cases:

1. |H1| = |H2| = p, i. e., there arei, j, i′, j′, (i, j) 6= (i′, j′) such thatH1 = Ai,j andH2 = Ai′,j′.
Using the notation of Definition 1 we have thatr1 = r2 = 1, since by Lemma 1 the ranks ofPk;i,j and
Pk;i′,j′ are both one. Also,‖Pk;i,jPk;i′,j′‖ ≤ 1√

p . This also implies thatr′1 = r1 = 1 andr′2 = r2 = 1,

since the one-dimensional projectorsPk;i,j, Pk;i′,j′ are linearly independent. Hence,P ′
k;i,j = Pk;i,j

andP ′
k;i′,j′ = Pk;i′,j′ . So,δ = ‖P ′

k;i,jP
′
k;i′,j′‖ ≤ 1√

p . Since|H1|r1 = |H2|r2 = p, ĥ = p andh̃ = 0.
As

√

dρ

log |Hp|
=

√
p

3 log p
= Ω((r1 + r2)

3/2) = Ω(1),

we are in the first case of Definition 1 and obtain that

r(Hp;H1,H2; ρ) =
p

2
·
(

Ω(1) − 2(p − 1)−1/4
)

= Ω(p).

2. |H1| = p and|H2| = 1, i. e., we have to distinguishH1 = Ai,j from the trivial subgroupH2 = {1}.
In this caser1 = 1 andr2 = rank(ρ({1})) = p which implies that̂h = p, h̃ = 0. Since

√

dρ

log |Hp|
= Ω(r1) and

r2
r1

= p = Ω(log2 |Hp|),

we are in the second case of Definition 1 and obtain that

r(Hp;H1,H2; ρ) =
p

2
· Ω(1) = Ω(p).

Overall we obtain that forH1,H2 ∈ ncf({1}),

r(Hp;H1,H2) =
∑

ρ

dρ

p3
· r(Hp;H1,H2; ρ) ≥

p−1
∑

k=1

p

p3
· r(Hp;H1,H2; ρk) ≥

(p− 1)p

p3
· Ω(p) = Ω(1).

Hence,r(Hp) = Ω(1). Recall thats(Hp) = O(p2). Now Corollary 1 shows that with probability at least
2/3 over the choice of random representation bases, the HSP forHp can be solved usingO(log p) random
strong Fourier samplings.

As shown in Proposition 1, theQFT overHp can be implemented usingO(log3 p) elementary quantum
gates. Since there areO(log p) Fourier samplings, the initial part of the quantum circuit has sizeO(log4 p).
The claimed statements about the number of quantum operations necessary to implement a measurement
in a random orthonormal basis follow from general upper bounds of Õ(p2) on the number of gates in
a factorization of a unitary operationU ∈ U(p) into elementary gates. The classical time to generate
the randomU is Õ(p3) since we can start with a set ofp random unit vectors and apply Gram-Schmidt
orthonormalisation to obtain a random unitary matrix. For the classical post-processing we have to compute
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a table of probability distributions with respect to the random measurement bases for all subgroups. Since
there areO(p2) subgroups and each probability distribution computation takes timeÕ(p2) we can upper
bound this byÕ(p4). After this table has been precomputed the actual algorithmto find the hidden subgroup
is ‘minimum-finding-like’ in which we ‘compare’ two subgroups at a time. This takes timẽO(p2). Overall,
we obtain that the running time of the classical part of this algorithm can be upper bounded bỹO(p4).
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