
The NearMe Wireless Proximity Server

John Krumm and Ken Hinckley

Microsoft Research
Microsoft Corporation

One Microsoft Way
Redmond, WA, USA

jckrumm@microsoft.com
kenh@microsoft.com

Abstract. NearMe is a server, algorithms, and application programming inter-
faces (APIs) for clients equipped with 802.11 wireless networking (Wi-Fi) to
compute lists of people and things that are physically nearby. NearMe compares
clients’ lists of Wi-Fi access points and signal strengths to compute the prox-
imity of devices to one another. Traditional location sensing systems compute
and compare absolute locations, which requires extensive a priori calibration
and configuration. Because we base NearMe entirely on proximity information,
NearMe works “out of the box” with no calibration and minimal setup. Many
“location-aware” applications only require proximity information, and not abso-
lute location: examples include discovering nearby resources, sending an email
to other persons who are nearby, or detecting synchronous user operations be-
tween mobile devices. As more people use the system, NearMe grows in both
the number of places that can be found (e.g. printers and conference rooms) and
in the physical range over which other people and places can be found. This
paper describes our algorithms and infrastructure for proximity sensing, as well
as some of the clients we have implemented for various applications.

1 Introduction

One of the goals of ubiquitous computing is to build applications that are sensitive to
the user’s context. An important part of context is the list of people and places that are
close to the user. One common way to determine proximity is to measure absolute
locations and compute distances. However, computing absolute location is not neces-
sarily easy (see [1] for a survey), especially indoors, where GPS does not work, and
where people spend most of their time. The NearMe wireless proximity server dis-
penses with the traditional computation of absolute locations, and instead estimates
proximity (distance) directly. The advantage of using proximity is that, unlike location
sensing techniques, it does not require any a priori geometric calibration of the envi-
ronment where the system is to be used.

UbiComp 2004. The Sixth International Conference on Ubiquitous Computing,
pp. 283-300. September 7-10, 2004, Nottingham, England.

NearMe is a server, algorithms, and application programming interfaces (APIs)
meant to compute lists of nearby people and places for clients running on various
802.11 Wi-Fi devices. NearMe determines proximity by comparing lists of Wi-Fi
access points (APs) and signal strengths from clients. We refer to these lists as “Wi-Fi
signatures.” By comparing Wi-Fi signatures directly, NearMe skips the intermediate
step of computing absolute location, which means it works without calibration for
clients equipped with Wi-Fi devices. Our system exploits the growing ubiquity of Wi-
Fi access points, using them not necessarily as entry points to the network, but as
signatures that distinguish one location from another, much like most Wi-Fi location
efforts (e.g. RADAR[2] and Place Lab[3]).

NearMe computes proximity as opposed to absolute location. While proximity can
be easily computed from absolute location, NearMe demonstrates that computing
proximity directly can be much easier. Proximity is useful for polling for nearby peo-
ple and places and for computing how far away they are. Proximity cannot, in general,
answer questions about the absolute location of something nor how to get there.
Therefore, our system is not intended to be used to find lost things nor to map routes
to destinations. Instead, NearMe is intended to discover what is already nearby and to
augment context for ubiquitous computing.

NearMe divides proximity into two types: short range and long range. People and
places in short range proximity are defined as those with at least one Wi-Fi access
point in common. We have developed a function that estimates the distance between
clients in short range proximity based on similarities in their respective Wi-Fi signa-
tures. Short range proximity is primarily intended for finding people and places within
the coverage of one access point, which generally ranges from 30-100 meters. Long
range proximity means that the two objects of interest are not within range of any one
access point, but are connected by a chain of access points with overlapping coverage.
The NearMe server maintains a list of overlapping access points that is automatically
built from access point data that clients provide during the normal use of the NearMe
server. The server periodically scans through all its stored access point data to create a
topology of overlapping APs. It also examines time stamps on the data to create travel
time estimates between pairs of access points. These travel times and AP “hops” are
provided to clients as estimates of the nearness of people and places in long range
proximity.

Both short range and long range proximity are computed from Wi-Fi signatures
without any explicit calibration, meaning that deployment of NearMe is only a matter
of getting people to run the software. People can use NearMe by running one of a few
different clients we have written to run on a Wi-Fi-capable device. The client is oper-
ated by first registering with the system, sending a Wi-Fi signature to the server, and
then querying for people and various types of objects or places nearby. Objects like
printers and places like conference rooms and other resources are inserted into the
database by a user physically visiting that place, registering as the object or place, and
sending in a Wi-Fi signature. Once registered in this way, objects and places can be
found by anyone else using the system. Traditional location-based systems use the
same sort of registration of meaningful locations, only they also require an intermedi-
ate step of calibration to go from sensor measurements to absolute location. For in-
stance, Wi-Fi based positioning systems need a signal strength map generated from

either manually measuring signal strengths or from simulating them based on meas-
ured access point locations, e.g. RADAR[2]. NearMe skips this geometric calibration
step in favor of a collaborative process of registering useful locations by multiple
users which are then shared with all users. Hence the system can gain acceptance by
gradual adaptation without an onerous up-front investment to calibrate a specific envi-
ronment. This also makes the system potentially more amenable to inevitable changes
in Wi-Fi access points: If a Wi-Fi signature is no longer valid, users would be moti-
vated to report a fresh Wi-Fi signature for the places that are important to them.

The next section of this paper describes related work. The NearMe client and
server functions are discussed in Sections 3 and 4. Section 5 describes our experimen-
tal work to develop a robust function to estimate distance between clients in short
range proximity by comparing their Wi-Fi signatures. In Section 6 we describe some
of the applications we have implemented using NearMe, and we conclude in Section
7.

