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On the Power of Random Bases in Fourier Sampling:
Hidden Subgroup Problem in the Heisenberg Group
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Abstract

The hidden subgroup problem (HSP) provides a unified framiewm study problems of group-
theoretical nature in quantum computing such as order finalird the discrete logarithm problem. While
it is known that Fourier sampling provides an efficient sioluin the abelian case, not much is known for
general non-abelian groups. Recently, some authors rigeguestion as to whether post-processing
the Fourier spectrum by measuring in a random orthonornssieelps for solving the HSP. Several
negative results on the shortcomings of ttiadom strongmethod are known. In this paper however,
we show that the random strong method can be quite powerfldnoertain conditions on the grodp
We define a paramete(G) for a groupG and show thaO((log |G|/r(G))?) iterations of the random
strong method give enough classical information to idgrdihidden subgroup itr. We illustrate the
power of the random strong method via a concrete exampleedfiBP over finite Heisenberg groups.
We show thatr(G) = Q(1) for these groups; hence the HSP can be solved using polytipmiany
random strong Fourier samplings followed by a possibly egmbial classical post-processing without
further queries. The quantum part of our algorithm consi$ta polynomial computation followed
by measuring in a random orthonormal basis. This gives tkeditample of a group where random
representation bases do help in solving the HSP and for wid@xplicit representation bases are known
that solve the problem witflog G)°(!) Fourier samplings. As an interesting by-product of our werk
get an algorithm for solving thetate identification problerfor a set of nearly orthogonal pure quantum
states.

1 Introduction

The hidden subgroup problem (HSP) is defined as follows: Wegaren a functionf : G — S from a
groupG to a setS with the promise that there exists a subgrdiip< G such thatf is constant on the left
cosets ofH and takes distinct values on distinct cosets. In this paglegroups and sets are finite and all
vector spaces are finite dimensional oerThe functionf is given via a black box, i. e., given € G as
input, the black box outputg(x). The task is to find a set of generators féwhile making as few queries
to f as possible. We would also like our algorithm to be efficierterms of total running time. The abelian
HSP (i. e.G is abelian) encompasses several interesting problemsasuitding the order of an element in
a group and the discrete logarithm problem. Factoring aygerin can be reduced to order finding in the
groupZ;, the multiplicative group of integers modutowhich are coprime ta. The problems of graph
isomorphism and graph automorphism can be cast as hiddgnosytoproblems over the non-abelian group
Sn, the group of permutations ensymbols.
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The classical query complexity of the HSP\G\Q“) which is exponential in the input sideg |G]|.
This is true for many families of groups including severahilées of abelian groups. The biggest success
of quantum algorithms so far has been a polynomial time (lpo#ry complexity as well as total running
time) solution for the abelian HSP IKIitB5, BH97, ME98]. Thednt of this solution is Fourier sampling with
respect to the abelian grodp.

In sharp contrast to the abelian HSP, progress on the ndiaab4SP (i. e. G is non-abelian) has so
far been quite limited. Ettinger, Hgyer and Knill_LIEHKO4]gwe that the quantum query complexity of
the non-abelian HSP 8 (log |G|); however, their algorithm takez?(os” IG) quantum operations. Ivanyos
et al. [IMS03] and Friedl et al. [FIMO3] apply abelian Fourier transform methods to give polyram
guantum algorithms for the HSP for some special classes wfabelian groups. Given the success of
Fourier sampling in solving the abelian HSP, one can sitgilask whether Fourier sampling over the non-
abelian groups helps in solving the HSP ove¥. The Fourier transform over a (in general, non-abelian)
groupG gives us a superposition over, i, j) wherep is an irreducible unitary representation@fands, j
are the row and column indices of the matrix The choice of basis fop gives us a degree of freedom
in defining the Fourier transform ovéf. This is in contrast to the abelian case, where all reprafens
are one-dimensional and hence only their nagesatter. The algorthim starts out with a tensor product of
t = O(log|G|) superpositions over random cosets of the hidden subgkbufxploiting the symmetries
in these states, one can show that (see e.g. [KupO03] [p03.0&RSe optimal measurement to recover
H consists of applying the Fourier transform to each cosét,staeasuring the names of théreducible
representations, followed by a joint POVM on the column sgaaf the resulting states. Irstrong Fourier
sampling one measures each of theolumn spaces using an orthonormal basis, i. e., one pesfart@nsor
product oft complete von Neumann measurements instead of a joint POviMeak Fourier samplingone
measures the names of theepresentations only.

Hallgren, Russell and Ta-Shnla [HRT$03] showed that polyallynmany iterations of weak Fourier
sampling give enough information to reconstruct normalaid subgroups. More generally, they show
that the normal core(H) of the hidden subgroupi (i.e. the largest normal subgroup 6f contained
in H) can be reconstructed via the weak method. Grigni, Schuyliarirani and Vazirani[IGSVV04]
and Gavinsky[[Gav(04] extended the weak method to find a hidgdégroupH in G if [G : k(G)H] =
(log |G))°M. Here,x(G) is the Baer subgroup af defined as:(G) = Ng.x<q N(K), where N (K)
denotes the normaliser @€ in G. The main shortcoming of the weak method is that it gives xaice
same probability distribution if the hidden subgroupHsor a conjugateyH ¢! of H. This leads us to
consider thestrongmethod. The amount of additional information about the aéiddubgroup that can be
extracted by measuring the column space in an orthonorrs@ epends, in general, on the particular basis.
In a recent paper, Moore, Russell and Schulman [MRSO05] stidkaa for the symmetric grou§,,, for any
choice of bases for the representations, there are ordesuigroups that require exponential number of
strong Fourier samplings in order to distinguish them frowa identity subgroup. Grigni et al. I[GSVV04]
study therandom strongnethod where a random measurement basis is used for eaekepfatiorn. They
define a group-theoretic parameterdepending orG and H and show that ifx is exponentially large,
the additional advantage of the random strong method oeewtak method is exponentially small. In
particular, this is case whefi = S,, andH < S,,, |H| = 20(logn),

1.1 Our contributions

In this paper, we analyse the power of the random strong rdedhd show, for the first time, that under
certain (different) general conditions @ polynomially many iterations of the random strong method do
give enough classical information to identify. We illustrate the power of the random strong method via a



concrete example of the HSP over finite Heisenberg gréypsf orderp?, wherep > 3 is a prime.H,, is
defined as the following set of upper triangular matrices:

1
H, = 0 cx,y,z €Fy 5. ()
0

o = 8
[l SR

A convenient encoding for the elements}of is to write (x, y, z), wherez, y, z € F, match the components
in equation[(Il). The composition of two elements is thenmgyive

(x1,y1,21) 0 (22, Y2, 22) = (1 + T2, Y1 + Y2, 21 + 22 + T1Y2),

and the inverse of an element is given(ayy, z)~! = (—z, —y, zy — 2). Itis easy to see that the classical
randomised query complexity of the HSP At is 6(p). The generic quantum algorithm of Ettinger, Hayer
and Knill [EHKO04] achieveg)(log p) query complexity, but at the expensepdfioe?) quantum operations.
An algorithm with 2¢(v°e?) quantum operations can be obtained by combining the idefiéupi03] and
[EIMT03]. However, the query complexity of this algorithm is a2§6v1°87), |t seems non-trivial to design
a quantum algorithm witt{log p)°™") query complexity and total running timg”()). In the following
paragraphs, we indicate how various existing methods foratmelian HSP fail to achieve this goal. After
that, we show how the random strong method attains this ghetrating the power of random bases in
Fourier sampling.

