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We present families of quantum error-correcting codes which are optimal in the sense
that the minimum distance is maximal. These maximum distance separable (MDS) codes
are defined over q-dimensional quantum systems, where q is an arbitrary prime power.
It is shown that codes with parameters [[n,n − 2d + 2, d]]q exist for all 3 ≤ n ≤ q and
1 ≤ d ≤ n/2+1. We also present quantum MDS codes with parameters [[q2, q2−2d+2, d]]q
for 1 ≤ d ≤ q which additionally give rise to shortened codes [[q2 − s, q2 − 2d + 2− s, d]]q
for some s.
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1. Introduction

In this paper, we consider error-correcting codes for quantum systems which are

composed of subsystems of dimension pm, where p is prime and m ∈ N. As a

shorthand, we will use the term “qudit”. In the theory of classical error-correcting

codes it is well known that by increasing the size of the underlying alphabet, codes

with better parameters can be constructed.1,2 We will show that the same is true

for quantum error-correcting codes.

Quantum codes for qudit systems have been studied before3,4,5,6 including ef-

ficient algorithms for encoding these codes.7 It is known that codes encoding one

qudit into five qudits which are capable to correct one error, denoted by [[5, 1, 3]]q,

exist for quantum systems of any dimension.8 In general, by [[n, k, d]]q we will denote

a quantum error-correcting code (QECC) which encodes k qudits of a q-dimensional

quantum system into n qudits. The parameter d is the minimum distance of the

code. A QECC with minimum distance d can be used to detect errors that involve
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at most d−1 of the n subsystems. Alternatively, one can correct errors that involve

less than d/2 subsystems.

Recently it was shown that optimal quantum codes with parameters [[6, 2, 3]]p
and [[7, 3, 3]]p exist for all primes p ≥ 3 (see Ref. 9). There also exist quantum codes

[[p, 1, (p + 1)/2]]p encoding one qudit into many qudits which are capable to correct

more than one error.3 We show that many more optimal quantum codes exist. Note

that in this paper we consider only codes of finite length, and not the asymptotic

performance of codes when the length tends to infinity (for this, see, e. g., Ref. 6).

First we recall basic constructions of QECCs from classical codes.5,10,11 Then

we present families of optimal classical codes suitable for these constructions. In

Section 4 we address the problem of shortening quantum codes and conclude with

a table of results.

1.1. Quantum Codes

For completeness, we recall some constructions of quantum error-correcting codes

from classical ones.

First, on the space (GF (q) × GF (q))n ≡ GF (q)n × GF (q)n we consider the

symplectic inner product defined by

(v, w) ∗ (v′, w′) := v · w′ − v
′ · w =

n∑

i=1

viw
′
i − v′iwi. (1)

For codes over GF (q)×GF (q) which are GF (q)-linear with qk codewords, denoted

by C = (n, qk, d)q, we use the notation C∗ for the dual code with respect to (1),

i. e.,

C∗ := {(v, w) ∈ GF (q)n × GF (q)n | ∀c ∈ C: (v, w) ∗ c = 0}.

A code which is contained in its dual is called self-orthogonal. These codes can be

used to construct QECCs for qudits:5

Theorem 1: Let C = (n, qk)q be a self-orthogonal code over GF (q) × GF (q)

with qk codewords and let d = min{wgt(v): v ∈ C∗ \ C}. Then there exists a

QECC encoding n − k qudits into n qudits with minimum distance d, denoted by

C = [[n, n − k, d]]q.

For GF (q2)-linear codes over GF (q2) one can also consider duality with respect to

the Hermitian inner product on GF (q2)n, defined by

v ∗ w :=

n∑

i=1

viw
q
i . (2)

Again, classical codes which are self-orthogonal with respect to (2) give rise to

QECCs for q-dimensional systems.

Corollary 2: Let C be a GF (q2)-linear [n, k]q2 self-orthogonal code over GF (q2)

and let d = min{wgt(v): v ∈ C∗\C}. Then there exists a QECC C = [[n, n−2k, d]]q.



On optimal quantum codes 3

Proof: From the self-orthogonal code C over GF (q2) one obtains a self-orthogonal

code D over GF (q)×GF (q) as follows. Let γ ∈ GF (q2)\GF (q) so that γq = −γ+γ0

for some γ0 ∈ GF (q). Expanding each symbol of GF (q2) with respect to the basis

{1, γ} of GF (q2)/GF (q), we can write any element c ∈ C as v + γw where v, w ∈

GF (q)n. Then the code D is defined as

D := {(v, w): v, w ∈ GF (q)n | v + γw ∈ C}.

