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Abstract. We consider a quantum spin system with Hamiltonian

H = H(0) + λV,

where H(0) is diagonal in a basis |s⟩ =
⊗

x |sx⟩ which may be labeled by the config-

urations s = {sx} of a suitable classical spin system on Zd,

H(0) |s⟩ = H(0)(s) |s⟩.

We assume that H(0)(s) is a finite range Hamiltonian with finitely many ground
states and a suitable Peierls condition for excitations, while V is a finite range or
exponentially decaying quantum perturbation. Mapping the d dimensional quantum

system onto a classical contour system on a d+1 dimensional lattice, we use standard
Pirogov-Sinai theory to show that the low temperature phase diagram of the quantum
spin system is a small perturbation of the zero temperature phase diagram of the
classical Hamiltonian H(0), provided λ is sufficiently small. Our method can be

applied to bosonic systems without substantial change. The extension to fermionic
systems will be discussed in a subsequent paper.

1. Introduction

1.1. General ideas.

Many models of classical statistical mechanics provide examples of first-order
phase transitions and phase coexistence at low temperatures. It became clear al-
ready from the first proof of such a transition for the Ising model by the Peierls
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argument [Pei36, Gri64, Dob65] that a convenient tool for the study of phase co-
existence and first-order phase transitions is a representation in terms of configura-
tions of geometrical objects — contours. This has been systematically developed in
Pirogov-Sinai theory [PS75, Sin82], see also [KP84, Zah84, BI89], which allows one
to prove these phenomena for a wide class of models, with or without symmetry
assumptions on the coexisting phases.

For quantum spin systems, the theory of first-order phase transitions and phase
coexistence is much less developed. While several papers deal with this problem in
the presence of a symmetry relating the two phases, [Gin69 , Ken85], no general
theory is known which provides a systematic approach to quantum spin systems
once the symmetry constraint is relaxed.

In this paper we propose to develop such a theory for low temperature quantum
spin systems which are small perturbations of suitable classical systems. To be more
precise, we assume that the Hamiltonian of the system is of the form

H = H(0) + λV (1.1)

where H(0) is diagonal in a basis |s⟩ =
⊗

x |sx⟩ which may be labelled by the
configurations s = {sx} of a classical spin system with finite single spin space
S = {1, · · · , |S|} and Hamiltonian

⟨s|H(0) |s⟩ = H(0)(s), (1.2)

while V is a local or exponentially decaying quantum perturbation,

V =
∑
A

VA, (1.3)

where the sum goes over connected sets A and VA is an arbitrary operator on
HA =

⊗
x∈A Hx, except for the constraint that its norm ∥VA∥ is exponentially

decaying with the size of A.
Assuming that the classical system has a contour representation in d dimensions

that allows to apply the methods of Pirogov-Sinai theory for sufficiently low temper-
atures, we propose to study the quantum perturbation of this system by mapping
it into a suitable contour system in d+ 1 dimensions, which can again be analysed
by the methods of Pirogov Sinai theory. Actually, our method is very similar to
the method developed in [Bor88], were this strategy was used to develop weak cou-
pling cluster expansions for lattice gauge theories with discrete gauge group and
continuous time.

Our approach differs, however, from that used by Ginibre [Gin69] and Kennedy
[Ken85]. In order to explain the main difference, let us first recall their method.
It is based on the idea of developping the density matrix e−βH of the model (1.1)

arround the unperturbed matrix e−βH(0)

using Trotter’s formula

e−βH = lim
n→∞

(
e−(β/n)H(0)(

1− β

n
V
))n

. (1.4)
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While the leading term of this expansion gives the partition function of the classical
spin system at temperature β, the expansion of V according to (1.3) will intro-
duce transitions between classical contours at various times, leading therefore to a
representation in terms of “quantum contours” on Zd × [0, β].

In the symmetric case considered in [Ken85] and [Gin69], these quantum contours
could be controlled with affordable effort using standard methods. The asymmet-
ric situation considered here, however, obviously requires significant modifications
involving something like a “Quantum Pirogov-Sinai” theory. Such an approach
is currently being pursued by Datta, Fernandez and Fröhlich [DFF95], leading to
results very similar to those presented in this paper1.

Here, we follow an alternative approach, motivated by [Bor88]. The main idea is
not to consider contours on Zd×[0, β], but to use a suitable blocked approach, which
allows to map a d-dimensional quantum system onto a classical contour system
on the (d + 1)-dimensional block lattice. As a consequence, our results make it
possible to apply directly the usual Pirogov-Sinai theory to quantum spin systems
as well, thereby allowing to analyze questions concerning the low temperature phase
structure, finite size scaling, analyticity properties, etc. using the well developped
machinery of standard Pirogov-Sinai theory.

1.2. Contour representations of quantum lattice models.
In the remaining part of this introduction, we present the main ideas of our

approach. In the first step, we rewrite the partition function Z = Tr e−βH of the
quantum spin system as

Z = TrTM where T = e−β̃H and β = Mβ̃ (1.5)

with an integer M to be chosen later. We then expand the partition function

Z of the quantum system around the partition function Z class = Tr e−βH(0)

of
the classical spin system using the Duhamel formula (a reference concerning the

Duhamel formula is e.g. [SS76]) for the transfer matrix T = e−β̃H . Introducing the
family A0 of all sets A contributing to (1.3), the Duhamel expansion gives

T = e−β̃H(0)−β̃λ
∑

A∈A0
VA =

∑
n

[ ∏
A∈A0

(−λ)nA

nA!

∫ β̃

0

dτ1A . . . dτnA

A

]
T (τ ,n), (1.6)

where n is an multiindex, n : A0 → {0, 1, 2, . . . }, and T (τ ,n) is obtained from

T (0) = e−β̃H by “inserting” the operator VA at the times τ1A, . . . τ
nA

A , see Section 2
for the precise definition. Next, we resum (1.6) to obtain the expansion

T =
∑
B

T (B), (1.7a)

1Results of this type were announced some time ago in [Pir78]. However, a detailed discussion

and proofs have never been presented.
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where
T (B) =

∑
A={A1,...,Ak}

∪iAi=B

T̃ (A), (1.7b)

with

T̃ (A) =
∑

n:suppn=A

[ ∏
A∈A0

(−λ)nA

nA!

∫ β̃

0

dτ1A . . . dτnA

A

]
T (τ ,n). (1.7c)

Using the basis |s⟩ to rewrite (1.5) as

Z =
∑

s(1),...,s(M)

⟨s(1)|T |s(2)⟩ . . . ⟨s(M)|T |s(1)⟩ (1.8)

and inserting the formula (1.7) to expand T around T (0), we obtain

Z =
∑

s(1),...,s(M)

B(1),...,B(M)

M∏
t=1

⟨s(t−1)| T̃ (B(t)) |s(t)⟩, (1.9)

where we have identified s(0) and s(M).
At this point, the quantum spin system is easily mapped to a classical contour

system in d+1 dimensions. Before doing so, let us discuss the expansion (1.9) from
a more heuristic point of view. Starting with the leading term in B(1), . . . , B(M),
namely the term where all B(t) are empty, the matrices T (B(t)) reduce to the
unperturbed transfer matrix T (0), which implies that only the term with s(1) ≡
s(2) ≡ · · · ≡ s(M) contributes to the sum over s(1), . . . , s(M), giving the partition
function of the classical spin system at the inverse temperature β. A non empty set
B(t), on the other hand, corresponds to the insertion of one or several operators VA,
A ⊂ B(t), inducing transitions between different classical states s(t−1) and s(t). It
should be noted, however, that for a fixed set of B(t)’s only those spin configurations
s(1) ≡ s(2) ≡ · · · ≡ s(M) contribute to (1.9), for which s(t−1) and s(t) are identical
on all points x for which x /∈ B(t).

In order rewrite (1.9) in terms of contours, we assign contours to “configurations”
specified by s(1), . . . , s(M) and B(1), . . . , B(M) Namely, we introduce elementary
cubes as the unit closed cubes C ⊂ Rd+1 with centers (x, t) where t ∈ {1, 2, . . . ,M}
and x ∈ Zd. We say that an elementary cube C with center (x, t), x ∈ Zd, lies in
the t’th time slice; we say that it is in a quantum excited state if x ∈ B(t), while
we say it is in a classical state if this is not the case. Consider now a cube C in the
t’th time slice which is in a classical state. Then s(t−1) and s(t) must assume the
same value sx ∈ S on the corresponding point x ∈ Zd, and we say that the cube C
is in the (classical) state sx.

In order to explain our definition of contours, let us assume for the purpose of this
introduction that H(0)(s) is the Hamiltonian of a classical spin system with nearest
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neighbor interactions, and that the contours of the classical system correspond to
bonds ⟨xy⟩ for which sx ̸= sy (see Section 2 for the more general case). We then say
that a cube C is part of the ground state region Wm, m ∈ S, if it is in the classical
state m, and if all neighboring cubes in the same time slice are in the classical state
m as well. All cubes which are not part of a ground state region are called excited.
As usual, we define a contour as a connected component of the set of excited cubes.

Resumming all terms in (1.9) which lead to the same set of ground state regions
and contours, we finally obtain Z as a sum over sets {Y1, . . . , Yn} of non-overlapping
contours. Given our definition of excited cubes, it is an easy exercise to show that
the weight of each such configuration factors into a product of contour activities

ρ(Yi) and ground state terms e−β̃em|Wm|, where em is the classical groundstate
energy of the ground state m, while |Wm| is the number of cubes which are in the
ground state m. This gives the representation

Z =
∑

{Y1,...,Yn}

∏
i

ρ(Yi)
∏
m

e−β̃em|Wm|, (1.10)

which is exactly of the same form as the contour representation of a classical spin
system. We can therefore apply standard Pirogov-Sinai theory to analyze the quan-
tum spin system considered here, provided we can prove a bound of the form

|ρ(Y )| ≤ e−γ|Y |e−β̃e0|Y | (1.11)

where γ is a sufficiently large constant, and e0 = minm em.
Observing that cubes in a quantum excitation are supressed by a small factor

proportional to λβ̃, while excited classical cubes are exponentially suppressed by a
“classical” contour energy proportional to β̃, such a bound can easily be proven,
see Section 4 for the details.

Notice that the weights ρ(Y ) are in general complex. The version of the Pirogov-
Sinai theory to be used thus must deal with this fact. Actually, such a case has
been discussed in [BI89] and we are closely following their approach.

A novel feature of the models considered here stems from the fact that the result-
ing classical model resides in a finite slab of thickness proportional to β; actually we
should talk of a cylinder because of the periodic boundary conditions. It is therefore
not possible to directly apply standard Pirogov-Sinai theory. Actually, this gives
rise to an interesting problem in both quantum and classical spin systems: dimen-
sional crossover for first order phase transitions. We will not discuss the physics of
dimensional crossover in this paper, but the technical modifications needed to deal
with finite temperature quantum spin systems do actually provide the necessary
framework to deal with this problem as well.

The organization of this paper is as follows: In the next section, we state our main
assumptions and results. In Section 3, we derive the contour representation (1.10),
proving in particular the needed factorization of contour activities. In Section 4 we
prove the exponential decay of the contour activities. Section 5 is devoted to the
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discussion of the resulting contour model including the discussion of modifications
to Pirogov-Sinai theory on a finite slab. In Section 6 we discuss expectation values of
local observables, and in Section 7 we combine the results of the preceeding section
to prove the theorems stated in Section 2. Details of the necessary modifications to
Pirogov-Sinai theory on a finite slab are deferred to an appendix.

We close this introduction with a discussion of possible extensions. We recall
that we assumed that H(0) is diagonal in a basis |s⟩ = ⊗x |sx⟩, where sx lies in a
finite spin space S. While this is a natural setting for quantum spin systems as, e.g.
the anisotropic quantum Heisenberg model, it is not for the discussion of bosonic
or fermionic lattice gases. In this situation, a typical choice for H(0) would be an
operator which is diagonal in the usual bosonic or fermionic Fock representation
where basis vectors are characterized by eigenvalues of the corresponding number
operators nx. While the correponding classical system still has a finite state space
(nx = n↑ + n↓ = 0, 1, 2) in the fermionic case, bosons now give rise to a state
space which contains infinitely many classical states per site. In most application,
however, this is not a serious problem, because the hamiltonian H(0) supresses high
values of nx (or, in the usual field representation, high values of the boson field ϕx).
Our methods and results are therefore applicable to bosonic lattice gases without
major modifications.

For fermions, on the other hand, the antisymmetrization of the wave function
leads to sign problems in the contour representation (1.10) which have to be dealt
with carefully. While this is a priori not obvious at all, it turns out, however, that
fermion signs do not spoil the factorization properties needed to apply Pirogov-
Sinai theory (see [BK95], where the methods developed here are used to prove the
existence of staggered charge order in the narrow band extended Hubbard model).

2. Definition of the model, statements of results

2.1. Assumptions on the classical model.
We start this section by stating the precise assumptions for the classical model.