It can be shown thak,, is a semidirect product of the forf, x (Z, x Z,), where the normal subgroup
is given by N, := {(0,y,2) : y,z € F,} and the complement bylyy := {(x,0,0) : = € F,}. The
commutator subgroup df,, is given by[H,,, H,] = {(0,0,2) : z € F,}, which is also the centr¢(H,,).
The commutator subgroup is isomorphicg hence it is abelian but nemoothly abeliarfan abelian group
G is said to be smoothly abelian [FIM)3] if it is the direct product of a subgroup of bounded expdraand
a subgroup of sizélog |G|)°()). The Baer subgroup turns out to bgH,)) = ((H,). If A <H,, |A| = p,
then|k(H,)A| < p?; therefore for such ad, [G : k(H,)A] > p. In fact, we will see later that there are
(p? + p + 1) orderp subgroups of{,. Thus, the methods of [GSVVDA4, Gav(4, IMS$03, FiBE] are not
applicable in order to solve the HSP faf, efficiently. For more details about the Heisenberg group, se
Sectior®.

The chief obstacle to finding hidden subgroupsHp arises from the ordep subgroups oft,, other
than its centre. There af@? + p) such ordep subgroups; we shall call them; ;, i € F, U {oo}, j € F).
The forgetful abelian methodi. e. Fourier sampling over the abelian grodp x (Z, x Z,) instead of
the non-abelian groupt(, = Z, x (Z, x Z,)), weak Fourier sampling, strong Fourier sampling in the
natural representation basis’f, (i. e. the representation basis adapted to the distingsisiegroup tower
{1} < No <'H,,) as well as strong Fourier sampling in thg-Fourier transform of the natural representation
basis give exponentially small information about the index 4; ;. For more details, see Sectionl2.4. For
now, we give an intuitive description of the main difficultpged by these subgroups. Suppose the hidden
subgroup is4; ; for somei € F, U {oo}, j € F,. With exponentially high probability, Fourier sampling
over’H, gives us a representation uniformly at random from one ofghel) irreducible representations
of degreepfor k = 1,...,p— 1 of H,,. Suppose one such representaigrshows up. The state essentially
collapses to a vectdty ; ;) € CP,i.e.,(H,, A; ;) is a Gelfand pair for all,j (see also[IMRO5] for Gelfand
pairs in the context of the HSP). The vecttys ; ;) have the property that

1 . . -
— = 1, forall 5,5,
[(Whsi,519n,0,57) | = { v .,

0j 0 ¢+ i=1,
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i.e., they form a set ofp + 1) mutually unbiased bases [WFE89] GF. The main difficulty is that it is not
clear a priori that there is any orthonormal basis that camvis® distinguish between thegg? + p) vectors
with inverse polynomial probability. Note that the so-edlhidden conjugate problefMRRS04] is easy
to solve information-theoretically fok,; the conjugacy classes of the orgesubgroups are defined by
and the above property says tHat. ; ;) }; is an orthonormal basis @”, so given the conjugacy class
one can measure in this orthonormal basis to determine thaldsdden subgroug; ;. In view of this, the
main challenge in solving the HSP &, is to identify the conjugacy class

In this paper however, we show that a random representadisis forp, does in fact pairwise distinguish
between|vyy, ; ;) with constant probability. In fact, we refine the method ofdam measurement bases to
distinguish between families of nearly orthogonal subepadVe combine the geometric ideas of random
measurement bases together with representation-theteetiniques to obtain a parametétz; H;, Hs) of
a groupG and subgroupdl;, Hy < G. We show that(G; Hy, Hs) is a lower bound on the total variation
distance between the distributions on pdjs;j) of representation names and column indices obtained by
the random strong method for candidate hidden subgrélipg/,. The parameter(G; Hy, H,) is defined
in terms of the ranks and overlaps of the projectors obtalnyedveraging representatiopsover Hy, H,.
Definer(G) := ming, g, r(G; Hi, He), whereH;, H, range over all pairs of subgroups 6f We show

thatO (k’g S(G)) iterations of the random strong method give sufficient atassnformation to identify the

r2(G)
hidden subgroug?, wheres(G) denotes the number of distinct subgroupg-ofNote thats(G) < glog” |G|
for any groupG.

We will see later in Sectio 2 that#,,) = O(p?). In Sectiorl#, we show tha{(H,,) = Q(1), implying
that O (log p) iterations of the random strong method give sufficient imfation to extract the hidden sub-
group inH,,. This gives us an algorithm solving the HSP o%gywith O(log p) query complexityO (log® p)
quantum operations for implementing the non-abelian Eotransforms (see SectibiR.6)(p?) quantum
operations to measure in a random basis,é(p?) classical post-processing operations. This gives the first
example of a group where random representation bases dmfssllving the HSP and for which no explicit
representation bases are known that solve the problem(lifp)°™") Fourier samplings.

As an interesting by-product of our work, we get an algorittemsolving the followinggquantum state
identificationproblem: Consider a set of pure quantum stétes), . .., [¢,,)} € C™ with the property that
|(i|;)| < o forall i # j, whered is a sufficiently small constant (and typically > n). We are given
t independent copies of;). The task is to identify the index We show that = O(log m) independent
random complete von Neumann measurement&‘isuffice to identifyi with high probability.

1.2 Relation to other work

Moore, Rockmore, Russell and Schulmhn [MRRS04] use noliaabstrong Fourier sampling to give an
efficient algorithm for the HSP over thehedral groupZ, x Z, whenp,q are prime,q | (p — 1) and
(p—1)/q = (logp)°V). Our techniques show that fpr g prime,q | (p — 1), ¢ = Q(V/p), 7(Zq % Z,) =
(1), which proves that polynomially many random strong Fousi@mplings suffice to find an arbitrary
hidden subroup dZ, x Z, in this case. For primg, ¢ | (p — 1), ¢ = Q(p*/*), subgroupdT;, H, conjugate

to Zy < Z,_1, our techniques show thafZ,_; x Z,; Hy, Hy) = Q (ﬁ) Moore et al.[MRRS04] prove

a nearly matching upper bound ofZ, 1 x Z,; Hi, Hy) = O (, /% logp). Thus, a polynomial amount of
random strong Fourier sampling can solve the hidden cotgugi@blem for subgrouf, < Z,_; of the
affine groupz, 1 x Z, if and only if p/q = (log p)°).

In this paper, we confine ourselves to random strong Fouaimpsng. Our quantum operations always



factor into a tensor product over the coset states obtaipediérying the function oracle. This distinguishes
the Heisenberg group from the symmetric group for which Mod&tussell and Schulmah [MRS05] show
that tensor product Fourier sampling is not sufficient toeesdhe HSP. The quantum part of our algorithm
consists of a polynomial computation followed by measuiing random orthonormal basis. In fact, if a
suitable kind of pseudo-random unitary transformation lbamgenerated and implemented efficiently, then
the quantum part of the algorithm can be made fully polynénMarious notions of pseudo-random unitary
transformations have been studied (see &.g. [EBEIEMe04]), but it has to be investigated whether they
are sufficient for our purposes.

2 Heisenberg groups oveit,

The groupsH,,, wherep > 3 is prime, are discrete versions of the continuous Heisgnfp@ups studied in
physics in the context of conjugate observables. Absyakt) is isomorphic to the following group given
in terms of generators and relations;, = (v, y, z : 2 = y? = 2P = 1,2y = 2yx, vz = 2z, 2y = yz).

2.1 The subgroup lattice

Since the order ot{,, is p* we can expect to find subgroups of orgeandp? besides the trivial subgroup
{1} andH,. The centre of+, is given by

C(HP) = <(0707 1)> = {(0707 Z) HEAS FP}
Note that|¢(H,)| = p. There arep + 1 subgroupsV; of orderp?, wherei € F,, U {oc}. They are given by
N; :==((1,4,0),(0,0,1)) ={(x,xi,2) : x,z € Fp}, VieF,.

