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Abstract—We present an algorithm to construct quantum are quite strict and not applicable to an arbitrary quantum
circuits for encoding and inverse encoding of quantum convo convolutional code.
lutional codes. We show that any quantum convolutional code Using the matrix description of quantum convolutional

contains a subcode of finite index which has a non-catastropt stabilizer codes and transformations on this matrix which
encoding circuit. Our work generalizes the conditions for ron-

catastrophic encoders derived in a paper by Ollivier and Tilich ~ Preserve the symplectic orthogonality, we show that a nbrma
(quant-ph/040113%) which are applicable only for a restrited form can be achieved which corresponds to a very simple

class of quantum convolutional codes. We also show that the convolutional code. Reducing the dimension of this code
encoders and their inverses constructed by our method natuaily by only a bounded factor, we obtain an even simpler code
can be applied online, i. e., qubits can be sent and receiveditiv . ) . .
constant delay. allowing online encoding and_ decoding. Furthermore, from
the sequence of transformations one can read off a non-
|. INTRODUCTION catastrophic encoder for a subcode of the original code &hos
Similar to the classical case a quantum convolutional codémension is reduced by the same factor. Asymptotically, th
encodes an incoming stream of quantum information into a&ate of the subcode and the original code are the same.
outgoing stream. A theory of quantum convolutional codes

A . ) II. QUANTUM CONVOLUTIONAL CODES
based on infinite stabilizer matrices has been developed re- Q . ) o i
cently, see [12]. While some constructions of quantum Con_Quantum convolutional codes are defined as infinite versions

volutional codes are known, see [2], [3], [1], [5] [6], [7]’0f guantum stabilizer codes. We briefly recall the necessary

[11], [12], some very basic questions about the structure definitions and the polynomial formalism to describe quamtu

quantum convolutional codes and their encoding circuitehacPnvolutional codes which was introduced in [12].
finition 1 (Infinite Pauli Group):Let

not been addressed so far, respectively have been addressCf
only in special cases. In this paper we focus on the question. _ ( 0 1 > P < 1 0 > VeXZ— < 0 —1 >
of which quantum convolutional codes have non-catastmphi 1 0 )’ 0o -1 /)’ 1 0
encoders, respectively inverse encoders. be the (real version of the) x 2 Pauli matrices. Consider an
Recall, that classically a code encoded by a catastropijginite set of qubits labeled by the nonnegative integers
encoder has the unwanted property that—after code wqrg; ;, € {X,Y, Z} be a Pauli matrix. We denote by/; the

estimation—a finite number of error locations can be mapped i.infinite tensor produds ®...@ & M@ I»®. . ., where
by the inverse encoder to an infinite number of error location, , operates on qubit and I, denotes the identity }natrix of
For classical convolutional codes it is well-known that tio- size2 x 2. The group generated by aN; and Z; for i € N

. 3 K3

catastrophicity condition is a property of the encoder aotl nig 4j1ed the infinite Pauli grouf... For an elementd —
of the code itself. Indeed, every convolutional code has bo L@ A5 @ ... € P the positions in which4; is not equal
catastrophic and non-catastrophic encoders and thertfere +1, is called thgosupport oft ’

choice of a good encoder is very important. In the theory of block stabilizer codes, the elements of the
In this paper we address the analogous question whether @y i group are labeled by tuples of binary vectors. Siyilar
quantum convolutional stabilizer code has non-catasttoplye can label the elements of the infinite Pauli group by a tuple

encoders a_md encoder inverses. Here the condmon to be N8fbinary sequences, each of which is represented by a formal
catastrophic has been shown in [12] to be that it has a CdnStﬁawer series. Hence we get the correspondence

depth encoder whose elementary quantum gates can be ar-

ranged in form of a “pearl necklace”, i. e., a regular struein (-1)XaZp = (-1)° ® Xz
which blocks are only allowed to overlap with their neighdor £>0

with possibly some blocks spaced out. Furthermore, in [12]