As C is self-orthogonal with respect to (2), we get

0 = c ∗ w =
n∑

i=1

(vi + γwi)(v
′
i + γw′

i)
q

=

n∑

i=1

viv
′
i + γv′iwi + γqviw

′
i + γq+1wiw

′
i

=
n∑

i=1

viv
′
i + γq+1wiw

′
i + γ0viw

′
i + γ(v′iwi − viw

′
i). (3)

As γq+1 is the norm of γ and hence γq+1 ∈ GF (q), the coefficient (v′iwi − viw
′
i) of

γ in (3) vanishes. This implies that D is self-orthogonal with respect to (1). The

result follows using Theorem 1 (see also Corollary 1 in Ref. 5).

Finally, the construction of so-called CSS codes10,11 uses the notion of duality with

respect to the Euclidean inner product

v · w :=

n∑

i=1

viwi, (4)

for which the dual code is denoted by C⊥.

Theorem 3: (CSS codes) Let C1 = [n, k1, d1]q and C2 = [n, k2, d2]q be linear

codes over GF (q) with C⊥
2 ⊆ C1. Furthermore, let d = min{wgt(v): v ∈ (C1\C⊥

2 )∪

(C2 \ C⊥
1 )} ≥ min(d1, d2). Then there exists a QECC C = [[n, k1 + k2 − n, d]]q.

Proof: It is easy to show that the code C⊥
1 × C⊥

2 is a self-orthogonal code over

GF (q) × GF (q). Applying Theorem 1 to this code completes the proof.

In particular, Theorem 3 applies to so-called weakly self-dual codes with C ⊆ C⊥.

Corollary 4: Let C be an [n, k]q weakly self-dual code over GF (q) and let d =

min{wgt(v): v ∈ C⊥ \ C}. Then there exists a QECC C = [[n, n − 2k, d]]q.

Proof: The results follows setting C⊥
1 = C⊥

2 = C in Theorem 3. Alternatively, one

can apply Corollary 2 to the self-orthogonal code C ⊗ GF (q2).

Before presenting the families of classical error-correcting codes used in our

construction, we quote the quantum version of the singleton bound:12
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Theorem 5: (Quantum Singleton Bound) Let C = [[n, k, d]]q be a quantum

error-correction code. Then

k + 2d ≤ n + 2. (5)

If equality holds in (5) then C is pure.

Definition 6: (Quantum MDS code) A quantum code for which equality holds

in (5), i. e., C = [[n, n − 2d + 2, d]]q, is called a quantum MDS code.

2. Self-orthogonal Classical MDS Codes

Our construction of quantum MDS codes is based on classical MDS codes. Let q

be any prime power and let µ, 0 ≤ µ < q − 2, be an integer. By C(q,µ) we denote

the code generated by

G(q,µ) :=




1 1 1 . . . 1 1

α0 α1 α2 . . . αq−2 0

α0 α2 α4 . . . α2(q−2) 0
...

...
...

. . .
...

...

α0 αµ α2µ . . . αµ(q−2) 0




, (6)

where α is a primitive element of GF (q) and hence a primitive (q − 1)-th root

of unity. The code C(q,µ) is the dual of an extended Reed-Solomon code. It is a

maximum distance separable (MDS) code with parameters C(q,µ) = [q, µ + 1, q −

µ]q (see Ref. 1). Furthermore, by C
(q,µ)
s we denote the code that is obtained by

shortening the code C(q,µ) at the last coordinate. Again, C
(q,µ)
s = [q − 1, µ, q − µ]q

is an MDS code. We now show that both codes are contained in their duals.

Lemma 7: For 0 ≤ µ < (q − 1)/2 the codes C(q,µ) and C
(q,µ)
s are weakly self-dual

with respect to the Euclidean inner product over GF (q).

Proof: It is sufficient to show that C(q,µ) is contained in its dual, i. e., G(q,µ) ·(
G(q,µ)

)t
= 0. For i = 0, . . . , µ, let Gi denote the (i + 1)-th row of G(q,µ). We

have to show that the inner product Gi · Gj vanishes for 0 ≤ i, j ≤ µ. Obviously,

G0 · G0 = 0. If not both i and j are zero, we get

Gi · Gj =

q−2∑

l=0

αilαjl =

q−2∑

l=0

(
α(i+j)

)l

. (7)

If i + j 6≡ 0 mod (q − 1), then

Gi · Gj =

(
α(i+j)

)q−1
− 1

α(i+j) − 1
= 0. (8)

These codes are not only weakly-self dual with respect to the Euclidean inner

product, what is more, for suitably chosen parameters they are self-orthogonal with
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respect to the Hermitian inner product as well. This is the content of the following

lemma which will ultimately allow to define MDS codes of length q2 for quantum

systems of dimension q.