The groupN is given by N, := ((0,1,0),(0,0,1) = {(0,y,2) : y,z € Fp}; Noo = Zp X Zp. ltis
easy to see that for all € F, U {oc}, ((H,) < N;. Furthermore theV; are normal subgroupsy; < H,,
andN; = Z, x Z,. For eachi € F, U {oo}, we have thatV; containsp subgroups4, ; for j € F,,. The
subgroups4; ; satisfy|A; ;| = p, whence4, ; = Z,. Fori, j € I, we have the following explicit desciption
of the elements ofl; ;:

Aoy = (16,0 = Gy (b )i+ i) s € 5,0

Fori = 0o,j € F, we obtainA. ; := ((0,1,5)) = {(0, u, pj) : p € F,}. Itis easy to see that; ; £ Ny
if 4 # ¢', and the normaliser is given by, (A4; ;) = N;. The above groups form a complete list of distinct
subgroups of,. The following table summarizes the subgroup structurg nf

Size Subgroup Number Containment

P Hp 1

p? N;,i € F,U {00} p+1 N; <H,

p | C(Hp), Aiji € Fpu{oc},j €Fy | pP* +p+1 | Aij SNy, ((Hp) < N, Vk € Fp U {00}
1 {1} 1 {1} <C(Hp), {1} < Aij

Fori,i' € F, U {oc} wherei # ' we have that\; N Ny = ((H,). This shows thak(H,) =
Ni.xc<m, N (K) = ((Hp). Also, itis easy to check that the commutator subgroup isrglwy [H,,, H,] =
C(Hp)-



2.2 The irreducible representations ofH,

Since we want to perform Fourier analysis on the grotfpswe have to determine the irreducible repre-
sentations oft{,. The reader not familiar with the standard notations of@sentation theory is referred
to standard references like |[CR62] or [Ser77]. ObserveMat= Apo X Noo = Zy, X (Z, X Zp). This
semidirect product structure can be used to construct teducible representations df,. First, there are
p* one-dimensional representatiogs;, for a,b € F, which come from the factor grouft,,/¢(H,,) = Zf,.

In the following, letw denote a fixegbth root of unity in the complex numbers. Then the one-dinemei
irreducible representations ®f, are given by

Xap((2,9,2)) = W™ a,b € .

Let[F; denote the group of non-zero element&gptinder multiplication. There age-1 irreducible rep-
resentationgy, k € IF;, of degreep. They are obtained in the following way: Take a nontriviahdcter of
the centre;(H,,), extend it to the abelian groui,, and induce it td+,. Explicitly, we obtain the following
representations: For eaghc I, we have a nontrivial charactey, of ((H,,) given by, ((0,0, 2)) := wk,
Since((H,) < N and N, is abelian, we can exteng, to a character,, of N, by simply defining
#5,((0,,0)) := 1. We choose the elements df, o as transversals faN,, in H,. Thenp, is defined to
be the inductiorp;, := ¢, Ta00 Hp. Onthe generators 6f,, we find thatp, takes the following values:
Pr((1,0,0)) = Y, la)( ((0,1,0)) = ¥ ,cx, *?|a)(al and pi((0,0,1)) = w*1,, wheret,
denotes the identity operator@?. Since(z,y, z) = (0,0, 2)(0,y,0)(z,0,0) forall z,y, z € [F,,, we obtain
that

prl(@,y,2)) = W™ Y~ WMa)(a +al.

aclky,

It can be readily checked that the 5, for a,b € I, andpy, for k € F, form a complete set of inequivalent
irreducible representations &f,,.

2.3 Ranks and overlaps of various projectors

Define Py,; ; = %ZGGAM pr(a). Itis easy to see thab,, ; is an orthogonal projection operator. In
order to calculate the parametefH,) (see Sectiofl4 for the details of the calculation) we havetopute
the ranks ofP,; ; and pairwiseoverlaps|| P.; ; Px.iv ;|| (the reason for the nomenclature ferlap will
be made clear in Sectidn_8.1). Forj € F,, we obtain by a straightforward computation tht; ; =

k i+ i—v
LS e wp GG, ><u|.Hencefm-,j:|¢k;z—7j><¢k;z—7j|,where

(ki) = Z )|y, 0§ € Fp k € F
uEF
In the case = oo, j € Fp, We getPyc j = [Vkioo,j) (Vhioo,jl Wherethy ;) = [ = j) J € Fyp k € Fy.

Thus for allk € Fy, i € F, U {oo}, j € Fp, rank(Fy; ;) = 1 and Py;; ; is an orthogonal projection onto
[psis). FOrj, §' € Fp, We get|| Pr.oo j Priojr|| = 6;.4r- FOrd, i, 5" € Fp, We get]| Py.i j Proo || = ﬁ- For
i,7,7,j' € Fp, we get

1 i—i Y
1 Pasi g Prsir g7 || = 1 (s g [Womsir o) | = = > WH((E) @ ruli=1),

wekFy

To evaluate the last term above, we need the following fastieuadratic Weil sums if,,.
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Fact 1 ([CN94, Theorem 5.37]) Leth(X) € F,[X] be a degree two polynomial. Thend ~ w"*)| = \/p.
zelF,

By Factll, ifi # ¢/, [(¥g |k )| = % irrespective ofj andj’. If i = 4/, it is easy to see that

|(Vki j|Yrsir j1)| = 655 To summarise, we have shown the following result:

Lemma 1 Suppose is an odd prime. Let,i' € F, U {oo}, j,j' € F, and 4;;, Ay ;» be two orderp
subgroups oft{,, other than the centrg(7{,). Letpy, wherek € [, be an irreducible representation of
H, of degreep. Let Py,; ; be defined by’.; ; := % >aca,, Pr(a) and letP,.; ; be defined similarly. Then
Py..i.;, Pyiv j» are rank one orthogonal projections, and their overlap igegi by
1 . ./ -y
— = i, forall 4,75,
[ Phsij Prer || = { (f o

5,3’

i =1

Thus, for anyk € I, the vectorgyy.;s ;) form a set of(p + 1) mutually unbiased bases fay .

2.4 Failure of existing methods to solve the HSP ovéf,

A straightforward classical randomised algorithm for teRHoverH,, is as follows: Queryf : H, — S at
O(p) random elements dft,,. If we do not finda;, az € Hy, a1 # az such thatf(a;) = f(az), we declare
{1} to be the HSP off. Suppose we do find such a pair, a;. Then there is a unique ordgrsubgroupA

of H, such thatal‘lag € A. f can now be thought of as a function &f),/A. Query f atO(,/p) random
elements oft,,/A. If we do not findb;, by € H,/A, b1 # by such thatf(b;) = f(b2), we declared to be
the HSP off. Suppose we do find such a pajt b,. Let B = (A, bl‘lb2>. If |B| = p?, declare the HSP to
beH,. If | B| = p?, queryf at an element € H,,, c ¢ B. If f(c) = f(B), declare the HSP to ¥, else
declare the HSP to bB. The correctness of the algorithm follows from the subgrstrpcture of/, and
the birthday paradox. A matching lower bound(d(fp) for classical randomised algorithms can be proved
using the subgroup structure &f, and Yao’s minimax principle.