some conditions on the code have been given under which = ZOQDE,ZﬂgDZ

a non-catastrophic encoder exists. However, these conditi >0 >0
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wherec € F; andac = Y ,o,aD* andB = Y, , 8D are implies that for every qubit in the semi-infinite stream of
formal power series with coefficients ify. In this representa- qubits, there is a bounded number of generators of the stabi-
tion, multiplication of elements oP,, corresponds to addition lizer group that act non-trivially on that position. Moreoyas
of the power series. Furthermore, shifting an elemémt P, these generators of the stabilizer group have bounded sippo
one qubit to the right corresponds to the multiplicationtod t their eigenvalues can be measured when the corresponding
power series byD. As we also allow to shift the operatorsqubits have been received. Therefore, it is possible to coenp
by a bounded number of qubits to the left, we use Laurettte error syndrome for the quantum convolutional code enlin
series instead of power series to represent the elements olriting the stabilizer in the forn$ (D) = (X (D)|Z(D)) as
P~. An elementd € P, with finite support corresponds to ain eq. [1), it was shown in [12] that the condition of sympiect
tuple of Laurent polynomials. Recall that the field of Laurerorthogonality of the semi-infinite matri$ can be expressed
series in the variabl® with coefficients inlF, is denoted by compactly in the form
Fo((D)) and recall further that it contains the rifig[ D, D!
on(L(au)r)ent polynomials. ol | X(D)Z(1/D)" + Z(D)X(1/D)" = 0. 3)
We are interested in shift invariant abelian subgrougBof On the other hand, we can start with an arbitrary self-
more specifically in those subgroups which can be generatgghogonal additive convolutional code ovéh((D))" x
by a finite number of elements and their shifted versiong, (D))" to define a convolutional quantum code. In general,
The following definition introduces a shorthand notation fane generator matrix for such a code may contain rational
describing such subgroups. _ functions, but there is always an equivalent description in
Definition 2 (Stabilizer Matrix):Let S be an abelian sub- terms of a matrix with polynomial entries [9]. The following
group of P, which has trivial intersection with the cen-theorem shows that for self-dual convolutional codes, all
ter of P. Furthermore, let{gi,g,...,g-} Where g; = entries of a systematic generator matrix are in fact Laurent
(—1)% X, Zg, With ¢; € {0,1} and (o, B:) € F2((D))" X polynomials.
Fy((D))" be a minimal set of generators f&. Then a = Theorem 3:Let S(D) = (X (D)|Z(D)) with X(D) = I
stabilizer matrix of the corresponding quantum convohiio pe 5 stabilizer matrix of a self-dual additive convolutibna
(stabilizer) codeC is a generator matrix of the (classicalloge over the rational function fielih (D). ThenZ(1/D) =
additive convolutional codeC’ C Fy((D))" x F2((D))"  z(D)* and all entries ofZ(D) are Laurent polynomials.

generated bYc;, 3;). We will write this matrix in the form Proof: From condition [B) it follows that the code is
a1 | B self-dual if and only if Z(1/D) = Z(D)!. Assume that
_ _ . . rx2n Z;;(D) is a proper rational function and not a Laurent poly-
S(D) = (X(D)IZ(D)) | EFRD)T nomial. Then evaluating the series expansionZef(D) at
a, | Br 1/D yields infinitely many negative powers. However, since

@) 7D i ini i
. . - i contains only finitely many negative powers we get a
In what follows we are only interested in those stablllzercc, i(D) y y y neg P g

J
. Y S . . ontradiction. Hence all entries df(D) have to be Laurent
which have a finite description. Hence we will consider onl

hy . X . ) ?ﬂolynomials.
SU(_:h stablllze_r mat_rlcesﬂ(l) in which all entries are adyual The symmetryZ(1/D) = Z(D)" additionally implies that
rational functions, i.e., elements @, (D). Eventually, we

) ) . - the diagonal term&;; (D) are Laurent polynomials of the form
will require that all entries have finite support and are leenc 9 (D) poly

polynomials. d
Alternatively to [1) a quantum convolutional code can also Zii(D) = ZCg(D*‘ + DY). (4)
be described in terms of a semi-infinite stabilizer matsix £=0
which has entries i, x . The general structure of the m
matrix is as follows:
Go G ... Gn O II1. SHIFT-INVARIANT CLIFFORD OPERATIONS
0 Go Gy ... Gp 0 ... We are interested in quantum circuits which encode a convo-

S= 0 0 Go Gi ... Gmn 0 ... | (@ lutional quantum code. Recall that the controlled-not (Q)NO
. . maps|z)|y) — |z)|z & y) and that the controlled-Z (CSIGN)
gates mapsz)|y) — (—1)*Y|z)|y) (see [10]). We want that
The matrix.S has a block band structure where each block errors which happen during the encoding do not be spread out
of size (n — k) x (m + 1)n. All blocks have equal size andtoo far. A particularly bad example of spreading errors i&gi
are comprised ofn + 1 matricesGo, G, . . ., G,, which are by the cascad€NOT., = [[°, CNOT"*1) where gates
of size (n — k) x n each. In the second block, these+ 1 with smaller index: are applied first. The cascad&NOT
matrices are shifted by columns, hence any two consecutivenaps the finite support elemehlit® I, @ I, ®. . . to the infinite
blocks overlap in(m — 1)n positions. support elemenk ® X ® X ®. .. On the other hand the infinite
Similar to the classical case the link between the polynbmieascadeCSIGN,, = [, CSIGN**!) does not have this
description of eq.[{1) and the semi-infinite matrix dd. (2) ibehavior: indeed, a Pauli matriX; is mapped taZ; 1 X; Z; 11
given by S(D) := 31", G;D". The band structure of ed](2)by this cascade and since it furthermore commutes wit¥ all