2 Related Work

The research described in this paper is related to several other projects and technolo-
gies in ubiquitous computing, including location sensing, proximity measurement, and
device discovery.

There are many ways to automatically measure location [1], including Wi-Fi signal
strengths, GPS, and active badges. Our proximity technique uses Wi-Fi signal
strengths. Wi-Fi has been successfully used for computing location, starting with the
RADAR system [2] and continuing with Intel Research’s growing Place Lab initiative
[3], among others. Some location systems require the deployment of specialized hard-
ware in the environment, e.g. satellites for GPS and special receivers and/or transmit-
ters for active badges. All of them require offline setup in the form of calibrating the
region of use or mapping of base stations. NearMe is different in two significant ways:
(1) it depends only on existing Wi-Fi access points; and (2) for finding nearby Wi-Fi
devices, it requires no calibration or mapping. For finding nearby places, it only re-
quires that the place has been registered once with the Wi-Fi signature from that loca-
tion.

Proximity, as distinct from location, is an important part of a person’s context.
Schilit et al.[4], in an early paper on context-aware computing, define context as
where you are, who you are with, and what resources are nearby. Note that the latter
two of these three elements of context depend only on what is in a user’s proximity,
and do not require absolute location. Hightower et al. [5] describe how location-
dependent parts of context can be derived from raw sensor measurements in a “Loca-
tion Stack”. An “Arragements” layer takes location inferences from multiple people
and things to arrive at conclusions about proximity, among other things. NearMe
jumps directly from sensor measurements (Wi-F signal strengths) to proximity ar-
rangements without the intermediate complexities of computing locations.

Several systems provide wireless “conference devices” that are aimed at assisting
conference attendees with proximity information. These are generally small wireless

devices that can be easily carried or worn, normally by people in large groups. Exam-
ples include nTAG [6], SpotMe [7], IntelliBadge [8], Conference Assistant [9], Proxy
Lady[10], and Digital Assistant [11]. Among the features of these devices are their
awareness of location and/or who is nearby. Some of them use base stations in the
environment to measure location, while others use peer-to-peer communication to find
other nearby conference devices. Except for the Conference Assistant, these are spe-
cialized hardware devices, whereas NearMe runs on any client that supports network
access and Wi-Fi. In addition, NearMe needs no special infrastructure, and it gives
proximity information about people and things that can be much farther away than the
range of regular peer-to-peer communication by using its knowledge of adjacencies of
overlapping access points.

There are well-established protocols for peer-to-peer device discovery using Blue-
tooth and Infrared Data Association (IrDA) [12]. Bluetooth works in the 2.4GHz RF
range and discovers other Bluetooth devices by hopping through a sequence of chan-
nels looking for devices of a specified type, like PDAs or printers. NearMe clients
may also search for specific types of things, including people, printers, and conference
rooms. But unlike NearMe, Bluetooth cannot discover things that are along a chain of
devices with overlapping coverage. Thus the discovery range of Bluetooth is limited
to about 10 meters. While Bluetooth does not require a clear line of sight between
devices, IrDA does, and it only works over a range of about one meter.

Detecting synchronous user operations, or shared context in sensor data, represents
another related set of technologies. For example, “Smart-Its Friends” [13], synchro-
nous gestures [14], and “Are You With Me?” [15] detect similar accelerometer read-
ings due to shaking, bumping, or walking. In general, any synchronous user operation
can be used to identify devices. For example, SyncTap [16] forms device associations
by allowing a user to simultaneously press a button on two separate devices. Stitching
[17] is a related technique for pen-operated devices: a user makes a connecting pen
stroke that starts on the screen of one device, skips over the bezel, and ends on the
screen of another device. This allows the user to perform an operation that spans a
specific pair of devices, such as copying a file to another device. NearMe comple-
ments this class of techniques, because NearMe allows such systems to narrow the set
of potential associations to only those devices that are actually in physical proximity.
This helps resolve unintentional coincidences in sensed contexts, and it reduces the
number of possible devices that need to be searched for association. Section 6.3 de-
scribes how we use NearMe to implement this functionality for the Stitching tech-
nique.

NearMe is most closely related to two commercial systems: Trepia [18] and peer-
to-peer systems like Apple’s “iChat AV” [19]. Trepia lets users communicate with
other nearby users that it finds automatically. Users can manually specify their loca-
tion and Trepia also uses wired and Wi-Fi network commonality to infer proximity.
While NearMe also uses Wi-Fi, it makes use of signal strengths to estimate fine-
grained proximity, and it also uses an automatically updated table of physically adja-
cent access points to determine longer range proximity. iChat AV lets users on the
same local network find each other for instant messaging or video conferencing. Simi-
lar systems for computer games let users on the same network find other nearby gam-
ers. NearMe is more general in that it does not require users to be on the same net-

work in order to find each other, and that it lets users find nearby places as well as
other people.

3 The NearMe Client

The client portion of NearMe is a program that users run to interact with the proximity
server. The programmatic interface to the server is a web service which presents a
simple set of APIs for a client to use, making it is easy to write new clients. We have
written seven: four for Windows XP, two for Pocket PC 2003, and one in the form of
an active server page (ASP). Each client performs the same three functions:

1. Register with the proximity server.
2. Report Wi-Fi signature.
3. Query for nearby people and places.

We will present a general Windows client as an example as it demonstrates most of
the system’s functionality. Some of the other application-specific clients are detailed
in Section 6. The main work of NearMe is performed by the server, which we discuss
in Section 4. The next three subsections explain the above three steps of using the
client.