Suppose the HSP i4, ;, for somei € F, j € F,. It can be shown (see Sectibn13.3 for details)
that Fourier sampling givesgadimensional representation with probability- %, and eachy-dimensional
representation has equal probability to show up. Suppossuach representation, k£ € [, shows up. The
natural representation basig, a € F), is the basigy. ;), wherej € F,. TheZ,-Fourier transform of
the natural representation basis is the bpsig ;), wherej € IF,,. By Lemmd, the probability distribution
obtained by measuring the columnspgfin the natural representation basis or in#)eFourier transform of
the natural representation basis is the uniform distrilputiThis shows that weak Fourier sampling, strong
Fourier sampling in the natural representation basis{pfas well as strong Fourier sampling in tig-
Fourier transform of the natural representation basis gxgonentially small information about the indéex
of Ai,j-

Recall thatH,, = Ag o X Noo = Zy, x (Z,, x Z,). Suppose we try to perform Fourier sampling over the
abelian groupdg o x Noo = Z,, x Zy, x Z, (theforgetful abelian methgdnstead of the non-abelian group
H,. Let F" denote the Fourier transform ovéy x Z, x Z,, i.e.,

F=p32 Z w0 b ) (x,y, 2.
a,b,c,x,y,z€Fp

For abelian groupé:, the probability distributions obtained by Fourier samgloverG are independent of
the actual coset of the hidden subgroup that arises on meggbe function value; however, they depend
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of course on the hidden subgroup. But since how we are doieljpab~ourier sampling over a non-abelian
group, we have to consider the effect of applyifigo a coset ot 4, ;, wheret = (0,0, 7) andr € [F,,. Note
thattA; j = {(w, pi, (4)i + pj +7) : p € Fp}. We obtain

1 e e 2
F|tAZ'7 > _ = W w(a-l—bz-i—cy—?)u-i-cw |a’ b, C>.
! p2 a,b,zc;Fp Mgﬂ;p

Hence, the probability of observing a particular trigle b, c) is p~4| 3, w(@Hbitei=(eD/Dptein? |2,

¢ # 0, this is a quadratic Weil sum and we can use [Eact 1 to conchmtetrne probability of observmg
(a,b,c) is given byp—3, independent of, ;. The probability of observinga,b,c), ¢ # 0is 1 — %. If

¢ = 0, only terms of the form(—bi, b,0) show up. These terms do give information abguiowever, the

probability of observing such a term i§ Thus, the forgetful abelian method gives exponentiallyalsm
information about.

2.5 Efficient quantum circuits for the Fourier Transform on H,

The fact that anyQFT for any finite group is a unitary matrix (when properly norinratl) makes this
class of transformations an important source of transfioms a quantum computer can carry out. The
problem of finding efficient implementations @fF'T's in terms of quantum circuits was studied previously,
see [Hay9), Bea97, PRBY9, HRTS03, MRR04]. From [MRRO04, Téraa?] it follows that for any prime

p the QFT for the Heisenberg groupl,, can by computed ipolylog(p) operations. In the following we
give an explicit description of an efficient quantum ciroutich computeQFT,, . First, note that we are
interested in a realization on a quantum computer which siorkqubits. This means that we have to embed
the states and transformations into a register of 3iz@r some positive integet. In the following we will
assume that is the smallest integer such that 2" and we will identify the group elements, v, z) € H,
with a subset of the binary strings of length: in each of the three components we choose the basis vectors
|0),...,|p — 1) to represent the respective component of the elerpent ). The following proposition
shows that FT for H, can be implemented efficiently in terms of elementary quangates.

Proposition 1 Letp be prime, letH,, be the Heisenberg group of ordet and letlrr(H,) = {xas : (a,b) €
IE‘?,} U{pr : k =1,...,p— 1} denote the irreducible representations7@f. Then theQFT for H,, with
respect tdrr(7,) can be computed using(log® p) elementary quantum gates.

Proof: First we consider the normal subgron, <1 H, and compute a Fourier transform for this abelian
group. This group is isomorphic to a direct product of twolicygroups, i. e. N, = Z,, X Z,. The elements
of N, are given byN,, = {(0,y,2) : y,z € Z,}, i.e., we can identify the elements 8f,, with those
binary strings of lengtl8n which have trivial support on the first positions. Note that the irreducible
representations oV, are given by, for a,b € Z,, where

Yap(0,3,2) 1= exp(2rifplay +b2)) = wp¥

SinceN, is normal the grouf,, operates on the irreducible representations [CR62]. Wetdethis action
by “x”, i.e., we have a map : H, x Irr(H,) — Irr(H,) which is explicitly given by(z,y, ) * ¢, =
wa,b—am-

Next, we choose as a transversal fég, < H, the ordered list’ = [(z,0,0) : = € Z,]. We have
to be able to efficiently implement the images of all irrethleirepresentations d¥, evaluated at the
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elements off". This is required for the so-called ‘twiddle factors’ in tHecomposition of3F'T,, along
the subgroup towefl} < No, < H,. Indeed, we construct @F'T adapted to this subgroup tower, see
also [PRB95|_ MRRO04]. We now use the following formula for ieypenting aQF T, which holds in the
situation where we have an abelian normal subgyugnd an abelian factor grou@/N:

QF Ty, = (Lig/n @ QFTy) (EB <I>(t)> (QFTG/N ® 1‘N|) )

teT

Here ® denotes an extension of the decomposition of the regulaeseptation of/V into irreducibles.
Denoting this direct sum by, i.e.,A := @, ®(t), this means that we have to implement the following

transformation: #3/a)] >
. zy|a)|b—az) : ifa#0,
A [z)la) b) = { GOV : ifa=0.
It is straightforward to implement using classical efficient circuits for modular addition andltiplica-
tion. HenceA can be implemented usir@(log®(p)) quantum gates. Note th@f T = QFT; @QFT,,
and QFTg /N, = QFTy , both of which can be either implemented approximatEly 9Ejtor exactly

[MZ04] on a quantum computer usir@g(log? p) many elementary quantum gates. Hence the claimed com-
plexity for computing a quantum Fourier transform fdy, follows. [ |

3 Random bases and Fourier sampling

3.1 Nearly orthogonal vectors

In this subsection, we state some results about sets ofyrméinbgonal unit vectors in a Hilbert space. We
use||-|| to denote the&»-norm of vectors as well as thig-induced operator norm of matrices. We Uisd{,

to denote theé;-norm of a vectow. We let|| M ||;, = Trv MM denote the trace norm of a matix. For
subspace¥, V, having trivial intersection, theioverlapis defined asvlap(V1, V2) = maxy, 4, |(vi|v2)],
wherewv; range over unit vectors il;. LetIl; denote the orthogonal projection operator ovitolt is easy
to see thabvlap(Vy, Va) = ||[TL 1Ly

Proposition 2 Let V7, V5 be subspaces of a Hilbert space having trivial intersectitwet oo denote the
totally mixed state irl,. LetV; denote the orthogonal complementigfin V4 + V4 and o/, denote the
totally mixed state ift/;. Letd = ovlap(V1, V2). Then,

oz — obllee < 20421 — 62)~ V4,

Proof: Letd = dim V, anday, .. ., aq be an orthonormal basis fd%. Leta’, ..., a), be the Gram-Schmidt
orthonormalisation ofi1, . . ., ag With respect td/;. Hencea!, ..., a, is an orthonormal basis fdr;. We

will show that||a;)(a;| — |a)(a}|[lew < 26/2(1 — 6%)~H*forall 1 < i < d. Sinceoy = 1 3% | |a;)(ay]
andoh = 1 5°9 | |al)(al|, we will get

d
1
loz = oallr < < >~ llla){as] — lai) (@il < 26M2(1 = 6%) 714,
i=1



Fix somei, 1 < i < d. Letb; 4+ ¢; denote the orthogonal projection @f onto the space spanned by
andal, e, Qi—1, whereb; € V; andc; € span{al, ce ,ai_l} C V5. Then,

1> bi+al® = 15+ llesl® — 20(bs|ei)|
> 16ll” + llesll® — 26]1bs][]]c: |
= (L=8)[Ibs]1> + (8]|bill — llesl)?