TABLE |

operators, this shows that it maps finite support Pauli iwesdri
ACTION OF VARIOUSCLIFFORD OPERATIONS

to finite support Pauli matrices. The reason for this diffieee

is that the sequenc€SIGN,, can be parallelized to have unitary gatel/ matrix U
finite depth (actually depth), whereas this is not possible for

CNOT . Clearly, any ci_rcuit of C(_)nstar?t dept_h only leadsto , _ 1t (1 1  c2x2 g (01 € 52x2
a local error expansion, i. e., Pauli matrices with finite sup V2 -1

get mapped onto Pauli matrices with finite support. This gjive
rise to the following definition: 1 0 11
€ C2x2 P= € F2x2
) 0 1

Definition 4 (Non-catastrophic encoder)et C be a quan- P = 0 explin/2
tum convolutional code and It be an encoding circuit for
C. Then¢ is callednon-catastrophidf the gates in€ can be
arranged into a circuit of finite depth.

In the following, we consider infinite cascades of gates frO'TbNOTWH"),z #j (modn) CNOT
the Clifford group that can be realized by quantum circuits
with constant depth. Since the generators for the quantum
convolutional code are obtained by shifting a fixed block asn
infinite number of times, we have to impose a shift invariance
condition on any Clifford gate that we intend to apply to the N
code. This means that whenever a gate is applied it has SIGN"/"),i#j (modn) TSIGN=
be applied also in a shifted version by an offsetnofjubits.

Similar to the approach in [8], the action of such operations

on elements of the infinite Pauli group can be described as

X : o . y — (1 D*+D*
linear transformations on the stabilizer matrix. As an eplam Py := CSIGNi+En) ¢ £ P =

the action of an infinitely replicated Hadamard gdfeon a 0 1

qubit is described in its action on the vect@f§ D), g(D)) €
Conjugation of the stabilizer grouf by the unitary gatd/ corresponds to

Fo(D)? by the matrix H = 0 since H'XH = Z the action of the matrice§ on the columns of the stabilizer matr(D) =
o Lo . _ (X(D)Z(D)).
and H'ZH = X. Similarly, all infinitely replicated versions

of Clifford gates which only operate within a block and dgne aigorithm we recall the Smith normal form [9] of a matrix:

not connect qubits between shifted blocks, correspondéo th

usual matrices in the symplectic grop,,, (Fs). Theorem 5:Let M(D) € F5[D]"*™ be anr x n polyno-
More interesting are those operations which connect diffef,i5 matrix. Then there exist polynomial matrice§D) €

ent blocks which have been shifted in time. An example iS@LT(FQ[D]) and B(D) € GL,(F»[D]), both having determi-
CNOT gate which operates on a qubi{control) and qubit -+ one, such that/(D) = A(D)I'(D)B(D), wherel'(D)
Jj (target), where qubif has been shifted by blocks. Recall g ther x n matrix

that shifting by blocks corresponds to multiplying bip*.

In this case we obtain that CNOT gate maps the stabilizer 71(D)

vector (xy, wa|21, 22) — (21, 29+ 21D |21 + 20D~ ¢, 23), i. €., (D) = .

X errors are propagated into the future ahcerrors into the (D) 0 - 0
past. Note that by applying a sequence of CNOT gates we

can actually map(z,za|z1, 22) — (x1,722 + f(D)z1]21 + Wwhere the diagonal elemenelémentary divisodsy; € Fa[D]
f(1/D)za, 22), where f(D) € F5[D] is an arbitrary polyno- satisfyy;|yi41 fori=1,...,7 —1.

mial. A summary of the gates used is shown in Tdble I. It Note that the Smith form can be computed for any matrix
important to note that all the operations shown in Tdble | caver an Euclidean domain, including the rifig[D, D~!] of

be parallelized to have constant depth. Laurent polynomials (see, e.g., [4]). For this, define thgree
of a Laurent polynomialf = Zf,l:é ceD* with ¢g, # 0 # ¢y,
IV. COMPUTING AN ENCODING CIRCUIT as |0 — lo|. ¢