3.1 Register with Proximity Server

The user’s first step in using the proximity server is to register with a chosen name, as
shown in Figure 1-a. New users can type in any name, and they also chose an expira-
tion interval in hours as well as a uniform resource locator (URL) that others can use
to look up more information. The expiration interval serves as a trigger for the server
to automatically delete old users. More importantly, it allows a user’s name to be
automatically removed from the server to help preserve privacy after he or she is no
longer using the server. One scenario we envision is that a user will register with the
server at the beginning of a meeting in order to find the names of other people in the
same room. Since this user knows the meeting will end in one hour, he sets the expira-
tion interval to one hour, meaning he will not need to remember to remove his name
from the server after the meeting.

Upon registration, the client application receives a globally unique identifier
(GUID) from the server. This GUID is used by the server to identify which data to
associate with which user. If a user quits the client application and wants to restart
later, the registration function gives him or her opportunity to register as a previous
user instead of a new one. The server then responds with the GUID of the chosen
previous user which is used by the client to tag future transmissions.

a) George Washington registers with his
name and a URL. He could have also
registered as one of several different
places or things listed in the left column.

b) He reports his current Wi-Fi signal
strengths to the server. He could op-
tionally start a periodic sequence of
reports with a chosen time interval.

c) George Washington queries for
nearby people, finding Thomas Jefferson
sharing an access point. Two others are
some number of access point hops away,
as given in the lower right list. This list
gives the distance to the two other both
in terms of access point hops and the
minimum time it has taken anyone to
walk between them.

d) He queries for receptionist desks
and finds four, but none share an ac-
cess point. The left list gives the vari-
ous types of places that can be queried.

Figure 1: These screen shots show a typical series of actions and responses by a
user of the NearMe Windows client.

A user can register as a person or as any of the possible types below:

person elevator kitchen bathroom
conference room stairs mail room stitchable device
printer cafeteria reception desk demo person

The non-person types are intended to allow a user to tag an object or location with a
Wi-Fi signature. Each registered non-person instance is given a name, just like users,
but there is no expiration interval. Once tagged, human users can query the server for
nearby instances of these types as well as people.

For an enterprise, an alternative, more secure registration method would be to use
the username/password scheme in force for the enterprise’s computer network. A
wider deployment could use a publicly accessible authentication service such as Mi-
crosoft’s Passport.NET. Also, it would be valuable to add the ability to limit a user’s
visibility to just a certain group, like his or her list of instant messenger buddies.

3.2 Reporting Wi-Fi Signatures

Once registered, a client can report access points and their measured Wi-Fi signal
strengths to the server as shown in Figure 1-b. The Windows client allows the user to
make a one-time report or set up a periodic series at a chosen time interval. The peri-
odic mode is intended to be used by a moving client. A client makes generic API calls
to retrieve a list of access point Media Access Control (MAC) addresses (one for each
detectable access point) and the associated received signal strength indicators (rssi)
from its 802.11 wireless device. This list is the Wi-Fi signature. We only use APs that
are in infrastructure mode, not ad hoc, as infrastructure mode APs are normally static.
Rssi is normally measured in decibels referred to one milliwatt, or dBm. The usual
range is approximately -100 to -20 dBm, and the APIs we use report rssi as an integer.
Rssi generally decreases with distance from the access point, but it is affected by at-
tenuation and reflection, making the relationship between location and rssi complex.
MAC addresses are 6-byte identifiers that uniquely identify 802.11 access points. Our
clients adhere to the general recommendation that one needs to give an 802.11 net-
work interface card (NIC) at least three seconds to scan for access points after the scan
is triggered. The clients do no filtering of detected access points, so the list can con-
tain access points associated with any network, whether or not the client has creden-
tials to interact with them. The clients can also detect access points with no network
connection that are effectively functioning as only location beacons.

The set of MAC addresses and signal strengths is the Wi-Fi signature. The client’s
report consists of the client’s GUID and Wi-Fi signature, which we represent as

() () (){ }nn smsmsmGUID ,,,,,,, 2211 K (1)

for n detectable access points, were ()ii sm , are the MAC address and rssi of the thi
detected access point respectively. These ordered pairs are not reported in any particu-
lar order.

3.3 Querying for Nearby People and Places

The last client function is to make a query for nearby people or places as shown in
Figure 1-c and Figure 1-d. The user selects a type to query for, either other people or
something else from the list of types, e.g. printer, conference room, etc. The server
responds with two (possibly empty) lists of nearby instances of the requested type.
The first list, in short range proximity, shows those instances that have at least one
detectable access point in common with the querying client, sorted roughly by dis-
tance. The second list, in long range proximity, contains instances that can be reached
by “hopping” through access points with overlapping coverage, sorted by the number
of hops required. Some of the instances found within hopping distance are also re-
ported with an estimate of the amount of time it would take to travel to it. Section 5
explains how we sort the list of short range proximity. Section 4 explains how we
compute hops and travel times for long range proximity.

3.4 Other Clients

A web service acts as the API for accessing the NearMe database. This makes it easy
to write other clients. We have a PocketPC client that duplicates the functionality of
the Windows client described above. We also have an Active Server Pages (ASP)
client that runs in a conventional web browser in response to a URL that has the Wi-Fi
signature encoded as simple ASCII parameters. Since the web service interface to the
server is based on the simple object access protocol (SOAP), any SOAP client could
access the service, including those running on Linux and MAC OS.

