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Abstract

A fundamental problem arising in many applications in Web science and social network
analysis is the problem of identifying all nodes in a network whose PageRank exceeds a given
threshold A. In this paper, we study the probabilistic version of the problem where given an
arbitrary approximation factor ¢ > 1, we are asked to output a set S of nodes such that with
high probability, S contains all nodes of PageRank at least A, and no node of PageRank smaller
than A/c. We call this problem SIGNIFICANTPAGERANKS.

We develop a nearly optimal, local algorithm for the problem with runtime complexity
O(n /A) on networks with n nodes, where the tilde hides a polylogarithmic factor. We show that
any algorithm for solving this problem must have runtime of Q(n/A), rendering our algorithm
optimal up to logarithmic factors. Our algorithm has sublinear time complexity for applications
including Web crawling and Web search that require efficient identification of nodes whose
PageRanks are above a threshold A = n?, for some constant 0 < § < 1.

Our algorithm comes with two main technical contributions. The first is a multi-scale sam-
pling scheme for a basic matrix problem that could be of interest on its own. For us, it appears
as an abstraction of a subproblem we need to tackle in order to solve the SIGNIFICANTPAGER-
ANKS problem, but we hope that this abstraction will be useful in designing fast algorithms for
identifying nodes that are significant beyond PageRank measurements.

In the abstract matrix problem it is assumed that one can access an unknown right-stochastic
matriz by querying its rows, where the cost of a query and the accuracy of the answers depend
on a precision parameter e. At a cost propositional to 1/e, the query will return a list of O(1/¢)
entries and their indices that provide an e-precision approximation of the row. Our task is to
find a set that contains all columns whose sum is at least A, and omits any column whose sum
is less than A/c. Our multi-scale sampling scheme solves this problem with cost O(n/A), while
traditional sampling algorithms would take time ©((n/A)?).

Our second main technical contribution is a new local algorithm for approximating person-
alized PageRank, which is more robust than the earlier ones developed in [2[11] and is highly
efficient particularly for networks with large in-degrees or out-degrees.

Together with our multiscale sampling scheme we are able to optimally solve the SIGNIFI-
CANTPAGERANKS problem.
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1 Introduction

A basic problem in network analysis is to identify the set of network nodes that are “significant.”
For example, they could be the significant Web pages that provide the authoritative contents in
Web search; they could be the critical proteins in a protein interaction network; and they could be
the set of people (in a social network) most effective to seed the influence for online advertising. As
the networks become larger, we need more efficient algorithms to identify these “significant” nodes.

Identifying Nodes with Significant PageRanks The meanings and measures of significant
vertices depend on the semantics of the network and the applications. In this paper, we focus on
a particular measure of significance — the PageRank of the vertices.

Formally, the PageRank (with restart constant, also known as the teleportation constant, )
of a Web page is proportional to the probability that the page is visited by a random surfer who
explores the Web using the following simple random walk: at each step, with probability (1 —«) go
to a random Web page linked to from the current page, and with probability «, restart the process
from a uniformly chosen Web page. For the ease of presentation of our later results, we consider a
normalization of PageRank so that the sum of the PageRank values over all vertices is equal to n,
the number of vertices in the network,

Z PageRank(u) = n.
ucV

PageRank has been used by the Google search engine and has found applications in a wide
range of data analysis problems [5l[6]. In this paper, we consider the following natural problem of
finding vertices with “significant” PageRank:

SIGNIFICANTPAGERANKS: Given a network G = (V, E), a threshold value 1 < A < |V
and a positive constant ¢ > 1, compute a subset S C V with thWe property that S
contains all vertices of PageRank at least A and no vertex with PageRank less than

Alc.

For the corresponding algorithmic problem we assume that the network topology is described in
the sparse representation of an (arbitrarily ordered) adjacency list for each vertex, as is natural for
sparse graphs such as social and information networks. We are interested in developing an efficient
local algorithm [IL2l[I8] for the problem in the context of Web applications. The algorithm is only
allowed to randomly sample out-links of previously accessed nodes in addition to sampling nodes
uniformly at random from the network. This model is highly suitable for PageRank maintenance
in Web graphs and online information networks.

As the main contribution of this paper, we present a nearly optimal, local algorithm for SiG-
NIFICANTPAGERANKS.  The running time of our algorithm is O(n/A). We also show that any
algorithm for SIGNIFICANTPAGER ANKS must have query complexity as well as runtime complexity
Q(n/A). Thus, our algorithm is optimal up to a logarithmic factor. Note that when A = Q(n?),
for some constant 0 < § < 0, our algorithm has sublinear time complexity.

Our SIGNIFICANTPAGERANKS algorithm applies a multiscale matrix sampling scheme that uses
a fast Personalized PageRank estimator (see below) as its main subroutine.



Personalized PageRanks While the PageRank of a vertex captures the importance of the
vertex as collectively assigned by all vertices in the network, one can use the distributions of the
following random walks to define the pairwise contributions of significance [10]: given a teleportation
probability « and a starting vertex u in a network G = (V, E), at each step, with probability (1 — )
go to a random neighboring vertex, and with probability «, restarts the process from u. For v € V,
the probability that v is visited by this random process, denoted by PersonalizedPageRank,, (v), is
u’s personal PageRank contribution of significance to v. It is not hard to verify that

VueV, Z PersonalizedPageRank,, (v) = 1; and
veV

Vv eV, PageRank(v) = Z PersonalizedPageRank,, (v).
ueV

Personalized PageRanks has been widely used to describe personalized behavior of Web users
[15] as well as for developing good network clustering techniques [2]. As a result, fast algorithms
for computing or approximating personalized PageRank are quite useful. One can approximate
PageRanks and personalized PageRanks by the power method [5], which involves costly matrix-
vector multiplications for large scale networks. Applying effective truncation, Jeh and Widom [I1]
and Andersen, Chung, and Lang [2] developed personalized PageRank approximation algorithms
that can find an e-additive approximation in time proportional to the product of e ' and the
maximum in-degree in the graph.