Lemma 8: For 0 ≤ µ ≤ q−2 the codes C(q2,µ) and C
(q2,µ)
s are self-orthogonal with

respect to the Hermitian inner product over GF (q2).

Proof: We use the notation of the proof of Lemma 7. Again G0 ∗ G0 = 0. If not

both i and j are zero, we get

Gi ∗ Gj =

q2
−2∑

l=0

αil
(
αjl

)q
=

q2
−2∑

l=0

(
α(i+qj)

)l

. (9)

So Gi ∗ Gj = 0 if i + qj 6≡ 0 mod (q2 − 1). This is true since 0 ≤ i, j ≤ q − 2.

3. Quantum MDS Codes

From the classical MDS codes of the previous section one can directly obtain quan-

tum MDS codes.

Theorem 9: Let q be an arbitrary prime power. Then for 0 ≤ µ < (q − 1)/2 there

exist quantum MDS codes with parameters

C(q,µ) = [[q, q − 2µ − 2, µ + 2]]q

and C(q,µ)
s = [[q − 1, q − 2µ − 1, µ + 1]]q.

Proof: By Lemma 7, we obtain C(q,µ) = [q, µ + 1, q − µ]q ≤ C(q,µ)⊥ and C
(q,µ)
s =

[q − 1, µ, q − µ]q ≤ C
(q,µ)
s

⊥

. As the dual of an MDS code is again an MDS code

(see Theorem 2 in Ch. 11 of Ref. 1), C(q,µ)⊥ = [q, q − µ − 1, µ + 2]q and C
(q,µ)
s

⊥

=

[q − 1, q − µ − 1, µ + 1]q. Using the construction of Cor. 4, we obtain the quantum

codes with the desired parameters.

While the length of these codes is upper bounded by the dimension q of the sub-

systems, there are also codes of length q2.

Theorem 10: For any prime power q and any integer µ, 0 ≤ µ < q−1, there exist

quantum MDS codes with parameters

D(q2,µ) = [[q2, q2 − 2µ − 2, µ + 2]]q

and D(q2,µ)
s = [[q2 − 1, q2 − 2µ − 1, µ + 1]]q.

Proof: By Lemma 8, we obtain C(q2,µ) = [q2, µ + 1, q2 − µ]q2 ≤ C(q2,µ)
∗

and

C
(q2,µ)
s = [q2−1, µ, q2−µ]q2 ≤ C

(q2,µ)
s

∗

. The dual codes have parameters C(q2,µ)
∗

=

[q2, q2 − µ − 1, µ + 2]q2 and C
(q,µ)
s

∗

= [q2 − 1, q2 − µ − 1, µ + 1]q2 . We now use the

construction of Cor. 2 to obtain quantum codes with the desired parameters.
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4. Shortening Quantum Codes

While classical linear codes can be shortened to any length, i. e., from a code [n, k, d]

one obtains a code [n− r, k′ ≥ k − r, d′ ≥ d] for any r, 0 ≤ r ≤ k, this is in general

not true for quantum codes. However, in Ref. 12 it is shown how quantum codes

can be shortened. Here we recall the main results. First, consider the vector valued

bilinear form on GF (q)n × GF (q)n defined by

{(v, w), (v′, w′)} := (viw
′
i − v′iwi)

n
i=1 ∈ GF (q)n. (10)

Then, for a GF (q)-linear code C over GF (q) × GF (q), the puncture code of C is

defined as

P (C) :=
〈
{c, c′}: c, c′ ∈ C

〉⊥

⊆ GF (q)n, (11)

where the angle brackets denote the GF (q) linear span. From Theorem 3 of Ref. 12

we get a characterization of the shortened quantum codes which can be obtained

from C:

Theorem 11: Let C be a subspace of (GF (q) × GF (q))n, not necessarily self-

orthogonal, of length n and size qn−k such that C∗ has minimum distance d. If

there exists a codeword in P (C) of weight r, then there exists a QECC [[r, k′, d′]]q
for some k′ ≥ k − (n − r) and d′ ≥ d.