We consider a classical spin system with finite spin space S = {1, . . . , |S|}, spin
configurations s : Zd → S, x 7→ sx, and finite range Hamiltonian H(0)(s) with
translation invariant interactions, depending on a vector parameter µ ∈ U , where
U is an open subset of Rν . We assume that H(0)(s) is given in the form

H(0)(s) =
∑
x

Φx(s), (2.1)

where Φx(s) ∈ R depends on s only via the spins sy for which y ∈ U(x) = {y ∈
Zd | dist (x, y) ≤ R0}, where R0 is a finite number. In our notation we supress the
dependence of H(0) on Φx and µ.

As usually, a configuration g which minimises the Hamiltonian (2.1) is called a
ground state configuration. For the purpose of this paper, we will assume that the
number of ground states of the Hamiltonian (2.1) is finite, and that all of them are
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periodic. More precisely, we will assume that there is a finite number of periodic
configurations g(1), . . . , g(r), with (specific) energies

em = em(µ) = lim
Λ→Zd

1

|Λ|
∑
x∈Λ

Φx(g
(m)), (2.2)

such that for each µ ∈ U , the set of ground states G(µ) is a subset of {g(1), . . . , g(r)}.
Obviously, G(µ) is given by those configurations g(m) for which em(µ) is equal to
the “ground state energy”

e0 = e0(µ) = min
m

em(µ). (2.3)

Note that we may assume, without loss of generality, that Φx(g
(m)) is independent

of the point x for all ground state configurations g(m), because this condition can
always be achieved by averaging Φx(s) in (2.1) over the minimal common period of
g(1), . . . , g(r).

Our goal will be to prove that the low temperature phase diagram of the quantum
model is a small perturbation of the classical ground state diagram provided the
quantum perturbation is sufficiently small. In order to formulate and prove this
statement, we need some assumptions on the structure of the ground state diagram.
Here we assume that for some value of µ0 ∈ U all states in {g(1), . . . , g(r)} are ground
states,

em(µ0) = e0(µ0) for all m = 1, . . . , r, (2.4)

that em(µ) are C1 functions in U , and that the matrix of derivatives

E =
(∂em(µ)

∂µi

)
(2.5)

has rank r−1 for all µ ∈ U , with uniform bounds on the inverse of the corresponding
submatrices. We remark that this condition implies that the zero temperature phase
diagram has the usual structure of a ν − (r − 1) dimensional coexistence surface
S0 where all states g(m) are ground states, r different ν − (r − 1) − 1 dimensional
surfaces Sn ending in S0 where all states but the state g(m) are ground states, ...

Next, we formulate a suitable Peierls condition. In order to present it, we intro-
duce, for a given configuration s, the notion of excited sites x ∈ Zd. We say that a
site x is in the state g(m) if the configuration s coincides with the configuration g(m)

on U(x), i.e. on all sites y for which dist (x, y) ≤ R0; a site is excited, if it is not in
any of the states g(1), . . . , g(r). Given this notation, the Peierls assumption used in
this paper is that there exists a constant γ0 > 0, independent of µ, such that

Φx(s) ≥ e0(µ) + γ0 for all excited sites x of all configurations s. (2.6)

Finally, we assume that the derivatives of Φx are uniformly bounded in U . More
explicitely, we assume that there is a constant C0 < ∞, such that∣∣∣ ∂

∂µi
Φx(s)

∣∣∣ ≤ C0 (2.7)
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for all i = 1, . . . , ν, µ ∈ U , x ∈ Zd, and all configurations s.

Remark. Given the assumptions stated in this subsection, standard Pirogov-Sinai
theory implies that the low temperature phase diagram of the classical model has
the same topological structure as the corresponding zero temperature phase diagram
(see above).

2.2. Assumptions on the quantum perturbation.
As pointed out in the introduction, we propose to develop a theory which allows

to control low temperature quantum spin systems that are small perturbations of
the classical system introduced above. We consider quantum spin systems with
Hamiltonians of the form

H = H(0) + λV (2.8)

where H(0) is diagonal in a basis |s⟩ =
⊗

x |sx⟩ that may be labelled by the con-
figurations s = {sx} of the classical spin system,

H(0) |s⟩ = H(0)(s) |s⟩. (2.9)

We assume that V is of the form

V =
∑
A

VA, (2.10)

where the sum goes over connected sets A and VA is a self-adjoint operator on
HA =

⊗
x∈A Hx. In addition to translation invariance, we assume that VA and

its derivatives, ∂
∂µi

VA, i = 1, . . . , ν, are bounded operators, with a suitable decay

constraint on the corresponding operator norms ∥VA∥ and
∥∥∥ ∂

∂µi
VA

∥∥∥. In order to

formulate this constraint, we introduce the Sobolev norm

|||V |||γ =
∑

A:x∈A

(
∥VA∥+

ν∑
i=1

∥∥∥ ∂

∂µi
VA

∥∥∥)eγ|A| (2.11)

where |A| is the number of points in A. Given this definition, our assumption on
the decay of V is the assumption that

|||V |||γQ
< ∞ (2.12)

for a sufficiently large constant γQ.

Remarks.
i) For a finite range perturbation, where VA = 0 if the diameter of A exceeds the

range RQ of the interaction, the assumption (2.12) is automatically fulfilled for
arbitrary large γQ < ∞.
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ii) If the quantum perturbation V is of infinite range, we need that ∥VA∥ and∥∥∥ ∂

∂µi
VA

∥∥∥ decay exponentially in the size |A| of A. Assuming exponential de-

cay with a sufficiently large decay constant γ, and observing that the number
of connected sets A of size s that contain a given point x ∈ Zd is bounded by
(2d)2s, the condition (2.12) can be satisfied provided γ > γQ + 2 log(2d).

iii) Strictly speaking, an exponentially decaying pair potential, V =
∑

x,y Vx,y where

the norm ||Vx,y|| decays exponentially with the distance between x and y, is not
in the class considered in this section because V is not given as a sum over
connected sets A. It is obvious, however, that such a potential can be rewritten
in the required form, by artificially connecting the two points x and y by a nearest
neighbor path. In (2.11), this effectively replaces the size of the set A = {x, y}
by its ℓ1-diameter

∑
i |xi − yi|.

2.3. Finite volume states for the quantum system.
In order to discuss the phase diagram of the quantum spin system, we will con-

sider suitable finite volume states ⟨·⟩q,Λ which are analogues of the classical states
with boundary condition q, where q = 1, . . . , r. We first introduce, for any con-
figuration s and any finite set A, the vector |sA⟩ =

⊗
x∈A |sx⟩. Given a finite

set Λ ⊂ Zd, we then define suitable finite volume Hamiltonians H
(0)
Λ and HΛ on

the Hilbert space HΛ̄ =
⊗

x∈Λ̄ Hx, where Λ̄ = ∪x∈ΛU(x). Namely, we introduce
operators

H(0)
x =

∑
sΛ̄

Φx(sΛ̄) |sΛ̄⟩⟨sΛ̄| , (2.13)

H
(0)
Λ =

∑
x∈Λ

H(0)
x , (2.14)

and
HΛ = H

(0)
Λ + λ

∑
A⊂Λ

VA. (2.15)

The Hamilton operator with boundary conditions q is then defined as the “partial
expectation value”

Hq,Λ = ⟨g(q)∂Λ |HΛ |g(q)∂Λ⟩, (2.16)

where ∂Λ is the set Λ̄ \Λ. More precisely, Hq,Λ is an operator on HΛ whose matrix
elements are

⟨sΛ|Hq,Λ |s′Λ⟩ = ⟨sΛ| ⊗ ⟨g(q)
Λ̄\Λ|HΛ |g(q)

Λ̄\Λ⟩ ⊗ |s′Λ⟩. (2.17)

Given the Hamiltonian with boundary conditions q, we introduce the quantum state
⟨·⟩q,Λ as

⟨·⟩q,Λ =
1

Zq,Λ
TrHΛ(· e−βHq,Λ), (2.18)

where
Zq,Λ = TrHΛe

−βHq,Λ . (2.19)
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Note that H
(0)
Λ and HΛ are operators on HΛ̄, while Hq,Λ and it’s analogues,

H(0)
q,x = ⟨g(q)∂Λ |H

(0)
x |g(q)∂Λ⟩ (2.20)

and

H
(0)
q,Λ = ⟨g(q)∂Λ |H

(0)
Λ |g(q)∂Λ⟩, (2.21)

are operators on HΛ.

Remark. Following Ginibre [Gin69], it might seem more natural to implement the

boundary conditions with the help of suitable projection operators P
(q)
∂Λ . Here,

this would amount to defining P
(q)
∂Λ = |g(q)∂Λ⟩⟨g

(q)
∂Λ | . With the help of this projection

operator, one would then define

Zq,Λ = TrP
(q)
∂Λ e−βHΛ

and similarly for the finite volume states (2.18). Observing that

TrHΛWe−βHq,Λ = TrHΛ̄
WP

(q)
∂Λ e−βHΛ

for all operators W on HΛ, these two implementations of boundary conditions are
actually equivalent.

2.4. Statement of results.
In order to state our results in the form of a theorem, we recall that a local

observable is an operator which is a selfadjoint bounded operator on HΛ for some
finite set Λ. We also introduce, for each x in Zd and any local obserbable Ψ, the
translate tx(Ψ). Defining finally Λ(L) as the box

Λ(L) = {x ∈ Zd | |xi| ≤ L for all i = 1, . . . , d}, (2.22)

our main results are stated in the following two theorems.

Theorem 2.1. Let d ≥ 2 and let H(0) be a Hamiltonian obeying the assumptions
of Section 2.1. Then there are constants 0 < β0 < ∞ and 0 < γQ < ∞, such that
for all quantum perturbations V obeying the assumptions of Section 2.2, all β ≥ β0

and all λ ∈ C with

|λ| ≤ λ0 :=
1

eβ0|||V |||γQ

(2.23)

there are constants ξq and continuously differentible functions fq(µ), q = 1, . . . , r,
such that the following statements hold true whenever

aq(β, λ, µ) := Re fq(µ)−min
m

Re fm(µ) = 0 . (2.24)



Quantum Perturbations of Classical Spin Systems 11

i) The infinite volume free energy corresponding to Zq,Λ(L) exists and is equal to fq:

fq = − 1

β
lim

L→∞

1

|Λ(L)|
logZq,Λ(L) (2.25)

ii) The infinite volume limit

⟨Ψ⟩q = lim
L→∞

⟨Ψ⟩q,Λ(L) (2.26)

exists for all local observables Ψ.
iii) For all local observables Ψ and Φ, there exists a constant CΨ,Φ < ∞, such that∣∣⟨Ψtx(Φ)⟩q − ⟨Ψ⟩q⟨tx(Φ)⟩q

∣∣ ≤ CΨ,Φe
−|x|/ξq . (2.27)

iv) The projection operators

P
(q)
U(x) = |g(q)U(x)⟩⟨g

(q)
U(x)| (2.28)

onto the “classical states” g
(q)
U(x) obey the bounds

∣∣⟨P (q)
U(x)⟩q − 1

∣∣ < 1

2
(2.29)

and ∣∣⟨P (m)
U(x)⟩q

∣∣ < 1

2
(2.30)

for all m ̸= q.
v) There exists a point µ̃0 ∈ U such that am(µ̃0) = 0 for all m = 1, . . . , r. For all

µ ∈ U , the matrix of derivatives

F =
(∂Re fm(µ)

∂µi

)
(2.31)

has rank r − 1, and the inverse of the corresponding submatrix is uniformly
bounded in U .

Remarks.
i) Following the usual terminology of Pirogov-Sinai theory, we call a phase with

aq = 0 stable. By the inverse function theorem, statement v) of the Theorem implies
that the phase diagram of the quantum system has the same structure as the zero
temperature phase diagram of the classical sytem, with a ν − (r − 1) dimensional

coexistence surface S̃0 where all states are stable, r different ν − (r − 1) − 1 di-

mensional surfaces S̃n ending in S̃0 where all states but the state m are stable,
· · · .
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ii) Choosing β sufficiently large and λ sufficiently small, the bounds (2.29) and
(2.30) can be made arbitrary sharp. In this sense, the quantum states ⟨·⟩q are small
perturbations of the corresponding classical state whenever q is stable.

iii) While Theorem 2.1 is stated (and proven) for general complex λ, the phys-
ical situation corresponds, of course, to real values of λ, as required by the self-
adjointness of the Hamiltonian H. As we will see in Section 5, the “meta-stable
free energies” fq are real in this case, making the real part in (2.24) and (2.31)
superfluous.