Multi-Scale Matrix Sampling Following the matrix view of the personalized PageRank for-
mulation of Haveliwala [I0] and the subsequent approximation of algorithms [2,[11], we introduce
a matrix problem whose solution would lead to fast PageRank approximation and sublinear-time
algorithms for SIGNIFICANTPAGERANKS.

In the basic form of this matrix problem, we consider a blackbox model for accessing an un-
known n x n right-stochastic matriz, in which we can only make a query of the following form:
matrizAccess(i,€), where 1 < i < n and e € (0,1]. This query will return, with high probability, a
list of O(1/e€) entry-index pairs that provide an e-precise approximation of row ¢ in the unknown
matrix: For each 1 < j < n, if (p,j) is in the list of entry-index pairs returned by matrizAccess(i, €),
then [p —m; ;| < €, where m; ; is the (4, ] )t entry of the unknown matrix; otherwise if there is no
entry containing index j, then m; ; is guaranteed to be at most e. Further, the cost of this query
is propositional to 1/e. We will refer to this blackbox model as the sparse and approzimate row
access model, or SARA model for short.

We now define the basic form of our matrix problem:

SIGNIFICANTMATRIXCOLUMNS: Given an nxn right-stochastic matrix M in the SARA
model, a threshold A and a positive constant ¢ > 1, return a subset of columns S C'V
with the property that S contains all columns of sum at least A and no column with sum
less than A/c.

There is a straightforward connection between SIGNIFICANTMATRIXCOLUMNS and SIGNIFI-
CANTPAGERANKS. Following [I], we define a matrix PPR (short for PersonalizedPageRank) to be

the n x n matrix, whose u'* row is

PersonalizedPageRank,, ().



Clearly PPR is a right-stochastic matrix and for 1 < v < n, PageRank(v) is equal to the sum of the
v column in PPR. Therefore, if we can solve the SIGNIFICANTMATRIXCOLUMNS problem with
cost O(n /A) and also solve the problem of computing an e-additive approximation of personalized
PageRank in O(log(n)/e) time, then we are able to solve SIGNIFICANTPAGERANKS in O(n/A)
time.

In this paper, we analyze a multi-scale sampling algorithm for SIGNIFICANTMATRIXCOLUMNS.
The algorithm selects a set of precision parameters {eq,...,e,} where h grows linearly with n/A
and ¢; = i/h. It then makes use of the sparse-and-approximate-row-access queries to obtain ap-
proximations of randomly sampled rows. For each i in range 1 <14 < h, the algorithm makes O(l)
(depending on the desired success probability) row-access queries to get a good approximation to
the contribution of column elements of value of order ¢;. We show that with probability 1 — o(1),
the multi-scale sampling scheme solve SIGNIFICANTMATRIXCOLUMNS with cost O(n/A).

While we could present our algorithm directly on PPR, we hope this matrix abstraction enables
us to better highlight the two key algorithmic components in our fast PageRank approximation
algorithm:

e multi-scale sampling, and

e robust approximation of personalized PageRanks.

Robust Approximation of PersonalizedPageRanks For networks with constant maximum
degrees, we can simply use personalized PageRank approximation algorithms developed by Jeh-
Widom [II] or Andersen-Chung-Lang [2] inside the multi-scale scheme to obtain an O(n/A) time
algorithm for SIGNIFICANTPAGERANKS. However, for networks such as Web graphs and social
networks that may have nodes with large degrees, these two approaches are not sufficient for our
needs.

We develop a new local algorithm for approximating personized PageRank that satisfies the
desirable robustness property that our multiscale sample scheme requires. Given \,e > 0 and a
starting vertex u in a network G = (V, E), our algorithm estimates each entry in the Pprsonalized
PageRank vector defined by wu,

PersonalizedPageRank (u, .)

to a [1 — A, 1+ A] multiplicative approximation around its value plus an additive error of at most
log? nlog(e~ 1)
€2
simulation of random walks from the starting node u to ensure that its complexity does not depend
on the degree of any node. Together with the multi-scale sampling scheme, this algorithm leads
to an O(n/A) time algorithm for SIGNIFICANTPAGERANKS. We conclude our analysis by showing

that our algorithm for solving SIGNIFICANTPAGERANKS is optimal up to a polylogarithmic factor.

€. The time complexity of our algorithm is O( Our algorithm requires a careful

Discussion 1. While the main contribution of this paper is theoretical, that is, our focus is to
design the first nearly optimal, local algorithm for PageRank approzimation, we hope our algorithm
or its refinements can be useful in practical settings for analyzing large-scale networks. For example,
our sublinear algorithm for SIGNIFICANTPAGERANKS could be used in Web search engines, which
often need to build a core of Web pages, to be later used for Web search. It is desirable that pages
wn the core have high PageRank values. These search engines usually apply crawling to discover
new significant pages and insert them to the core to replace existing core pages with relatively
low PageRank values. As noted already, our algorithms are local and are implementable in various



network querying models that assume no direct global access to the network but allow one to generate
random out-links of a given node as well as to uniformly at random sample nodes from the network.
Such an implementation is desirable for processing large social and information networks as in
the construction of the core pages for Web search. We also anticipate that our algorithm for
SIGNIFICANTPAGERANKS and the multi-scale scheme for its matrixz abstraction will be useful for
many other network analysis tasks.

Related Work Our research is inspired by the body of work on local algorithms [I], 2, [1§],
sublinear-time algorithms [I7], and property testing [9] which study algorithm design for find-
ing relevant substructures or estimating various quantities of interest without examining the entire
input. Particularly, we focus on identifying nodes with significant PageRanks and approximating
personalized PageRanks without exploring the entire input network. In addition, our framework is
based on a combination of uniform crawling and uniform sampling of vertices in a graph and hence
it can be viewed as a sublinear algorithm (when A = n(Y)) in a rather general access model as
discussed in [17].