> (1=8)]b:l,

i.e. b < ﬁ Now,

)
Vi

i.e. ||b; + || < 0'2(1 — 6%)~1/4. The third equality above follows from the fact that, . .., a;_1,q; are

pairwise orthogonal. Nowa;|a;) = ||a; — b; — ;|| = /1 — ||b; + ¢i]|?, and hence,

lai) (@il = lai) (@]l = 24/1 = Kailap)[* = 2[1bi + ¢l < 26M2(1 — 6%)7/1,

16 + cill” = (ailbs + i) = (ailbs) + (ailes) = (ailbs) <

This completes the proof of the proposition. [ |
Proposition 3 Letv], ..., v}, be unit vectors in a Hilbert space. Let< § < % Suppose for all, j, 7 # 7,
|(vi|v;)| < 4. Letwy,..., v, be unit vectors obtained by Gram-Schmidt orthonormalisihg . ., v/,. Then

foranyi, 1 <i<n,

[vs) (vi] — i) (i [ler < 2V6 - 5/m.

Proof: Fix somei, 1 < i < n. Leta;y; = Z;zlaj% be the orthogonal projection of_, ;, onto the
subspace spanned by, ...,v;. Thenforallk, 1 < k < 4, (vj]vi; — aiy1) = 0i.e. (vfvi ) =

)y Yt

Z;’:l Oéj<U;€|’U;->. SUppOSé{?, 1<k<ig is such thatozk| = mMax;:1<;<; |Oéj|. Then,

8= i)l = lewlliloi) = D legll(wplof)]
Ji1<i<i
J#k
> ol = D Jowl[(vilvf)]
Ji1<i<i
JF#k
> ogl(1 = (i —1)d)
1
> ’ak"§7
i.e. maX;.1<;<; ‘Oéj‘ < 24. Now,
i
laisal® < > laPlloil®+ >0 lagllag Il (vslvy)]
Jj=1 3,37 15,57 <i
J#J’
< 46%n + 46%n?
< 46°n+26%n
= 66%n.
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Reasoning as at the end of the proof of Proposl[ilon 2, we get

vit1) (iga] = [vi) Wil = 2\/1 — Hvig1|vi )

= 2/1— |lofy; — @il
= 2/T- (1~ e )

= 2fjait|l

< 2V6-6v/n.

This completes the proof of the proposition. [ |

3.2 Random orthonormal vectors

In this subsection, we state some facts about random onthhaisets of vectors ift?. One way of generat-
ing a random unit vector i€? is as follows: Considefys, ..., y2q) € R*¢, where eachy; is independently
chosen according to the one dimensional Gaussian disabwith mean0 and variancel (i.e. y; is a

real valued random variable with probability density fuunt% exp(—y?/2)). Normalise to get the unit

vector (z1, ..., xaq), Wherex; = \/ﬁ (note that an)y\iﬁ: 0 with zero probability). We thus get a
random unit vector ifR??. |dentifying a pair of real numbers with a single complex fem we get a ran-
dom unit vector(zy, . . ., z4) in C%. To generate a random orthonormal ordered{sgt. . ., v,,} of vectors
in C%, we can first sample: unit vectors{v}, . .., v/, } in C? and then do Gram-Schmidt orthonormalisation
on them to ge{wvy, ..., v, } (note that with probabilityt, {v{,...,v),} are linearly independent).

The following fact can be proved by combining Theorem 14&n# Proposition 14.3.3 of [MatD2,
Chapter 14] and using the concavity of the square-root fomnct

Fact 2 Lett > 0, and|v), |w) independent random unit vectors@{. Then,

Pr ||(v|w)| >t + % < 2exp(—t3d).

We will require the following upper and lower bounds on thiéstaf the chi-square distribution (the
chi-square distribution witld degrees of freedom is the sum of squared afdependent Gaussians with
mean( and variancel). The upper bound can be proved via Chernoff-style argusnentthe moment
generating function of the chi-square distribution. Thedobound follows, for example, from the central
limit theorem in probability theory. One can also give a diggroof of the lower bound using the probability
density function of the chi-square distribution and estintait via Stirling’s approximation of the gamma
function.

Fact 3 Let(Xy,...,X ) be independent random variables such thatis one-dimensional Gaussian with
mean0 and variancel. Let X? = X7 +--- + X2. Let0 < ¢ < 1/2. There exists a universal constant
~ > 0 such that

1. Pr[|X? — d| > de] < 2exp(—de?/6),
2. Pr[X? > d+Vd] > ~, Pr[X? <d—Vd] > 7.

The following result follows easily from FaCt 3. A similarg@t appears as Lemma 2 [N J[MRRS$04].

11



Fact4 LetV = {a',...,a?} be a random orthonormal set gf vectors inC¢. Leta' denote thejth
coordinate of vector'. Deflne thed-dimensional probability vecta$ as follows:S; = —1 ]a \2 Let

0 < e < 1/2. Suppose = Q(e 2logd). LetU denote the uniform probability d|str|but|on o[rl ,d}.
Then, with probability at least — exp(—(e?p)) over the choice of/, ||S — U||; < .

We will also need the following Chernoff upper bounds on tikadf the sum ofl independent identically
distributed binary random variables.

Fact 5 (JAS00, Cor. A.7, Theorem A.13])Let (X1, ..., X,) be independent binary random variables such
thatPr[X; = 1] = p. LetX = X; +--- + Xj. Let0 < e < 1/2. Then,

1. Pr H% —p| > €] < 2exp(—2¢2d),

2. Pr[X < %p] < exp(—dp/8).

3.3 Hidden subgroup problem and Fourier sampling

In this subsection, we recall the standard approach torgpthie hidden subgroup problem based on Fourier
sampling. Ad-dimensional unitary representation @fis a group homomorphism : G — U(d), where
U(d) is the group ofd x d complex unitary matrices under multiplication. L&{G] denote the group
algebra; it is aG|-dimensional Hilbert space ovér with group elementsg), ¢ € G as an orthonormal
basis. LetR[G] denote theéG|-dimensional Hilbert space ovérspanned by the orthonormal basis vectors
lp,i,7), wherep runs over inequivalent irreducible unitary representetiof G andi, j run over the row
and column indices op. The quantum Fourier transform ovéf, QF T, is the following C-linear map

from C[G] to R|G] defined as follows:
Z\/ Z pij(9)lp, 1, 5),
i,j=1

whered,, denotes the dimension pf QFTG is an inner product preserving map frdiG| to R[G].
For a subsefl” C G, define|T) = \/\T > et |t) to be the uniform superposition over elements of

T. For a representatiop, define the matrix(7") = \/IT Y erp(t). If H < G, it can be shown (see

e.g. [HRTSO0R]) that\/_p( )

space of consisting of all vector) such thap(h)|v) = |v) forall h € H. Thus,rank(p(H)) = dim V.
In the strong Fourier sampling method for the hidden subgmoblem, we begin by forming the uni-
form superposition— > _ |9)|0) and then query to get the superpositionﬁ >gec |9)1f(g)). We

Vicl

then measure the second register to get a uniform mixtunevextors|gH ) in the first register. Assuming
the first register is in statg H ) for some particulay € G, its state after the application QfF' T, becomes

%Z\/_ng gh)|p.i, 5)-
‘GH pz] heH

If we now measure the representation name and column indegamplep, j) with probability

is an orthogonal projection onto the subspaég of the representation

Pf(p,j) = ‘G‘lew ,G,Hp( H)[5)|? = ,G,Hp( )1

12



The third equality above follows from the fact thigt(gH)|5) || = [lp(9)p(H)|5)| = llp(H)|j)||, since
p(g) is unitary. Thus, as long as we measure just the represemtatime and column indefp, j), the
probabilities are independent of the actual cegétthat we find ourselves in. This fact can be viewed as
the non-abelian generalisation of the fact that in abeliauriér sampling the probability distribution on the
characters is independent of the actual coset that we laind #so, it can be shown that (see [GSVV04])

dp
_p o _ dplH| _dplH|

In weak Fourier samplingwve only measure the namesf the representations and ignore the column indices
4. It can be shown (see e.@¢. [HRTS$03]) that for normal hiddésgsaupsH, no more information about
H is contained in the column space of the resulting state #feemeasurement @f. Thus, weak Fourier
sampling is the optimal measurement to recover a normaéhiddbgroup starting from the uniform mixture
of coset states.