In order to state the next theorem, we define states with periodic boundary

conditons on Λ(L). To this end, we consider the torus Λper(L) =
(
Z/(2L + 1)Z

)d
and the corresponding Hamiltonian

Hper,Λ(L) =
∑

x∈Λ per(L)

H(0)
x + λ

∑
A⊂Λ per(L)

VA , (2.32)

where the second sum goes over all subsets A ⊂ Λ per(L) which are do not wind
around the torus Λper(L). With these definitions, we then introduce the quantum
state with periodic boundary conditions as

⟨·⟩ per,Λ(L) =
1

Z per,Λ(L)
TrHΛ(L)(· e−βH per,Λ(L)), (2.33)

where
Zper,Λ(L) = TrHΛ(L)e

−βH per,Λ(L) . (2.34)

Theorem 2.2. Let H(0), V , β and λ as in Theorem 2.1. Assume in addition that
λ is real. Then the infinite volume state with periodic boundary conditions,

⟨Ψ⟩ per = lim
L→∞

⟨Ψ⟩ per,Λ(L) (2.35)

exists for all local observables Ψ, and is a convex combination (with equal weights)
of the stable states,

⟨Ψ⟩ per =
∑

q∈Q(µ)

1

|Q(µ)|
⟨Ψ⟩q. (2.36)

Here
Q(µ) = {q ∈ {1, . . . , r} | aq(µ) = 0}. (2.37)

3. Derivation of the contour representation

As explained in the introduction, we start with the Duhamel expansion for the
transfer matrix. In this section, we will consider a fixed finite volume Λ = Λ(L) =
{x ∈ Zd | |xi| ≤ L for all i = 1, . . . , d}, and a fixed value q ∈ {1, . . . , r} for the
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boundary condition; further, we are not explicitely specifying this in our notation.
Introducing the transfer matrices

T (0) = e−β̃H
(0)
q,Λ (3.1)

and
T = e−β̃Hq,Λ , (3.2)

we rewrite the partition function Zq,Λ as

Zq,Λ = TrTM , (3.3)

where β̃ and M ∈ N are related to the inverse temperature β by the equality

β = Mβ̃. (3.4)

The Duhamel expansion (or Dyson series) for the operator T yields

T =
∑
n

[ ∏
A∈A0

(−λ)nA

nA!

∫ β̃

0

dτ1A . . . dτnA

A

]
T (τ ,n). (3.5)

Here, A0 is the family of all sets A contributing to the sum (2.15), n is an multiindex
n : A0 → {0, 1, . . . , } with finite n =

∑
A∈A0

nA, τ = {τ1A, . . . , τ
nA

A , A ∈ A0} ∈
[0, β̃]n, and the operator T (τ ,n) is obtained from T (0) by “inserting” the operator
VA at the times τ1A, . . . , τ

nA

A . Formally, it can be defined as follows. For a given
n and τ , let suppn ≡ A = {A1, . . . , Ak} be the set of all A ∈ A0 with nA ̸= 0,
ni = nAi , and Vi = VAi . Let

(s1, . . . , sn) = π(τ1A1
, . . . , τn1

A1
, . . . , τ1Ak

, . . . , τnk

Ak
)

be a permutation of the times τ such that s1 ≤ s2 ≤ · · · ≤ sn, and set

(Ṽ1, . . . , Ṽn) = π(V1, . . . , V1, . . . , Vk, . . . , Vk),

where on the right-hand side each Vi appears exactly ni times. Then T (τ ,n) is
defined by

T (τ ,n) = e−s1H
(0)
q,Λ Ṽ1e

−(s2−s1)H
(0)
q,Λ Ṽ2 . . . e

−(sn−sn−1)H
(0)
q,Λ Ṽne

−(β̃−sn)H
(0)
q,Λ . (3.6)

Next, we resum (3.5) to obtain the expansion

T =
∑
B⊂Λ

T (B), (3.7)
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where
T (B) =

∑
A={A1,...,Ak}

∪iAi=B

T̃ (A), (3.8)

with

T̃ (A) =
∑

n:suppn=A

[ ∏
A∈A

(−λ)nA

nA!

∫ β̃

0

dτ1A . . . dτnA

A

]
T (τ ,n). (3.9)

Before continuing with the expansion for the partition function as sketched in the
introduction, we discuss the factorization properties of the operator T (B). Given

a subset Λ′ of Λ, we introduce the operators TΛ′(τ ,n), T̃Λ′(A), and TΛ′(B) that

are obtained from T (τ ,n), T̃ (A), and T (B), respectively, by replacing H
(0)
q,Λ =∑

x∈Λ H
(0)
q,x by the operator

∑
x∈Λ′ H

(0)
q,x. Using the fact that

[H(0)
q,x,H

(0)
q,y ] = 0 for all x, y ∈ Λ, (3.10)

while
[H(0)

q,x, VA] = 0 if dist (x,A) > R0, (3.11)

one immediately obtains that

T (B) = T
(0)

Λ\B̄ TB̄(B) = TB̄(B)T
(0)

Λ\B̄ , (3.12)

where B̄ is the set
B̄ = {x ∈ Λ | dist (x,B) ≤ R0}. (3.13)

Let us now consider a set B that can be decomposed as B = B1∪B2, with B̄1∩B̄2 =
∅. Then

TB̄(B) = TB̄1
(B1)TB̄2

(B2) = TB̄2
(B2)TB̄1

(B1), (3.14)

due to (3.10), (3.11), and the fact that

[VA, VA′ ] = 0 if A ∩A′ = ∅. (3.15)

For B ⊂ Λ, we therefore get the decompositions

TB̄(B) =

k∏
i=1

TB̄i
(Bi) (3.16)

and

T (B) = T
(0)

Λ\B̄

k∏
i=1

TB̄i
(Bi) (3.17)

provided B = ∪k
i=1Bi, where B̄1, . . . , B̄k are pairwise disjoint.
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Deviating a little bit from the strategy explained in the introduction, we further
expand the transfer matrix T . Using (3.17), we observe that

⟨sB| ⊗ ⟨sΛ\B|T (B) |s′Λ\B⟩ ⊗ |s′B⟩ =

= δsΛ\B ,s′
Λ\B

e−β̃
∑

x∈Λ\B̄ Φx(sU(x))⟨sB| ⊗ ⟨sΛ\B|TB̄(B) |s′Λ\B⟩ ⊗ |s′B⟩. (3.18)

Introducing thus the operator TB(s∂B) on HB as the partial expectation value

TB(s∂B) = ⟨sΛ\B |TB̄(B) |sΛ\B⟩, (3.19)

we get

T (B) =
∑
sΛ\B

e−β̃
∑

x∈Λ\B̄ Φx(sU(x))
(
|sΛ\B⟩⟨sΛ\B | ⊗ TB(s∂B)

)
. (3.20)

As before, U(x) = {y ∈ Zd | dist (x, y) ≤ R0}, while ∂B is the set

∂B = {x /∈ B | dist (x,B) ≤ 2R0}. (3.21)

Considering “configurations” Σ = (B, sΛ\B) on Λ specyfiyng the set B as well as the
configuration sΛ\B outside it, we can combine (3.7) and (3.20) to get the expansion

T =
∑
Σ

K(Σ). (3.22)

Here the operators K(Σ) (on HΛ) are defined by

K(Σ) ≡ K(B, sΛ\B) = e−β̃
∑

x∈Λ\B̄ Φx(sU(x))
(
|sΛ\B⟩⟨sΛ\B | ⊗ TB(s∂B)

)
. (3.23)

Remarks.
i) The operator TB(s∂B) inherits from TB̄(B) the factorization property (3.16).

Namely,

TB(s∂B) =

n⊗
i=1

TBi(s∂Bi
) (3.24)

provided B = ∪n
i=1Bi with B̄1, . . . , B̄n pairwise disjoint.

ii) For x and B near to the boundary of Λ, the spin configurations sU(x) and s∂B
appearing in Φx and TB(s∂B) involve spins sy with y /∈ Λ. A more precise notation

would therefore involve the spin configuration sΛ\B∪g
(q)
∂Λ restricted to the sets U(x)

and ∂B, respectively.
Next, we combine the representation (3.22) for the transfer matrix T with the

formula (3.3) to rewrite Zq,Λ as

Zq,Λ =
∑

Σ1,...,ΣM

w(Σ1, . . . ,ΣM ) (3.25)
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with the weights

w(Σ1, . . . ,ΣM ) = TrHΛ

M∏
t=1

K(Σt). (3.26)

For a given collection of configurations Σ1, . . . ,ΣM , Σt = (B(t), s
(t)

Λ\B(t)), on “time

slices” t = 1, . . . ,M , we now assign a variable σ(x,t) ∈ S̄ = {0, 1, . . . , |S|} to each
point in “space-time” lattice

L = Zd × {1, . . . ,M} (3.27)

by defining

σ(x,t) =


g
(q)
x if x /∈ Λ,

s
(t)
x if x ∈ Λ \B(t),

0 if x ∈ B(t).

(3.28)

Considering elementary cubes, i.e. the closed unit cubes C(x, t) with center (x, t)
in

LΛ = Λ× {1, . . . ,M}, (3.29)

we say that a cube C(x, t) is in the ground state m, if the configuration σ(y,t)

coincides with the configuration g(m) on all points y ∈ U(x). Otherwise, the cube
C(x, t) is called an excited cube. Note that a cube C(x, t) may be excited for two
reasons (possibly both): either the R0-neighborhood U(x) of x contains a point
y ∈ B(t), corresponding to the insertion of some operator VA with y ∈ A, i.e. due

to a quantum excitation, or it contains a point y for which the classical variable s
(t)
y

differs from the ground state value g
(m)
y , which corresponds to a classical excitation.

Note also that a configuration where two succesive cubes C(x, t) and C(x, t + 1)

are in a classical state, σ(x,t) = s
(t)
x and σ(x,t+1) = s

(t+1)
x , has weight zero unless

σ(x,t) = σ(x,t+1); indeed, otherwise one has ⟨s(t)x |K(Σt)K(Σt+1) |s(t+1)
x ⟩ = 0. This

is true also for t = M once we identify t = M + 1 with t = 1 (periodic boundary
conditions on L).

Recalling the relation (3.23), we now extract a factor e−β̃Φx(g
(m)) ≡ e−β̃em for

each cube C in the ground state m, leading to an overall factor of

e−β̃
∑

m em|Wm|, (3.30)

where |Wm| is the number of cubes in the ground state m. Considering, on the other
hand, the union D of all excited cubes, we assign a label αD(F ) to all elementary
faces F in the boundary of D, by defining αD(F ) = m if F is a common face for
a cube CD in D and a cube Cm outside D in the ground state m, F = CD ∩ Cm.
Defining the reduced weight ω(σL) by

w(Σ1, . . . ,ΣM ) = e−β̃
∑

m em|Wm|ω(σL), (3.31)
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we observe that ω(σL) depends only on the configuration σD and the label αD,

ω(σL) = ω(σD, αD). (3.32)

(The configuration outside D is entirely determined by the labels αD.) The weight
ω(σD, αD) inherits from (3.24) the factorization property

ω(σD, αD) =
n∏

i=1

ω(σDi
, αDi

). (3.33)

Here D1, . . . , Dn are the connected components of D.
At this point, the rest is standard. One considers the sets

TΛ =
∪

(x,t)∈LΛ

C(x, t) (3.34)

and
T =

∪
(x,t)∈L∞

C(x, t), (3.35)

imposing periodic bundary conditions in the “time direction”, and defines a (la-
beled) contour Y as a pair (suppY, α), where suppY ⊂ TΛ is a connected union of
closed unit cubes with centers in LΛ (considered as a subset of T), while α is an
asignment of a label α(F ) to faces of ∂suppY which is constant on the boundary
of all connected components of T \ suppY .

The contours Y1, . . . , Yn corresponding to a configuration σLΛ are then defined
by taking the connected components of the set D of excited cubes in TΛ for their
supports suppY1, . . . , suppYn and by taking the labels m of the ground states for
the cubes C in TΛ \ suppYi that touch the face F , see above, for the corresponding
labels αi(F ).

Resumming over all configurations in (3.25) that lead to the same set of contours,
and taking into account the factorization property (3.33), it is an easy exercise to
show that the resulting weight factors into a product of contour activities ρ(Yi) and

ground state terms e−β̃em|Wm|. This yields the representation

Zq,Λ =
∑

{Y1,...,Yn}

∏
i

ρ(Yi)
∏
m

e−β̃em|Wm|, (3.36)

which is exactly of the same form as the contour representation of a classical spin
system. We can therefore apply standard Pirogov-Sinai theory to analyze the quan-
tum spin system considered here, provided we can verify its basic assumption —
the Peierls condition. Namely, we should prove a bound of the form

|ρ(Y )| ≤ e−γ|Y |e−β̃e0|Y | (3.37)
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where γ is a sufficiently large constant, e0 = minm em, and |Y | is the number of
elementary cubes in suppY . This will be done in the next section.

Remark. The weights ρ(Y ) are in general complex, even if the coupling constant λ
is real. Observing that the operators K(Σt) in (3.26) are selfadjoint for real λ, we
have, however, that

w(Σ1, . . . ,ΣM )∗ = w(ΣM , . . . ,Σ1) . (3.38)

Considering two contours Y and Y ∗ which can be obtained from each other by a
reflection at a constant time plane, we therefore get

ρ(Y )∗ = ρ(Y ∗) (3.39)

provided λ ∈ R.