It is well-known that in a directed graph, high in-degree of a node does not imply high PageRank
for that node and vice versa. In fact, even in real-world Web graphs, only weak correlations have
been reported between PageRank and in-degree [16]. Omne therefore needs to use methods for
PageRank estimation that are not solely based on finding high in-degree nodes. Indeed, over the
past decade, various beautiful methods have been developed to approximate the PageRank of all
nodes. The common thread is that they all run in time at least linear in the input (See [5] for a
survey of results). Perhaps the closest ones to our framework are the following two Monte-Carlo
based approaches. The PageRank estimation method of [3] conducts simulation of a constant
number of random walks from each of the nodes in the network and therefore it requires linear time
in the size of the network. A similar approach is analyzed in [4], where a small number of random
walks are computed from each network node, which shows that a tight estimate for the PageRank
of a node with a large enough PageRank can be computed from the summary statistics of these
walks. In addition, the paper shows how these estimates can be kept up to date, with a logarithmic
factor overhead, on a certain type of a dynamic graph in which a fixed set of edges is inserted in a
random order.

Our scheme is suitable to handle any network with arbitrary changes in it as well, including
addition or removal of edges and nodes, with the necessary computation being performed “on the
spot” as needed. But in contrast to the above approaches, for A = n*(), our construction gives
a sublinear-time algorithm for identifying all nodes whose PageRanks are above threshold A and
approximating their PageRanks.

We have benefited from the intuition of several previous works on personalized PageRank ap-
proximation. Jeh and Widom developed a method based on a deterministic simulation of random
walks by pushing out units of mass across nodes [II]. Their algorithm gives an e-additive ap-
proximation with runtime cost of order of logn/e times the maximum out-degree of a node in
the network. Andersen, Chung, and Lang [2] provided a clever implementation of the approach
of Jeh and Widom that removes the logn factor from the runtime cost, still stopping when the
residual amount to push out per node is at mostEI €. We note, however, that for networks with large

Thus at termination the infinity norm of the residual vector is at most €, which can easily be shown to bound
from above the infinity norm of the difference between the true personalized PageRank vector and the estimation
computed.



out-degrees, the complexity of this algorithm may not be sublinear.

Andersen et al. [I] developed a “backwards-running” version of the local algorithm of [2]. Their
algorithm finds an e-additive approximation to the PageRank vector with runtime proportional to
%, times the maximum in-degree in the network, times the PageRank value. The authors show
how it can be used to provide some reliable estimate to a node’s PageRank: for a given k, with
runtime proportional to é(k:) times the maximum in-degree in the network (and no dependency
on the PageRank value), it can bound the total contribution from the k highest contributors to a
given node’s PageRank. However, for networks with large in-degrees, its complexity may not be
sublinear even for small values of k. We also note that the method does not scale well for estimating
the PageRank values of multiple nodes, and needs to be run separately for each target node.

The problem of SIGNIFICANTMATRIXCOLUMNS can also be viewed as a matrix sparsification
or matrix approximation problem, where the objective is to remove all columns with /; norm less
than A/c while keep all columns with /1 norm at least A. To achieve time-efficiency, it is essential
to allow the algorithm the freedom in deciding whether to keep or delete columns whose {; norm
is in the range [A/c, A].

While there has been a large body of work of finding a low complexity approximation to a
matrix (such as a low-rank matrix) that preserves some desirable properties, many of the techniques
developed are not directly applicable to our task.

First, we would like our algorithms to work even if the graph does not have a good low rank
approximation; indeed, all of our algorithms work for any input graph. Second, our requirement
to approximately preserve [1 norm only for significant columns enable us to achieve O(n/ A) com-
plexity for any stochastic matrix, whereas all low-rank matrix approximations run in time at least
linear in the number of rows and columns of the matrix in order explicitly reconstruct a low-rank
approximation; see [I2,[I3] for recent surveys on low-rank approximations.

On a high level, the problem of SIGNIFICANTMATRIXCOLUMNS may seem to share some re-
semblance to the heavy-hitters problem considered in the data streaming literature [7]. In the
heavy-hitter problems, the goal is to identify all elements in a vector stream that have value bigger
than the sum of all elements. The main difficulty to overcome is the sequential order by which
items arrive and the small space one can use to store information about them. The main technique
used to overcome these difficulties is the use of multiple hash functions which allows for concise
summary of the frequent items in the stream. However, in SIGNIFICANTMATRIXCOLUMNS we are
faced with a completely different type of constraints — access to only a small fraction of the input
matrix (in order to achieve sublinear runtime) and having a precision-dependent cost of matrix
row-approximations. As a result, hashing does not seem to be a useful avenue for this goals and
one needs to develop different techniques in order to solve the problem.

Organization In Section 2] we introduce some notations that will be used in this paper. In
Section [B] to better illustrate the multi-scale framework, we present a solution to a somewhat sim-
pler abstract problem that distills the computational task we use to solve SIGNIFICANTMATRIX-
CoOLUMNS. In particular, we consider a blackbox model accessing an unknown vector that either
returns an exact answer or () otherwise. Like the access model in SIGNIFICANTMATRIXCOLUMNS,
higher precision costs more. In Section M, we present our multi-scale sampling algorithm for SI1G-
NIFICANTMATRIXCOLUMNS. In Section (Bl we address the problem of finding significant columns
in a PageRank matrix by giving a robust local algorithm for approximating personalized PageR-
ank vectors. The section ends with a presentation of a tight lower bound for the cost of solving



SIGNIFICANT MATRIX COLUMNS over PageRank matrices.

2 Preliminaries

In this section, we introduce some basic notations that we will frequently use in the paper. For a
positive integer n, [1 : n] denotes the set of all integers j such that 1 < j < n. If M € R™" is an
n x n real matrix, for v € [1 : n], we will use M(v,-) and M (-,v) to denote v row and the v'"
column of M, respectively. We denote the sum of the column v in M by ColumnSum(M,v). When
the context is clear we shall suppress M in this notation and denote it by ColumnSum(v).

Most graphs considered in this paper are directed. For a given directed graph G = (V, E), we
usually assume V' = [1 : n]. We use an n x n matrix A(G) to denote the adjacency matrix of G. In
other words, A(i,7) =1 if and only (7,5) € E.

The PageRank vector of a graph G is the (unique) stationary point of the following equation
[10,15]:

PageRank(:) = a- 1" 4 (1 — a)PageRank(-) - DT A(Q),

where 1" is the n-place row vector of all 1’s, 0 < e < 1 is a teleportation probability constant, and
D is a diagonal matrix with the out-degree of v at entry (v, v).

