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AI & Safety

Constellation of methods referred to as Artificial Intelligence 
will touch our lives more closely and intimately

AI moving into high-stakes applications
Healthcare
Transportation
Finance
Public policy
Defense

Much to do on principles, methods, and best practices
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Safety-Critical Systems



safety
ˈsāftē/

noun
1. the condition of being protected from or unlikely to 
cause danger, risk, or injury



safety-critical   ˈsāftēˌkridək(ə)l/

adjective
1. systems whose failure could result in loss of life, 
significant property damage, or damage to the 
environment. 

2. designed or needing to be fail-safe for safety purposes.



adjective
incorporating some feature for automatically 
counteracting the effect of an anticipated possible 
source of failure

noun
device or practice that, in the event of a failure, responds 
or results in a way that will cause no harm, or at least 
minimizes harm. 

fail-safe \ˈfāl-ˌsāf\
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George Westinghouse, 1869
Train braking system

Brakes held "off" actively by healthy system

Brakes naturally resort to “on” if any failure of braking system

June 10, 1869 
Union Station, Pittsburgh to Steubenville
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George Westinghouse, 1869
Train braking system

Brakes held "off" actively by healthy system

Brakes naturally resort to “on” if any failure of braking system

Fail-safe practice
Full-power throttle on arrested landing
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Fail-safe

George Westinghouse, 1869
Train braking system

 Mechanism
 Practice
 Plan

 Monitoring

Brakes held "off" actively by healthy system

Brakes naturally resort to “on” if any failure of braking system



Growing interest in issues & directions with AI in real-world settings 

Grappling with uncertainty and more general incompleteness

AAAI President’s address (2008), “Artificial Intelligence in the Open World.”

AAAI President’s address (2016), “Steps Toward Robust Artificial Intelligence.”

AI in the Open World

E. Horvitz. Artificial Intelligence in the Open World, AAAI President’s Address, Chicago, IL, July 2008. 

T. Dietterich, Steps Toward Robust Artificial Intelligences, AAAI President's Address, Phoenix, AX. February, 2016. 

http://research.microsoft.com/en-us/um/people/horvitz/AAAI_Presidential_Lecture_Eric_Horvitz.htm
http://web.engr.oregonstate.edu/~tgd/talks/dietterich-aaai-presidents-address-final.pdf
http://web.engr.oregonstate.edu/~tgd/talks/dietterich-aaai-presidents-address-final.pdf


Open-world complexity  incomplete understanding

Uncertainties & poor-characterization of performance
Poor operating regimes, unfamiliar situations

Special Considerations with AI



Open-world complexity  incomplete understanding

Uncertainties & poor-characterization of performance
Poor operating regimes, unfamiliar situations

Special Considerations with AI

Rich ontology of failures

Numerous failure modalities 
New attack surfaces (e.g., machine learning attack)
Self-modification & gaming (e.g., modify reward fcn)
Unmodeled influences



Open-world complexity  incomplete understanding

Uncertainties & poor-characterization of performance
Poor operating regimes, unfamiliar situations

Challenges of transfer across time & space

Special Considerations with AI

Rich ontology of failures

Numerous failure modalities 
New attack surfaces (e.g., machine learning attack)
Self-modification & gaming (e.g., modify reward fcn)
Unmodeled influences

Challenge of coordinating human-machine collaborations

Operational opacity



AI & Open-World Complexity

Frame problem 

How to tractably derive consequences of an action?

Qualification problem 

Understanding preconditions required for actions to have 
intended effects

Ramification problem

Understanding all important effects of action
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Rise of probabilistic methods: known unknowns

Recent attention to unknown unknowns

AI & Open-World Complexity

Decision making under uncertainty & incompleteness



Fang, et al., 2015

Direction: Learn about abilities & failures 

Performance

Successes & failures

p( fail | E, t)

Predictive 
model of 

confidence
Image

H1

H2

H3

W1

W2

W3

W4

Input s

H3

Caption: 

a man holding a tennis 

racquet on a tennis court

H1

H2

H3

W1

W2

W3

Input t1

H3

W4

Deep learning about deep 
learning performance



Inferred
State

Inference
Reliability

Inference Inference

Performance

Successes & failures

p( fail | E, t)

Predictive 
model of 

confidence

Direction: Learn about abilities & failures 

Toyama & H. 2000
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Inference 
modality A

Inference 
modality B

Inference 
modality C

Direction: Robustness via analytical portfolios
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Direction: Robustness via analytical portfolios

Toyama & H. 2000

lights out

jolted camera

facing away

periph. distraction

back. subtract color based motion decay

Perceptual modalitiesUnmodeled situations in open world

Joint inference

http://research.microsoft.com/~horvitz/modfusion.pdf


Vary model structure, parameters, inferences

Direction: Understanding robustness via sensitivity analyses
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Direction: Robust optimization to minimize downside

Tamar, 2015; Chow, et al., 2014; per Dietterich, AAAI lect. 2016 

Robust optimization under uncertain parameters

Risk-sensitive objective

e.g., conditional-value-at-risk budget

Methods trade upside value

for reducing probability of 

costly outcomes
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Predict new distinctions, combine open- & closed-world models

Direction: Learn about unknown unknowns

Krumm, H., 2006

http://research.microsoft.com/en-us/um/people/horvitz/predestination.pdf
http://research.microsoft.com/en-us/um/people/horvitz/predestination.pdf
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Direction: Joint modeling of key dimensions of error