In the following we describe an algorithm which operate on We will also need an observation about matrices which have
the stabilizer matrix[{1) in order to produce a new stabilizelready been partially brought into Smith form and which
which is in a simpler form. We can act in two ways: (i}contain Laurent polynomials as entries.
by applying row operations using an invertible matrix over Lemma 6:Let M (D) € Fy[D, D~!]"*" be a matrix con-
Fo[D, D~1]. Apart from possible shifts, this does not changgining Laurent polynomials and which has the foh =
the stabilizer group, i.e., up to a possibly new initial qubidiag(y;(D))|U(D)), where U(D) € Fyo[D, D~1* (=),
sequence (of bounded length) the quantum code is unchangeskume that for at least orieve have thaty; does not divide
We can also apply (ii) column operations given by an arbjtrathe Laurent polynomials contained in th# row of U (D).
element of the Clifford group shown in Talfle I. Before weestatThen at least one of the polynomialg(D) arising in the



Smith normal form of M (D) (after the denominators have corresponding element df (D) (consider the matrix

been cleared by row-wise multiplication of powersioj has I'~1S(D) = (I 0]T~1Z1(D) 0) which contains Laurent

a strictly smaller degree than the corresponding). polynomials only). Hence, usingSIGN gates, clear all
Proof: Without loss of generality, we consider the first off-diagonal terms inZ; (D).

row (v1(D),0,...,0, f1(D),..., fa—r(D)) of M(D), where 5) From [3) it follows that we can cancel the diagonal of

the f;(D) are Laurent polynomials. Clearing the denominators  the matrixZ; (D) using the gate® and P;.

by a suitable poweD’ leaves us withD’y, (D) and polyno-  6) Finally, use Hadamard gatés to obtainZ-only gener-

mials f/(D) := D*f;(D). Computing the Smith normal form ators in diagonal form.
we obtain the gcd 0D~y (D), f{(D), ..., fi_.(D) whichby This algorithm transforms the original stabilizer matrixtd
assumption has to be a proper divisorgf D). B a stabilizer matrixS;(D) = (00T(D)0) with T'(D) =

Next, observe that by using Clifford gates (acting on th@iag(v;(D)). In casev;(D) = 1, the only possible sequence
X-part only) we can implement the matrix(D) used in the of states formed by thé" qubit of all blocks is|0)|0) ... If
Smith normal form. The reason for this is that in the computa; (D) = D?, there are no constraints on the fiksgubits.
tion of the Smith normal form only elementary operations andtherwise, the statéro)|c;) ... corresponding to the power
permutations are necessary [9, Section 2.2]. We can realizgies expansion of /y;(D) = Y ,.,c/D* and its shifted
these operations using theNOT gates and permutationsversions are allowed, too. As the sequeiieg, is periodic,
of the qubits, which can also be realized BNOT. Left there are only finitely many different shifted versions. We
multiplication by an invertible matrix does not change thgynore these additional states as they would require anitmfin
stabilizer, so there is no need to implement the matr{0) cascade ofCNOT gates. As an example for this behavior

as quantum gates. consider the state))|0)... and |1)|1)... allowed by the
Algorithm 7: Let a polynomial stabilizer matrixS(D) = single qubitZ-generatorl +D.
(X(D)|Z(D)) € F2[D]"**" of full rank be given. In caseT'(D) # I, which corresponds to catastrophic

1) Compute matricesA(D) and B(D) which realize the encoders in the classical case, we consider the Cgdeith
Smith normal form forX (D). Factor the matrixB(D) stabilizer matrix So(D) := (00[710). Now, Co is a proper
into elementary matrices of the forddNOT and per- convolutional subcode of the codg with stabilizer matrix
mutations of qubits. Apply these operations to the cod® (D). The dimension is only decreased by a bounded factor

to obtain the new stabilizer matrix depending od'(D). In casel'(D) = I, we haveCy = C;.
(D) 0 The subcod€&, has a very simple structure: a sequence of
S(D) = ( 0 0 Z1(D) Z2(D) ) ’ n — k qubits in the statd0) alternates with a sequence bf

