On Optimizing XOR-Based Codes for Fault-Tolerant Storage Aoplications

Cheng Huang, Jin Li, and Minghua Chen
Microsoft Research, Redmond, WA 98052

Abstract— For fault-tolerant storage applications, computation Two greedy approaches are proposed to find approximate
complexity is the key concern in choosing XOR-based codes. solutions to the OXC problem. When optimization is applied
We observe that there is great benefit in computing common , x 5R-pased Reed-Solomon codes, we show that these codes
operations first (COF). Based on the COF rule, we describe ; - . .

a generic problem of optimizing XOR-based codes and make &N in fact be as efficient gnd somet'lmes even more efficient
a conjecture about its NP-completeness. Two effective greedythan the best known specifically designed XOR-based codes,
algorithms are proposed. Against long odds, we show that XOR- which is in contrary to long time odds. In particular, in
based Reed-Solomon codes with such optimization can in fact 9-fault-tolerant case, XOR-based Reed-Solomon codes are
be as efficignt and sometimes even more efficient than the bestmOre efficient in encoding than EVENODD codes [1] and as
known specifically designed XOR-based codes. efficient as the RDP scheme [6]. They are less efficient in
decoding though. Ir8-fault-tolerant case, XOR-based Reed-
Solomon codes are more efficient in encoding than both the

Erasure correcting codes are often adopted by storage generalized EVENODD codes [2] and the STAR scheme [9].
plications to provide fault tolerance [5]. For such apgiimas, They are also more efficient in decoding in most cases. As the
encoding and decoding complexity is the key concern ddoption of erasure correcting codes in large scale pramuct
determining which codes to use. XOR-based codes use psterage systems is looming on the horizon, it is conceivable
XOR operation during coding computation, which makethat redundancy beyonsl will become necessary and XOR-
implementation most efficient in both hardware and softwarased Reed-Solomon codes with optimization are likely li
Hence, such codes are highly desirable. up to such requirements.

XOR-based codes can be implemented by transformingThe rest of the paper is organized as follows. Section II
from any existing codes, which originally could be definegevisits EVENODD codes as an example of specifically de-
in finite fields [3]. Among numerous available codes, Reedigned XOR-based codes. Section Il briefly describes the
Solomon codes [14], as probably the most widely used codg&nsformation of Reed-Solomon codes into XOR-based codes
are both flexible in coding parameters and capable of reeoveection IV presents the OXC problem, the complexity conjec-
ing the maximum number of failures (the MDS property [11]}ure and two greedy approaches. The performance of OXC is

Hence, they appear as natural choices. However, it has Iafgluated in Section V and we conclude in Section VI.
been assumed that XOR-based Reed-Solomon codes are inef-

ficient (see the seminal paper [1] and all its followers) dndst

I. INTRODUCTION

inappropriate for storage applications. This might be ohe o [1. REVISITING EVENODD CODES
the most prominent reasons that motivated decades of ffort
in designing specific XOR-based codes. A. EVENODD: an example