Define a distance measut€G; H1, Hy) = 3, |Pf, (p) — Pf,(p)| between subgroup, Hy < G.
w(G; Hy, Ho) is the total variation distance between the probabilityritistions, when the hidden subgroup
is H; or Hy, on the names of the representations obtained via weakdf@ainpling.[[HRTS03, GSVV04]
show thatO(log |G|) weak Fourier samplings suffice to reconstruct tieemal corec(H ) of the hidden
subgroupH, wherec(H ) is the largest normal subgroup 6fcontained inH. Adapting their arguments,
we prove the following result.

Proposition 4 Let H;, Hy < G. Suppose(H,) # c(Hz). Thenw(G; Hy, Hz) > 1/2.

Proof: Let Ny = c¢(H;) and Ny = ¢(Hz). Without loss of generalityN; £ N,. Define the kernel of a
representatioker p = {g € G : p(g) = 1q4,}; ker(p) < G. It can be shown (see e.g. [HRTSO03]) for an
irreducible representatiomand a subgroug! < G, that ifrank(p(H)) > 0, ¢c(H) < ker p. Hence,

d,|H d,|H
I ATED SE <SSR DI <SR A
p p p:Na<ker p

SinceN; < G, N1H; is a subgroup ofz. Hence,N; < ¢(N1Hz) and Ny <1 ¢(Ny1Hj). SinceN; £ Ho,
|N1Hs| > 2 - |Hs|. For an irreducible representatiprsuch thatV, <1 ker p,

rank(p(N, Hy)) = rank(p(Ny)p(Hz)) = rank(p(H)).

Also,
d,|N1H: d,|H:
1= Z % -rank(p(N1Ha)) > 2 - Z % -rank(p(Hz)),
p:N1,Na2<ker p ‘ ‘ p:N1,Na<ker p ’ ’
i.e. L )
S ) < 2.
G| 2
p:N1,Na<ker p
Finally,

w(Gs Hy, Hy) = Z%’]-||H1|rank<p<H1>>—|H2|rank<p<H2>>|
p
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d

> > ﬁ - |Ha| rank(p(H2))

p:Na<lker p,N1 4 ker p

d
> 1- Yy ﬁ - |Ha| rank(p(H2))
p:N1,Na<ker p

1
> —.
- 2

This completes the proof. [ |

For a normal subgroupy <1 G, define thenormal core familyof N, ncf(N) = {H : H < G,c¢(H) =
N}. Inview of Propositioi 4, the remaining challenge is toidiish between subgrougs,, H, from the
same normal core family.

The success of strong Fourier sampling depends on how maigstisal information abou#! is present
in the probability distributionPg(p,j). The amount of information, in general, depends on the ehoifc
basis for each representatipni. e., on the choice of basis fgr see [MRRS04] for more details. Grigni et
al. [GSVV04] show that under certain conditions @rand H, therandom strondg~ourier sampling method,
where a random choice of basis is made for each represaentgives exponentially small information about
distinguishingH from the identity subgroup In the next section, we prove mmlementary result viz.
under different conditions o@, (log ]G]) 1) random strong Fourier samplings do give enough information
to reconstruct the hidden subgrofpwith high probability.

4 Power of the random strong method

In this section, we define a paramet€6;) on a groupG which, if at least(log |G|)~°(), suffices for the
random strong method to identify the hidden subgroup wiih |G|)°(Y) Fourier sampllngs. Letl1, Hy <
G. We first define a distance measufé; H,, H2) betweenH, H,. In what follows, we use the notation
of Sectio3.B.

Definition 1 (r(G; Hy, Ha; p)) Supposg is an irreducibled ,-dimensional unitary representation 6f Let
1I; denote the orthogonal projection ontqi_ e II; = ‘Tl‘ ZheHi p(h). LetII; » denote the orthogonal
projection ontoV; N V. Itis easy to check that)y n Vg, = V§, .\, where(H,, I,) denotes the
subgroup ofG’ generated by, and H. Thus,II; » = I(TIHM Zhe(Hl,H2> p(h). Definell, = II; — II; .
IT; is the orthogonal projection onto the subspdcedefined as the orthogonal complemeang@I‘1 N V[}2
in V. V{ and V3 have trivial intersection. Define; = rank(Il;) and r; = rank(II}). Defineh =
max{|H,|r1, |Ha|r2}, b = |(|Hi|r1 — |Ha|ro)| andd = ||IT}114]|. Recall thatd = ovlap(V/, V4). Consider
the following three cases:

1. When% Q((r1 + r2)%/?). Loosely speaking;, r, are both small. In this case, define

r(G; Hy, Ha; p) = max{2 ( <\/7 \/7> —251/2(1—52)_1/4> ,ﬁ}

1

2. WhenY-% \/|—‘ = Q(r;) and 2 = = Q(log? |G|). Loosely speaking;, is small andr; is relatively large
with respect ta;. In this case define

h 1\ -
r(G; Hy, Ha; p) Zmax{§-Q <\/—r—1> ,h}.

14



3. Otherwise, define(G; Hy, Hy; p) = h.

Definition 2 (T‘(G; Hl,HQ), T‘(G)) LetH,, Hs < G. Definer(G; Hl,Hg) = Zp €N (G Hy, Ho; ) and
r(G) = ming, g, r(G; Hy, Ha).

From the above definition, it is easy to see th@t; H, Hs) > w(G; Hy, Hs).

Definition 3 (PEB) Let B be a set of orthonormal bases for the irreducible unitaryresentations of.

Supposé! < G. P5F denotes the probability distribution on the representatimmes and column indices
(p, ) got by strong Fourier sampling the stgtd) according toB.

The significance of (G; Hy, H2) arises from the following theorem.

Theorem 1 With probability at least —exp(—Q(log? |G|)) over the choice of random representation bases
B for Fourier sampling,
||PI§£B - ng”tr > (G5 Hy, Ha).

Using this theorem, we can apply a ‘minimum-finding-likegatithm to identify the hidden subgroup.

Corollary 1 Let s(G) denote the number of distinct subgroupscaf With probability at leas2/3 over
the choice of random bases for representationg>pfFourier samplingO (logf( ))> times in a random

2
basis gives enough classical information to identify a eiddubgroup irG. In particular, O <<1‘;%GC);|) >

random strong Fourier samplings suffice.

Proof: From Theorent]l, we get that for all pairs of subgroups H> < G, with probability at least
1 — exp(—Q(log? |G|)) over the choice of random basBsfor representations df, HPE{B — ngﬂtr >

r(G). Call a set of representation basegood if HPgl’B - ngHtr > r(G) for all pairs of subgroups
H,, H, < (. By the union bound on probabilities, a random choice ofesgntation bases gives a gaéd
with probability at least — s(G) exp(—2(log?|G|)) = 1 — exp(—(log?|G|)). Suppose we have such a
goodB. Under the promise that the hidden subgroup is eifiieor H,, B recognises which one it is with
confidence at leadt/2 + r(G) /4 using Bayes’s rule. Using Fédt 5, the confidence can be hbust least

1-— WIG) by Fourier sampling) (ﬁ%f(é;)) times with 3. We can now run a classical ‘minimum-finding-
like’ algorithm on the measured samples, comparing two suljgs H,, Ho < G at a time, to discover the

actual hidden subgrouff in G with confidence at least — s((GG)) = 3/4. The overall confidence bound

becomeg1 — exp(—Q(log?|G]))) - 2 > 2. The second bound follows from the fact thg€) < 2o2” 1G],
since any group of size has at moslog a generators. [ |
The rest of the section is devoted to proving Thediem 1. Widlicsve some necessary technical lemmas.

