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Abstract

We show that many well-known signal transforms allow highly ef-
ficient realizations on a quantum computer. We explain some elemen-
tary quantum circuits and review the construction of the Quantum
Fourier Transform. We derive quantum circuits for the Discrete Co-
sine and Sine Transforms, and for the Discrete Hartley transform. We
show that at most O(log2 N) elementary quantum gates are necessary
to implement any of those transforms for input sequences of length N .

§1 Introduction

Quantum computers have the potential to solve certain problems at much
higher speed than any classical computer. Some evidence for this statement
is given by Shor’s algorithm to factor integers in polynomial time on a quan-
tum computer. A crucial part of Shor’s algorithm depends on the discrete
Fourier transform. The time complexity of the quantum Fourier transform is
polylogarithmic in the length of the input signal. It is natural to ask whether
other signal transforms allow for similar speed-ups.

We briefly recall some properties of quantum circuits and construct the
quantum Fourier transform. The main part of this paper is concerned with
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the construction of quantum circuits for the discrete Cosine transforms, for
the discrete Sine transforms, and for the discrete Hartley transform.

§2 Elementary Quantum Circuits

The quantum computation will be done in the state space of n two-level
quantum systems, which is given by a 2n-dimensional complex vector space.
The basis vectors are denoted by |x〉 where x is a binary string of length n.
The basic unit of quantum information processing is a quantum bit or shortly
qubit, which represents the state of a two-level quantum system.

A quantum gate on n qubits is an element in the group of unitary matrices
U(2n). There are two types of gates that are considered elementary: the XOR
gates (also known as controlled NOTs) and the single qubit operations.

The controlled NOT gate operates on two qubits. It negates the target
qubit if and only if the control qubit is 1. Suppose that x = bn . . . b1 is a
string of n bits, then

CNOTc,t |x〉 =

{

|y〉 if bc = 1
|x〉 if bc = 0

where y is the bitstring obtained from x by negating the bit bt.
A single qubit gate acts on a target qubit at position t by a local unitary

transformation
12n−t ⊗ U ⊗ 12t−1 , U ∈ U(2).

It will be convenient to describe the quantum circuits with a graphical
notation put forward by Feynman. The circuits are read from left to right like
a musical score. The qubits are represented by lines, with the most significant
bit at the top. Figure 1 shows the graphical notation of the elementary gates.
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Figure 1: The Feynman notation for the single qubit gate (12 ⊗ U) and for a
controlled NOT operation |b′2 b′1〉 = |b2 b2 ⊕ b1〉.

A multiply controlled NOT is defined as follows. Let C be a subset of
[1..n] not containing the target t. Then

CNOTC,t |x〉 =

{

|y〉 if bc = 1 for all c ∈ C
|x〉 otherwise



where |y〉 is defined as above. Several controlled NOT operations in a se-
quence allow us to implement the operation Pn |x〉 = |x + 1 mod 2n〉. Note
that O(n) elementary gates are sufficient to realize a multiply controlled NOT
operation on n qubits, assuming that an additional scratch qubit is available.
Therefore, at most O(n2) elementary gates are necessary to implement the
shift operation Pn.
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Figure 2: Shift

The state of two qubits can be exchanged with the help of three controlled
NOT operations:

SWAPk,h = CNOTh,kCNOTk,hCNOTh,k.

It follows that any permutation of the n quantum wires can be realized with
at most O(n) elementary quantum gates.

A more detailed discussion of properties of quantum gates can be found
in [1]. We will discuss the construction of the discrete Fourier transform in the
next section. In particular, we will show the classical dataflow diagram and
the corresponding quantum gates to further illustrate the graphical notation.

§3 Quantum Fourier Transform

The discrete Fourier transform of length N = 2n is defined by

FN =
1√
N

[

ωjk
]

j,k=0,...,N−1

,

where ω = exp(2πi/N) with i2 = −1. Recall the recursion step used in the
Cooley-Tukey decomposition:

FN = ΥN(12 ⊗ FN/2)

(

1N/2

TN/2

)

(F2 ⊗ 1N/2) (1)



where TN/2 := diag(1, ω, ω2, . . . , ωN/2−1) denotes the matrix of twiddle fac-
tors, and ΥN denotes the permutation given by ΥN |xb〉 = |bx〉 with x an
n − 1-bit integer, and b a single bit.