However, the biggest problem of specifically designed codes
is that they are in general not flexible. While codes providing EVENODD codes [1] are probably the most widely referred
2 or 3-fault-tolerance (recoverable fromor 3 storage node XOR-based codes in fault-tolerant storage applicatiorsnyv
failures) are well studied [1], [2], [6], [7], [9]. Efficientodes other schemes adopt a similar concept, where data blocks are
offering more redundancy still appear out of reach, eveiranged in a two dimensional array and XOR is the only
though theredo exist a few schemes [2], [8]. In this paper,required operation. Schemes as such are often referiauags
we reexamine XOR-based Reed-Solomon codes and argued@fles Low complexity is the key advantage of array codes,
their suitableness in storage applications. Since the odty Which is especially desirable for storage applicationdoBe
of XOR-based codes is solely determined by the total numb&g give a simple example of EVENODD codes.
of XOR operations in encoding or decoding, we make a simplel) EVENODD encodingWe examine &5, 3) EVENODD
yet key observation that common XOR operations should bede. There ar8 data blocks ¥ = 3) and2 redundant blocks
computed first (the COF rule). Based on the COF rule, we can= 2). An EVENODD code is in the form of & —1) x (p+
optimize arbitrary XOR-based codes (not just Reed-Solomai two dimensional array, whengis a prime number. Hence,
codes). We describe the optimization problem as findingeach block is segmented intp — 1) cells Figure 1 shows
computation path, which computes all required outputs athis particular EVENODD code, where= 3 and each block
minimizes the total number of XOR operations at the sanfeorresponding to one column in the Figure) is segmented int
time. We relate the problem of optimizing XOR-based codé&scells. The encoding is straightforward. The first redundant
(OXCin short) to a known NP-complete problem and makeldock is simply the XOR of all the data blocks. In terms of
conjecturethat the current problem is also NP-complete. cells, they can be represented as (tisas a simple notation

for XOR)

¢, = di +d3 +ds,
co = dy + dy + ds,

which can be regarded as computingrizontal parities. The
second redundant block can be computed as

S:d4+d5a

c3=dy +dg+ 5,
¢y =doy+d3z+ S,

1 0 1 0] [1 o 1 o] [o [1][1 1
0 1 0 1 0@ o 10
1 00 1 o ofd |1 @ o0o@
0 1 0D 1D 0 1
1 0 [1] o 1 [1] 0 0
011 0] [0 1 1 0 |0® 0

(a) EO encoding (b) encoding with COFc) decoding with COF

Fig. 2. A matrix perspective of EVENODD code (EO for EVENODD).

which can be regarded as computing diagonal parittess(Note thatM. represents a portion of the code’s generator
called adjusto)). It is easy to count that the total number ofatrix. For systematic codes, it is convenient to ignore the

XORs is9.

(b) decoding

Fig. 1. An EVENODD code example.

rest systematic part.

Given the encoding matrix, aaive approach to compute
the redundant blocks is to XOR all data cells whenever the
encoding matrix has non-zero entries. For example,=
di + ds + ds, c3 = di1 + d4 + ds + dg, and so on. In this
way, counting the total number of non-zeros entries yields
the encoding complexity. Hence, we might conclude that
XORs are required (note that thré&s in one column counts
for 2 XORs). However, if we are slightly more careful, we
will observe that some XORs are computed more than once.
Indeed, if the EVENODD encoding is mapped onto the matrix
representation, it is equivalent to computidg + ds only
once (the calculation of the adjustor), which saueXOR
and exactly accounts for the difference between the matrix-

2) EVENODD decodingEVENODD codes guarantee re-hbased naive approach and the original EVENODD encoding.
coverability when there are no more than two block failuresigure 2(a) illustrates this.
(i.e., two columns completely wiped out). For instance, we Now, an interesting question to ask is: can we find more
examine a particular failure pattern, when the second aed $haredXORs, which can be computed once and in turn further
third data blocks are unavailable. The decoding turns obeto reduce the total number of operations? Indeed, we obseave th

straightforward as well. Using all the remaining parity ¢ks,
the adjustor can first be computed as

5201+02+03+C4.

OnceS is known,ds can be computed af =c3 +d; + S.
Then,d, can be computed a&, = ¢; + ds + dg. Next, d5 can
be computed ad; = ds + S. And finally, d3 = dy + d5 + ¢;.
The decoding process is completed and all failed blocks ar
recovered, as shown in Figure 1(b). The total number of XO

is 10.

B. EVENODD: a matrix perspective

The encoding and decoding of linear block codes cdgssentially performing matrix inversion) and obtddl =
be represented in a matrix form. Here, we use the sar@éx Mg, whereD’ = [d3 dy d5 dg], C' = [dy d2 c1 c2 c3 c4],

EVENODD code example to illustrate.