4 The NearMe Server

The NearMe server is a SQL database that maintains tables of active users, static
resources (like printers and conference rooms), and their associated Wi-Fi signatures.
It also maintains metric and topological data about the physical layout of access points
derived from Wi-Fi signatures. It uses these tables to respond to client requests posed
through an API in the form of a web service. The rest of this section describes the
major elements of the NearMe server.

4.1 Scan Sources

Scan sources are people or places that can be associated with Wi-Fi signatures. Along
with a scan source type, each scan source is represented with a GUID, a friendly
name, an optional URL, an optional email address, and an expiration time for people.
The NearMe server checks for expired scan sources every hour and deletes their
names.

4.2 Wi-Fi Signatures

Wi-Fi signatures are lists of MAC addresses of infrastructure mode access points and
their associated signal strengths generated on the client device. On the server, each
Wi-Fi signature is tagged with the GUID of its scan source and a sever-generated time
stamp. Wi-Fi signatures are never deleted, even if their associated scan source is de-
leted due to expiration. Because they are only identified with the GUID of the scan
source, such orphaned signatures cannot be traced back to their originating scan
source. We preserve all the Wi-Fi signatures in order to compute tables describing the
layout of access points, described next.

4.3 Access Point Layout

Time-stamped Wi-Fi signatures are a valuable source of information regarding the
physical layout of access points. Layout information can in turn be used to aid the
computation of long range proximity. The NearMe server processes the Wi-Fi signa-
tures in two ways.

First, the server computes the topology of the access points by examining which
pairs of access points have been detected simultaneously by the same client. This
indicates that the access points have physically overlapping coverage and are therefore
considered adjacent. Note that adjacent access points do not have to be on the same
network backbone nor even on any backbone at all. Conceptually, the NearMe server
builds an adjacency matrix of access points with overlapping coverage. From this
matrix, it computes an undirected graph with access points as nodes and edges be-
tween adjacent nodes. In reality, the server computes a table of pairs of access points
and the minimum number of edges or hops between them, up to some maximum num-
ber of hops (currently eight). Our server is programmed to recompute this table every
hour in order to keep up to date with the latest Wi-Fi signatures. In this way, the
physical scope of NearMe automatically grows as more users report Wi-Fi signatures
from more locations. This table is used to find people or things in long range prox-
imity of a client, where long range indicates that the two share no detectable access
points but can be connected by some number of hops between adjacent access points.
The number of hops is reported to clients to give the user a rough idea of the distance
to a scan source in long range proximity.

This table of adjacent access points is also used as an anti-spoofing guard. Clients
can be optionally programmed with a web service call that checks to see if the access
points in a Wi-Fi signature have ever before been seen together by any other client. If
they have not, this raises the suspicion that the Wi-Fi signature is not valid and that it
was created artificially. While this anti-spoofing check helps maintain the integrity of
the database, it also prevents any growth in the list of adjacent access points, so it is
only used on untrusted clients.

The second piece of layout information concerns the metric relationship between
access points, and it comes from the time stamps on the Wi-Fi signatures. These are
used to find the minimum transit times between pairs of access points, which can give
a user an idea of how long it will take to travel to someone or something that appears

on the long range proximity list. Every hour, our server is programmed to create
groups of Wi-Fi signatures that share the same GUID, meaning they came from the
same scan source (e.g. the same person). It constructs all possible unique pairs of
access points within each group. For each member of each pair, the server looks up
their respective time stamps and assigns the resulting time interval to the pair. All
these pairs are recombined, where all but the minimum time interval is kept for dupli-
cate pairs. The result is a list of MAC address pairs and the minimum time any client
was able to transition between them. These times are included in the list of scan
sources in long range proximity, as shown in Figure 1 c-d. The times serve as an upper
bound on how long it would take to travel directly to that scan source. It is an upper
bound because we cannot guarantee that the minimum time observed actually came
from a direct traverse between the two access points. A more sophisticated version of
this analysis could cluster travel times between access points to account for the differ-
ent speeds of different possible modes of transportation, like walking, biking, and
driving.

Both the topological and metric tables provide valuable proximity information and
are computed automatically without any extra calibration work required from either
the human clients nor the system maintainer. All the data for these tables is contrib-
uted by human users, but their data is anonymized by default after expiration. We
envision this type of proximity information to be used to find people and places that
might typically be out of range of one access point, like a receptionist desk in a large
office building, a cafeteria, a friend on campus, or a custodian. The travel time data
would be useful for picking the nearest of the requested items as well as to plan how
much time to allow to reach it.

The long range proximity tables are computed based on all past data submitted to
the server. If access points in the environment are removed or added, long range prox-
imity computations will still be valid. Moving an access point, especially to another
part of the topology, would create invalid graph links. One solution we have not im-
plemented is to expire Wi-Fi signatures older than a certain threshold.

As of this writing, our database has 1123 unique access points recorded from
around our institution. On average, each access point overlaps with 16.6 other access
points. The average number of access points per Wi-Fi signature is 6.1.

Our database of access points is similar in some ways to those used for Intel Re-
search’s Place Lab initiative [3] and publicly accessible “war driving” databases like
NetStumbler [20] and WiGLE [21]. The main difference is that our database is not
dependent on traditional war driving where access point data must include absolute
locations. Instead, our database is built up in the normal course of using our clients,
with the only ground truth data being the names of locations of interest, like printers
and conference rooms. Thus NearMe has a lower barrier to entry, albeit at the expense
of not giving absolute locations. The more traditional war driving databases could be
easily adapted to work with NearMe. Indeed, one of the NearMe clients allows the
database to be updated from a war driving log file. An interesting question is how
NearMe could benefit from the addition of some absolute location data.