We note that the implementation of F2 is a local operation on a single
quantum bit. The recursion suggest four different parts of the implemen-
tation of Fourier transforms of larger length. The matrix (F2 ⊗ 1N/2) is a
single Hadamard operation on the most significant qubit. We would like to
emphasize that this single quantum operation corresponds to a full butterfly
diagram.

The implementation of the twiddle matrix is more complex. Notice
that TN/2 can be written as a tensor product of diagonal matrices Lj =

diag(1, ω2j−1

) in the form

TN/2 = Ln−1 ⊗ . . . ⊗ L2 ⊗ L1.

Thus, 1N/2 ⊕ TN/2 can be realized by controlled phase shift operations. Fig-
ure 3 shows the implementation of the two operations discussed so far.
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• •
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Figure 3: For length N=8, only three qubits are necessary. The circuit on
the left implements (F2 ⊗ 1N/2) and the other realizes the twiddle matrix 14 ⊕
diag(1, ω, ω2, ω3).

It remains to discuss the other two operations in (1). The operation
(12 ⊗ FN/2) means that an implementation of the discrete Fourier transform
of length N/2 is used on the least significant (n− 1) bits. The operation ΥN

is a permutation of quantum wires. We can combine all the permutations

ΥN(12 ⊗ ΥN/2) . . . (1N−2 ⊗ Υ4)

into a single permutation of quantum wires. The resulting permutation is
the bit reversal, see Figure 4. The classical and quantum implementation
of the discrete Fourier transform of length 8 are compared in Figure 5. We
observe that the butterfly diagrams find simple realizations but the twiddle
matrices require more elementary quantum gate operations.
The complexity of the quantum implementation can be estimated as follows.
If we denote by R(N) the number of gates necessary to implement the DFT
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Figure 4: The bit reversal permutation is given by 12 ⊗ Υ4 followed by Υ8.

of length N = 2n on a quantum computer, then equation (1) implies the
recurrence relation

R(N) = R(N/2) + O(log N)

which leads to the estimate R(N) = O(log2 N).
Shor’s factoring algorithm relies on the quantum Fourier transform in a

fundamental way. For more details on Fourier transforms and their general-
izations to nonabelian groups, see [4, 5].

§4 Quantum Cosine and Sine Transforms

We derive quantum circuits for discrete Cosine and Sine transforms in this
section. The main idea is simple: reuse the circuits for the discrete Fourier
transform.

The discrete Cosine and Sine transforms are divided into various fami-
lies. We follow [6] and define the following four versions of discrete Cosine
transforms:

CI
N :=

(

2

N

)1/2 [

ki cos
ijπ

N

]

i,j=0,...,N

CII
N :=

(

2

N

)1/2 [

ki cos
i(j + 1/2)π

N

]

i,j=0,...,N−1

CIII
N :=

(

2

N

)1/2 [

ki cos
(i + 1/2)jπ

N

]

i,j=0,...,N−1

CIV
N :=

(

2

N

)1/2 [

ki cos
(i + 1/2)(j + 1/2)π

N

]

i,j=0,...,N−1

where ki := 1 for i = 1, . . . , N − 1 and k0 := 1/
√

2. The numbers ki ensure
that the transforms are orthogonal. The discrete Sine transforms are defined
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by

SI
N :=

(

2

N

)1/2 [

ki sin
ijπ

N

]

i,j=1,...,N−1

SII
N :=

(

2

N

)1/2 [

ki sin
i(j + 1/2)π

N

]

i,j=0,...,N−1

SIII
N :=

(

2

N

)1/2 [

ki sin
(i + 1/2)jπ

N

]

i,j=0,...,N−1

SIV
N :=

(

2

N

)1/2 [

ki sin
(i + 1/2)(j + 1/2)π

N

]

i,j=0,...,N−1

where the constants ki are defined as above. Notice that CIII
N (resp. SIII

N ) is
the transpose of CII

N (resp. SII
N), hence it suffices to derive circuits for the

type II transforms.
It is well-known that the trigonometric transforms can be obtained by

conjugating the discrete Fourier transform F2N by certain sparse matrices.
We refer the reader to Wickerhauser [7] for more details on the decompos-
tions.