Example: Learn about errors of perception & control

Probabilistic models of control 

Probabilistic models of sensing 𝝋𝐨𝐛𝐬𝐭𝐚𝐜𝐥𝐞

𝝋𝐫𝐨𝐥𝐥

Sadigh & Kapoor, 2016 

http://people.eecs.berkeley.edu/~dsadigh/Papers/sadigh-uncertainty-rss16.pdf


Proposed trajectory
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Value of refining models & system
- Value of additional data
- Value of enhancing sensors
- Value of better controller

Sadigh & Kapoor, 2016 

(video)

http://people.eecs.berkeley.edu/~dsadigh/Papers/sadigh-uncertainty-rss16.pdf
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Direction: Joint modeling of key dimensions of error

𝐩 > 𝟏 − 𝝐

Fail-safe

Sadigh & Kapoor, 2016 

(video)

http://people.eecs.berkeley.edu/~dsadigh/Papers/sadigh-uncertainty-rss16.pdf


Direction: Joint modeling of key dimensions of error

Sadigh & Kapoor, 2016 (video)

http://people.eecs.berkeley.edu/~dsadigh/Papers/sadigh-uncertainty-rss16.pdf


Direction: Verification, security, cryptography

Verification

Cryptography

Security

Safe AI Systems



Static analysis

Run-time verification

Whitebox fuzzing 

Cybersecurity to protect attack surfaces

Appropriate use of physical security, isolation

Encryption for data integrity, protection of interprocess comms.

Direction: Verification, security, cryptography



Difficult to do formal analysis of large-scale system

 Analysis & execution considers info. from running system

Direction: Runtime verification

Satisfy or violate desired properties?

Identify problem, future problem

Engage human

Take fail-safe action 
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Learning

State

Direction: Metalevel analysis, monitoring, assurance

Environment
Action

Environment’

State

AI system

Reward

State’ Perception

Reinforcement

Adversary

Self-modification

e.g., see: Amodei, Olah, et al., 2016



Learning

State

Direction: Metalevel analysis, monitoring, assurance

Environment
Action

Environment’

State

AI system

Reward

State’ Perception

Reinforcement

Adversary

Reflective analysis
• Operational faithfulness
• Ensure isolation, detect mods
• Identify external meddling 



Run-time verification
Static analysis

Learning

State

Direction: Metalevel analysis, monitoring, assurance

Environment
Action

Environment’

State

AI system

Reward

State’ Perception

Reinforcement

Adversary

Reflective analysis
• Operational faithfulness
• Ensure isolation, detect mods
• Identify external meddling 



Direction: Human-machine collaboration

Models of human cognition

Transparency of state, explanation 

Mastering coordination of initiatives
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Human 
cognition

Machine
intelligence

How to best work together for safety?

Rich spectrum of autonomy 

Direction: Human-machine collaboration

Kamar, Hacker, H., 2012 

http://research.microsoft.com/en-us/um/people/horvitz/CrowdSynth.pdf


Machine learning & inference
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cognition

Machine
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How to best work together for safety?
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Direction: Human-machine collaboration

Kamar, Hacker, H., 2012 
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Designs for mix of initiatives

Machine learning & inference

Human 
cognition

Machine
intelligence

How to best work together for safety?

Rich spectrum of autonomy 

Direction: Human-machine collaboration

Kamar, Hacker, H., 2012 

http://research.microsoft.com/en-us/um/people/horvitz/CrowdSynth.pdf
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Direction: Human-machine collaboration

Safety-assuring mixed-initiative planner

- Driver’s attention over time 

- Latency of human input

- Latency tolerance of situation

- Cost & influence of alerting driver

- Custom language, ongoing dialog  

Gain driver attention t

Slow to defer need t’

Implement failsafe t’’



• Phases of study, testing, reporting for rolling out new capabilities 
in safety-critical domains (akin to FDA clinical trials, post-marketing 
surveillance)

• Disclosure  & control of parameters on failure rates, tradeoffs, 
preferences

• Transparency & explainability of perception, inference, action 

• System self-monitoring & reporting machinery

• Isolation of components in intelligence architectures

• Detecting & addressing feedback of system’s influence on self

Direction: Develop Best Practices for Safe AI



• Standard protocols for handoffs, attention, awareness, warning, in 
human-machine collaborations

• Policies for visible disclosure of autonomy to others                                 
(e.g., indication to others that a car is currently on automated policy)

• Fail-safe actions & procedures given predicted or sensed failures

• Enhancing robustness via co-design of environment & systems

• Testing for drift of assumptions, distributions in domains

• Special openness & adherence to best practices for data, learning, 
decision making for applications in governance & public policy

Direction: Develop Best Practices for Safe AI
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Addressing concerns of public

Significant differences of opinion, including among experts

Direction: Address concerns about “superintelligences”



Alan Turing 
Script, BBC broadcast, 1951
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Alan Turing 
Script, BBC broadcast, 1951

Addressing concerns of public

Significant differences of opinion, 

Direction: Address concerns about “superintelligences”

“For it seems possible that once the machine thinking method had started, 
it would not take long to outstrip our feeble powers. 

…they would be able to converse with each other to sharpen their wits. 

At some stage therefore, we should have to expect the machines to take 
control in the way that is mention in Samuel Butler’s Erewhon.”

Alan Turing, 1951



• Do we understand possibilities?  

• What kind of research should done proactively?

• Can we “backcast” from imagined poor outcomes 

• Designs of clear ways to thwart possibilities, ease concerns 

Addressing concerns of public

Significant differences of opinion, including experts

Direction: Address concerns about “superintelligences”