5 Range Approximation for Short Range Proximity

People and places within short range proximity of a client are defined as those that
share at least one access point with the client. In computing the short range list on the
server, it is useful to sort the list by distance from the client. Then a user can, for in-
stance, pick the nearest printer or pick the N nearest people. If NearMe were a loca-
tion-based system, then sorting by distance would be an easy matter of computing
Euclidian distances and sorting. However, since we intentionally avoid the computa-
tion of absolute location, we must find another way.

Intuitively, the distance between two scan sources should be related to the similar-
ity of their Wi-Fi signatures. If they see several access points in common, and if the
signal strengths from those access points are similar, then it is more likely that the two
are nearby each other. We designed an experiment to see how accurately we could
compute the distance between clients and which features of the Wi-Fi signatures were
best to use.

5.1 Similarity Features

Suppose the two Wi-Fi signatures from clients a and b are

() () (){ })()()(

2
)(

2
)(

1
)(

1 ,,,,,, a
n

a
n

aaaa
aa

smsmsm K and () () (){ })()()(
2

)(
2

)(
1

)(
1 ,,,,,, b

n
b

n
bbbb

bb
smsmsm K .

The m ’s are the AP MAC addresses, and the s ’s are the associated signal strengths.
Client a detected an access points and client b detected bn . In order to define simi-
larity features, we first form the set of access points that were detected by both clients
and the associated signal strengths from each client:

() () (){ })(

,
)(

,,
)(
2,

)(
2,2,

)(
1,

)(
1,1, ,,,,,,,,, b

n
a

nn
baba ssmssmssm

∩∩∩ ∩∩∩∩∩∩∩∩∩ K

Here there were ∩n access points that were detected by both clients, the thi of which

was im ,∩ , which clients a and b measured at signal strengths)(
,

a
is∩ and)(

,
b

is∩ , respec-
tively.

Our goal was to find a numerical function of the two Wi-Fi signatures that gives the
physical distance separating the two clients. We first had to create numerical features
from the two signatures that we thought might be useful for computing distance. The
four features we experimented with are:

1. The number of access points in common between the two clients, represented by

∩n . We expect that an increased ∩n is an indication of shorter range.
2. The Spearman rank-order correlation coefficient [22], denoted by sρ . This number

represents how closely the two clients ranked their common access points by signal
strength. Intuitively, a more similar ranking indicates the clients are closer together.
The ranking approach was inspired by the RightSPOT system [23], which uses

ranking of FM radio station signal strengths to classify a small device into one of a
discrete set of locations. The advantage of ranking is that different radio recievers,
such as the Wi-Fi NICs in our clients, may well measure signal strengths in differ-
ent ways. The ranking of the access points by signal strength will be the same on
both clients if they both receive the same signal strengths and they both have a
monotonic function relating input and measured signal strengths. While this ignores
information contained in the absolute signal strengths, it is robust to inevitable
variations in NICs, including differences in design, manufacturing, shielding, and
antenna orientation. Mathematically sρ is computed by first making two sorted
lists of the signal strengths seen in common by both clients. For example, these lists
might be () ()80,50,70,,)(

3,
)(
2,

)(
1, −−−=∩∩∩

aaa sss and () ()70,60,90,,)(
3,

)(
2,

)(
1, −−−=∩∩∩

bbb sss . In
each list, we replace each signal strength with the ascending rank of that signal
strength in its own list to make two rank lists, e.g. () ()1,3,2,,)(

3
)(

2
)(

1 =aaa rrr and

() ()2,3,1,,)(
3

)(
2

)(
1 =bbb rrr . The Spearman sρ is given by[22]:

()()

() ()∑∑
∑

−−

−−
=

i
bb

ii
aa

i

i
bb

i
aa

i
s

rrrr

rrrr
2)()(2)()(

)()()()(

ρ (2)

where)(ar and)(br are the means of the ranks. In our example, =sρ 0.5. sρ
ranges from -1 to 1, indicating poor to exact correlation between rankings, respec-
tively.

3. Sum of squared differences of signal strengths:

()2)()(∑ −=
i

b
i

a
i rrc (3)

A smaller value of c indicates more similar signal strengths and presumably
shorter range. This does not account for the variability in measuring signal
strengths that the ranking coefficient sρ is intended to ignore.

4. Number of access points unaccounted for in each list. This indicates the number of
“left over” access points that are not in the list of common access points,

∩−+= nnnn bau 2 . More unaccounted for access points could indicate that the
clients are farther apart.

5.2 Range Experiment

We gathered two sets of Wi-Fi signatures with known distances between scans. One
set, used for training, was taken on one floor of a normal office building. The other
set, used for testing, was taken in a cafeteria. We walked to various locations in both
venues, simultaneously logging Wi-Fi signatures and the device’s approximate loca-
tion by clicking on a building floor plan. In order to test the effect of different Wi-Fi

NICs, we gathered data from six different ones:

Dell TrueMobile 1150
Series (built in to laptop)

ORiNOCO (PC Card) Cisco Aironet 340 Series
(PC Card)

Microsoft Wireless (USB
Adapter)

Actiontec 802.1b Wireless
Adapter (USB Adapter)

Linksys 802.11b Wireless
(USB Adapter)

For each of the two venues, we created pairs of Wi-Fi signatures using the location

stamps to determine their Euclidian separation distances in meters. We eliminated
those pairs that were taken with the same Wi-Fi NIC in order to test the more realistic
situation that the two Wi-Fi signatures will come from different NICs. In the office
building data set, we gathered a total of 2218 Wi-Fi signatures and created 1,441,739
pairs of Wi-Fi signatures after eliminating those pairs created with the same NIC. For
the cafeteria data set, we took 1038 Wi-Fi signatures and created 572,027 pairs.