Lemma2 LetW = {a,...,aP} U {b},... b9} U {c!,..., "} be arandom orthonormal set pf+ g + r
vectors inC<. Let a;ﬂ denote thejth coordinate of vectow?; similar notations will be used for the vectors
b, ¢ too. Define twal-dimensional probability vectorS, T' as follows:

iy (ot e o) m = o (S i),
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Then there exists = 6((p + ¢ + ) ~%/?) such that the following holds: Define= dé> — 2log(p + q +r).
Supposer = Q(1). Then, with probability at least — exp(—£2(«)) over the choice of,

\\S—T|11=Q(ﬁ+ﬁ).

p+r q4+r

Proof: Generate asét’ = {a’!,...,aP}YU{b, ... b} U{t,... "} of p+ ¢+ rrandom independent
unit vectors inC? as described in Secti@n3.2. Lef, 3}, v}, j = {1,...,d} denote the Gaussians used to
generate the random unit vectar$, b, ¢* respectively. Then,

i _ o N s i g4
a; = d 112’ bj_ d 1312’ G = d 12"
lel |ozl | Zl:l Wl | Elzl |'71 |

By Fact3, with probability at least— 2 exp(—dé?) over the choice of the Gaussians, the normalisation
factor in the denominator of a given vector’ is /(1 & €)d wheree = O(0). Let E, be the event that
the normalisation factors in the denominators of all vectoriV’ are /(1 + €)d. By the union bound on
probabilities,Ey occurs with probability at leadt— 2 exp(—«) over the choice of the Gaussians.

Sincea = Q(1), 6 > Z. By Factl2, for anyw",w” € W', i # j, [(w"jw”)| < &+ & < 20
with probability at leastt — 2 exp(—dé?) over the choice of the Gaussians. L&t denote the event that
|(w'|w7)| < 2§ for all w,w” € W', i # j. By the union bound on probabilitiedy; occurs with
probability at least — 2 exp(—«) over the choice of the Gaussians.

Using FacEB we see that for any fixed coordinatevith constant probability at leastover the choice
of the Gaussians, each of the following three events occurs::

p q T
Sl >p+ B SIBE<a-vE Y P >r4l
=1 i=1 i=1

Since these are independent events, all three of them hadoatlinate; simultaneously with constant

probability at leasé®. Call such a coordinatggood Let E, denote the event that more th%gi coordinates

j are good. By Fadfl5» occurs with probability at leadt— exp(df?/8) over the choice of the Gaussians.
Now suppose that all three everi, F1, E5 occur. We Gram-Schmidt orthonormaligg’ to get the

random orthonormal sét/ = {a',...,a?} U {b',... . 09} U {c},...,c"}. Let S’, T’ be the analogous

probability vectors defined with respectlid’ instead ofi¥’. From Propositiol3, we see that

) (w| = ') | <20-8- (p+g+7)=O0((p+q+r)7")

for corresponding vectors € W, w’ € W’. Define density matrices

<Z|ai><ai|+§j|ci><ci|>, o= <Z|a'i><a”‘|+Z|c"'><c'i|>,
i=1 =1 prr i=1 i=1

1
p+r

1 a .o 1 a L
T = bz bz ‘|‘ CZ CZ ) 7_/ — b/z b/z _|_ Clz C/z )
—q+r<;| )(b'] ;I ) |> —q+r<;| ) (0" ;I )|
Then, S, 8", T, T" are the probability distributions got by measuring theestat o/, 7, 7’ in the standard
basis ofC. By triangle inequality)jo — o'l = O((p + ¢ +r)~") and||7 — /||l = O((p+ g +7)7 ).
Hence,|S — S'||1 = O((p+q+r) Y and||T —T'||y = O((p+q +r)~h).
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For agoodcoordinatej

/ / p q r+1 1 1
155 =131 > (p+r)(1+e)d_(q+r)(1—e)d+(1+e)d<p+r_q+r>
VP n V4
p+r)1+ed  (g+7)(1—¢€)d
_ —2qe N q—p VP V4
(q+r) (1 —e)d  (p+r)(g+r)(1+ed p—l—r)( +e)d +r)(1—e)d
1 q
> 0 (grarmrara—omrarroa) <p+r+q+r>>
_ofl(NP . VT
a Q<d<p+r+q+7“>>'

The first, third and fourth steps above follow from the faattth= O(5) = O((p + ¢+ r)~%/?) andp < ¢
without loss of generality.
Now,

IS =T > > 15— T’|>dig Q<1<*/T9 + ﬁ)):s}(\/ﬁ + ﬁ).

1 good d\p+r q+r

Finally,

IS =Tl = [I8"= Tl = IS = &' = T = T'||x

- (i) 0 )
o),

ptr q+r

The confidence bound is
Pr[Ey A FEy A Eg] > 1 —4exp(—a) — exp(df?/8) = 1 — exp(—Q(a)),

sinced = O(1). This completes the proof of the lemma. ]
We can prove the following lemma in a similar fashion as LeriZna

Lemma3 LetW = {a',...,aP} be a random orthonormal set pfvectors inC¢. Leta§- denote thejth
coordinate of vectou’. Define thel-dimensional probability vecta$ as follows:S; = 3 3°7_, [a%[*. Then
there exists) = #(p~!) such that the following holds: Define= dj? — 2log p. Supposer = Q(1). LetU
denote the uniform probability distribution df, ..., d}. Then, with probability at least — exp(—Q(«))
over the choice oV, ||S — Ul|; = Q(p~/?).

Proof: (Sketch)Generate a sét’’ = {a’l ,a'P} of prandom independent unit vectorsi as described

in Section[33P. Let:y/Z = {1,...,d} denote the Gaussians used to generate the random units/ector

a”. Then,a;’ = L,
Syl

W = {a!,...,a"}. Let Ey be the event that the normalisation factors in the denomigadf all vectors

in W’ are \/(1 + €)d, wheree = O(d). Ey occurs with probability at least — 2 exp(—«)) over the

/

We Gram-Schmidt orthonormaligd”’ to get the random orthonormal set
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choice of the Gaussians. L& denote the event thatw’ |w”)| < 2§ for all w,w” € W', i # j. E;
occurs with probability at leadt— 2 exp(—«) over the choice of the Gaussians. Call a coordiriaeodif
SP ]a?!z > p+ /p. Let E; denote the event that more th%’h coordinates are good.E» occurs with
probability at least — exp(df/8) over the choice of the Gaussians.

Now suppose that all three everits, F, E» occur. LetS’ be the analogous probability vector defined
with respect td¥V’ instead ofiV’. Then,||S — S’||; = O(p~'/?). For agoodcoordinate;

1 ' 1 1 1

A+od d & Jpl+ed

—€ 1
(1+e)d * VP(1+e€)d

1 1
= - +Q
°(a) (a)
1
= Q(—].
(@)
The third step above follows from the fact that O(5) = O(p~!). Hence,

IS -vh= 3 I5-11> 0 (7z) -2 ().

j:5 good
IS=Ul > IS = Uls = IS = S'|r = Qp~/*) —0(p™") = Qp~'/?).
The confidence bound is

Finally,

Pr[Ey A Eq A Eg] > 1 —4exp(—a) —exp(df/8) =1 — exp(—Q(a)),

sinced = O(1). This completes the proof of the lemma. ]

We are now in a position to finally prove Theoréin 1.