Similarly, the personalized PageRank vector of u in the graph G is the (unique) stationary point
of the following equation [10]:

PersonalizedPageRank,, (-) = o - 1, + (1 — a)PersonalizedPageRank,,(-) - D' A(G),

where 1,, is the indicator function of wu.

Note that with the above definition of PageRank, the sum of the entries of the PageRank vector
is normalized to m. This normalization is more natural in the context of personalized PageRank
than the traditional normalization in which the sum of all PageRank entries is 1.

For any x, log(z) means log,y(x) and In(x) denotes the natural logarithm of x.

3 Multi-Scale Approximation of Vector Sum

Before presenting our algorithms for SIGNIFICANTMATRIXCOLUMNS, we give a multi-scale algo-
rithm for a much simpler problem that, we hope, captures the essence of the general algorithm.

We consider the following blackbox model for accessing an unknown vector p = (p1,...,pn) €
[0,1]™: We can only access the entries of p by making a query of the form wvectorAccess(i,e). If
pi > €, the query vectorAccess(i, €) returns p;, otherwise when p; < €, vectorAccess(i, €) returns 0.
Furthermore, vectorAccess(i,€) incurs a cost of 1/e. In this subsection, we consider the following
abstract problem:

VECTORSUM: Given a blackbox model vectorAccess() for accessing an unknown vector
p = (p1,.-sPn) € [0,1]", a threshold A € [1 : n] and a positive constant ¢ > 1, return
PASS if . pi > A, return FAIL if )", p; < %, and otherwise return either FAIL or
PASS.

To motivate our approach, before describing our multi-scale algorithm to solve this problem,
let us first analyze the running time of a standard sampling algorithm. In such an algorithm, one



would take h i.i.d. samples si,..., s, uniformly from [1 : n] and query ps, at some precision € to

obtain an estimator X
n
2> _pallps, > d
t=1

for the sum ), p;. The error stemming from querying at precision € would be of order ne, so we
clearly will have to choose € of order A/n or smaller not to drown our estimate in the query error,
leading to a run time of order hn/A. The number of samples, h, on the other hand, has to be large
enough to guarantee concentration, which at a minimum requires that the expectation of the sum
Z?:l ps,I[ps, > €] is of order at least unity. But the expectation of this sum is upper bounded by
(h/n) > p; which is of order hA/n in the most interesting case where > p; is roughly equal to A.
We thus need h to be of order at least n/A, giving a running time of order (n/A)?, while we are
aiming for a sublinear running time of order O(n/A).

Our algorithm is based on a different idea by querying p; at a different precision each time,
namely, by querying ps, at precision ¢; = ¢/h in the t'" draw, and considering the estimator

D‘|3

h
Z pst > et (1)

for the sum ), p;. In expectation, this estimator is equal to n times

h h
Z_: [ps, > €] = Z: [pst > h} (2)

with s; denoting an integer chosen uniformly at random from [1 : n]. This is a Riemann sum
approximation to the well known expression

E|>—‘
wIH

E[ s] :/0 de[ps > x]

and differs from this integral by an error O(4). In the most interesting case where Y, p; is of order
A, concentration again requires h to be of order at least n/A, which also guarantees that the error
O(1/h) from the Riemann sum approximation does not dominate the expectation E[p,] = 1 3. p;.
But now we only query ps at the highest resolution e; = 1/h once, leading to a much faster running
time. In fact, up to log factors, the running time will be dominated by the first few queries, giving
a running time of O(h) = O(n/A), as desired.

In the next section we proceed with the algorithm’s formal description and analysis.

3.1 A Multi-Scale Algorithm for Approximating Vector Sum

The following algorithm, MultiScale VectorSum, replaces the standard sampling to estimate the
sum ) . p; by a multi-scale version which spends only a small amount of time at the computation
intensive scales requiring high precision. In addition to the blackbox oracle vectorAccess(), this
algorithm takes three other parameters: A € (1,n) and ¢ > 1 as defined in VECTORSUM, and
a confidence parameter 0 € (0,1): This algorithm uses randomization and we will show that it
correctly solves VECTORSUM with probability at least 1—9. Our algorithm implements the strategy
discussed above except for one modification: instead of sampling at a different precision ¢; each



time, we sample at each precision a constant number of times 7, where 7 depends on the desired
success probability, given a total number of queries equal to L = 7h, where h = ©(n/A) with the
implicit constant in the ©-symbol depending on ¢ in such a way that it grows with (c—1)"? as ¢ — 1
(somewhat arbitrary, but convenient for our notation and proofs, we introduce the ¢ dependence
of our constructions through the variable § = 4;1; in terms of this variable, we write the lower
cutoff A/c as A(1 —4f), and use the midpoint A(1 —2/) between A and A/c as the cutoff for the

algorithm to decide between PASS and FAIL).

Algorithm 1 MultiScaleVectorSum
Input: vectorAccess(-,-), threshold A € (1,n), cutoff parameter ¢ > 1, failure probability § €
(0,1).
B=G m=log(1/8)]; h =251 L="1h
sum = 0.
fort=1:L do
€t = % [%1 .
Let s; be an uniform random element from [1 : n].
21 = vector Access(st, €).
SUm = sum + 2.
end for
if sum > (1 — Qﬁ)% then
Return PASS.
. else
return FAIL.
: end if

—_ = = =
Wy P2

Theorem 3.1 (Multi-Scale Vector Sum). For any p € (0,1)" accessible by vector Access(), thresh-
old A € (1,n), robust parameter ¢ > 1, and failure parameter § € (0,1), the method
MultiScaleVectorSum (vector Access(), A, ¢, d) correctly solves VECTORSUM with probability at least

(1 —9) and costs
2
o(5 () wslagsy) 1))

Proof. By Steps 3-7, for any constant ¢ > 1, the cost of the algorithm is
L h 2
1 h n 1 n 2
— = — < L(1+1logh) = —(—) 1 <7 1 <— .
;a ;z_ (1+logh) O<A<c—1> 8 A(c—l)) ©8 5))