4. Exponential decay for contour activities

We first give an explicit expression for the weight ρ(Y ). Combining (3.25), (3.31),
(3.32), and (3.33) we have

Zq,Λ =
∑

Σ1,...,ΣM

e−β̃
∑

m em|Wm|
n∏

i=1

ω(σDi , αDi), (4.1)

where D1, . . . , Dn are the connected components of the union D of all excited cubes
corresponding to Σ1, . . . ,ΣM . This expression is equivalent to (3.36) once we take
for a contour Y ≡ (D,αD) the weight

ρ(Y ) =
∑

σD→Y

ω(σD, αD). (4.2)

Here the sum is over all configurations σD consistent with the contour Y , i.e. over all
configurations σD on D = suppY that, if extended outside suppY by appropriate
ground states determined by the labels αD, yield the contour Y .

Proposition 4.1. Let λ ∈ R, β̃ > 0, and γQ ≥ 1 be such that, for all x ∈ Zd,

(e− 1)β̃|λ|
∑

A∈A0:
x∈A

∥VA∥eγQ|A| ≤ 1. (4.3)

Then
|ρ(Y )| ≤ e−(β̃e0+γ)|Y | (4.4)

where
γ = min{β̃γ0, R−d

0 (γQ − 1)} − log(2|S|). (4.5)

The proof of the proposition relies on the following lemma.
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Lemma 4.2. Let B ⊂ Λ, and let sB, s̃B and s∂B be arbitrary classical configura-

tions on B and ∂B = {x /∈ B | dist (x,B) ≤ 2R0}, respectively. Let γQ, β̃ and λ be
as in Proposition 4.1. Then∣∣⟨sB |TB(s∂B) |s̃B⟩

∣∣ ≤ e−β̃e0|B̄|e−(γQ−1)|B|. (4.6)

Proof of Lemma 4.2. Let sΛ be an arbitrary extension of the configuration sB∪∂B

to the full set Λ, and let s̃Λ be the configuration which agrees with sΛ on Λ \ B,
and with s̃B on B. Then∣∣⟨sB |TB(s∂B) |s̃B⟩

∣∣ = ∣∣⟨sΛ|TB̄(B) |s̃Λ⟩
∣∣ ≤ ∥∥TB̄(B)

∥∥, (4.7)

where, in agreement with (3.8) and (3.9), the operator TB̄(B) is defined by

TB̄(B) =
∑

A={A1,...,Ak}
Ai∈A0,∪jAj=B

T̃B̄(A) (4.8)

and

T̃B̄(A) =
∑

n:suppn=A

[ ∏
A∈A

(−λ)nA

nA!

∫ β̃

0

dτ1A . . . dτnA

A

]
TB̄(τ ,n). (4.9)

The time-ordered operator TB̄(τ ,n) is defined as in (3.6), with the Hamiltonian∑
x∈B̄ H

(0)
q,x replacing H

(0)
q,Λ. Observing that for all s > 0,

∥e−s
∑

x∈B̄ H(0)
q,x∥ = e−s|B̄|e0 , (4.10)

we now bound ∥∥TB̄(τ ,n)
∥∥ ≤ e−β̃|B̄|e0

∏
A∈A

∥VA∥nA . (4.11)

Combining (4.7) — (4.9) with the bound (4.11) and the fact that the assumption

(4.3) implies that β̃|λ|∥VA∥ ≤ 1 for all A ∈ A0, we obtain

∣∣⟨sB |TB(s∂B) |s̃B⟩|
∣∣ ≤ e−β̃e0|B̄|

∑
A={A1,...,Ak}

Ai∈A0,∪jAj=B

∏
A∈A

( ∞∑
nA=1

(β̃|λ|)nA

nA!
∥VA∥nA

)

≤ e−β̃e0|B̄|
∑

A={A1,...,Ak}
Ai∈A0,∪jAj=B

∏
A∈A

(
(e− 1)β̃|λ|∥VA∥

)

≤ e−β̃e0|B̄|e−γQ|B|
∑

A={A1,...,Ak}
Ai∈A0,∪jAj=B

∏
A∈A

(
(e− 1)β̃|λ|∥VA∥eγQ|A|

)
.
(4.12)
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We proceed with the bound∑
A={A1,...,Ak}

Ai∈A0,∪jAj=B

∏
A∈A

(
(e− 1)β̃|λ|∥VA∥eγQ|A|

)
≤

≤
∞∑
k=1

1

k!

k∏
i=1

( ∑
Ai∈A0:

Ai∩B ̸=∅

(e− 1)β̃|λ|
∥∥VAi

∥∥eγQ|Ai|
)

≤
∞∑
k=1

1

k!

k∏
i=1

(∑
x∈B

∑
Ai∈A0:
x∈Ai

(e− 1)β̃|λ|
∥∥VAi

∥∥eγQ|Ai|
)

≤
∞∑
k=1

1

k!
|B|k ≤ e|B|, (4.13)

where we have used the assumption (4.3) in the second to last step. Combining
(4.12) and (4.13), we obtain the lemma. �
Proof of Proposition 4.1. In order to bound the sum in (4.2), we first derive a more
explicit representation for the activity ρ(Y ). We decompose the torus T and the
set of excited cubes D into time-slices, T = ∪M

t=1T(t) and D = ∪M
t=1D

(t), and recall
that σ(x,t) = 0 iff the cube C(x, t) belongs to B(t), the set of sites where transi-
tions between times t and (t + 1) may occur. Summing over all configurations σD

consistent with the contour Y then corresponds to the following three restrictions:

(1) The configuration σD is such that the R0-neighbourhood of each (x, t) with

σ(x,t) = 0 is included in D; i.e. B
(t) ⊂ D(t) for each t = 1, . . . ,M .

(2) All cubes C(x, t) ⊂ D are excited; i.e. either σ(y,t) = 0 for some y ∈ U(x)

or s
(t)
U(x) ̸= g

(m)
U(x) for all m = 1, . . . , r.

(3) Let F be a vertical face in the boundary of D, let m = αD(F ) be the label

of F , and let T(t) be the time-slice containing F . Then σ(x, t) = g
(m)
x for

all x ∈ D(t) whose distance from F is less then R0.

Let us observe that since |sΛ\B1
⟩⊗ |sB1⟩ ≡ |sΛ\B2

⟩⊗ |sB2⟩ for any B1, B2 ⊂ Λ, we
may write the expansion of unity 1 =

∑
sΛ

|sΛ⟩⟨sΛ| on HΛ in the form

1 =
∑
sΛ

|sΛ\B1
⟩ ⊗ |sB1⟩⟨sΛ\B2

| ⊗ ⟨sB2 | . (4.14)

Inserting now (3.26) with (3.31) and (3.32) into (4.2), we may use the above obser-
vation to get the expression

ρ(Y ) =
∑

B(1),...,B(M)

B̄(t)⊂D(t)

∑
s
(1)

D(1)\B(1)
,...,s

(M)

D(M)\B(M)

∑
s
(1)

I(1)
,...,s

(M)

I(M)

M∏
t=1

e
−β̃

∑
x∈D(t)\B̄(t) Φx(s

(t)

U(x)
)×

× ⟨s(t)
D(t)\B(t) | s

(t+1)

D(t)\B(t)⟩⟨s
(t)

B(t) |TB(t)(s
(t)

∂B
(t)) |s

(t+1)

B(t) ⟩. (4.15)
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Here we defined I(t) = B(t−1) ∩ B(t). The first two succesive summations are
equivalent to the sum in (4.2), while the third one implements the trace in (3.26).
Namely, the sum over B(1), . . . , B(M) in (4.15) obeys automatically the first restric-
tion above; the second sum must respect the two others (and there is no restriction
on the third sum). Observe that the choice of a contour Y (or of several contours),

together with the choice of partial configurations s
(t)

D(t)\B(t) , s
(t)

I(t) , at each time t

defines completely the configurations between each time slice.
In order to get a bound on |ρ(Y )|, we estimate the absolute values of the factors

of the terms on the right hand side of (4.15). Taking into account the condition (2)
above and the assumption (2.6) on the classical part of the Hamiltonian, we have

e
−β̃

∑
x∈D(t)\B̄(t) Φx(s

(t)

U(x)
) ≤ e−β̃(e0+γ0)|D(t)\B̄(t)|. (4.16)

The scalar product between the two base vectors is equal to 0 or 1. In fact, we
could use it to reduce the number of terms appearing in the second sum in (4.15);
however, we just bound it by one. Combined with Lemma 4.2, we finally get

|ρ(Y )| ≤
∑

B(1),...,B(M)

B̄(t)⊂D(t)

M∏
t=1

∑
s
(t)

D(t)\B(t)

∑
s
(t)

I(t)

e−β̃(e0+γ0)|D(t)\B̄(t)|e−β̃e0|B̄(t)|e−(γQ−1)|B(t)|.

(4.17)

The summands do not depend any more on the partial configurations s
(t)

D(t)\B(t) and

s
(t)

I(t) . Their number is bounded by

M∏
t=1

r|D
(t)\B̄(t)|+|I(t)| ≤ |S||Y |. (4.18)

To estimate the exponential in (4.17) we use the equality |D(t)\B̄(t)| = |D(t)|−|B̄(t)|
and the bound |B̄(t)| ≤ Rd

0|B(t)|. Thus e−(γQ−1)|B(t)| ≤ e−(γQ−1)R−d
0 |B̄(t)|, and

|ρ(Y )| ≤
[
r e−β̃e0 max{e−β̃γ0 , e−(γQ−1)R−d

0 }
]|Y |

M∏
t=1

∑
B(t)

B̄(t)⊂D(t)

1. (4.19)

The last sum can be easily bounded, yielding∑
B(t)

B̄(t)⊂D(t)

1 ≤
∑

B(t)⊂D(t)

1 = 2|D
(t)|. (4.20)

Combined with (4.19), this completes the proof of Proposition 4.1. �
We close this section with a proposition providing the necessary bounds on deriva-

tives:
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Proposition 4.3. Let λ ∈ R, β̃ > 0, and γQ ≥ 1 be such that, in addition to (4.3)
we have

eβ̃|λ|
∑

A∈A0:
x∈A

∥∥∥ ∂

∂µi
VA

∥∥∥eγQ|A| ≤ 1. (4.21)

Then ∣∣∣ ∂

∂µi
ρ(Y )

∣∣∣ ≤ (
β̃C0 + 1

)
|Y |e−(β̃e0+γ)|Y |. (4.22)

Here C0 is the constant from (2.7) and γ is the constant defined in (4.5).

Proof. We first derive an analogue of the bound (4.6) in Lemma 4.2. To this end,
we have to bound the norm of ∂TB̄(τ ,n)/∂µi. Using the representation (3.6) in
conjunction with the assumption (2.7) and the bound (4.10), we get∥∥∥ ∂

∂µi
TB̄(τ ,n)

∥∥∥ ≤ e−β̃|B̄|e0
{
β̃C0|B̄|

∏
A∈A

∥VA∥nA+

+
k∑

j=1

nAj

∥∥∥∂VAj

∂µi

∥∥∥∥VAj∥
nAj

−1
∏

A∈A\{Aj}

∥VA∥nA

}
. (4.23)

Proceeding as before, we obtain

∣∣⟨sB | ∂

∂µi
TB(s∂B) |s̃B⟩

∣∣ ≤
≤ e−β̃e0|B̄|

∑
A={A1,...,Ak}

Ai∈A0,∪jAj=B

{
β̃C0|B̄|

∏
A∈A

(
(e− 1)β̃|λ|∥VA∥

)
+

+
k∑

j=1

eβ̃|λ|
∥∥∥∂VAj

∂µi

∥∥∥ ∏
A∈A

(
(e− 1)β̃|λ|∥VA∥

)}
≤

≤ e−β̃e0|B̄|e−γQ|B|
∞∑
k=1

1

k!
|B|k

{
β̃C0|B̄|+ k

}
≤ e−β̃e0|B̄|e−γQ|B|{β̃C0|B̄|+ |B|

}
e|B|

≤
(
β̃C0 + 1

)
|B̄|e−β̃e0|B̄|e−(γQ−1)|B|. (4.24)

Inserted into (4.15), and continuing in the same way as before, we obtain the bound
(4.21). �
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5. Truncated free energies and the stable phases of the model

While the next section will be devoted to a detailed discussion of the mean
values of general local variables, here we will anticipate the fact that the state ⟨·⟩q
can be linked with the “probability” – in the ensemble (3.36) of labeled contours
– that a given site x is in Wq, the area outside contours and in the ground state

g(q). To discuss the stability of phases in dependence on the “tuning” parameter
µ (cf. Section 2.1), we can thus use the standard Pirogov-Sinai theory. There are
only two features that are not entirely standard — the fact that the weights ρ(Y )
are in general complex numbers and the fact that our model is actually considered
on a slab of thickness M (linked with the temperature β) with periodic boundary
conditions in the “time” direction. The former was taken into account in [BI89]
(also in [GKK88], but here we will base our discussion on [BI89] and later works
based on it, in particular [BK90] and [BK94]). The latter is a novel feature of
quantum models. Even though it leads only to small modifications, it is important
to realize that the metastable free energies used to determine the phase diagram
will have contributions comming from contours wrapped around TΛ in the “time”
direction. This leads to certain modifications in the definition of truncated free
energies which will be described in this section.