1) encoding with COF: Denote data cells ad
[dl do d3 dy ds d6] and parlty cells aC = [Cl Co C3 04].
Then, the encoding can be representedCas= D x M.,
where theencoding matrixM., is in the following form:

1

O = O = O

_= O = OO

=== OO

0

O R

dy + dy4 (denoted asl, 4) and ds + ds (denoted asls 5) are
shared XORs, as shown in Figure 2(b). If we adopt a simple
rule to compute suchommon operations fir§COF),d» 4 and

ds s will be computed. Theng; = di + ds 5, c2 = da. 4 + dg,

c3 = di +dy + ds + dg (as usual), and, = d274 + d3’5. The
total number of XORs i8, less than the original EVENODD
encoding.

62) decoding with COF: We consider the same failure

|%?attern, where the second and third data blocks are unbiaila

(i.e., cellsds, d4, ds anddg are erasures). It is straightforward
to derive decoding equations from the encoding malvlx

and the decoding matri¥; is

01 1 1
1 110
1 10 1
Ma=1, ¢ 1 4 @
1 01 0
010 1

@ Again, the naive approach requiré8 XORs. But, applying

the COF rule, and compute shared XORs first (elg+ do,
c1 + ¢4 andcs + c3 in this case, also shown in Figure 2(c)),

the total number of required XORs $ This is also less than wherec,, ¢, are redundant blocks anti, d,, d. data blocks,
the original EVENODD decodingl() XORSs). representing elements in the finite field. Lt = cix + co,
d, = diz + ds, etc. Now,cy, co, di andd, are elements in

I1l. A 2-FAULT-TOLERANT REED-SOLOMON CODE ¢ . : :
binary, so we get the following through isomorphism:

In this section, we construct &, 3) Reed-Solomon code

and apply the COF rule to both encoding and decoding. Lo 10

01 0 1

A. Primer on isomorphism 10 1 1

Reed-Solomon codes are constructed in finite fields, whdfa @ ¢ al=[d d d3 di d5 d] 0110

the addition operation is simply XOR, but the multiplicatio 1 0 0 1

operation is handled specially. Elements of finite fields lsan 01 1 1
represented using polynomials, which help to understaad th (5)
addition and multiplication operations. Applying the COF rule, we observe thét + d; andd, + dg

Consider a simple finite field with onlg elements, which are shared XORs and should be computed first. In the end, the
can be constructed taking polynomials modufo+ = + 1. total number of XORs i8, less than the EVENODD encoding.
Since addition in this finite field is XOR4 and — are the Similarly, it is straightforward to verify that decodingeth
same, hence, we can compute= z+1 (moduloz?+2z+1) second and third data blocks requiteXORs, also less than
andz?® = z2? = z(x + 1) = 2 + x = 1 (moduloz? + z + the EVENODD decoding. Careful readers might observe that,
1). It is easy to imagine all polynomials can be representéulthis particular example, the encoding and decoding wesri
using4 basicelementsbeing0, 1, z andz + 1. Given these of the Reed-Solomon code happen to be the same as the
elements, the addition and multiplication between any taio p EVENODD code. However, we note that this nst true in
can be easily computed and stored in look-up tables. With theneral.
addition and multiplication tables, Reed-Solomon codes ca
be implemented using table-lookups, which is how they are IV. OPTIMIZING XOR-BASE CODES
often realized. For rigorous representations, please3ee [Conceivably, the COF rule is applicable to arbitrary XOR-

From the polynomial perspective, however, there is anotheased codes, no matter whether they are specially designed
way to represent the multiplication operation. Assuming w§OR-based codes, or simply isomorphism of regular Reed-
would like to computer(z +1). Instead of directly computing Solomon or other types of codes. However, when the encoding
z(z+1) =22+ x =1 (moduloz? + z + 1), we can consider matrix or decoding matrix is large, it becomes nontrivial to
a more general case by writing the term irita: +b)(x +1). determine which shared XORs should be computed first and