We now prove the correctness of the algorithm.
Algorithm MultiScaleVectorSum, after the initialization Steps 1 and 2, computes the multi-scale
parameters ¢; and applies sampling to calculate the sum

L L
= Z Z [pst > Et
t=1 =1



where s1,...,sy, are chosen i.i.d. uniformly at random from [1 : n]. The expectation of @ is easily
estimated in terms of the bounds

n

L
Zzlet<pk > _L(It/7] < byl

kltl k=1 t=1
h n

:—ZZIz<hpk ZthkJ< thk— Zpk (3)
k:l

k=1 1i=1

and . .
E[Q]>Zz<hpk—1>:£2pk—7'~ (4)
n P n “—
We thus use 7@Q as an estimate of > p—y Pk when we decide on whether to output PASS in Step 9.
Assume first that > pr > A. Since 7 < 52 LA < B% we then have

B> 22 s a-pke
n n

implying that LA
(1-BEQ] = (1 -28)—

This allows us to use the multiplicative Chernoff bound in the form of Lemma[A.T]to conclude that

2 2
Pr|Q<(1-29)75| <Prig < (1- 9)BQ) <o (-5 EIQ]) <o (-355) <
where we used 8 < 1/4 in the last step.
On the other hand, if Y pr < A/c = (1 —45)A, we bound

BlQ) < 2201 - 49)

which in turn implies that
LA
(1+20)E(@) < (1 -26)—~

Using the multiplicative Chernoff bound in the form [AT] (part 3), this gives

Pri|Q=>(1- 2ﬂ)%] < exp < B2LnA 1;;?) < exp <—B23iA> <.

where we again used g < 1/4.
Thus, MultiScaleVectorSum (vector Access(), A, ¢, d) correctly solves VECTORSUM with proba-
bility at least 1 — 4.
O



4 Multi-Scale Matrix Sampling

In this section, we consider SIGNIFICANTMATRIXCOLUMNS in a slightly more general matrix access
model than what we defined in Sections 1 and 3. The extension of the model is also needed in our
PageRank approximation algorithm, which we will present in the next section.

4.1 Notation: Sparse Vectors

To better specify this model and the subsequent algorithms, we first introduce the notation of sparse
vector introduced by Gilbert, Moler, and Schreiber [8] for Matlab. Suppose a = (aq, ..., a,) € R™ is
a vector. Let nnz(a) denotes the number of nonzero elements in a. Let Sparse(a) denote the sparse
form of vector a by “squeezing out” any zero elements in a. Conceptually, one can view Sparse(a)
as a list of nnz(a) index-entry pairs, one for each nonzero element and its index in a. For example,
we can view Sparse([0,0.3,0.5,0,0.2]) as ((2,0.3),(3,0.5),(5,0.2)) .

A sparse vector can be easily implemented using a binary search tree H Throughout the paper
we shall make use of the following simple proposition:

Proposition 4.1. For a,b € R", a+ b can be implemented in time O(nnz(b) - logn) saving the
result in the data structure of a.

Proof. Each sparse vector can be implemented as a balanced binary search tree, where the index
of an entry serves as the entry’s key. When performing the addition, we update the binary search
tree of a by inserting one by one the elements of b into it (and updating existing entries whenever
needed). By the standard theory of binary search trees, each such insertion operation takes O(logn)
time. ]

In the rest of the paper, without further elaboration, we assume all vectors are expressed in
this sparse form. We also adpot the following notations: let Sparse(] |) denote the all zero’s vector
in the sparse form, and for any 7 € [1: n| and b € R — {0}, let Sparse(i,b) denote the sparse vector
with only one nonzero element b located in the i*" place in the vector. In addition, we will use
the following notation: For two vectors n-place vectors a = (aq,...,a,) and b = (by,...,b,), and
parameters € € R and C' > 0, we use a < C'- b + € to denote a; < Cb; + ¢, Vi € [1 : n].

4.2 The Matrix Access Model

In the model that we will consider in the rest of this section, we can access an unknown n x n right-
stochastic matriz M = (m; ;) using queries of the form matrizAccess(i, €, A, p), where ¢ € [1 : n]
specifies a row, € € (0, 1] specifies a required additive precision, A € (0, 1] specifies a multiplicative
precision, and p € (0, 1] specifies the probability requirement. This query will return a sparse vector
m; = Sparse([m; 1, ..., 7 »]) such that
e with probability at least 1 — p,
(1—)\)-mi—e§fhi<(1+/\)-mi+e, (5)

where m; = M (i, -) denotes the i’* row of matrix M, and

2For average case rather than worst-case guarantees, a hash table is a typical implementation choice.
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e with probability at most p (the query may fail), m; could be an arbitrary sparse vector.

We refer to this blackbox model as the probabilistic sparse-and-approrimate row-access model with
additive/multiplicative errors. For constant integers ¢y, ca, c3,c4 > 0, we say that matrizAccess is
an (c1,ca,c3,c4)-SARA model if for all : € [1: n], e € (0,1), A € (0,1), and p € (0,1), both the cost
of calling m; =matrizAccess(i, e, A, p) and nnz(m;) are bounded from above by

o (%) (M) (log? n) og(1/p).

€

4.3 The Matrix Problem
In this section, we give a solution to the following abstract problem.

SIGNIFICANTMATRIXCOLUMNS: Given an n X n right-stochastic matrix M in the
(c1,¢2,c3,c4)-SARA model, a threshold A and a positive constant ¢ > 1, return a sparse
vector cSum with the property that for all j € [1 : n], if ColumnSum(M,i) > A, then
cSum(j) # 0 and if ColumnSum(M,i) < A/e, then c¢Sum(j) = 0.

4.4 Understanding the Impact of Additive/Multiplicative Errors

Our algorithm for SIGNIFICANTMATRIXCOLUMNS is straightforward. At a high level, it simul-
taneously applies Algorithm [ to all columns of the unknown matrix. It uses a sparse-vector
representation for efficient bookkeeping of the columns with large sum according to the sampled
data. Our analysis of this algorithm is similar to the one presented that in Theorem Bl for VEC-
TORSUM as we can use the union bound over the columns to reduce the analysis to a single column.
The only technical difference is the handling of the additive/multiplicate errors.