qubits|¢;). Encoding forC is done by inserting qubits in the
state|0) into the input stream. To obtain a state of (a subcode
of) the original convolutional quantum code apply the gates
corresponding to the elementary matrices used in the thgori
in reversed order. The corresponding elementary gatesére o
Clifford gates which have to be replicated infinitely ofteil
elementary gates used can be parallelized into finite depth
which implies that the operations can be carried out online.
Hence we have shown the following result:
(D Corollary 8: Let S(D) be the stabilizer matrix of a quan-
(D) = < (0 ) X2(D) ‘ Z1(D) 0 > ’ tum convolutional cédéi’. Then there exists a convolutional
with X(D) = Zs(D). §ubcod€(35ub C Cwitha non-c_:atastrophic encoder and encoder
. If T(D) has full rank and if all polynomials in inverse such that asymptotically the _ratesC@ajb andC are
row j of Xa(D) are duisible by~ (D) for all equal. Moreover, the er_lcoder anq its inverse only use @iffo
j—=1.....r then us&CNOT-gates té obtain zeros gates and allow for online encoding and inverse encoding.

in both X5(D) and Z(D).
« Else recompute the Smith normal form of the- V. EXAMPLE

gﬁlrt cjngo?‘rﬁglzltigezr Flr)n)agfé frllejmelnet :rgf ?rll\gsgcrj_ or Consider theéF,-linear ratei /3 convolutional code from [6,
oy 2 P Table VI]) with generator matrix

responding elementary divisor. The degree of the
elementary divisors decreases because of Lefma 6.
3) The stabilizer matrixS(D) is now of the formS(D) =
(I(D)0]Z1(D)0), whereI'(D) has a rational inverse The corresponding stabilizer matrix is
since S(D) has full rank.
4) From Theorenfll3 it follows that all entries in the rows (14D 1 14D 0 D D
of Z,(D) are divisible (as Laurent polynomials) by the (D) = < 0 D D 1+D 14D 1 )

whereT'(D) is a diagonal matrix with non-zero polyno-
mial entries of ranks and Z; (D) € F5[D, D~1]"*¢ and
Zo(D) € Fy[D, D~17*("=5) are matrices with Laurent
polynomials as entries.
2) While the Z5(D) part of S(D) is not zero, repeat the
following steps:
« Use Hadamard gate$ to swapZ, (D) into the X -
part yielding

GID)=(1+D 1+wD 1+wD ).



o) — a7
0) (] !‘T_\ (71 4 } block 1
10) 4] 4] N2
o) — a7 :
0) —{H] ’ (7] b } block 2
|61) (Z}-Z] LZ]—@ ¢—
o) — a7 \
0) —{H] ° (7] b } block 3
60 ZHZHZ {222 b1
o) — {7} }
0) —H] ' 7] 4 block 4
|63) dZ]_@_[Z] ZHzHzF— <

TR T 11

Fig. 1. Encoding circuit for a raté/3 convolutional quantum codes. Every gate has to be repgasgqlied shifted by one block, i.e. three positions down.
Note that theCSIGN gates are diagonal and hence can be arranged in any ordeheFGINOT gates, each gate has to be repeated in its shifted version
before the next gate can be applied.

The first sequence o NOT operations transforms the firstin the stabilizer acting on the second qubit of the now second

row of X (D), and we obtain: block and constrain the input o).
A circuit for encoding is obtained by reversing the order
! 0 0 1 D D of the transformations. The encoding circuit is illustchia
D?* D?*+D D3+D*+D |0 (D*+1)/D 1

Fig. [. Note that the circuit extends over three blocks, i.e.
Invertible row-operations do not change the stabilizerugto has total memory two. This is reflected by the fact that in this

so addingD? times the first row to the second yields example the operations used by the algorithm to clear entrie
1 0 0 1 D D only involved Laurent polynomials of degree at most two. In
( 0 D2+D D3+D?>+D ‘ D? (D*+D?+1)/D D3+1 > *contrast, an encoder for the classical convolutional coes o

F, given by G(D) can be realized with total memory one.

Again usingCNOT, we transform the second row &f(D):

10 0|1 1/D (D*+D+1)/D . VI. CONCLUSION
< 0 D 0 ‘ D? 0 D3+ D*+D ) ®) We have shown that the quantum convolutional codes
) _ ) . obtained from self-orthogonal classical convolutionatle®
Using CSIGN, we can clear the off-diagonal terms in the f'rsalways have a subcode which has asymptotically the same
row of Z(D), rate and allows for non-catastrophic encoders. This shoats t
1 0 0l1 o 0 errors affecting these codes do not propagate in an unbdunde

( 0 D 0 ‘ 0 0 D}+D2+D ) J fashion during the decoding process. For simplicity, weehav
presented the algorithm for qubit systems only, but as in [8]
the technique applies to non-qubit systems as well.

and similar for the second row
1 0 O
0 D 0

Finally, usingP and H we getZ-only generators:

1 0 0
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