Of course,a = 1 andb = 0 here. Hence(ax + b)(z + 1) = Used as intermediate results for other. In this section, efiael
a(x® +) + b(x + 1) = a + b(x + 1) (moduloz? + 2 + 1). the problem of optimizing XOR-based codes formalyXC
Therefore,(ax + b)(x 4+ 1) can be represented as in short), present a conjecture of the NP-completenesseof th
0 1 problem, and propose two effective greedy algorithms.
b 1) = b . 3 .
(a2 +0)(@+1) =[a 0] {1 1} ® A. Problem formulation

Leta = 1 andb = 0, we can getz(z + 1) = 1. Another ~ The OXC problem is stated as follows. Given a set of
example sets = 1 andb = 1, and we can gefz + 1)(z + inputs (denoted a$,, iz, ---, 4|7) and a coding matrixvVi

1) = z. Both can be easily verified using direct polynomiafeither encoding or decoding), a set of outputs (denoted as
multiplications. Hence, the multiplication in finite fieldsn o2, ---, 0o|) are computed from the inputs and the coding
be transformed into pure XOR operations. This mechanismatrix, where XOR is the only computation operation. Define
is called isomorphism The significance is that and b no acomputation patras the order of XOR operations involving
longer need to be a simply bit. They can be a byte, a word ¢he inputs and/or the intermediate results from previoufREO
64 bits, evenl28 bits (with SSE/SSE?2), the maximal length &A computation path is/alid, if it yields all required outputs
single XOR instruction can operate on. Through isomorphismfter all XORs along the path are computed. Tleagth
arbitrary codes defined on finite fields (not just Reed-Solomof a computation path is simply the total number of XORs
codes) can be implemented using pure XOR operations. Fontained in the pattGiven the inputs and the coding matrix,
more details, please see [4], [13]. the OXC problem is to find a valid computation path with the
minimum length.

B. A2-fault-tolerant Reed-Solomon code Next, we relate the OXC problem to a known NP-complete

[11] describes a convenient way to construct Reed-SoIomBFbmem and make a conjecture about its complexity. As
codes when the redundant blocks are no more td offer jj,sirated by various shapes (rectangle, circle, andpse)

g-fault—to!erance foB data blqcks, we can use the above finitg, Figure 2(c), we can useoversto represent shared XORs.
field of size4 and the following encoding matrix: Here, we define a general conceptraitangle covefdenoted
1 1 asRC) for shared XORs. A rectangle cover may span multiple
[ca @) =[da dy dc] |1 ax |, (4) rows (ectangle heighthrc) and columns rectangle width
1 z41 wre) Of the coding matrix. It doesot need to be contiguous

(a) graph with edge counters (b) approach I: cardinality matching (c) approach II: weighted matching

Fig. 3. lllustration of greedy approaches.

in either rows or columns. Intuitively, a rectangle coves hacomplete with the current cost function. Hence, we only make
to be rectangle so it contains the same number of entriea conjecture here that the OXC problem is also NP-complete.
among all rows (or columns). A rectangle cover can only the rest of this section, we describe two greedy algorithm
containl's andno 0's at all. All columns of a rectangle coverto derive approximate solutions.

share same XORs. Hence, computing any single columné's
sufficient and the number of XORs required fsgc — 1). ’
Now, we define theostof a rectangle cover (denoted @sc) Let's use the coding matrix in Figure 2(c) to describe the
ascrc = (hrc — 1) + wre, Where(hre — 1) accounts for algorithm. The inputs aré,, i», i3, i4, i5 andig. The outputs
the number XORs to be computed within the rectangle, afé€o1, 02, 03, ando,. Based on the coding matrix, in order to
wre one potential XOR with outside inputs per column ofompute celby, we need to XORLinputs, i.e.,01 = iz +iz+

the rectangle. Finally, we define a set méne-overlapping % +is- There are many ways to compute. For instance, we
complete rectangle covefslenoted a®RC;’s), which donot Can first computes + is, is + i5 and then sum them up. Or,

overlap with each other and cover &# of the coding matrix. We can computé, +3, and then add, andis one by one. To