DCTI and DSTI. We derive the circuits for the discrete Sine and Cosine
transforms of type I all at once. Indeed, the DSTI and DCTI can be recovered
from the DFT by a base change

T †
N · F2N · TN = CI

N ⊕ iSI

N , (2)

where

TN =



























1
1√
2

i√
2

... ...
1√
2

i√
2

1
1√
2

− i√
2

... ...
1√
2

− i√
2



























.

It is straightforward to check that (2) holds, see Theorem 3.10 in [7]. Since
we already know efficient quantum circuits for the DFT, it remains to find
an efficient implementation of the base change matrix TN .

It will be convenient to denote the basis vectors of C2n+1

by |bx〉, where
b is a single bit and x is an n-bit number. The two’s complement of an n-bit
unsigned integer x is denoted by x′, that is, x′ = 2n − x. The action of TN



can be described by

TN |00〉 = |00〉 TN |0x〉 = 1√
2
|0x〉 + 1√

2
|1x′〉

TN |10〉 = |10〉 TN |1x〉 = i√
2
|0x〉 − i√

2
|1x′〉

for all integers x in the range 1 ≤ x < 2n. Ignoring the two’s complement in
TN , we can define an operator D by

D |00〉 = |00〉 D |0x〉 = 1√
2
|0x〉 + 1√

2
|1x〉

D |10〉 = |10〉 D |1x〉 = i√
2
|0x〉 − i√

2
|1x〉

for all integers x in the range 1 ≤ x < 2n. This operator is essentially
block diagonal and easy to implement by a single qubit operation, followed

by a correction. Indeed, define the matrix B by B =
1√
2

(

1 i
1 −i

)

, then

Figure 5 gives an implementation of the operator D.

B

..

.

B†

c

c

h

h

•

Pn

•

Figure 5: Circuits realizing the block matrix D and the permutation π.

Define π to be the permutation given by a two’s complement conditioned
on the most significant bit π |0x〉 = |0x〉 and π |1x〉 = |1x′〉 for all n-bit
integers x. It is clear that TN = πD. The circuits for the permutation π is
shown in Figure 5.

Theorem 1 The discrete Cosine transform CI
N and the discrete Sine trans-

form SI
N can be realized with at most O(log2 N) elementary quantum gates;

the quantum circuit for these transforms is shown in Figure 6.

Proof. Let N = 2n. We note that O(log2 N) quantum gates are sufficient
to realize the DFT of length 2N . The permutation π can be implemented
with at most O(log2 N) elementary gates. At most O(logN) quantum gates
are needed to realize the operator D. This shows that the DCTI and the
DSTI can be realized with at most O(log2 N) quantum gates. The preceding
discussion shows that Figure 6 realizes the DCTI and DSTI. 2
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P−1
n

•
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Figure 6: Complete quantum circuit for the DCTI

DCTIV and DSTIV. The trigonometric transforms of type IV are derived
from the DFT by

eπi/4NRt
N · F2N · RN = CIV

N ⊕ (−i)SIV

N . (3)

Here RN denotes the matrix

RN =
1√
2

























1 −i
ω −iω

... ...
ωN−1 −iωN−1

ωN 1
... ...

ω2 iω2

ω iω

























with ω the primitive 4N -th root of unity ω = exp(2πi/4N). Equation (3) is
a consequence of Theorem 3.19 in [7] obtained by complex conjugation.

Theorem 2 The discrete Cosine transform CIV
N and the discrete Sine trans-

form SIV
N can be realized with at most O(log2 N) elementary quantum gates;

the quantum circuit for these transforms is shown in Figure 7.

B

..

.

K1

Kn

•

L1

Ln

c C

..

.

h

h

•

F2n+1

h

h

•

K1

Kn

•

L1

Ln

c C

..

.

B†

..

.

M

..

.

Figure 7: Complete quantum circuit for DCTIV



Proof. It remains to show that there exists an efficient quantum circuit for
the matrix RN in equation (3). A factorization of RN can be obtained as
follows. Denote by x the one’s complement of an n-bit integer x. We define
a permutation matrix π1 by π1 |0x〉 = |0x〉 and π1 |1x〉 = |1x〉 for all integers
x in the range of 0 ≤ x < 2n. Denote by D1 the diagonal matrix

D1 = diag(1, ω, . . . , ωN−1, ωN , . . . , ω2, ω).