To understand the impact of these errors, we consider a vector p = (p1,...,pn) € [0,1]" and
chose €, t = 1,...,L as in Algorithm [ Fix ¢, A € (0,1/2), and suppose that we access p; with
multiplicative error A and additive error ¢ - ¢;. We will show that if this returns a number p; > ¢,
the actual value of p; is at least pe;, where p =1 — XA — ¢. To see this, we bound

pi> 1+ N i —¢e) > 1+ AL - e

Since (1 —¢)/(1 4+ A) > (1 — XA — ¢), this implies p; > pe;, as desired.
In a similar way, it is easy to see that p; > p~'e; implies that p; > €. Indeed, if p; > p~le

then
2 (1-pi— a2 (2=
pi = Pi € = 1—r—o €t-
The lower bound is clearly larger than ¢, , showing that p; > €.
For sy...,s € [1:n], the sum

L
Q= "Tp, > (6)
t=1

can therefore be bounded from below and above by
L L
Q- = Zl[p&: > p_let] and Q-l— = Zl[p&: > pet]) (7)
=1 t=1
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respectively: .
Q- <Q < Q4. (8)
Finally, we also note that if we access p; with multiplicative error A\ and additive error ¢ - ¢, then

this a returns a number which is never larger than p~!. Indeed, this follows by bounding p; by
I+ A+¢-¢<1+A+p<p L

4.5 A Multi-Scale Algorithm

In this section we present the multi-scale algorithm in full details and proceed with an analysis of
its runtime and correctness. The algorithm is essentially an extension of Algorithm [ applying
the VectorSum algorithm to all columns in parallel. As now the call to vectorAcesss has been
replaced by a combined additive-multiplicative method, the constant 3 is set to a slightly smaller
value than in Algorithm [l In addition to the constants (3,7, h, L that are used in Algorithm [I]
we also have the constant A for the value of multiplicative approximation needed and ¢ for the
additive-approximation needed. Lastly, p is the wanted success probability of the row approximation
procedure (matrixAccess) invoked throughout the algorithm. We note that these constants are
defined to allow complete and rigorous analysis of our algorithm and its correctness. As the multi-
scale algorithm will essentially be implementing Algorithm [over all columns, we will need a method
that can return all elements in a row that fall within a certain bin; we call it the rangelndicator
method.

rangelndicator(): for a sparse vector a, and [, u € R such that [ < u, b = rangelndicator(a, [, u)
returns a sparse vector b such that for all i € [1 : n],

N J 1 ifl <a(i) <u
b(i) = { 0 otherwise

For example, rangelndicator(Sparse([0, 0.3, 0.5,0,0.2]),0.1,0.3) returns the sparse form of [0, 1,0, 0, 1].
We shall use the following simple proposition:

Proposition 4.2. rangelndicator(a,l,u) takes O(nnz(a)logn) time.

Proof. The sparse vector nnz(a) is implemented using a binary search tree; one can therefore scan
its content using, say, an inorder scan and insert each element in the range [I,u] to a sparse vector
b, initially empty. The inorder scan costs O(nnz(a)) time and each insertion into b costs O(logn)
time, giving the desired result. O

We are now ready to state our main theorem:.

Theorem 4.3 (Multi-Scale Column Sum). For any right-stochastic matrix M accessible by matrizAccess,
threshold A € (1,n), robust parameter ¢ > 1, and failure parameter § € (0,1), with probability at
least (1 —9),

cSum = MultiScaleVectorSum (vector Access(), A, ¢, ) .

correctly solves SIGNIFICANTMATRIXCOLUMNS.
Furthermore, if matrixAccess is an (c1,ca,c3,c4)-SARA model, then the cost
of MultiScaleVectorSum (vector Access(), A, ¢, 0) is

O (cl (%) <C_%>C2+3 log®st2 <$) log® 113 1og? (%))
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Algorithm 2 MultiScaleColumnSum
Input: matrizAccess(-,-,-,-), threshold A € (1,n), cutoff ¢ > 1, failure probability § € (0,1).
8=k 1= (log(2n/0)]; k=[5l L=r1h p=206/Q2L); A=p8/2% ¢=45/2
p=1—X\—0.
cSum = Sparse([ ).
fort=1:L do
e =3 [L].
Let s; be an uniform random element from [1 : n]; g = matrizAccess(sg, ¢ - €, A, p).
z; = rangelndicator (qt7 €1, p‘l).
cSum = eSum + z;.
end for
cSum = rangelndicator (cSum, (1- 25)%, L);
Return cSum.

H
e

Proof. The cost of the algorithm is dominated by the sparse matrix operations in line 5-7, plus the
cost of the last operation in line 9. Using our access model together with Propositions 1] and [£2]
the cost of the steps in line 5-7 at time ¢ are of order

2 oo (=L
O<01 <%> OgTitﬁEt) log®tn 10g(2L/5)> <

h oo (T 2n
O(cl T/ log® h <B> log™ nlOg(A—ﬁé))

Note that this includes the extra factor of logn from Proposition 1] a factor which is absent in
the sparseness of q; and z;.
Summing over t gives a running time of order

@) <61Llog03+1 h <%>02+1 log®it! nlog(Z—%))
:0<c1 <%>log03+l<£ﬁ) <%>CQ+3IOgC4+1nIOg<A2_Zé>log@))
~ofa (§) (5) () e (3))

To estimate the cost of the last step of the algorithm, we bound the sparseness of cSum at
the completion of the FOR loop by nnz(cSum) < >, nnz(z;) and then apply Proposition once
more, giving a cost which of the same order as the total cost of the algorithm accrued up to this
step.

To prove the correctness of the algorithm, we first note that with probability at least (1 —p) >
1 —pL, each of the L calls of matrixAccess in line 5 will return a sparse vector obeying the bound
[Bl). Next, we apply the union bound to reduce the focus of the analysis to a single column:

Pr [MULTISCALECOLUMNSUM is unsuccessful] <
> Pr [MULTISCALECOLUMNSUM is unsuccessful on column 4] .