We have the following corollary. list all possibilities, we draw all inputs a®desin a graph and
Corollary 1: A . hi val connect two nodes with an edge whenever there is a potential
oroflary 1. A computation path Is equivalent to a set 5p computation. Clearly, between any two-node pair among

of none-overlapping complete rectangle covers. Moreov%\r,’ i3, 14 andis, there exists an edge. Hence, the graph contains

. 2

the length of the computatlon path equals to the total Qoﬂl—clique. This is for one output. Similarly, for other output
of all rectangle covers minus the nL_meer of outputs, .8he graph will contain different cliques. Putting all cliesi
ZCRCi N |O.|' (we Ieaye the _proof to interested readers Afto the same graph, some edges belong only to one clique,
simply mention that minu$O| is because each column OV€liyhile others might belong to multiple. We keep a counter
counts exactly by.) on each edge. Intuitively, the counter represents how many

To this end, the OXC problem is equivalent to findingimes one particular XOR is shared during the computation of
a set of none-overlapping complete rectangle covers of ttiferent outputs. To reduce the total number of operatidiss
coding matrix with the minimum total cost(@| is constant natural to compute the mostly shared XORs first. In the graph
and thus can be ignored). To get rid of the none-overlappingtation, it is to compute the edges with the highest counter
requirement, we can apply a simple technique and modify tkalue.
cost function of rectangle covers. For each entry in a rgt¢an For instance, Figure 3(a) shows the complete graph and
cover, we add a large constahtto its cost. Then, for none- edge counters corresponding to the coding matrix. The kighe
overlapping rectangle covers, the number of times thas counter is2. To compute such edges first, we remove all
counted in total cost equals to the numbend sfin the coding edges with less counter values and obtain the subgraph in Fig
matrix. On the other hand, once two rectangle covers overlape 3(b). The next step is to find the maximum numbedief
L will be counted more times. Hence, as long lass large joint edges (no two edges share the same node) and compute
enough (e.g., more than the total entries in the coding rRjatrthem first. The intuition is that disjoint edges representReO
|I| x |0]), overlapping rectangle covers willeveryield the on completely different nodes and computing them at the
minimum cost. With this cost function modification, we onlysame time dmot affect each other. Computing the maximum
need to find a set of complete rectangle covers with minimunumber of disjoint edges can get the maximum reduction of
total cost. In [15], theminimum weighted rectangle coveringKORs at once. It turns out that finding the maximum number
(MWRC) problems is shown to be NP-complete. Note thatf disjoint edges is a well-studied graph theory problerfieda
the general MWRC problem includes arbitrary cost functiomaaximum cardinality matchingdA matching is a set of edges
for each rectangle. It inot clear that the problem is still NP-in a graph, where there are no two edges share the same

Greedy approach [: cardinality matching

node. A maximum matching is a matching with the maximurshould be as dense as possible such that it’s likely to amntai
number of edges. Given a graph, there are many polynommabre matchings for the next round.
time algorithms to find a maximum matching. When a graph Now we describe the second approach, which differs from
contains multiple maximal matchings, our algorithm pratee the first greedy approach in the way of finding a maximum
with any of them. The XORs corresponding to the matchingatching. Starting from the original graph with counteres,
are computed first. Given the matching shown in Figure 3(hje assign weights to all edges. For an edge with the maximum
we will first computei; + iz, i3 + i andiq + is. counter value, its weight is set to be a large constant {gay
Once these XORs are computed, we examine the remainm@us the degrees of its both end nodes. For instance, tlee edg
XORs. We can still use a matrix to represent all the XORs. Thetween; andig has weightZ —9 (rest shown in Figure 3(c)).
matrix will be modified from the original coding matrix, wkeer For an edge with a smaller counter value, it's excluded. Once
entries corresponding to XORs, which have already been cowe go through all edges and obtain a subgraph, we find a
puted, need to be removed. Also, we need to add new entneaximum weighted matchinwhich is known to be solvable
for the intermediate results from the above computations. i polynomial time. Note that a vanilla maximum weighted
this end, we add three new imaginary inptits, i3 ¢ andiy 5 matching doesiot guarantee finding the maximum number of
to represent the intermediate results. Now the decodingdatmatching pairs. Hence, the constdnis added to compensate