We start with some notation. As usual (see also Section 3) a contour is a pair
(suppY, α), where suppY ⊂ TΛ is a connected union of finitely many closed unit
cubes with centers in L∞ (we call those cubes elementary cubes in the sequel),
while α is an asignment of a label α(F ) to the faces F in ∂suppY which is constant
on the boundary of all connected components of T \ suppY . Its interior IntY
is the union of all finite components of T \ suppY and Intm Y the union of all
components of IntY whose boundary is labeled by m. Recalling that we assumed
d ≥ 2, we note that the set T\(suppY ∪ IntY ) is a connected set, implying that the
functions α(·) is constant on the boundary of the set V (Y ) = suppY ∪ IntY . We
say that Y is a q-contour, if αY = q on this boundary. Two contours Y and Y ′ are
called compatible or not touching if suppY ∩ suppY ′ = ∅, and mutually external if
V (Y )∩V (Y ′) = ∅. Given a finite set of mutually compatible contours Y1, . . . , Yn we
say that Yi, i = 1, . . . , n, is an external contour in {Y1, . . . , Yn}, if suppYi∩V (Yj) = ∅
for all j ̸= i. Consider now a set of contours {Y1, . . . , Yn} contributing to (3.36). The
contours in {Y1, . . . , Yn} are then mutually compatible, and all external contours
are q-contours. In addition, the labels of these contours are matching in the sense
that the boundary of each connected component of TΛ \ (suppY1 ∪ · · · ∪ suppYn)
has constant boundary conditions.

Given this setup, it is now standard to derive a second representation for Zq,Λ

which does not involve such a matching condition. To this end, we first introduce
partition functions Zq(V ) for all volumes V ⊂ TΛ for which V c = TΛ \ V is a
(possibly empty) union of closed elementary cubes in TΛ. We say that Y is a contour
in V , if V (Y ) ⊂ V , and call a set {Y1, . . . , Yn} of mutually compatible contours in
V a set of matching contours in V if the boundary of each connected component of
V \ (suppY1∪ · · ·∪ suppYn) has constant boundary conditions. Denoting the union
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of those components which have boundary condition q by Wq, we define

Zq(V ) =
∑

{Y1,...,Yn}

∏
i

ρ(Yi)
∏
m

e−β̃em|Wm| , (5.1)

where the sum runs over all sets of mutually compatible, matching contours in V
for which all external contours are q-contours. Recalling the expression (3.36) for
Zq,Λ, we note that the partition function (5.1) is actually equal to Zq,Λ if V = TΛ,

Zq(TΛ) = Zq,Λ . (5.2)

We now rewrite the partition function Zq(V ), in a standard way, as a sum over
contours without any matching condition, see e.g. [Zah84] or [BI89]. Introducing
the weights

Kq(Y ) := ρ(Y )eβ̃eq|Y |
r∏

m=1

Zm(IntmY )

Zq(IntmY )
, (5.3)

one gets

Zq(V ) = e−β̃eq|V |
∑

{Y1,...,Yn}⊂V 0

n∏
k=1

Kq(Yk). (5.4)

where the sum runs over all sets of mutually disjoint q-contours in V .
The weights Kq(Y ) do not, necessarily, satisfy the bound

|Kq(Y )| ≤ ϵ|Y | (5.5)

with a sufficiently small constant ϵ > 0. While it turns out that such a bound can be
proven for stable phases q, it is false for unstable phases. In order to circumvent this
problem, we follow the standard strategy and construct truncated contour activities
K ′

q(Y ), truncated partition functions

Z ′
q(V ) = e−β̃eq|V |

∑
{Y1,...,Yn}⊂V 0

n∏
k=1

K ′
q(Yk), (5.6)

and the corresponding free energies fq in such a way that the weights K ′
q(Y ) satisfy

the bound (5.5) and, in the same time do not differ from Kq(Y ) whenever the phase
q is stable, i.e. whenever the real part of the free energy fq of the truncated model
is minimal, Re fq = minm Re fm.

Our definition of the truncated weights K ′
q follows closely the treatment from

[BK94]. The main difference is that since the contours can have only a limited
extension in the time direction, we take their “horizontal diameter” as the parameter
to use in inductive definitions (and proofs). Namely, for a contour Y , we take the
diameter δ(Y ) defined as the diameter of the d-dimensional projection

{y ∈ Rd such that (y, t) ∈ C(x, t), for some C(x, t) ⊂ suppY } (5.7)
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We define δ(V ) in the same way. Notice that δ(Ỹ ) < δ(Y ) whenever supp Ỹ ⊂
Int (Y ).

To introduce the weight K ′
q(Y ) in an inductive manner, assume that it has al-

ready been defined for all q and all contours Y with δ(Y ) < n, n ∈ N, and that it

obeys a bound of the form (5.5). Introduce f
(n−1)
q as the free energy of a contour

model with activities

K(n−1)(Y q) =

{
K ′(Y q) if δ(Y q) ≤ n− 1

0 otherwise.
(5.8)

Consider now a contour Y with δ(Y ) = n. Since δ(Ỹ ) < n for all contours Ỹ
in IntY , the truncated partition functions Z ′

q(IntmY ) are well defined for all q
and m. Their logarithm can be controlled by a convergent cluster expansion, and
Z ′
q(IntmY ) ̸= 0 for all q and m. We therefore may define K ′

q(Y ) for q-contours Y
with δ(Y ) = n by

K ′
q(Y ) = χ′

q(Y )ρ(Y )eβ̃eq|Y |
∏
m

Zm(IntmY )

Z ′
q(IntmY )

, (5.9)

with

χ′
q(Y ) =

∏
m ̸=q

χ
(
α− β̃(Re f (n−1)

q − Re f (n−1)
m )δ(Y )

)
. (5.10)

Here α is a constant that will be chosen later and χ is a smoothed characteristic
function. We assume that χ is a C1 function that has been defined in such a way
that it obeys the conditions

0 ≤ χ(x) ≤ 1, 0 ≤ dχ

dx
≤ 1, (5.11)

and

χ(x) = 0 if x ≤ −1 and χ(x) = 1 if x ≥ 1 . (5.12)

As a final element of the construction of K ′
q, we have to establish the bound (5.5)

for contours Y with δ(Y ) = n. The proof of this fact, together with the proof of the
following Lemma 5.1, follows closely [BK94]. However, since, on the one hand, the
claims of Lemma 5.1 (as well as the definition of K ′

q(Y )) slightly differ from similar
claims in [BK94] and, on the other hand, there is certain number of complications
in [BK94] that are not necessary for the present case, we present the proof in the
appendix.

We use fq to denote the free energy corresponding to the partition function
Z ′
q(V ),

fq = − 1

β̃
lim
V→T

1

|V |
logZ ′

q(V ) , (5.13)
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and introduce f0 and aq as

f0 = min
m

Re fm , (5.14)

aq = β̃(Re fq − f0) . (5.15)

Finally, we recall that volumes V as well as supports of contours, suppY , are
unions of elementary cubes and |Y | or |suppY | denotes their (d + 1)-dimensional
volume. Similarly for the boundary ∂V of V we use |∂V | to denote its d-dimensional
euclidean area.

Lemma 5.1. Assume that ρ(·) obeys the conditions (4.4) and (4.22) and let

ϵ = e−γ+α+2 and ᾱ = α− 2. (5.16)

Then there exists a constant ϵ0 > 0 (depending only on d and r) such that the
following statements hold provided ϵ < ϵ0 and α ≥ 1.

i) The contour activities K ′
q(Y ) are well defined for all Y and obey (5.5) and∣∣∣ ∂

∂µi
K ′

q(Y )
∣∣∣ ≤ (3rβ̃C0 + 2)|V (Y )|ϵ|Y |. (5.17)

ii) If aqδ(Y ) ≤ α, then χq(Y ) = 1 and Kq(Y ) = K ′
q(Y ).

iii) If aqδ(V ) ≤ α, then Zq(V ) = Z ′
q(V ).

iv) For all volumes V ⊂ TΛ for which V c = TΛ \ V is a union of closed elementary
cubes, one has

|Zq(V )| ≤ e−β̃f0|V |+O(ϵ)|∂V | (5.18)

and ∣∣∣ ∂

∂µi
Zq(V )

∣∣∣ ≤ (2β̃C0 + 1)|V |e−β̃f0|V |+O(ϵ)|∂V |. (5.19)

Remarks.
i) Here, as in the appendix, O(ϵ) stands for a bound Kϵ, where K < ∞ is a

constant that depends only on the dimension d and the number of classical states
r.

ii) For real λ, the free energy f independent of boundary conditions and can be
expressed as

f = − 1

β
lim

Λ↗Zd

1

|Λ|
log TrHΛe

−βHq,Λ = − 1

β
lim

Λ↗Zd

1

|Λ|
logZq,Λ. (5.20)

Since Hq,Λ is a selfadjoint operator in this case, f is real. Rewriting the partition
function in terms of the (d+1)-dimensional contour model introduced in Section 3,
see equation (5.2), we have

f = − 1

β̃M
lim

Λ↗Zd

1

|Λ|
logZq(TΛ) ≡ − 1

β̃
lim
V↗T

1

|V |
logZq(V ). (5.21)
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iii) By contrast, the meta-stable free energies fq defined in (5.13) do in general
depend on q, even if λ is real. It is worth noting, however, that the meta-stable
free energies are real-valued in this case. To see this, we first observe that by the
symmetry property (3.39), Zq(V ) is real for all V , implying that Kq(Y )∗ = Kq(Y

∗).
Using the definitions (5.8) through (5.10), one then establishes by induction that
Z ′
q(V ) is real while K ′

q(Y )∗ = K ′
q(Y

∗). Given this symmetry for K ′
q(Y ), the reality

of fq now easily follows from the cluser expansion of logZ ′
q(V ).

6. Expectation values of local variables

To distinguish between different phases we have to evaluate expectation values
of local observables. Whenever we have a local bounded observable Ψ, represented
by an operator acting on HsuppΨ with a finite suppΨ ⊂ Zd, we have

⟨Ψ⟩q,Λ =
TrHΛ(Ψe−βHq,Λ)

TrHΛ(e
−βHq,Λ)

=
TrHΛ(ΨTM )

TrHΛ(T
M )

=
ZΨ
q,Λ

Zq,Λ
. (6.1)

Retracing the steps leading to the contour representation (3.36) of Zq,Λ, we can
get in a straightforward manner a similar expression for ZΨ

q,Λ. Namely, introducing

wΨ(Σ1, . . . ,ΣM ) = TrHΛ

(
Ψ

M∏
t=1

K(Σt)
)

(6.2)

with K(Σ) given as before by (3.23), we have

ZΨ
q,Λ =

∑
Σ1,...,ΣM

wΨ(Σ1, . . . ,ΣM ). (6.3)

Localizing the observable Ψ, by definition, in the first time slice, we define the d+1
dimensional support of Ψ as

S(Ψ) :=
∪

x∈suppΨ

C(x, 1) . (6.4)

Assuming without loss of generality that suppΨ and hence S(Ψ) is a connected
set, we introduce the contours corresponding to a configuration σLΛ in the same
way as before, with the only difference that the supports of these contours are now
the connected components of D ∪ S(Ψ), where, as in Section 3, D is the set of
excited cubes in TΛ. By this definition, one of the contours corresponding to σLΛ

will contain the set S(Ψ) as part of its support. We denote this contour by YΨ.
Continuing as before, we obtain the representation

ZΨ
q,Λ =

∑
{YΨ,Y1,...,Yk}
suppYΨ⊃S(Ψ)

ρΨ(YΨ)
∏
i

ρ(Yi)
∏
m

e−β̃em|Wm|, (6.5)
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where
ρΨ(YΨ) =

∑
σD→Y

ωΨ(σD, αD) , (6.6)

with the reduced weight ωΨ given by a formula of the type (3.31).
More generally, we introduce, for a volume V which contains the d+1 dimensional

support S(Ψ) of Ψ, the diluted partition function

ZΨ
q (V ) =

∑
{YΨ,Y1,...,Yk}
Y⊃suppΨ

ρΨ(YΨ)
∏
i

ρ(Yi)
∏
m

e−β̃em|Wm|, (6.7)

where the sum runs over all sets of mutually compatible, matching contours in V
for which all external contours are q-contours. For V = TΛ, Z

Ψ
q (V ) = ZΨ

q,Λ, which
implies that

⟨Ψ⟩q,Λ =
ZΨ
q (TΛ)

Zq(TΛ)
. (6.8)

For every term contributing to (6.7) we consider the collection YΨ consisting of the
contour YΨ as well as all contours Y among {Y1, · · · , Yk} encircling it (IntY ⊃ S(Ψ))
and define

ρ(YΨ) = ρΨ(YΨ)
∏

Y ∈YΨ
Y ̸=YΨ

ρ(Y ). (6.9)

Denoting further suppYΨ =
∪

Y ∈YΨ
suppY , IntYΨ the union of all finite compo-

nents of T\suppYΨ, IntmYΨ the union of all components of IntYΨ that are labeled
by m, and ExtYΨ =

∩
Y ∈YΨ

ExtY , we introduce, in addition to the weights Kq(Y )
defined in the preceeding section for an arbitrary q-contour Y , also the weight

Kq,Ψ(YΨ) := ρΨ(YΨ)e
β̃eq|suppYΨ|

r∏
m=1

Zm(IntmYΨ)

Zq(IntmYΨ)
(6.10)

attributed to the collection YΨ. As a result we get the representation

ZΨ
q (V ) = e−β̃eq|V |

∑
YΨ,Y1,...,Yn

Kq,Ψ(YΨ)

n∏
ℓ=1

Kq(Yℓ). (6.11)

Here the sum goes over set of all collections YΨ and all sets {Y1, . . . , Yn} of non-
overlapping q contours in V , such that for all contours Yi, i = 1, . . . , n, the set V (Yi)
does not intersect the set suppYΨ.