13



When considering column 4, we now let p = (p1, ...,pn)" = M(-,i), the i'® column of M. In other
words, p; = m, ; for all j € [1: n]. Note that the ith entry of cSum after step 8 is of the form (@).
Taking into account the bound (8)), our proof will be very similar to that of Theorem Bl

We first consider the case that ZZ p; > A in which case we bound

Lp AL 3?1 AL B
E[Q_|> = el P ) e Y iy
Q-1>=2> pe—72> - {p 3 - -3
Multiplying both sides by (1 — ), we obtain

(1- BB 2 X (1 -2p).

Combined with the bound (8) and the multiplicative Chernoff bound (Lemma A.1), this shows that
conditioned on matrizAccess returning a sparse vector obeying the bound (@l in each instance in
line 5, we get

2 2
Pr{cSumu) <(- 25)%} < exp (—%Em) < exp (—gﬁ fjA) <l
In a similar way, if >, pr < A/c = A(1 —503), we bound
AL _AL1-58
E[Q4] < n—p(l —58) = w18
implying that AL
(1 +20)B[Q.] < ZX(1 - 25)
and hence
_ 2
Pr{cSum(i) >(1- 26)%} < exp <—62%1 " §§> < exp <—A§f ) < %,

again conditioned on matrizAccess returning a sparse vector obeying the bound () in each instance
in line 5.
Thus the total failure probability is at most Lp + n% = ¢, as desired.

5 Identifying Nodes with Significant PageRank

5.1 Robust Approximation of Personalized PageRanks

We now present our main subroutine for SIGNIFICANTPAGERANKS which, we recall, is addressing
the following problem: Given a directed graph G = (V, E), a threshold value 1 < A < |V] and a
positive constant ¢ > 1, compute a subset S C V with the property that S contains all vertices of
PageRank at least A and no vertex with PageRank less than A/ec.

Let PPR denote the personalized PageRank Matrix of G defined in the Introduction, where
we recall that PPR(i, j) is equal to the personalized PageRank contribution of node i to node j in

14



G. Under this notation, the SIGNIFICANTPAGERANKS can be viewed as a SIGNIFICANTMATRIX-
COLUMNS problem, if we can develop an efficient procedure for accessing the rows of PPR. This
procedure, which we refer to as PPRmatrizAccess(), takes a row number i, an additive precision
parameter €, a multiplicative precision parameter \ and success probability p, and returns a sparse
vector m; = Sparse([1m; 1, ..., M; ) such that

e with probability at least 1 — p,

(1—)\)m2—6§ﬁ1, S(l—l—)\)mz—i-e,
where m; = PPR(i,-), and
e with probability at most p, m; can be any sparse vector.

Our algorith for PPRmatrizAccess() use the following key observation that connects personal-
ized PageRank with the hitting probability of a Markov model.

Observation 5.1. PPR(v,j) is equal to the success probability that a random walk starting at v
and independently terminating at each time step with probability «, hits j just before termination.

Proof. Let 1, be the indicator vector of v. Solving the system given by
PersonalizedPageRank (v, -) = a1, + (1 — a)PersonalizedPageRank (v,-) D™ A,

one obtains
PersonalizedPageRank(v, -) = al,(I — (1 —a)D7'A)™! = a1, Z (1—a)D™tA).
=0

The observation then follows directly from the last equation. O

Our algorithm for PPRmatrizAccess given below conducts a careful simulation of such restarting
random walks. As such it only needs an oracle access to a random out-link of a given node.

Algorithm 3 PPRmatrixAccess

Input: node v, additive approximation €, multiplicative approximation .
1: ¢Sum = Sparse(] |).
2: Set length = [log_1 (3)].

Gy
3: Set r = [ - 4In(n/p)].
4: for r rounds do

5. Run one realization of a restarting random walk from v. Artificially stop the walk after
length steps if it has not terminated already.

6:  if the walk visited a node j just before making a termination step then

7 cSum = cSum + Sparse(j,1/r)  //namely, add 1/r to j’s value.

8  end if

9:  Return cSum.

10: end for
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Theorem 5.2. For any node v, values 0 < e < 1,0 <A< 1,0 < a <1, and success probability 0 <
p < 1, PPRmatrixAccess(v, €, A\, p) is a (10 max{log_l(ﬁ), 1},2,1,2)-SARA model. In particular,
its runtime is upper bounded by

In%(n) In(1/p) log(e*
O( (n) (6112?) g( )>.

Proof. We start by analyzing the runtime guarantee. The algorithm performs [ﬁ -41n(n/p)]
rounds where at each round it simulates a random walk with termination probability of « for at
most length steps. Each step is simulated by taking uniform sample (‘termination’ step) with
probability o and by choosing a random out-link with probability 1 — «. The update of cSum in
line 7 takes at most logn (see proposition ). Thus the total number of queries used is

0] [ug (2)] e = [0 [

1) n(n) log(1/p) log(e™)
)1 2 .
l-a €A

We now prove the guarantees on the returned vector c¢Sum (line 9 in the algorithm). Given a

node j, denote by px(v, ) the contribution to j from restarting walks originating at v that are of
length at most k, namely,

(8 + 2) max {log_l(

k
pr(v,§) = aly» (1 —a)D A
1=0

We ask how much is contributed to j’s entry from restarting walks of length bigger or equal
to k. The contribution is at most (1 — a)* since the walk needs to survive at least k consecutive
steps. Taking (1 —a)F < 7 will guarantee that at most § is lost by only considering walks of length
smaller than k, namely:

. € . .

For this to hold it suffices to take k = [log( - (4)], the value the parameter length is set to in
l—a

step 2.

Next, the algorithm computes an estimate of py(v,j) by realizing walks of length at most k.
This is the value of ¢Sum at index j returned by the algorithm. Denote this by pg(v,j). The
algorithm computes such an estimation (in line 7) by taking the average number of hits over r
trials (adding 1/r per hit).

Now, if PPR(v,j) > § then pi(v,j) > § and by the multiplicative Chernoff bound (Lemma
[A.T),

Pr(pe(v,7) > (1 + N)pk(v, 7)) < exp(—1In(n/p))
and
Pr (pr(v,j) < (1 = Npk(v,j)) < exp(—In(n/p)).