Proof: Let x ∈ P (C) be a codeword of weight r. We define the code C̃ to be

C̃ := {(v, (xiwi)
n
i=1): (v, w) ∈ C}, (12)

i. e., we multiply the coordinates of the second component w by the corresponding

elements of x. For arbitrary (ṽ, w̃), (ṽ′, w̃′) ∈ C̃, we get

(ṽ, w̃) ∗ (ṽ′, w̃′) =

n∑

i=1

ṽiw̃
′
i − ṽ′iw̃i =

n∑

i=1

viw
′
ixi − v′iwixi

=

n∑

i=1

(viw
′
i − v′iwi)xi = {(v, w), (v′, w′)} · x. (13)

From (11) it follows that (13) vanishes, i. e., C̃ is self-orthogonal. As (13) depends

only on the coordinates of x that are non-zero, we can delete the other positions

in C̃ and obtain a self-orthogonal code D ⊆ GF (q)r × GF (q)r given by

D := {((vi), (xiwi))i∈S : (v, w) ∈ C},

where the set S = {i: i ∈ {1, . . . , n} | xi 6= 0} is the support of the codeword x.

Deleting some positions, i. e., puncturing the code C̃ may reduce its dimension, so D

has qn−k′

codewords, for some k′ ≥ k. The dual code D∗ is obtained by shortening

the code C̃∗. So the minimum distance d′ of D∗ is not smaller than the minimum

distance of C̃∗ which is at least as large as that of C∗. This shows d′ ≥ d.
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In order to apply Theorem 11 to our codes, we study the puncture code. For

the codes of CSS type, we have the following:

Theorem 12: Let C = C⊥
1 × C⊥

2 ⊆ GF (q)n × GF (q)n as in Theorem 3. Then

P (C) =
〈
(cidi)

n
i=1: c ∈ C⊥

1 , d ∈ C⊥
2

〉⊥

. (14)

Proof: In order to find generators of P (C), it suffices to compute the bilinear

form (10) for all pairs of elements of a vector space basis for C. Using the basis

{(c,0): c ∈ C⊥
1 } ∪ {(0, d): d ∈ C⊥

2 }, the result follows.

For a GF (q2)-linear code C over GF (q2), the situation is a bit more complicated.

The following theorem shows how to compute P (C) in this case:

Theorem 13: Let C be a GF (q2)-linear code. Then

P (C) =
〈
(cid

q
i + cq

i di)
n
i=1: c, d ∈ C

〉⊥

. (15)

Proof: Similar to the proof of Theorem 11, we will show that each codeword of

P (C) defined by (15) gives rise to a shortened quantum code. First note that

cid
q
i + cq

i di = cid
q
i + (cid

q
i )

q = tr(cid
q
i ),

where tr: GF (q2) → GF (q), x 7→ x + xq denotes the trace of the field extension

GF (q2)/GF (q). Hence P (C) is the dual code of the component-wise trace of the

code generated by
〈
(cid

q
i )

n
i=1: c, d ∈ C

〉
. As the dual of the trace code equals the

restriction of the dual code to the subfield, i. e., (trK(C))⊥ = (C⊥)|K (see, e. g.,

Theorem 11 in Ch. 7, § 7 of Ref. 1), we can rewrite (15) as

P (C) =
〈
(cid

q
i )

n
i=1: c, d ∈ C

〉⊥

∩ GF (q)n. (16)

As in the proof of Cor. 2, we expand each codeword c ∈ C as c = v + γw where

γ ∈ GF (q2) \ GF (q) with γq = −γ + γ0 for some γ0 ∈ GF (q). This defines a

GF (q)-linear code over GF (q) × GF (q) which is given by

D = {(v, w): v, w ∈ GF (q)n | v + γw ∈ C}.

Then, as in (12), for a codeword x ∈ P (C) of weight r, we define the code

D̃ := {(v, (xiwi)
n
i=1): v, w ∈ GF (q)n | v + γw ∈ C}.