Assuming for the moment that the weights Kq,Ψ(YΨ) and Kq(Y ) decay suffi-
ciently fast with the size of YΨ and Y , respectively, we now use the standard Mayer
cluster expansion for polymer systems to get

ZΨ
q (V )

Zq(V )
=

∑
YΨ

Kq,Ψ(YΨ)
∞∑

n=0

1

n!

∑
{Y1,...,Yn}

[ n∏
k=1

Kq(Yk)
]
ϕc(YΨ, Y1, · · · , Yn) . (6.12)
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Here ϕc(YΨ, Y1, · · · , Yn) is a combinatoric factor defined in terms of the connectivity
properties of the graph G(Y0, Y1, · · · , Yn), introduced as the graph on the vertex
set {0, 1, · · · , n} which has an edge between two vertices i ≥ 1 and j ≥ 1, i ̸= j,
whenever suppYi ∩ suppYj ̸= ∅, and an edge between the vertex 0 and a vertex
i ̸= 0 whenever V (Yi) ∩ suppYΨ ̸= ∅. (see for example [Sei82] or [Dob94] for a new
simple and very lucid proof). The combinatoric factor ϕc(YΨ, Y1, · · · , Yn) is zero if
G(YΨ, Y1, · · · , Yn) has more than one component.

To prove the convergence of (6.12) one has to show that the weights Kq,Ψ and
Kq decay sufficiently fast with the size of YΨ and Y , respectively. To this end it is
useful to introduce truncated models. For a contour Y with V (Y ) ∩ S(Ψ) = ∅, we
define K ′

q(Y ) as before, see (5.9), while for the collection YΨ we define

K ′
q,Ψ(YΨ) = ρΨ(YΨ)e

β̃eq|suppYΨ|
r∏

m=1

Zm(IntmYΨ)

Z ′
q(IntmYΨ)

∏
Y ∈YΨ

χ′
q(Y ) , (6.13)

with χ′
q(Y ) as in (5.10). Given this definition, we introduce

Z ′
q
Ψ
(V ) = e−β̃eq|V |

∑
YΨ

K ′
q,Ψ(YΨ)

∑
{Y1,...,Yn}

n∏
k=1

K ′
q(Yk) (6.14)

and

⟨Ψ⟩′q,V =
Z ′
q
Ψ
(V )

Z ′
q(V )

, (6.15)

which can again be expanded as

⟨Ψ⟩′q,V =
∑
YΨ

K ′
q,Ψ(YΨ)

∞∑
n=0

1

n!

∑
{Y1,...,Yn}

[
n∏

k=1

K ′
q(Yk)

]
ϕc(YΨ, Y1, · · · , Yn) . (6.16)

The following Lemma gives the absolute convergence of the expansion (6.16), which
in turn will yield Theorem 2.1 ii), iii) and iv).

Lemma 6.1. Let ϵ, ϵ0 and α be as in Lemma 5.1, and assume that ϵ < ϵ0 and
α ≥ 1. Then:

i) For every collection YΨ one has∣∣K ′
q,Ψ(YΨ)

∣∣ ≤ ∥Ψ∥e(α+2)|suppΨ|ϵ|suppYΨ\S(Ψ)| . (6.17)

ii) If
aq max

Y ∈YΨ

δ(Y ) ≤ α , (6.18)

then K ′
q,Ψ(YΨ) = Kq,Ψ(YΨ).
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iii) The cluster expansion (6.16) is absolutely convergent, and

∣∣∣⟨Ψ⟩′q,V
∣∣∣ ≤ ∑

YΨ

∣∣∣K ′
q,Ψ(YΨ)

∣∣∣ ∞∑
n=0

1

n!

∑
{Y1,...,Yn}

[
n∏

k=1

∣∣∣K ′
q(Yk)

∣∣∣] ∣∣∣ϕc(YΨ, Y1, · · · , Yn)
∣∣∣

≤ ∥Ψ∥e(α+2+O(ϵ))|suppΨ| . (6.19)

iv) If aqδ(TΛ) ≤ ᾱ, then ⟨Ψ⟩q,Λ = ⟨Ψ⟩′q,Λ.
v) For an arbitrary volume V ⊂ T,

|ZΨ
q (V )| ≤ ∥Ψ∥e(γ+1)|suppΨ|e−β̃f0|V |+O(ϵ)|∂V | . (6.20)

vi) There is a constant K = K(d) > 0 such that for V = TΛ,

|ZΨ
q (V )| ≤ ∥Ψ∥e(γ+1)|suppΨ|e−β̃f0|V |+O(ϵ)|∂V | max

(
e−

aq
4 |V |, e−Kγ|∂V |) . (6.21)

Proof. Observing that δ(W ) ≤ max
Y ∈YΨ

δ(Y ) for all components W of IntYΨ, the

statement ii) of Lemma 6.1 immediately follows from Lemma 5.1.
In order to prove i), we first note that ρΨ(YΨ) ≤ ∥Ψ∥ρ̃(YΨ), where ρ̃(YΨ) satisfies

an analog of the bound (4.4) (however, YΨ is not necessarily excited on S(Ψ)),
namely

|ρ̃(YΨ)| ≤ e−β̃e0|suppYΨ|e−γ|suppYΨ\S(Ψ)|(1 + e−γ)|S(Ψ)|. (6.22)

Hence

ρΨ(YΨ)e
β̃eq|suppYΨ| ≤ ∥Ψ∥e−β̃(e0−eq)|suppYΨ|e−γ|suppYΨ\S(Ψ)|(1 + e−γ)|S(Ψ)|.

(6.23)
Using Lemma 5.1 we get

r∏
m=1

∣∣∣∣Zm(IntYΨ)

Z ′
q(IntYΨ)

∣∣∣∣ ≤ eaq|IntYΨ|+O(ϵ)|∂IntYΨ| . (6.24)

Combined with the bound β̃(eq − e0) ≤ aq +O(ϵ) we get∣∣K ′
q,Ψ(YΨ)

∣∣ ≤ ∥Ψ∥eaq|suppYΨ∪IntYΨ|+O(ϵ)|∂IntYΨ|e−γ|suppYΨ\S(Ψ)|eO(ϵ)|suppYΨ|.
(6.25)

Observing that
∏

Y ∈YΨ
χq(Y ) ̸= 0 implies that aq|V (Y )| ≤ (α + 1 + O(ϵ))|Y | for

each Y ∈ YΨ, and noting that |S(Ψ)| = |suppΨ|, we finally get∣∣K ′
q,Ψ(YΨ)

∣∣ ≤ ∥Ψ∥e−(γ−α−1−O(ϵ))|suppYΨ\S(Ψ)|e(α+1+O(ϵ))|suppΨ|. (6.26)

Statement iii) follows from i) and Lemma 5.1, i), while statement iv) follows from
ii) and Lemma 5.1, ii) and iii).
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To get the statement v) and vi), we first write ZΨ
q (V ) as

ZΨ
q (V ) =

∑
YΨ

ρΨ(YΨ)Zq(ExtYΨ)
∏
m

Zm(IntYΨ). (6.27)

Using now (6.23) and the bound (5.18) in its strengthened form (A.43), we get∣∣ZΨ
q (V )

∣∣ ≤ ∥Ψ∥eγ|S(Ψ)|e−β̃f0|V |eO(ϵ)|∂V |
∑
YΨ

e−γ|suppYΨ|eO(ϵ)|suppYΨ|×

× max
U⊂ExtYΨ

(
e−

aq
4 |ExtYΨ\U |e−K(d)γ|∂U |). (6.28)

Extracting a factor

max
YΨ

e−
γ
2 |suppYΨ| max

U⊂ExtYΨ

(
e−

aq
4 |ExtYΨ\U |e−K(d)γ|∂U |) ≤

≤ max
YΨ

e−K(d)γ|∂V (YΨ)| max
U⊂V \V (YΨ)

(
e−

aq
4 |(V \V (YΨ))\U |e−K(d)γ|∂U |) ≤

≤ max
Ũ⊂V

(
e−

aq
4 |V \Ũ |e−K(d)γ|∂Ũ |) , (6.29)

where V (YΨ) = V \ ExtYΨ, and bounding∑
YΨ

e−
γ
2 |suppYΨ| ≤ (1 +O(e−

γ
2 ))|suppΨ|, (6.30)

we get∣∣ZΨ
q (V )

∣∣ ≤ ∥Ψ∥e(γ+1)|suppΨ|e−β̃f0|V |eO(ϵ)|∂V | max
Ũ⊂V

(
e−

aq
4 |V \Ũ |e−K(d)γ|∂Ũ |) . (6.31)

Bounding the last factor by one, we get statement v); continuing as in the proof of
Lemma A.3 in the appendix, we get statement vi). �

7. Proof of Theorems 2.1 and 2.2

Proof of Theorem 2.1. In order to prove the theorem, we will use Lemmas 5.1
and Lemma 6.1, with α = γ/2. We therefore need that γ > 4 − 2 log ϵ0, which

in turn requires β̃ and γQ are sufficiently large, see (4.5). Choosing appropriate

β0 and γQ, we take β̃ ∈ ( 12β0, β0] and choose λ0 according to (2.13). Then (4.3)
and (4.21) are satisfied once |λ| ≤ λ0. For every β ≥ β0 we now choose M such

that β̃ = β
M ∈ ( 12β0, β0]. Whenever aq = 0 we can then use the claims ii) from

Lemma 5.1 and ii) from Lemma 6.1 to conclude that Kq(Y ) = K ′
q(Y ) for all Y and

K ′
q,Ψ(YΨ) = Kq,Ψ(YΨ) for all YΨ. As a result the bounds (5.5), (5.17), and (6.17)

are valid for Kq(Y ) and Kq,Ψ(YΨ). This allows us to use cluster expansions for
evaluation of Zq(V ) as well as ZΨ

q (V ).
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Hence (2.25) follows directly from (5.2), (5.13) and Lemma 5.1 iii). Similarly,
we get (2.26) (with an explicit formula for ⟨Ψ⟩q) from (6.12). Finally, given the
absolute convergence of the cluster expansion for the expectation values of local
observables and the exponential decay of the contour activities, the bound (2.27) is
standard.