2p
— 22

By the union bound we can conclude that with probability

(1= \)(PPR(v,j) — i) < pr(v,§) < (1+ N)PPR(v, ).

16



Similarly, if PPR(v,j) < § then p(v, j) < § and by the multiplicative Chernoff bound (Lemma

[ATl part 3), .
Pr (pi(v.5) > (145 ) < exp(~In(n/p)) = p/n.

As A < 1 we therefore have 0 < pi(v,j) < e with probability at least 1 — p/n. And as
PPR(v,j) < § we clearly have, with probability 1 —p/n,

(1=X)PPR(v,j) — € < pr(v,j) < (1+A)PPR(v,j) + ¢,

as needed.
By the union bound, the complete claim holds with probability at least 1 — p. O

5.2 A Tight Lower Bound for Solving the SIGNIFICANTPAGERANKS Problem

In this subsection, we present a corresponding lower bound for identifying all nodes with significant
PageRank values. Our lower bound holds under the stringent model where one can access any
node of interest in the graph in one unit of cost and that the PageRank of the node accessed
is given for free. We call such a model the strong query model. We first give a lower bound to
illurstrate the challenge for identifying nodes with significant PageRanks, even in graphs where
there is only one significant node. We then show that for any integral threshold A and precision ¢
there are instances where the output size of SIGNIFICANTPAGERANKS is Q(n/A). Clearly, this also
serves as a lower bound for the runtime of any algorithm that solves the SIGNIFICANTPAGER ANKS
problem, regardless of the computational model used to compute the required output. We note
that the runtime of our algorithmic solution to SIGNIFICANTPAGERANKS is at most only a small
polylogarithmic factor away from this bound.

For clarity of exposition we present our lower bounds for o = 0.5. Similar lower bounds hold
for any fixed 0 < o < 1.

Theorem 5.3 (Hardness for Identifying One Significant Node). Let o = 0.5. For n large enough,
any algorithm making less than gx queries in the strong query model on graphs on n nodes and
threshold A < §, would fail with probability at least 1/e to find a node with PageRank at least A,
on at least one graph on n nodes.

Proof. The proof will apply Yao’s Minimax Principle for analyzing randomized algorithms [19],
which uses the average-case complexity of the deterministic algorithms to derive a lower bound on
the randomized algorithms for solving a problem.

Given positive integers n and A < §, we construct a family F of undirected graphs on n nodes
by taking a cycle subgraph on n —d— 1 nodes and an isolated star subgraph on the remaining d+ 1
nodes, where we set d = 3A — 1. To complete the construction we take a random labeling of the
nodes. See Figure [ for an illustration.

Let A be a deterministic algorithm for the problem. We shall analyze the behavior of A on a
uniformly random graph from F.

First, by solving the PageRank equation system it is easy to check that each node on the cycle
subgraph has PageRank value of 1, the hub of the subgraph has PageRank %l + %, and a leaf of the
star subgraph has PageRank % + 3—1d. The only node with PageRank at least A is the hub of the
star subgraph.

17



Figure 1: An example illustrating the “cycle & star” lower bound construction for PageRank
computations.

Let T be the number of queries the algorithm make. The probability that none of the nodes of
the star subgraph are found after T" queries by A is at least

G+l

= exp(—”%) > exp(—1),
for T < g5 = %. Here we used the fact that 1 —x > exp(—2z), for 0 < z < 1/3.

We define the cost of the algorithm as 0 if it has found a node of Pagerank at least A and
1 otherwise. Note that the cost of an algorithm equals its probability of failure. Then by Yao’s
Minimax Principle, any randomized algorithm that makes at most gx queries will have an expected
cost of at least 1/e, i.e., a failure probability of at least 1/e on at least one of the inputs. O

Theorem 5.4 (Graphs with Many Significant Nodes). Let o = 0.5, A be integral and c be given.
Then, there are infinitely many n such that there exists a graph on n nodes where the output to
SIGNIFICANTPAGERANKS on that graph has size Q(%).

Proof. The construction is a variant of the one used in the proof of Theorem[5.4l The graph is made

of m identical copies of an undirected star graph on d+1 = 3A nodes. An easy calculation with

the PageRank equations shows that each hub has PageRank of A + % and each leaf has PageRank
of 2+ m < 1. The number of nodes with PageRank at least A is therefore & = Q(%). _
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A Concentration Bounds

Lemma A.1. (Multiplicative Chernoff Bound) Let X = """ | X; be a sum of independent (but not
necessarily identical) Bernoulli random variables. Then,

1. For 0 < A < 1,
PriX < (1-NE[X]] <exp(—% E[X])
PriX > (1+ ME[X]] < exp(—2E[X)]).

2. For A\>1,
Pr[X > (1 + ) E[X]] < eXp(—)\ET[X]).

3. For any constant A > (1 + \)E[X],
PriX > A] < { EXP(_? B
3

Proof. The case of 0 < A < 1 is standard and a proof can be found, for example, in chapter 4
of [I4]. For any A, it is also shown therein that

et .
PI"[X > (1 + )\),U’I’L] < <m> .

(14000 =P ATy ) =P 73

and the second claimed item follows.
A

We now prove the last claimed item. Assume that oy [X] > 0 (otherwise the proof follows
immediately from part 1). Define k = [ﬁ — FX]|] and Y = Z:-:'lkYi, where for 1 < i < n,
Y; = X; and for n < i < n+ k, Y; are independently distributed Bernoulli random variables with

expectation ( 14A.>\) — F[X])/k each. Note that k > 1, Y; are indeed Bernoulli random variables as

(
0 < (125 — BIX])/k <1, and that E[Y] = E[X] + (535 — E[X]) = 35+ Now,

Now for A > 1,

Pr(X >A)=Pr(X > (1+NA/(1+)) <
exp(—)‘; A A<

14X
2 K)ifAzl

Pr(Y > (1+NA/(1+ 1) < { (4. A
3 1+

The next to last inequality follows from the fact that Y first-order stochastically dominates X,
and the last inequality follows from parts 1 and 2 of the lemma. O
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