Our goal was to find a function that takes some or all of the features of a pair of
Wi-Fi signatures from Section 5.1 and returns an estimate for the physical distance
between them. We chose polynomials as our functions, as there are no well-
established physical models that relate our features and distance. For our experiment
we varied the order of the polynomials, oN , from one to four, and we varied the num-

ber of features, fN , from one to four. For each fN , we tested all ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

fN
4

 (“4 choose

fN ”) possible combinations of features. For example, if 2=oN , 3=fN , and the
three features were ∩n , sρ , and c , then the polynomial would be

2
002

2
020

2
200

011101110

001010100000

caana

cacnana
caanaad

s

ss

s

++

+++
++++=

∩

∩∩

∩

ρ

ρρ
ρ

 (4)

where d is the physical distance between the locations at which the two Wi-Fi signa-
tures were taken, and the a ’s are the coefficients we estimated using least squares. In
computing the coefficients, we used weighted least squares to equalize the influence of
each possible pair of NICs, because each NIC was not represented exactly equally in
the experimental data.

We used the office building data as training data to compute polynomial coeffi-
cients. Because of the large number of data points, we performed the actual least
squares fitting on 10 subsets each consisting of a random 10% of the data, and we kept
the coefficients that gave the minimum rms distance error from each subset. The re-
sults are shown in Table 1. For the training data, the rms error was in the vicinity of 7
meters, with a minimum of 6.43 meters for the 3rd degree polynomial using all four
features. We also evaluated how well the computed polynomials ranked the distances
using the Spearman rank correlation coefficient between the actual and computed
ranked distances. (Note that we use Spearman twice: once as a way to measure the

rank similarity of signal strengths and once as a way to assess how well our various
polynomials rank physical distance compared to ground truth.) This is useful since
some applications may want to present ranked lists of nearby people rather than their
absolute distances. The maximum Spearman correlation for the training set was 0.49,
also for the 3rd degree polynomial using all four features.

We used the polynomial coefficients from the office building training set to see
how well they worked for the cafeteria data set. This gives us an idea of whether or
not we could put forth a broad recommendation for which features and functions to
use for any general situation. This will require more testing in the future, but the cafe-
teria data shows reasonable performance with a minimum rms error of 13.97 meters
and a maximum Spearman correlation of 0.43, both using a 1st degree polynomial on

∩n , sρ , and c . The number of unaccounted for access points, un , was the worst
performing single feature in terms of rms error on the test set. Intuitively, the most
attractive features are ∩n (the number of access points in common) and sρ (the
Spearman correlation of the signal strengths), because they are robust to measurement
differences between NICs. The test data indicates that the best performing polynomial
for these two features was a 1st degree polynomial, giving an rms error of 14.04 meters
and a Spearman correlation of 0.39, both very close to the best performance over all
the test cases. The actual polynomial was

Train Test Train Test
1 7.13 14.23 -0.36 0.30
2 7.25 14.22 -0.36 0.30
3 7.13 14.24 0.32 0.30
1 7.26 14.85 0.19 0.19
2 7.22 14.67 0.17 0.22
3 7.20 14.63 0.19 0.19
1 7.58 15.09 -0.27 0.26
2 7.63 15.08 -0.26 0.26
3 7.44 15.04 0.33 0.29
1 7.23 15.23 0.31 0.30
2 7.16 15.24 0.31 0.30
3 7.09 15.13 0.31 0.30
1 6.83 14.04 0.38 0.39
2 6.75 14.19 0.41 0.34
3 6.74 14.26 0.41 0.32
1 7.10 14.31 0.39 0.39
2 7.12 14.38 0.22 0.39
3 6.96 14.16 0.40 0.39
1 6.87 14.57 0.39 0.35
2 6.83 14.78 0.40 0.35
3 6.83 14.80 0.40 0.34
1 7.24 14.80 0.15 0.26
2 7.24 14.68 0.12 0.09
3 7.07 14.68 0.29 0.37
1 7.00 15.08 0.33 0.31
2 6.91 14.91 0.36 0.33
3 6.83 14.99 0.36 0.33
1 7.16 15.26 0.28 0.23
2 7.10 15.22 0.28 0.22
3 6.91 15.07 0.41 0.34

2 APs In Common
Spearman ρ

APs In Common
RSSI Difference

APs In Common
Unaccounted for APs

Spearman ρ
RSSI Difference

Spearman ρ
Unaccounted for APs

RSSI Difference
Unaccounted for APs

Spearman ρ

1
APs In Common

Spearman ρ

RSSI Difference

Unaccounted for APs

Number
of

Features
Feature(s) Polynomial

Degree
RMS Err (m)

Train Test Train Test
1 6.81 13.97 0.35 0.43
2 6.75 14.13 0.37 0.30
3 6.61 14.10 0.44 0.38
1 6.69 14.20 0.43 0.41
2 6.58 14.42 0.45 0.38
3 6.52 14.47 0.46 0.35
1 6.88 14.39 0.38 0.33
2 6.88 14.55 0.38 0.30
3 6.70 14.51 0.44 0.36
1 7.01 15.00 0.33 0.30
2 6.91 14.89 0.36 0.29
3 6.68 14.83 0.42 0.35
1 6.71 14.30 0.42 0.40
2 6.64 14.60 0.44 0.35
3 6.43 14.49 0.49 0.36

4 APs In Common
Spearman ρ

RSSI Difference
Unaccounted for APs

Spearman ρ

3 APs In Common
Spearman ρ

RSSI Difference
APs In Common

Spearman ρ
Unaccounted for Aps

APs In Common
RSSI Difference

Unaccounted for APs
Spearman ρ

RSSI Difference
Unaccounted for Aps

Number
of

Features
Feature(s) Polynomial

Degree
RMS Err (m)

Table 1: Results of training and testing polynomials to estimate distance from Wi-
Fi signatures. The “Train” column under the “RMS Err (m)” column shows the
rms error in meters after the least squares fit to the office building data. The
“Train” column under “Spearman ρ” shows how well the computed polynomial
ranked the computed distances compared to the actual distances. The two “Test”
columns show how well the office building polynomial coefficients worked on the
cafeteria data. In general, increasing the number of features and the degree of the
polynomial did not significantly improve accuracy.