becomes that. As long as we makd’ large enough (e.g., the sum
T 0 150 1-—0 1 7 of all nodes’ degrees), a maximum weighted matching will
1 150 120 0 always contain the maximum number of matching pairs (i.e.,
1 150 0 150 also a maximum cardinality matching). Maximum weighted
150 0 150 1 matching has comparable complexity as maximum cardinality
M= [1-0 0 150 0) matching, so the complexity of the second greedy approach is
0 150 0 150l also comparable to the first approach. Finally, we note that o
0 1 T 0 empiricgl experience shows that neither approach is superi .
0 1 0 1 SO we simply run both approaches and take a better result in
1 0 1 0 practice.
where the three bottom rows are newly added. Taking the V. PERFORMANCE EVALUATION

second column as an example, it f2ason-zero entries. This In this section, we apply the both greedy approaches to opti-
corresponds t@, = i; 5 + 436 and is indeed the same as thenize XOR-based Reed-Solomon codes. We compare encoding
original computation oby = iy + io + i3 + 6. and decoding complexities to the naive approach, as well as
Given the new coding matrix, it's possible to find morao the best known specifically designed XOR-based codes.
shared XORs operations and again compute them only once. =))
Apparently, we can apply the same procedure to find it Limited exploration of available Reed-Solomon codes
maximum number of shard XORs. Indeed, the procedure isWe shows 2-fault-tolerant and 3-fault-tolerant casesctvhi
repeated until there are no more shared XORs. It is eaane the focus of a large number of specifically designed XOR-
to show that the algorithm terminates after finite roundbased codes. Even with limited redundancy, there are still
and within each round, both preparing the graph and findimgmerous ways to construct a Reed-Solomon code. Here,
maximum matching take polynomial time. Hence, the overalle use the Reed-Solomon codes presented in [11] {Ch.
complexity is still in polynomial time. We will elaborate m® Theoreml1). For a given finite field GE) = 29), the parity

when discussing practicality issues later. check matrix is given as
C. Greedy approach Il: weighted matching - 1 100

As mentioned already, there might exist multiple maximum H= I T 0 1 0f. @)
matchings in a graph. For instance, in Figure 2(b), matching ap oapy 001

with 4, iz With 75 andiz with i, is also a maximum matching. To construct a(n, k) systematic Reed-Solomon code £

In the above greedy approach, we proceed with any maximym._ . < 3) we can choose any out of 3 rows andk out of

matching. In this part, we consider a variation of the aboyfe first((— 1) columns fromH. It's easy to verify that this

approach. We still like to find a maximum matching (i.e., thgives us ar x n parity check matrix, which corresponds to

maximum number of disjoint pairs), but we like the matching (y,, k) systematic Reed-Solomon code. Still, the number of

to cover as fewedensenodes as possible. The density of @vailable codes (i.e.(?, ') column combinations) are quite

node is defined by its degree. The intuition is that if all rodgarge. Hence, we further limit our exploration to includelyon

covered by the maximum matching are removed, as well gslumns that are contiguous H (cyclic is fine). In short,

all the edges connected to these nodes, the remaining grgRlen (n, k), we only consider@Q — 1) codes when = 3
1The coding matrix is modified in a way similar to thectangle replace- and 3(Q N 1) codes whern = 2 (3 times more due to row

mentmethod in [16], which, however, only deals with one pair of rhaat a combmaﬂo_ns). For eacfh’_‘v k), we choose a Ree‘_j'sobmon
time and hence is different from our approach. code that incurs the minimum number of XORsdncoding

(after optimization) as the desirable code and compute dases are optimized. During rare cases when more failures
corresponding average decoding complexity over all failuoccur, the decoding falls back into the naive approach. Less
patterns.