To evaluate the expectation value of the projection operator (2.28), we apply the

expansion (6.10) for the particular observable Ψ = P
(m)
U(x) ≡ |g(m)

U(x)⟩⟨g
(m)
U(x)| . Using

the factor ϵ|suppYΨ\S(Ψ)| in (6.17), one can show that the sum of all terms with
suppYΨ ̸= S(Ψ) is of the order const ϵ, a term that can be made small by taking ϵ
small. We are thus left with contributions coming from the term Kq,Ψ(YΨ) with

suppYΨ = S(Ψ) ≡
∪

x∈U(X)

C(x, 1) . (7.1)

This means that necessarily YΨ = {YΨ} with suppYΨ = S(Ψ) and α(∂S(Ψ)) = q.
The only configurations σ yielding this YΨ are those for which σ = {σy,t} agrees

with g(q), except possibly for the point (y, t) = (x, 1). For the activity

Kq,Ψ(YΨ) = ρΨ({YΨ})eβ̃eq|U(x)| , (7.2)

this gives a contribution O(ϵ) if σx,1 ̸= g
(q)
x , and a contribution

eβ̃eq|Λ|MTrHΛ

(
Ψ |g(q)Λ ⟩⟨g(q)Λ |

M∏
t=1

e
−β̃

∑
y∈Λ Φy(g

(q)

U(y)
)
)

= TrHΛ

(
Ψ |g(q)Λ ⟩⟨g(q)Λ |

)
= δm,q. (7.3)

if σx,1 = g
(q)
x . Putting everything together, we obtain the bound

⟨P (m)
U(x)⟩q = δm,q +O(ϵ) , (7.4)

which proves iv).
Finally, v) is a standard claim in the Pirogov-Sinai theory. Namely, given the

bounds (5.5), (5.17), and the fact that fq can be analysed by a convergent cluster
expansion, we get |fq − eq| ≤ O(ϵ) and a similar bound for the derivatives of fq.
Statement v) then follows from the corresponding assumptions (2.4) and (2.5) on
the functions eq(µ). �

Proof of Theorem 2.2.
The partition functions

Zper,Λ(L) = TrHΛe
−βH per,Λ(L) (7.5)
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and
ZΨ

per,Λ(L) = TrHΛΨe−βH per,Λ(L) (7.6)

have representations Z(TΛ per(L)) and ZΨ(TΛ per(L)) similar to (5.1) and (6.5). The
proof of Theorem 2.2 follows from this representation in a standard manner [BI
89, BK90]. One only has to notice that contours contributing to these partition
functions may be wrapped around the torus TΛ per(L) in time as well as space direc-

tions. Nevertheless, whenever a contour Y satisfies the condition δ(Y ) ≤ L
3 , one can

define ExtY as the largest component of TΛ per \ suppY . For every configuration
containing only such contours, all external contours have clearly the same external
label. Splitting now Z(TΛ per(L)) (resp. Z

Ψ(TΛ per(L))) into contributions containing

at least one contour such that δ(Y ) > L
3 and those where all contributing contours

are such that δ(Y ) ≤ L
3 , we get

Z(TΛ per) = Z big(TΛ per) +
r∑

m=1

Zm(TΛ per). (7.7)

Here Zm(TΛ per) is given as a sum over all configurations containing only those

contours for which δ(Y ) ≤ L
3 and such that the common external label of external

contours is m. Taking into account the fact that term Z big(TΛ per) is exponentially
suppressed in L (one can use verbatim the proof from [BI89]), we get∣∣∣Z(TΛ per)−

r∑
m=1

Zm(TΛ per)
∣∣∣ ≤ e−β̃f0M(2L+1)de−const γL, (7.8)

and similarly∣∣∣ZΨ(TΛ per)−
r∑

m=1

ZΨ
m(TΛ per)

∣∣∣ ≤ ∥Ψ∥e(γ+1)|suppΨ|e−β̃f0M(2L+1)de−const γL. (7.9)

Moreover, whenever m is stable, m ∈ Q(µ), we have Zm(TΛ per) = Z ′
m(TΛ per)

and we can use the cluster expansion of logZ ′
m(TΛ per) and fm to show that∣∣Zm(TΛ per)− e−β̃fmM(2L+1)d

∣∣ ≤ e−β̃f0M(2L+1)dM(2L+ 1)de−const γL. (7.10)

Namely, we just observe that the first terms in which these two cluster expansions
differ are of the order e−const γL (clusters wrapped around TΛ per in spatial direc-
tions).

For m /∈ Q(µ), on the other hand, we proceed as in the proof of Lemma A.3 to
get∣∣∣Zm(TΛ per)

∣∣∣ ≤ exp(M(2L+ 1)de−const γL) e−β̃f0M(2L+1)d×

×max
{
e−

aq
4 M(2L+1)d , e−K(d)γM(2L+1)d−1

}
. (7.11)
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For m /∈ Q(µ) and L sufficiently large, we therefore get∣∣∣Zm(TΛ per)
∣∣∣ ≤ 2e−β̃f0M(2L+1)de−K(d)γM(2L+1)d−1

. (7.12)

In a similar way, proceeding now as in the proof of Lemma 6.1, we get∣∣∣ZΨ
m(TΛ per)

∣∣∣ ≤ 2∥Ψ∥e(γ+1)|suppΨ|e−β̃f0M(2L+1)de−K(d)γM(2L+1)d−1

, (7.13)

provided m /∈ Q(µ) and L is sufficiently large.
Combining the bounds (7.8), (7.10) and (7.12), and using the fact that fm =

Re fm if the couling constant λ is real, which in turn implies fm = f0 if m ∈ Q(µ),
we get∣∣∣Z(TΛ per)− |Q(µ)|e−β̃f0M(2L+1)d

∣∣∣ ≤ e−β̃f0M(2L+1)dO(e−constγL) (7.14)

provided L is sufficiently large.
Introducing now the truncated expectation values

⟨Ψ⟩′q,TΛper
=

Z ′
q
Ψ
(TΛ per)

Z ′
q(TΛ per)

(7.15)

(cf. (5.6) and (6.14)), we get∣∣∣ZΨ(TΛ per)−
∑

m∈Q(µ)

e−β̃Re fmM(2L+1)d⟨Ψ⟩′m,TΛper

∣∣∣ ≤
≤

∑
m∈Q(µ)

∣∣∣⟨Ψ⟩′m,TΛper

(
Z ′
m(TΛ per)− e−β̃Re fmM(2L+1)d

)∣∣∣+
+

∑
m ̸∈Q(µ)

∣∣∣ZΨ
m(TΛ per)

∣∣∣+ ∥Ψ∥e(γ+1)|suppΨ|e−β̃f0M(2L+1)de−const γL. (7.16)

Next, we observe that ⟨Ψ⟩′m,TΛper
can be bounded in the same way as ⟨Ψ⟩′m,TΛ

,

namely ∣∣⟨Ψ⟩′m,TΛper

∣∣ ≤ ∥Ψ∥e(α+2+O(ϵ))|suppΨ| ≤ ∥Ψ∥e(γ+1)|suppΨ| . (7.17)

Inserting the bounds (7.10), (7.17) and (7.13) into (7.16), and dividing both sides

of the resulting bound by |Q(µ)|e−β̃f0M(2L+1)d , we get∣∣∣⟨Ψ⟩ per,Λ(L) −
∑

m∈Q(µ)

⟨Ψ⟩m,TΛper

∣∣∣ ≤ e−const γL∥Ψ∥e(γ+1)|suppΨ| , (7.18)

provided L is sufficiently large. In the limit L → ∞, this yields the claim of Theorem
2.2. �
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Appendix. Pirogov-Sinai theory in thin slabs — proof of Lemma 5.1

In this appendix, we prove Lemma 5.1. Actually, it is a direct consequence of

the Lemma A.1 below. In order to state the lemma, we recall the definition of f
(n)
q

as the free energy of an auxilliary contour model with activities

K(n)(Y ) =

{
K ′(Y ) if δ(Y ) ≤ n,

0 otherwise,
(A.1)

and define

f
(n)
0 = min

q
Re f (n)

q , (A.2)

a(n)q = β̃(Re f (n)
q − f

(n)
0 ). (A.3)

Observing that f0 = limn→∞ f
(n)
0 and aq = limn→∞ a

(n)
q , Lemma 5.1 follows

directly from the following.

Lemma A.1. Assume that ρ(·) obeys the conditions (4.4) and (4.22) and let

ϵ = e−γ+α+2 and ᾱ = α− 2. (A.4)

Then there is a constant ϵ0, depending only on d and r, such that the following
statements are true once (γ is such that) ϵ < ϵ0 and α ≥ 3. For all n ≥ 0 and Y
and V such that δ(Y ) ≤ n, δ(V ) ≤ n, one has:

i) |K ′
q(Y )| ≤ ϵ|Y |.

ii)
∣∣∣ ∂

∂µi
K ′

q(Y )
∣∣∣ ≤ (3rβ̃C0 + 2)|V (Y )|ϵ|Y |.

iii) If a
(n)
q δ(Y ) ≤ ᾱ then χ′

q(Y ) = 1.

iv) If a
(n)
q δ(Y ) ≤ ᾱ then K ′

q(Y ) = Kq(Y ).

v) If a
(n)
q δ(V ) ≤ ᾱ then Z ′

q(V ) = Zq(V ).

vi) |Zq(V )| ≤ e−β̃f
(n)
0 |V |eO(ϵ)|∂V |.

vii)
∣∣∣ ∂

∂µi
Zq(V )

∣∣∣ ≤ (2β̃C0 + 1)|V |e−β̃f
(n)
0 |V |eO(ϵ)|∂V |.

Proof. We proceed by induction on n.

I. The case n = 0.

There are no contours with δ(Y ) = 0. This makes i) – iv) trivial statements

and implies that f
(0)
q = eq. On the other hand, δ(V ) = 0 implies |V | = 0 and

Zq(V ) = Z ′
q(V ) = 1, which makes v) – vii) trivial statements.

II. Induction step n− 1 → n.
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Proof of i) for δ(Y ) = n. Clearly, δ(IntY ) < n, and all contours Ỹ contributing

to Z ′
q(IntmY ) obey the condition δ(Ỹ ) < n. This implies that |K ′

q(Ỹ )| ≤ ϵ|Ỹ | by
the inductive assumption i). As a consequence, the logarithm of Z ′

q(IntmY ) can be
analyzed by a convergent expansion, and∣∣∣logZ ′

q(IntmY ) + β̃f (n−1)
q |IntmY |

∣∣∣ ≤ O(ϵ)|∂IntmY |. (A.5)

Combining (A.5) with the induction assumption vi), we get∏
m

∣∣∣∣Zm(IntmY )

Z ′
q(IntmY )

∣∣∣∣ ≤ ea
(n−1)
q |IntY |eO(ϵ)

∑
m |∂IntmY |

≤ ea
(n−1)
q |IntY |eO(ϵ)|Y |. (A.6)

Observing that
|β̃em − β̃f (n−1)

m | ≤ O(ϵ), (A.7)

which implies the bound

|β̃(eq − e0)− a(n−1)
q | ≤ O(ϵ), (A.8)

we use the bound (4.4) to evaluate

|ρ(Y )eβ̃eq|Y || ≤ e−γ|Y |eβ̃(eq−e0)|Y | ≤ e−(γ−O(ϵ))|Y |ea
(n−1)
q |Y |. (A.9)

Applying now the bounds (A.9) and (A.6) to the definition (5.9) and using the
equation |V (Y )| = |IntY |+ |Y |, we obtain

|K ′
q(Y )| ≤ χ′

q(Y )ea
(n−1)
q |V (Y )|e−(γ−O(ϵ))|Y |. (A.10)

Without loss of generality, we may assume that χ′
q(Y ) > 0 (otherwise K ′

q(Y ) = 0
and the statement i) is trivial). Let us notice that

|V (Y )| ≤ δ(Y )|Y |. (A.11)

Indeed, considering a disjoint union T of “rows” consisting of elementary cubes
C(x, t) with fixed cordinates x2, . . . , xd and t, one notices that the set V (Y ) inter-
sects at most δ(Y ) of elementary cubes in each such row and there is at most |Y |
such rows that have a nonempty intersection with V (Y ). By the definition of χ′

q(Y )
and (A.11), we get

β̃|f (n−1)
q − f (n−1)

m | |V (Y )| ≤ (1 + α)|Y |

for all m ̸= q. As a consequence,

a(n−1)
q |V (Y )| ≤ (1 + α)|Y |, (A.12)
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provided χ′
q(Y ) ̸= 0. Combined with (A.10) and the fact that χ′

q(Y ) ≤ 1, this
implies that

|K ′
q(Y )| ≤ e−[γ−1−α−O(ϵ)]|Y |, (A.13)

which yields the desired bound i) for δ(Y ) = n.

Proof of ii) for δ(Y ) = n. Using (4.22), (2.7), (4.4), and (A.8), we get∣∣∣ ∂

∂µi

(
ρ(Y )eβ̃eq|Y |)∣∣∣ ≤ (2β̃C0 + 1)|Y |e−(β̃e0+γ)|Y |eβ̃eq|Y | ≤

≤ (2β̃C0 + 1)|Y |e−(γ−O(ϵ))|Y |ea
(n−1)
q |Y |. (A.14)

Using inductive assumption i) and ii) for contours contributing to Z ′
q(IntmY ),

we can apply the cluster expansion to get the bounds∣∣∣ ∂

∂µi
logZ ′

q(IntmY )
∣∣∣ ≤ [

β̃C0 + (1 + β̃C0)O(ϵ)
]
|IntmY | (A.15)

and

β̃
∣∣∣ ∂

∂µi
f (n−1)
m

∣∣∣ ≤ [
β̃C0 + (1 + β̃C0)O(ϵ)

]
. (A.16)

Using further the inductive assumption vi) and vii), as well as the bounds (A.5)
and (A.6), we get∣∣∣∣∣ ∂

∂µi

∏
m

Zm(IntmY )

Z ′
q(IntmY )

∣∣∣∣∣ ≤ [
(3β̃C0 + 1) + (1 + β̃C0)O(ϵ)

]
|IntY |ea

(n−1)
q |IntY |eO(ϵ)|Y |

≤
[
(2rβ̃C0 + 1) + (1 + β̃C0)O(ϵ)

]
|IntY |ea

(n−1)
q |IntY |eO(ϵ)|Y |.