31.2290.253.2 +−−= ∩ snd ρ (5)

As expected, this equation indicates that the estimated distance in meters (d) de-
creases when more access points are seen in common (∩n) and when their relative
rankings are more similar (sρ). One interesting aspect of this equation is that

sdnd ρ∂∂≈∂∂ ∩ , meaning that ∩n and sρ have approximately the same level of
influence on the estimated distance. Given this similarity in influence, if the goal is to
sort Wi-Fi signature pairs by distance, a reasonable heuristic is to simply sort by the
sum sn ρ+∩ . This is what we do on the server to sort lists of instances in short range
proximity.

Although this equation worked reasonably well for our two data sets, the actual co-
efficients are likely not broadly applicable to other locations where there could be
differences in building materials, architecture, access point density, and access point
transmission strength. One example of its possible inapplicability is in an area densely
populated with access points. In such a case, ∩n could be large enough that the com-
puted distance is negative. However, this analysis does indicate which features of the
Wi-Fi signatures are important, and it leads to the sn ρ+∩ heuristic for sorting by
distance. No calibration is necessary to apply this heuristic to a new environment, in
contrast to Wi-Fi location systems that normally require manually constructed or
simulated radio maps. These calibrated systems do provide more accuracy, however,
with median absolute location errors of 2.37 meters for RADAR[2], 1.53 meters for
LOCADIO[24], and 1 meter for the system of Ladd et al.[25]. For proximity, this level
of accuracy is not always necessary.

Short range proximity computations are robust to the addition and deletion of ac-
cess points, because the distance computation is based on only the list of access points
that two Wi-Fi signatures have in common. A moved access point could cause large
errors. However, for finding nearby people who are updating their Wi-Fi signatures
frequently, as our basic client allows (Figure 1b), even moved access points are easily
tolerated.

6 Applications

The functionality of the NearMe server is exposed as a web service, making it easy to
create new clients. This section describes three potentially useful clients.

6.1 Sample Client with URLs

The sample client in Figure 1 allows people and places to be registered with a URL.
For example, people might register with their home pages. For some places, like re-
ception desks, we registered a URL giving a map to help visitors find their way. In-
stances with a registered URL show up on the proximity lists with a “…” behind their
name. The user can click on these names to bring up a web browser showing their

URLs. Each registered person and place is essentially tagged with a Wi-Fi signature
that serves for filtering based on location. The changing lists of proximal people and
places, along with their associated URLs, create a dynamic lookup service of what is
available nearby.

6.2 Localized Email

The screen shot in Figure 2 shows our localized email program. It allows a user to
register with NearMe with a name and email address. After updating the database with
his or her Wi-Fi signature, a list of nearby registered users appears. The user can se-
lect names from this list and send an email to them. This would be useful for nearly
immediate requests like going out to lunch or asking for face-to-face help with a prob-
lem. Because we sort the list of potential recipients by physical distance, picking the
top N in the list is equivalent to picking the N nearest people, up to NearMe’s in-
herent distance approximation errors. Since NearMe’s range resolution is in the tens
of meters, its errors are likely tolerable for this application. In the future, proximity
could be one of a number of filters for email recipients, optionally used in addition to
filters on recipient type (e.g. friend, colleague, supervisor) and interest area.

6.3 Detecting Synchronous User Operations

Another client we have implemented uses NearMe to aid in detecting synchronous
user operations between mobile devices for co-located collaboration. Stitching [17],
synchronous gestures [14], and SyncTap [16] are all examples such techniques. Stitch-
ing, for example, must share the screen coordinates, direction, and timing of pen
strokes with other nearby devices to establish when a pen stroke spans the displays of
two devices. This makes it easy for users to drag a file between two separate pen-
operated wireless devices, for example, as shown in Figure 3.

A key problem in this class of systems is to determine which devices to consider as
candidates for potential synchronous user operations [14]. SyncTap [16] proposes
using multicast to share user activity and timing with other devices, but this may need-
lessly send information to a large number of irrelevant devices that are too far apart to
ever be intentionally associated. Restricting communications to devices that are truly

Figure 2: This program allows a user to send email to other users in proximity.

nearby reduces the potential
for false-positive recognition
of synchronous user opera-
tions (due to pure chance
synchronization of incidental
operations on a large number
of devices) and also may help
to reduce power consumption
requirements (by reducing
wasted computation and
transmission of messages
seeking to establish synchro-
nization with non-proximal
devices).

NearMe solves these prob-
lems by providing a list of
nearby devices for every de-
vice that seeks associations
with other devices. For our
Stitching technique, we refer
to these as “stitchable de-
vices.” Our Stitching system software only looks for correlating pen strokes within
sets of devices that NearMe identifies as being within short range proximity of one
another. Stitchable devices update their signal strengths with NearMe every 20 sec-
onds so that the set of stitchable devices at any one time is dynamic and discoverable
by any new client wishing to make itself eligible for stitching. While this application
considers associations for any device within short range proximity, it could be modi-
fied to consider only those devices within some physical range based on our distance
estimation. But even as implemented, NearMe reduces the list of potentially associ-
able devices from the whole world to just those within the range of one access point.