B. Comparison

efficient decoding in those cases shontit have great impact
on overall system performance. Moreover, OXC might be
particularly suitable for codes with inherent hierarchyg(e
Pyramid Codes [10]), where most decodings happen within

encoding complexity decoding complexity
k |[[EVENODD | RS (naive)| RS (OXC) | RDP || EVENODD | RS (naive)| RS (OXC) | RDP
3 4.5 5 4 4 5 6.67 4.83 4
5 8.75 11 8 8 9.5 16.33 9.97 8
7 12.83 17 12 12 13.67 23.43 14.25 12
11 20.9 29.75 20 20 21.8 46.66 24.67 20
13 24.92 36.75 24 24 25.83 55.43 29 24

(a) 2-fault-tolerant case

encoding complexity
k gen. EO 7 STAR| RS (naive

5 135

decoding complexity
gen. EO| STAR | RS (naive,

28.8 13.6 22.27

RS (OXC
11.33

RS (OXC
12.57

small groups with limited redundancy.

VI. SUMMARY

We make a simple and yet important observation that com-
mon XOR operations should be computed first in XOR-based
coding. We describe the OXC problem and make a conjecture
about its complexity. Two greedy approaches are proposed,

7

19.67

17.33

21.06

32.29

17.58

11

31.8

27

49.1

34.2

67.08

32.02

13

37.83

32.25

55.44

41.04

79.75

36.96

17

49.86

446

67.84

54.4

128.78

55.17

19

55.89

50.4

73.98

61.74

144.12

60.50

which effectively show that XOR-based Reed-Solomon codes
with optimization can be as efficient and sometimes even
more efficient than the best known specifically designed XOR-
based codes. Moreover, XOR-based Reed-Solomon codes with

(b) 3-fault-tolerant case

optimization are likely suitable for large scale produgtio

Fig. 4. Comparison with best known specifically designed X@Red codes. Storage systems with higher redundancy requirements.

In 2-fault-tolerant case, we compare XOR-based Reegi]
Solomon codes to the EVENODD codes [1] and the RD
scheme [6]. From Figure 4(a), we observe that, with opti-
mization, the encoding of Reed-Solomon codes can be
efficient as EVENODD/RDP. The decoding of Reed-Solomon
codes ardess efficient though. In 3-fault-tolerant case, we [3]
compare with the generalized EVENODD codes [2] ¢en. |,
EO) and the STAR scheme [9]. The encoding complexity o#
both specifically designed schemes are the same. The dgcodin
of the STAR scheme is more efficient than the generalize[:?]
EVENODD codes. We observe that the Reed-Solomon codes
appear more efficient than both schemes in encoding over &l
k’'s, and more efficient in decoding over moks. This is
very interesting and suggests that designing more effident
tolerant XOR-based codes might be possible. Moreover,|in &l
cases, we observe that OXC shows great improvement over
the naive approach, where the complexity literally couhts t [g]
number ofl’s in coding matrices. We believe the significant
gap between OXC and the naive approach contributes E
the long time misconception that Reed-Solomon codes are

inappropriate as XOR-based codes. (10]