From (16) it follows that
∑n

i=1 xicid
q
i vanishes. Similar to the proof of Cor. 2 (see

eq. (3)), this implies that D̃ is self-orthogonal with respect to (1), as well as the

code obtained by deleting all coordinates where x is zero.
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5. Results

Applying Theorem 12 and Theorem 13 to the codes of Lemma 7 and Lemma 8,

respectively, we obtain

P (C(q,µ)) =
〈
Gi+j : 0 ≤ i, j ≤ µ

〉⊥

= C(q,2µ)⊥ (17)

and P (C(q2,µ)) =
〈
Gi+qj : 0 ≤ i, j ≤ µ

〉⊥

, (18)

where again Gi denotes the (i +1)-th row of the matrix G(q,µ) in (6). Additionally,

we have used that the component-wise product of Gi and Gj is Gi+j .

In combination with Theorem 11, we finally get:

Theorem 14: Let q be an arbitrary prime power. Then for all 3 ≤ n ≤ q and

1 ≤ d ≤ n/2 + 1 there exists quantum MDS codes [[n, n− 2d + 2, d]]q. Moreover, for

2 ≤ d ≤ q and some s (at least s = 0 and s = 1) there exist quantum MDS codes

[[q2 − s, q2 − 2d + 2 − s, d]]q.

Proof: The puncture code (17) is again an MDS code. As MDS codes contain

words of all weights dmin ≤ w ≤ n from the minimum distance dmin to the length

n of the code1, shortening of the corresponding quantum MDS code to any length

with the obvious constraints is possible.

For the codes of length q2 from Lemma 8, we do not have an explicit formula

for the weights in P (C), but from Theorem 10 one knows that at least quantum

MDS codes of length q2 and q2 − 1 exist.

The preceding theorem does not give much information about quantum MDS

codes of length n with q < n < q2 − 1. For a specific code, however, one can

compute the puncture code P (C) using (18). It can also be shown that in that

case P (C) is an extended cyclic code, but in general not an MDS code. Hence it

is difficult to compute its weight distribution, especially for large codes for which

only random sampling is possible. Using the computer algebra system MAGMA13,

we have computed and studied P (C) for quantum MDS codes for quantum systems

of dimension q ∈ {2, 3, 4, 5, 7}. The results which are summarized in Table 1 indicate

that many shortenings are possible.

6. Final Remarks

Following the presentation of these results at the conference EQIS ’03, we have

learned about the work of Chi et al.14 The authors constructed also quantum MDS

codes, but only for quantum systems of odd dimension pm, where p is a prime, and

maximal length pm. Our constructions apply to both even and odd prime powers.

Moreover, we obtain quantum MDS codes for quantum systems of dimension pm of

length up to p2m.
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Table 1. Possible shortenings of QECCs of length q2 for quantum systems of dimension q. Note
that e. g. for the code [[16, 10, 4]]4, there are only words of even weight in P (C), and for the code
[[25, 19, 4]]5, there is no codeword of weight 7 in P (C). Hence e. g. codes [[7, 1, 4]]4 and [[7, 1, 4]]5
cannot be obtained directly via shortening (but at least a code [[7, 1, 4]]5 can be constructed by
other methods).

q Theorem 10 puncture code P (C) weights in P (C)

2 [[4, 2, 2]]2 [4, 3, 2]2 2, 4

3 [[9, 7, 2]]3 [9, 8, 2]3 2–9

[[9, 5, 3]]3 [9, 5, 4]3 4–9

4 [[16, 14, 2]]4 [16, 15, 2]4 2–16

[[16, 12, 3]]4 [16, 12, 4]4 4–16

[[16, 10, 4]]4 [16, 7, 8]4 8, 10, 12, 14, 16

5 [[25, 23, 2]]5 [25, 24, 2]5 2–25

[[25, 21, 3]]5 [25, 21, 4]5 4–25

[[25, 19, 4]]5 [25, 16, 6]5 6, 8–25

[[25, 17, 5]]5 [25, 9, 12]5 12–25

7 [[49, 47, 2]]7 [49, 48, 2]7 2–49

[[49, 45, 3]]7 [49, 45, 4]7 4–49

[[49, 43, 4]]7 [49, 40, 6]7 6–49

[[49, 41, 5]]7 [49, 33, 8]7 8, 12–49

[[49, 39, 6]]7 [49, 24, 16]7 16, 18–49a

[[49, 37, 7]]7 [49, 13, 24]7 24, 25, 28, 30–49

aA codeword of weight 17 might exists as well, but the code [49, 24, 16]7 has too many codewords
for complete enumeration.

Finally, we note that we have found a generalization of our constructions that

increases the maximal length of the resulting codes by one, i. e., up to p2m + 1.

It remains an open question what the maximal length n of a non-trivial quantum

MDS code with minimum weight d > 2 is.
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