(A.17)

With the help of (A.16) and (5.11) we get∣∣∣∣ ∂

∂µi
χ′
q(Y )

∣∣∣∣ ≤ 2(r − 1)[β̃C0 + (1 + β̃C0)O(ϵ)]δ(Y )

≤ 2(r − 1)[β̃C0 + (1 + β̃C0)O(ϵ)]|Y |. (A.18)

Combining now (A.14), (A.17), and (A.18) with (A.6), (A.9) and the observation
that |V (Y )| = |Y |+ |IntY |, we get∣∣∣ ∂

∂µi
K ′

q(Y )
∣∣∣ ≤ {

2rβ̃C0 + 1 + (1 + β̃C0)O(ϵ)
}
|V (Y )|ea

(n−1)
q |V (Y )|e−(γ−O(ϵ))|Y | .

(A.19)
Using now again the fact that K ′

q(Y ) (and its derivatives) vanishes unless (A.12) is
fulfiled, we get the desired bound, provided ϵ is sufficiently small.
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Proof of iii) for k = δ(Y ) ≤ n and a
(n)
q δ(Y ) ≤ ᾱ. We just have proved that i) is

true for all contours Y with δ(Y ) ≤ n. As a consequence, both f
(k−1)
m and f

(n)
m may

be analyzed by a convergent cluster expansion. Using the definition of f
(n)
m and

the obvious fact that |Y | ≥ δ(Y ) (again, d ≥ 2), one concludes that all contours Y

contributing to the cluster expansion of the difference f
(k−1)
m −f

(n)
m obey the bound

|Y | ≥ k. As a consequence,

β̃|f (k−1)
m − f (n)

m | ≤ (Kϵ)k (A.20)

and
β̃|f (k−1)

m − f (n)
m |δ(Y ) ≤ (Kϵ)kδ(Y ) = k(Kϵ)k ≤ O(ϵ). (A.21)

where K is a constant depending only on the dimension d and the number of phases

r. Combining (A.21) with the assumption a
(n)
q δ(Y ) ≤ ᾱ, we obtain the lower bound

α− β̃[f (k−1)
q − f (k−1)

m ]δ(Y ) ≥ α− a(n)δ(Y )
q −O(ϵ) ≥ α− ᾱ−O(ϵ) = 2−O(ϵ),

with ᾱ defined by (A.4). Combining this with (5.12) we get the equality χ′
q(Y ) = 1.

Proof of iv) and v). The statement follows from the just proven fact that χ′
q(Y ) = 1

for all contours Y with δ(Y )a
(n)
q ≤ ᾱ, the definiton (5.9) of K ′

q(Y ) and the relations
(5.6) and (5.4). We proceed by a second induction on the diameters of Y and V . For
δ(Y ) = 0 or δ(V ) = 0 the statement is trivial. Assume now that K ′

q(Y ) = Kq(Y )

for all Y with δ(Y ) ≤ k < n and δ(Y )a
(n)
q ≤ ᾱ. Comparing (5.4) and (5.6), we

conclude that Z ′
q(V ) = Zq(V ) for all V with δ(V ) ≤ k < n and δ(V )a

(n)
q ≤ ᾱ. Let Y

be a contour with δ(Y ) = k+ 1 and δ(Y )a
(n)
q ≤ ᾱ. Then Z ′

q(IntmY ) = Zq(IntmY )
since δ(IntmY ) ≤ δ(Y )− 1 = k. Combined with the fact that χ′

q(Y ) = 1 by iii), we
conclude that K ′

q(Y ) = Kq(Y ). This completes the induction on k.

Proof of vi) for δ(V ) = n. We say that a contour Y is small if a
(n)
q δ(Y ) ≤ ᾱ while

it is large if a
(n)
q δ(Y ) > ᾱ. We then rewrite the partition function Zq(V ) given in

the form (5.1) by splitting the set of external contours into small and large contours
and, for a fixed collection of large external contours {X1, · · ·Xk}ext, we resum over

(mutually external) small q-contours in Ext = V \
k
∪
i=1

V (Xi). As a result we get

Zq(V ) =
∑

{X1,··· ,Xk}ext

Z small
q (Ext )

k∏
i=1

[
ρ(Xi)

∏
m

Zm(IntmXi)

]
(A.22)

with the sum going over sets of mutually external large contours in V . The partition
function Z small

q (Ext ) is obtained from Zq(Ext ) by dropping all large external q-
contours.
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Due to the inductive assumption iv), Kq(Y ) = K ′
q(Y ) if Y is small. Since

|K ′
q(Y )| ≤ ϵ|Y | by i), Z small

q (Ext ) can be evaluated by a convergent cluster expan-
sion, and ∣∣Z small

q (Ext )
∣∣ ≤ e−β̃Re f small

q |Ext |eO(ϵ)|∂Ext |. (A.23)

Here f small
q is the free energy of the contour model with activities

K small
q (Y ) =

{
K ′

q(Y ) if δ(Y ) ≤ n and Y is small,

0 otherwise.
(A.24)

On the other hand,∏
m

|Zm(IntmXi)| ≤ e−β̃f
(n−1)
0 |IntXi|eO(ϵ)|∂IntXi|

by the induction assumption vi). Observing that the smallest contours contributing

to the difference of f
(n)
m and f

(n−1)
m obey the bound |Y | ≥ n, while

|V (Xi)| ≤ δ(Xi) |Xi| ≤ n|Xi| ,

we may continue as in the proof of (A.21) to bound

β̃|f (n−1)
0 − f

(n)
0 ||IntXi| ≤ β̃|f (n−1)

0 − f
(n)
0 ||V (Xi)| ≤ n(Kϵ)n|Xi| ≤ O(ϵ)|Xi| .

Thus ∏
m

|Zm(IntXi)| ≤ e−β̃f
(n)
0 |IntXi|eO(ϵ)|Xi| . (A.25)

Combining (A.23) and (A.25) with the bounds

|ρ(Xi)| ≤ e−γ|Xi|−β̃e0|Xi| ≤ e−(γ−O(ϵ))|Xi|e−β̃f
(n)
0 |Xi| (A.26)

and

|∂Ext | ≤ |∂V |+
k∑

i=1

|∂V (Xi)| ≤ |∂V |+ 2(d+ 1)

k∑
i=1

|Xi|, (A.27)

we conclude that

|Zq(V )| ≤ eO(ϵ)|∂V |e−β̃f
(n)
0 |V |

∑
{X1,··· ,Xk}ext

e−β̃[Re f small
q −Re f(n)

q ]|Ext |
k∏

i=1

e−(γ−O(ϵ))|Xi|.

(A.28)

Next, we bound the difference f small
q −f

(n)
q . First, for all large contours X, we have

|X| ≥ δ(X) ≥ ℓ0 :=
ᾱ

a
(n)
q

. (A.29)
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Next, we observe that

β̃|f (n)
q − f small

q | ≤ (Kϵ)ℓ0 ≤ 1

−ℓ0 log(Kϵ)
, (A.30)

where K is a constant depending only on d and N . Recalling the condition ᾱ ≥ 1,
we get

β̃|f (n)
q − f small

q | ≤ a
(n)
q

− log(Kϵ)
≤ 1

2
a(n)q , (A.31)

provided ϵ is chosen small enough. Combining (A.28) with (A.31), we finally obtain

|Zq(V )| ≤ eO(ϵ)|∂V |e−β̃f
(n)
0 |V |

∑
{X1,··· ,Xk}ext

e−
a
(n)
q
2 |Ext |

k∏
i=1

e−γ̃|Xi| (A.32)

with
γ̃ = γ − 1. (A.33)

At this point we need the following Lemma A.2, which is a variant of a lemma first
proven in [Zah84] (see also [BI89] and [BK94] for the proof of this lemma exactly
in the following formulation).

Lemma A.2. Consider an arbitrary contour activity K̃q(Y ) ≥ 0, and let Z̃q be the
partition function

Z̃q(V ) =
∑

{Y1,··· ,Yn}

n∏
i=1

(K̃q(Yi)e
|Yi|). (A.34)

Let s̃q be the corresponding free energy, and assume that K̃q(Y ) ≤ ϵ̃|Y |, where ϵ̃ is
small (depending on r and d). Then for any ã ≥ −s̃q the following bound is true∑

{Y1,··· ,Yk}ext

eã|Ext |
∏
i

K̃q(Yi) ≤ eO(ϵ̃)|∂V | , (A.35)

with the sum running over all sets of mutually external q-contours in V .

In order to apply the lemma, we define K̃q(Y ) = e−τ̃ |Y | if Y is a large q-contour,

and K̃q(Y ) = 0 otherwise. With this choice,

0 ≤ −s̃q ≤ (Kϵ)ℓ0 ≤ 1

−ℓ0 log(Kϵ)
. (A.36)

As a consequence,

−s̃q ≤ ã :=
a
(n)
q

2
(A.37)
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provided ϵ is small enough. Applying Lemma A.2 to the right hand side of (A.32),
and observing that ϵ̃ := e−τ̃ ≤ ϵ, we finally obtain the desired inequality

|Zq(V )| ≤ eO(ϵ)|∂V |e−β̃f
(n)
0 |V |. (A.38)

Proof of vii) for δ(V ) = n.

Beginning from the formula (A.22) above, we first notice that∣∣∣ ∂

∂µi
logZ small

q (ExtY )
∣∣∣ ≤ (β̃C0 + (1 + β̃C0)O(ϵ))|ExtY | (A.39)

(cf. (A.15)) since we can use ii) for small Y . Using further the bound (A.23) we can
conclude that∣∣∣∣ ∂

∂µi
Z small
q (Ext )

∣∣∣∣ ≤ (β̃C0 + (1 + β̃C0)O(ϵ))|ExtY |e−β̃Re f small
q |Ext |eO(ϵ)|∂Ext |.

(A.40)
Combining this with the bounds (4.22) as well as (A.23) for Z small

q (Ext ) and the
inductive assumptions (vii) and (vi) for Zm(IntmXi), we get∣∣∣∣ ∂

∂µi
Zq(V )

∣∣∣∣ ≤ eO(ϵ)|∂V |e−β̃f
(n)
0 |V |∑

{X1,··· ,Xk}ext

∣∣(β̃C0 + (1 + β̃C0)O(ϵ))|ExtY |+ (2β̃C0 + 1)|IntY |+ (β̃C0 + 1)|Y |
∣∣

e−β̃[Re f small
q −Re f(n)

q ]|Ext |
k∏

i=1

e−(γ−O(ϵ))|Xi|. (A.41)

Proceding now as in the proof of vi) from (A.28), we finally get vii).
This concludes the inductive proof of Lemma A.1. �

For V = TΛ, the bound from Lemma A.1 vi) can be actually strengthened:

Lemma A.3. Under the assumptions of Lemma A.1 we have

|Zq(TΛ)| ≤ e−β̃f0|TΛ|eO(ϵ)|∂TΛ| max
{
e−

aq
4 |TΛ| , e−K(d)γ|∂TΛ|} (A.42)

with a constant K(d) that depends only on the dimension d.

Proof. Extracting from (A.32) the factor max
{X1,··· ,Xk}ext

e−
a
(n)
q
4 |Ext |

k∏
i=1

e−
1
2 γ̃|Xi|, we

still get the same bound. This factor can be, in the limit n → ∞, clearly bounded

by max
U⊂V

(
e−

aq
4 |V \U |e−K(d)γ|∂U |). As a consequence,

|Zq(V )| ≤ e−β̃f0|V |eO(ϵ)|∂V | max
U⊂V

(
e−

aq
4 |V \U |e−K(d)γ|∂U |) , (A.43)
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which is still true for arbitrary V ⊂ T. We now decompose U and V into timeslices,
U = ∪tUt and V =

∑
t Vt, and observe that |V \U | =

∑
t

(
|Vt|− |Ut|

)
, while |∂U | ≥∑

t |∂π(Ut)|, where π(·) denotes the projection onto Rd. Using the isoperimetric
inequality on Rd, we now bound

max
U⊂V

(
e−

aq
4 |V \U |e−2dK(d)γ|U |

d−1
d

)
≤

M∏
t=1

max
Ut⊂Vt

(
e−

aq
4 (|Vt|−|Ut|)e−2dK(d)γ|Ut|

d−1
d

)
≤

M∏
t=1

max
{
e−

aq
4 |Vt|, e−2dK(d)γ|Vt|

d−1
d

}
.
(A.44)

Restricting ourselves to V = TΛ, we observe that |Vt| = |V |/M is independent of t
in this case. As consequence,

max
U⊂V

(
e−

aq
4 |V \U |e−2dK(d)γ|U |

d−1
d

)
≤

(
max

{
e−

aq
4 |V |/M , e−2dK(d)γ(|V |/M)

d−1
d

})M

= max
{
e−

aq
4 |V |, e−K(d)γ|∂V |} , (A.45)

where we used that |∂V | = 2dM(|V |/M)
d−1
d in the last step. �
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