7 Conclusions

NearMe’s main feature is that it gives lists of nearby people and places without com-
puting their absolute locations. This makes it easier to deploy than traditional location-
based systems. Even though it is unaware of absolute locations, NearMe can still give
absolute and relative distance estimates for short range proximity, and it can give
travel time estimates for long range proximity. The database grows as more people use
the client, which in turn increases the richness and range of people and places that can
be found in proximity. The database helps protect the privacy of users by anonymizing
their data after a user specified time period, and it can protect itself against falsified
access point signatures by verifying them against what it has already seen.

As this work proceeds, we would like to test the feasibility of using NearMe in a
peer-to-peer fashion rather than depending on a central database. For short range

path taken
by the pen

transferred
pictures

path taken
by the pen

transferred
pictures

path taken
by the pen

transferred
pictures

Figure 3: NearMe is used to find which devices
are in proximity so they can be associated with a
pen gesture spanning both screens.

proximity, this would be a simple matter of having peers exchange Wi-Fi signatures
and then having the clients evaluate our function for estimating separation distance.
Another way to expand the scope of NearMe would be to incorporate other types of
radio as location signatures, such as Bluetooth, cell towers, and commercial broad-
casts of radio and TV.

References
1. Hightower, J. and G. Borriello, Location Systems for Ubiquitous Computing. Computer, 2001. 34(8): p.

57-66.
2. Bahl, P. and V.N. Padmanabhan. RADAR: An In-Building RF-Based User Location and Tracking Sys-

tem. in INFOCOM 2000. 2000.
3. Schilit, B.N., et al. Challenge: Ubiquitous Location-Aware Computing and the “Place Lab” Initiative.

in The First ACM International Workshop on Wireless Mobile Applications and Services on WLAN
(WMASH 2003). 2003. San Diego, California, USA.

4. Schilit, B.N., N. Adams, and R. Want. Context-Aware Computing Applications. in IEEE Workshop on
Mobile Computing Systems and Applications. 1994.

5. Hightower, J., G. Borriello, and D. Fox, The Location Stack. 2003, Intel Research Seattle. p. 13.
6. http://www.ntag.com/.
7. http://www.spotme.ch/.
8. Cox, D., V. Kindratenko, and D. Pointer. IntelliBadge™: Towards Providing Location-Aware Value-

Added Services at Academic Conferences. in UbiComp 2003: Ubiquitous Computing. 2003. Seattle,
WA, USA.

9. Dey, A.K., et al. The Conference Assistant: Combining Context-Awareness with Wearable Computing.
in 3rd International Symposium on Wearable Computers. 1999. San Francisco, California, USA.

10. Dahlberg, P., F. Ljungberg, and J. Sanneblad. Supporting Opportunistic Communication in Mobile
Settings. in CHI 2000 Extended Abstracts on Human Factors in Computing Systems. 2000. The Hague,
The Netherlands: ACM Press.

11. Sumi, Y. and K. Mase. Digital Assistant for Supporting Conference Participants: An Attempt to
Combine Mobile, Ubiquitous and Web Computing. in Ubicomp 2001: Ubiquitous Computing. 2001.
Atlanta, Georgia, USA: Springer.

12. Woodings, R., et al. Rapid Heterogeneous Ad Hoc Connection Establishment: Accelerating Bluetooth
Inquiry Using IrDA. in Third Annual IEEE Wireless Communications and Networking Conference
(WCNC '02). 2002. Orlando, Florida, USA.

13. Holmquist, L.E., et al. Smart-Its Friends: A Technique for Users to Easily Establish Connections
between Smart Artefacts. in Ubicomp 2001: Ubiquitous Computing. 2001. Atlanta, Georgia, USA:
Springer.

14. Hinckley, K. Synchronous Gestures for Multiple Users and Computers. in UIST'03 Symposium on
User Interface Software & Technology. 2003.

15. Lester, J., B. Hannaford, and G. Borriello. “Are You With Me?” – Using Accelerometers to Determine
if Two Devices are Carried by the Same Person. in Pervasive 2004. 2004. Linz, Austria.

16. Rekimoto, J., Y. Ayatsuka, and M. Kohno. SyncTap: An Interaction Technique for Mobile Network-
ing. in Mobile HCI. 2003.

17. Hinckley, K., et al. Stitching: Pen Gestures that Span Multiple Displays. in ACM Advanced Visual
Interfaces (AVI 2004). 2004.

18. http://www.trepia.com/.
19. http://www.apple.com/macosx/features/rendezvous/.
20. http://www.netstumbler.com/.
21. http://www.wigle.net/.
22. Press, W.H., et al., Numerical Recipes in C. 1992, Cambridge: Cambridge University Press.
23. Krumm, J., G. Cermak, and E. Horvitz. RightSPOT: A Novel Sense of Location for a Smart Personal

Object. in UbiComp 2003: Ubiquitous Computing. 2003. Seattle, WA: Springer.
24. Krumm, J. and E. Horvitz. LOCADIO: Inferring Motion and Location from Wi-Fi Signal Strengths. in

First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services
(Mobiquitous 2004). 2004. Boston, MA.

25. Ladd, A.M., et al. Robotics-Based Location Sensing using Wireless Ethernet. in International Con-
ference on Mobile Computing and Networking. 2002. Atlanta, GA: ACM Press.