Proof: (of Theorem[1) Let p be an irreduciblatlp-dimensional unitary representation @f We follow
the notation of Definitiofidl fop. Let V' denote the orthogonal complementiéf in V/ + V. Leto;

denote the totally mixed state Irj ando’ denote the totally mixed state iy’ + (V3 N V2). By Proposi-
tion, [|oy — o] < 267/2(1 — 62)~1/4. Let B, be a random orthonormal basis far Let P, := P

denote the probablllty distributions on the vectors&;fgot by Fourier sampling the stated;) respec—
tively, conditioned orp being observed. The®; is the probability distribution got by measurirg in

the basisB,. Let P, denote the probability distribution got by measuring in the basisB,. Then,
”P2 — Pg//”l < 251/2(1 — 52)_1/4. Definerl,g = rank(Hl,g). Note thatr; = Tg + 7r1,2.

Suppose case 1 of Definitifh 1 applies. LBtbe a random orthonormal setdf + 14, + r; o vectors
in C% . Define probability distributions, 7" with respect tdV as in Lemm&R. By symmetry; = S and
PY = T. Note thatr}, + 5 + 712 <7y +r9 andr} +rh + 712 < d, < \/|IG]. Henced, - 0((r} + 5 +
r1.2)7%) — 2log(ry + 74+ r12) = Q(log? |G|). The conditions of Lemmid 2 are satisfied, and we get, with

probability at leastt — exp(—Q(log? |G|)) over the choice oB3,, that||P, — Py = Q (*{—:_1 + {—E)
Thus with probability at least — exp(—Q(log? |G|)) over the choice 0B,

[P — Py > |PL— Py|l1 — [|P, — Py[|1 > © <\/_ \/_> — 2612 (1 — 8%,
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Suppose case 2 of Definitidd 1 applies. ll&t be a random orthonormal set ef vectors inC%.
Define probability distributionS with respect tol¥ as in Lemmd13. By symmetry?, = S. Note that
r1 < d, < \/|G|. Henced,-0(r;*)—2log r1 = Q(log? |G|). The conditions of Lemnid 3 are satisfied, and
we get, with probability at leadt— exp(—Q(log® |G|)) over the choice 0B, that||P, — Ul|; = (\/Lﬁ)
Also, 7 = Q(rlogd,). The conditions of Fadil4 are satisfied, and we get, with fbitibaat least
1 — exp(—Q(log? |G|)) over the choice o8, that||P, — Ulj; = O (%) Thus with probability at least

1 — exp(—Q(log? |G|)) over the choice 0B,
1
I = Pl > 7= Ul = 22 - U =2 (= ).
SUppOSQHﬂT‘l > |H2|r2 i.e. il = |H1|T‘1. Then,
G,B GB GB G.,B d G,B G.B
1Py, — Py | E:HPH1 * — P§,(p)Py, "l = Z,—é, NHyir Py = Harg Py " 1.
P

Now,

G,B G,B G,B,
||H17"1PH1 L —HQT‘QPH2 pH1 = HHITI(PH

H1T1

G.B G.B
PH2 p) + (HlT‘l — HQT‘Q)PH2 pH1

NP = P

v

The last step above follows from the fadigr; — > |jug]|1 where(vy); == v; if v; >0,
(v4); == 0 otherwise, and| P, — P|jy = 2||(P1 — P»)+ |1 for probability vectorsP;, P,. Also note that
for any choice of representation bas&sHlengl’B” — ngngf”Hl > |Hyr — Harsa|. Hence,

Hir
G,B G.B 171 GB GB
IFGE PG 2 3 i ma o { 0 PG = PP o~ Haral

> Z’G’ G H17H27 )
= (G7H17H2)-

For each representatign the confidence bound in applying the above random basisremgis is at
leastl — exp(—Q(log? |G])). Since there are at mogE| representations, the total confidence bound is at
leastl — |G| exp(—(log? |G|)) = 1 — exp(—Q(log? |G|)). This completes the proof of the theorem.m

We now have all the tools to prove thdtH,) = €2(1). In fact, we can now prove the following theorem.

Theorem 2 The random strong method is sufficient to solve the hiddegrsup problem in the Heisenberg
group H,. The query complexity of this algorithmdlog p). The quantum part of the algorithm consists
of a circuit of sizeO(log? p) followed by a circuit of siz&(p?) for implementing the measurement in a
random orthonormal basis. The classical post-processiogschot make any queries and has a running
time ofO(p*).

Proof: First, we characterize the normal core families in the elei®rg group. We have that

nef(H,) = {Hy}, ncf(C(H,)) = {C(Hy)}, nef(N;) = (N}, fori € {0,...,p — 1,00}
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are families of sizd each. For the trivial group we get that
an({l}) = {AZ,] RS {07 SRRy “a 1,00},j € {07 SRRy “a 1}} U {{1}}

If H, and H, are candidate hidden subgroups from different normal camglies, then by Propositiod 4
we get that(H,; H1, H2) > w(H,p; Hi, H2) > 1/2. We now consider the situation where bdih, H, €
ncf({1}). We fix an irreducible representatign= p;, (for k = 1,...,p — 1) of degreedeg p = p. Now, we
distinguish two cases:

1. |Hi| = |Ha| = p, i.e., there are, j, 7, j/, (i,j) # (,j') such thatd; = A; j andHy = Ay jr.
Using the notation of Definitiol 1 we have that= r, = 1, since by LemmaEl1 the ranks 6%.; ; and
Py j are both one. Alsg|Py.; j P.iv j|| < %. This also implies that] = r; = 1 andr} =, = 1,
since the one-dimensional projectdrs,; ;, Py, ;- are linearly independent. HencB,{,;m = Pp
and Py, s = Py jr. $0,0 = || Py, i Pl ol < Since|H,|r; = |Ha|ra = p, h = pandh = 0.

As

\/_

Vo P 3/2y _
log’Hp’ - 310gp - Q((Tl +T2) ) - Q(]‘)7

we are in the first case of Definitidh 1 and obtain that

r(My: H, Hoip) = 5 - (20 = 20— D7) = Q(p).

2. |Hi| = pand|H,| = 1, i.e., we have to distinguisil; = A; ; from the trivial subgroupg, = {1}.
In this case; = 1 andry = rank(p({1})) = p which implies that = p, h = 0. Since

Vdp r2 _ 2
log |H | Q(Tl) and E _p_Q(log |HP|)>

we are in the second case of Definitldn 1 and obtain that

r(Hp; Hy, Ha; p) = g -Q(1) = Q(p).

Overall we obtain that foff;, Hs € ncf({1}),

-1

d -1
r(Hp; H1, Ha) :Zp—g'T(Hp;HhH% Z]% (Hp; Hi, H; pi;) > (]7])73)]9‘9(})) = Q(1).
p k=1

S

Hence,r(H,) = Q(1). Recall thats(H,) = O(p?). Now Corollaryll shows that with probability at least
2/3 over the choice of random representation bases, the HSR,foan be solved usin@(log p) random
strong Fourier samplings.

As shown in Propositioll 1, thQF'T over?,, can be implemented usir@(log® p) elementary quantum
gates. Since there a(log p) Fourier samplings, the initial part of the quantum circuistsizeO (log? p).
The claimed statements about the number of quantum opesatiecessary to implement a measurement
in a random orthonormal basis follow from general upper lulsuof@(pQ) on the number of gates in
a factorization of a unitary operatioli € U(p) into elementary gates. The classical time to generate
the randomlJ is O(p?) since we can start with a set pfrandom unit vectors and apply Gram-Schmidt
orthonormalisation to obtain a random unitary matrix. fer¢lassical post-processing we have to compute
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a table of probability distributions with respect to thedam measurement bases for all subgroups. Since
there areO(p?) subgroups and each probability distribution computatikes timeO(p?) we can upper
bound this b)é(p4). After this table has been precomputed the actual algorithiind the hidden subgroup

is ‘minimum-finding-like’ in which we ‘compare’ two subgrps at a time. This takes tin(é(pQ). Overall,

we obtain that the running time of the classical part of thgeathm can be upper bounded ti(p‘*). [ |
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