C. Practicality discussion

In order for OXC to be practically useful, computation
paths should be computed offline and stored physically.
encoding, the additional storage overheadd an issue at [12]
all, since there is only one computation path to store. For
decoding, the number of paths to be stored can be potentieﬂlé/]
large (literally, one path per erasure pattern). To altevihe
overhead, we consider two scenarios: 1) when the redundancy
is limited (e.g.,2 or 3-fault-tolerant), the total number of [14]
path mightnot be large and thus all paths can be stored;
and 2) when there are more redundancy, computation path$lfd
recover limited failures can be stored. In storage aptioat 16]
these are more likely to be the most common failures and the
most performance gain will be achieved when the common

REFERENCES

M. Blaum, J. Brady, J. Bruck, and J. Menon, “EVENODD: An Efént
Scheme for Tolerating Double Disk Failures in RAID Architges,”
IEEE Trans. on Computergt4(2), 192-202, Feb. 1995.

% M. Blaum, J. Bruck, and A. Vardy, “MDS Array Codes with Inglendent

Parity Symbols,1EEE Trans. Information Theory2(2), 529-542, Mar.
1996.

R. E. Blahut, “Algebraic Codes for Data Transmission,'h@aidge Univ.
Press, Cambridge, U.K. 2002.

] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M. Luby, and. Buck-

erman, “An XOR-Based Erasure-Resilient Coding Scherfie¢hnical
Report No. TR-95-048CSI, Berkeley, California, Aug. 1995.

P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A.
Patterson, “RAID — High-Performance, Reliable Secondamyraste”,
ACM Computing Survey26(2), 145-185, 1994.

P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleimanl.dong, and
S. Sankar, “Row-Diagonal Parity for Double Disk Failure @ation”,
the 4t" USENIX Conference on File and Storage Technolgoies (FAST
2005) San Francisco, CA, Dec. 2005.

G.-L. Feng, R. H. Deng, F. Bao, and J.-C. Shen, “New Effiti®IDS
Array Codes for RAID Part I: Reed-Solomon-Like Codes for Taliang
Three Disk Failures”)EEE Trans. on Computer$4(9), Sep. 2005.
G.-L. Feng, R. H. Deng, F. Bao, and J.-C. Shen, “New Effiti®IDS
Array Codes for RAID Part Il: Rabin-Like Codes for ToleraiMultiple
(> 4) Disk Failures”,IEEE Trans. on Computer$4(12), Dec. 2005.

8] C. Huang, and L. Xu, “STAR: an Efficient Coding Scheme for@at-

ing Triple Storage Node Failuresthe 4" USENIX Conference on File
and Storage Technolgoies (FAST 2005an Francisco, CA, Dec. 2005.
C. Huang, M. Chen, and J. Li, “Pyramid Codes: Flexible Suks to
Trade Space for Access Efficiency in Reliable Data Storagee®ys”,
|IEEE International Symposium on Network Computing and i&ppbns
(NCA 2007) Cambridge, MA, Jul. 2007.

] F. J. MacWilliams, and N. J. A. Sloane, “The Theory of Er@orrecting

Codes, Amsterdam: North-Holland”, 1977.

J. S. Plank, “A Tutorial on Reed-Solomon Coding for Faldterance
in RAID-Like Systems”,Software — Practice & Experienc@7(9), 995-
1012, Sep. 1997.

J. S. Plank, and L. Xu, “Optimizing Cauchy Reed-Solomond€n
for Fault-Tolerant Network Storage ApplicationdEEE International
Symposium on Network Computing and Applications (NCA 2006)
Cambridge, MA, Jul., 2006.

I. S. Reed, and G. Solomon, “Polynomial Codes over CerFaiite
Fields”, J. Soc. Indust. Appl. Math8(10), 300-304, 1960.

R. Rudell, “Logic Synthesis for VLSI Design”, Ph.D. tis, UC
Berkeley, 1989.

S. Soe, and K. Karplus, “Logic Minimization Using Two-fDmn
Rectangle Replacement”, ACM/IEEE Design Automation Confeeg
Jun. 1991.