Then RN can be factored as

RN = π1 · D1 ·
(

1√
2

(

1 −i
1 i

)

⊗ 1N

)

= π1 · D1 · (B ⊗ 1N).

Note that B ⊗ 1N is a single qubit operation, and π1 can be realized by
controlled not operations. The implementation of the diagonal matrix D1 is
more interesting. Note that the diagonal matrices of increasing (decreasing)
powers can be written by tensor products

∆1 = diag(1, ω, . . . , ωN−1) = Ln ⊗ · · · ⊗ L2 ⊗ L1

∆2 = diag(ωN−1, . . . , ω, 1) = Kn ⊗ · · · ⊗ K2 ⊗ K1

where Lj = diag(1, ω2j−1

) and Kj = diag(ω 2j−1

, 1). Therefore, it is possible
to write D1 in the form D1 = (C ⊗1N) · (∆1 ⊕∆2) with C = diag(1, ω). The
circuit for the diagonal matrix D1 is shown in Figure 8.

K1

Kn

•

L1

Ln

c C

..

.

Figure 8: Quantumcircuit for the diagonal matrix D1.

The complete quantum circuit for the DCTIV is shown in Figure 7. Note
that the last three single qubit gates C, B†, and M = diag(eπi/4N , eπi/4N)
can be combined into a single gate MB†C. 2

DCTII and DSTII. The implementation of the trigonometric transforms
of type II follows a similar pattern. Both transforms can be recovered from
the DFT of length 2N after multiplication with certain sparse matrices,
cf. Theorem 3.13 in [7]:



U †
N · F2N · VN = CII

N ⊕ (−i)SII

N , (4)

where

VN =
1√
2

















1 1
... ...

1 1
1 −1

... ...

1 −1

















and

UN =

































1 0
ω√
2

− iω√
2 ...... ...

ωN−1
√

2
− iωN−1

√
2

0

0 −1

...
ωN−1
√

2

iωN−1
√

2

... ...

0 ω√
2

iω√
2

































,

and ω denotes the 4N -th primitive root of unity ω = exp(2πi/4N), i2 = −1.

Theorem 3 The discrete Cosine transform CII
N and the discrete Sine trans-

form SII
N can be realized with at most O(log2 N) elementary quantum gates;

the quantum circuit for these transforms is shown in Figure 9.

H

..

.

h

h

•

F2n+1

K1

Kn

•

L1

Ln

c C

..

.
P−1

n

•

h

h

• Bt

..

.

J

c

c

P−1
n

•

Figure 9: Complete quantum circuit for DCTII

Proof. We need to derive efficient quantum circuits for the matrices VN and
UN in equation (4). The matrix VN has a fairly simple decomposition in
terms of quantum circuits.

Lemma 4 VN = π1(H ⊗ 1N).



Proof. It is clear that the Hadamard transform on the most significant bit
H⊗IN is – up to a permutation of rows – equivalent to VN . The appropriate
permutation of rows has been introduced in the previous section, namely
π1 |0x〉 = |1x〉 and π1 |1x〉 = |1x〉 for all 0 ≤ x < 2n. We can conclude that
VN = π1(H ⊗ 1N) as desired. 2

The decomposition of UN is more elaborate. Notice that

UN |00〉 = |00〉 UN |0x〉 =
ω x

√
2
|0x〉 +

ωx

√
2
|1x′〉

UN |11〉 = (−1) |10〉 UN |1y〉 = −iω y+1

√
2

|0 (y + 1 mod 2n)〉 +
iωy+1

√
2

|1y〉

for all integers x in the range 1 ≤ x < 2n and all integers y in 0 ≤ y < 2n−1.
Here 0 and 1 denote the n-bit integers 0 and 2n − 1 respectively.

Define D0 by D0 |10〉 = i |10〉 and D0 |x〉 = |x〉 otherwise. We define
a permutation π2 by π2 |0x〉 = |0x〉 and π2 |1x〉 = |1(x + 1 mod 2n)〉 for all
integers x in 0 ≤ x < 2n.

Lemma 5 UN = D†
1 TN D0 π2.

Proof. Since D†
1 |0x〉 = ωx |0x〉 and D†

1 |1x〉 = ω x′ |1x〉, we obtain

D†
1TN |0x〉 =

ωx

√
2
|0x〉 +

ωx

√
2
|1x′〉

D†
1TN |1x〉 = −iωx

√
2
|0x〉 +

iωx

√
2
|1x′〉

We have D0π2 |0x〉 = |0x〉, D0π2 |1x〉 = |1(x + 1 mod 2n)〉 for all integers x
in 0 ≤ x < 2n −1, and D0π2 |11〉 = i |10〉. We note that (x+1 mod 2n)′ = x,
whence combining D1TN with D0π2 shows the result. 2

Recall that TN = πD. It follows that

U †
N = π−1

2 (D0D
t)π−1D1.

The implementation of D1 has been described in the section on the DCTIV,
and the implementation of π (and hence π−1) is contained in the section on
the DCTI. The implementation of π−1

2 is also straightforward. It remains to
find an implementation of D0D

t. We observe that

D0D
t |00〉 = |00〉 D0D

t |0x〉 = 1√
2
|0x〉 + i√

2
|1x〉

D0D
t |10〉 = (−i) |10〉 D0D

t |1x〉 = 1√
2
|0x〉 − i√

2
|1x〉

This can be accomplished by the single bit operation Bt ⊗ 1N followed by a

multiply conditioned gate J =
1√
2

(

1 −i
−i 1

)

. The full circuit is shown in

Figure 9. The statement about the complexity is clear. 2



§5 Quantum Hartley Transforms

The discrete Hartley transform of length N ∈ N is the real N × N matrix
AN defined by

AN :=
1√
N

[

cas
(2πij

N

)]

i,j=0,...,N−1

,

where the function cas : R → R is defined by cas(x) := cos(x) + sin(x), see
[2, 3] for classical implementations. The property

AN =

(

1 − i

2

)

FN +

(

1 + i

2

)

F 3

N

is easily seen from the definition. We derive a quantum circuit implementing
AN with one auxiliary quantum bit.

|x〉

|0〉 H

DFT2n DFT2
2n

s

..

.

R

DFT2
2n

s

..

.

H

DHT2n |x〉

|0〉

Figure 10: Circuit realising a quantum Hartley transform

Lemma 6 The discrete Hartley transform can be factorized in the form
shown in Figure 10. Here R is the unitary circulant matrix

R :=
1

2

(

1 − i 1 + i
1 + i 1 − i

)

and H denotes the Hadamard transform.

Proof. Let F̌N be the transformation which effects a DFT conditioned to
the first bit, i. e., written in terms of matrices we have F̌N = 1N ⊕ FN . We
now show that the given circuit computes the linear transformation |0〉 |x〉 7→
|0〉AN |x〉 for all unit vectors x ∈ Cn. Proceeding from left to right in the
circuit given in Figure 10 we obtain

|0〉 |x〉 H7−→ 1√
2
(|0〉 + |1〉) |x〉



FN7−→ 1√
2
(|0〉 + |1〉)FN |x〉

F̌ 2
N7−→ 1√

2
|0〉FN |x〉 +

1√
2
|0〉F 3

N |x〉

R7−→ 1√
2
|0〉

(

1

2
(1 − i)FN +

1

2
(1 + i)F 3

N

)

|x〉

+
1√
2
|1〉

(

1

2
(1 + i)FN +

1

2
(1 − i)F 3

N

)

|x〉

=
1√
2
|0〉AN |x〉 +

1√
2
|1〉F−2

N AN |x〉

F̌ 2
N7−→ 1√

2
(|0〉 + |1〉)AN |x〉

H7−→ |0〉AN |x〉

as desired. 2

Theorem 7 The discrete Hartley transform AN can be computed on a quan-
tum computer using O(log2 N) elementary operations if we allow one addi-
tional ancilla qubit.

Proof. Recall that the discrete Fourier transform FN can be implemented
O(log2 N) operations as shown in Section §3. The statement follows from
Lemma 6 since all transformations given there require at most O(log2 N)
elementary operations. 2

§6 Conclusions

We have shown that the discrete Cosine transforms, the discrete Sine trans-
forms, and the discrete Hartley transforms have extremely efficient realiza-
tions on a quantum computer. All implementations illustrated an important
design principle: the reusability of highly optimized quantum circuits. Apart
from a few sparse matrices, we only needed the circuits for the discrete Fourier
transform for the implementations. A key point is that an improvement of
a basic circuit, like the DFT, immediately leads to more efficient quantum
circuits for the DCT, DST, and DHT.
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